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a Quasiconformal Mapping?
Juha Heinonen

Quasiconformal mappings are generalizations of con
formal mappings. They can be considered not only on
Riemann surfaces, but also on Riemannian manifolds
in all dimensions, and even on arbitrary metric spaces.
Quasiconformal mappings occur naturally in various

mathematicalandoftenaprioriunrelatedcontexts.

The importance of quasiconformal mappings in

complex analysis was realized by Ahlfors and Teich

müller in the 1930s. Ahlfors used quasiconformal

mappings in his geometric approach to Nevanlinna’s

value distribution theory. He also coined the term

“quasiconformal” in his 1935 work on Überlagerungs
flächen that earned him one of the first two Fields

medals. Teichmüller used quasiconformal mappings

to measure a distance between two conformally in

equivalent compact Riemann surfaces, starting what

is now calledTeichmüller theory.

There are three main definitions for quasiconfor

mal mappings in Euclidean spaces: metric, geometric,

and analytic. We begin with the metric definition,

which is the easiest to state and which makes sense in

arbitrary metric spaces. It describes the property that

“infinitesimal balls are transformed to infinitesimal

ellipsoids of boundedeccentricity”.

Let f : X → Y be a homeomorphism between two

metric spaces. Forx ∈ X and r > 0 let

Lf (x, r) = sup{|f (x)− f (y)| : |x− y| ≤ r}

and

lf (x, r) = inf{|f (x)− f (y)| : |x− y| ≥ r} .

(Here and later we use the Polish notation |a − b| for

the distance in any metric space.) The ratioHf (x, r) =

Lf (x, r)/lf (x, r) measures the eccentricity of the

image of the ball B(x, r) under f . We say that f is

Hquasiconformal,H ≥ 1, if

(1) lim sup
r→0

Hf (x, r) ≤ H

for everyx ∈ X.

Homeomorphisms that are 1quasiconformal be

tween domains in R2 = C are precisely the (complex

analytic) conformal or anticonformal mappings, by a

theorem of Menshov from 1937. Homeomorphisms

that are 1quasiconformal between domains in Rn,
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n ≥ 3, are precisely the Möbius transformations, or

compositions of inversions on spheres in the one

point compactification Rn ∪ {∞}, by the generalized

Liouville theorem proved by Gehring and Reshetnyak

in the 1960s. On the other hand, every diffeomor

phism f : R → R is 1quasiconformal according to

the metric definition, as is every homeomorphism

between discrete spaces. Surely not all such map

pings deserve to be called quasiconformal. We will

later remedy this situation.

Many early definitions for quasiconformality used

some conformally invariant quantity and declared

quasiconformal mappings to be those homeomor

phisms that changed that quantity by a bound

ed amount. Here is one such geometric definition.

Let f : D → D′ be a homeomorphism between two

domains in Rn, n ≥ 2. Then f is said to be Kquasi
conformal,K ≥ 1, if

(2) K−1mod(f (Γ )) ≤ mod(Γ ) ≤ Kmod(f (Γ ))

for every curve family Γ inD. The conformal modulus
mod(Γ ) of a family Γ of curves inRn is the infimum of

the numbers
∫
Rn
ρn dxover all nonnegative Borel func

tions ρ : Rn → [0,∞] such that
∫
γ ρ ds ≥ 1 for every

γ ∈ Γ . The definition of modulus is admittedly not

easy to digest at one glance, but once mastered it is a

powerful tool in geometric function theory. The geo

metricdefinition (2) is aglobal requirement thatquick

ly yields many strong properties of quasiconformal

mappings; for example, the inverse of a quasiconfor

mal mapping is automatically quasiconformal, which

isnotatallobvious fromthemetricdefinition.

Also in the 1930s, an analytic definition for quasi

conformal mappings was considered by Lavrentiev in

connection with elliptic systems of partial differential

equations. According to this definition, a homeomor

phism f : D → D′ between domains inRn,n ≥ 2, is said

to be Kquasiconformal if the first distributional par

tial derivatives of f are locally in the Lebesgue space

Ln and if the formal differential matrix Df = (∂ifj)

satisfies

(3) sup
h∈Rn ,|h|≤1

|Df(x)(h)|n ≤ K detDf(x)

for almost every x ∈ D. The use of distributional

derivatives is essential in this context; important com

pactness properties of quasiconformal mappings are

lost if smoothmappingsonlyareconsidered.
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It is a deep fact that a homeomorphism f : D → D′

between domains in Rn, n ≥ 2, is quasiconformal

according to each of the three definitions—metric,

geometric, and analytic—if it is quasiconformal ac

cording to any one of them. The parameters H and

K depend only on each other and on n. The equiva

lence of these three definitions is a result of work by

Gehring, Väisälä, and many others, in the 1950s and

early 1960s.

There is a powerful existence theorem, proved

by Morrey in 1938, that lends a special flavor to the

2dimensional theory: given a measurable complex

valued function µ in R2 such that ||µ||∞ < 1, there

exists a quasiconformal homeomorphism f : R2 → R2

(unique when properly normalized) such that ∂f =

µ ∂f in thesenseofdistributions,where∂ =
1
2
(∂x+i∂y)

and ∂ =
1
2
(∂x − i∂y) in complex notation. That is, one

can measurably preassign the eccentricity and an

gle of the ellipses that are carried to a circle by the

almost everywhere defined derivative of f . This fact

has had tremendous impact on complex analysis and

dynamics, Teichmüller theory, and lowdimensional

topology.

The interplay of all three aspects of quasicon

formality (metric, geometric, and analytic) is an

important feature of the theory; one cannot rely on

just one of them. Everyone who gives a graduate

course on quasiconformal mappings faces the dilem

ma that a reasonably selfcontained proof (using

contemporary real and harmonic analysis) of the

equivalence of all the preceding definitions would

easily take up half of the semester. I would like to

emphasize the fact, perhaps not widely realized, that

from the technical point of view the quasiconformal

mapping theory even in dimension n = 2 is much

more part of real than complex analysis. Instead of

power series, integral representations, or algebra

ic techniques, the theory relies on singular integrals,

geometricmeasuretheory, andSobolevspaces.

There is another metric approach to quasicon

formality that lately has found applications in a

variety of contexts. A homeomorphism, or more

generally an embedding, f : X → Y is said to be

ηquasisymmetric if η : [0,∞) → [0,∞) is a homeo

morphism and if |x − y| ≤ t|x − z| implies |f (x) −

f (y)| ≤ η(t)|f (x) − f (z)| for every triple of points

x, y, z ∈ X. Anηquasisymmetric mapping is obvious

ly quasiconformal according to the metric definition,

with H = η(1), but the converse is not true in gen

eral. It is another deep fact that the infinitesimal

condition (1) implies quasisymmetry for homeomor

phisms f : Rn → Rn, n ≥ 2. Although this fact is a

statement about two purely metric conditions, all

known proofs use delicate geometry and analysis; in

particular, all known proofs give an η that depends

on H and dimension n (but nothing else). It is an

open problem whether a selfhomeomorphism of an

infinitedimensional Hilbert space that satisfies (1) is

alsoquasisymmetric.

Quasisymmetry is the right definition for quasicon

formal mappings in dimension one, e.g., on the real

line. More generally, the concept of quasisymmetry

is a good analogue of quasiconformality in arbitrary

metric spaces, where condition (1) is often too weak

to give an interesting theory. On the other hand,

quasisymmetry is a global condition and simple ex

amples show, for instance, that conformal mappings

between planar domains need not be quasisymmetric.

The following egg yolk principle describes a precise

relationship between quasisymmetry and quasicon

formality for homeomorphisms between domains

in Rn, n ≥ 2: f : D → D′ is quasiconformal if and

only if there is η such that f |B(x,
1
2
dist(x, ∂D)) is

ηquasisymmetric for every x ∈ D. The assertion is

moreover quantitative in that the various parameters

dependonly on each other andn.

Today quasiconformal mappings are used eve

rywhere in complex analysis of one variable. But

early on, the theory found applications beyond the

classical framework. Mostow’s proof of his celebrat

ed rigidity results in general rankone symmetric

spaces required a quasiconformal mapping theory in

subRiemannian manifolds. Sullivan showed that all

topological manifolds outside dimension four carry

quasiconformal structures, a fact later used by him,

Connes, and Teleman to develop a theory of charac

teristic classes on topological manifolds. In the past

ten years, it has become known that a fullfledged qua

siconformal mapping theory exists in rather general

metric measure spaces. This theory has subsequently

been applied to new rigidity studies in geometric

group theory. There is also a budding theory of quasi

conformal mappings in infinitedimensional Banach

spaces, based on the concept of quasisymmetry. From

the time of Lavrentiev and Morrey, the connection

between quasiconformal analysis and elliptic partial

differential equations via the analytic definition (3)

has been manifest. In harmonic analysis, an important

selfimproving phenomenon associated with reverse

Hölder inequalities was first discovered in connection

with quasiconformal mappings by Gehring in 1973.

New generalizations have emerged from connections

to elasticity theory.

Quasiconformal mappings are fascinating objects

in mathematics. They are flexible enough to be ubiqui

tous, yet they harbor enough subtle analytic and geo

metric properties so as to be useful in a variety of con

texts.
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