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a Quasiconformal Mapping?
Juha Heinonen

Quasiconformal mappings are generalizations of con­
formal mappings. They can be considered not only on
Riemann surfaces, but also on Riemannian manifolds
in all dimensions, and even on arbitrary metric spaces.
Quasiconformal mappings occur naturally in various

mathematicalandoftenaprioriunrelatedcontexts.

The importance of quasiconformal mappings in

complex analysis was realized by Ahlfors and Teich­

müller in the 1930s. Ahlfors used quasiconformal

mappings in his geometric approach to Nevanlinna’s

value distribution theory. He also coined the term

“quasiconformal” in his 1935 work on Überlagerungs­
flächen that earned him one of the first two Fields

medals. Teichmüller used quasiconformal mappings

to measure a distance between two conformally in­

equivalent compact Riemann surfaces, starting what

is now calledTeichmüller theory.

There are three main definitions for quasiconfor­

mal mappings in Euclidean spaces: metric, geometric,

and analytic. We begin with the metric definition,

which is the easiest to state and which makes sense in

arbitrary metric spaces. It describes the property that

“infinitesimal balls are transformed to infinitesimal

ellipsoids of boundedeccentricity”.

Let f : X → Y be a homeomorphism between two

metric spaces. Forx ∈ X and r > 0 let

Lf (x, r) = sup{|f (x)− f (y)| : |x− y| ≤ r}

and

lf (x, r) = inf{|f (x)− f (y)| : |x− y| ≥ r} .

(Here and later we use the Polish notation |a − b| for

the distance in any metric space.) The ratioHf (x, r) =

Lf (x, r)/lf (x, r) measures the eccentricity of the

image of the ball B(x, r) under f . We say that f is

H­quasiconformal,H ≥ 1, if

(1) lim sup
r→0

Hf (x, r) ≤ H

for everyx ∈ X.

Homeomorphisms that are 1­quasiconformal be­

tween domains in R2 = C are precisely the (complex

analytic) conformal or anticonformal mappings, by a

theorem of Menshov from 1937. Homeomorphisms

that are 1­quasiconformal between domains in Rn,
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n ≥ 3, are precisely the Möbius transformations, or

compositions of inversions on spheres in the one­

point compactification Rn ∪ {∞}, by the generalized

Liouville theorem proved by Gehring and Reshetnyak

in the 1960s. On the other hand, every diffeomor­

phism f : R → R is 1­quasiconformal according to

the metric definition, as is every homeomorphism

between discrete spaces. Surely not all such map­

pings deserve to be called quasiconformal. We will

later remedy this situation.

Many early definitions for quasiconformality used

some conformally invariant quantity and declared

quasiconformal mappings to be those homeomor­

phisms that changed that quantity by a bound­

ed amount. Here is one such geometric definition.

Let f : D → D′ be a homeomorphism between two

domains in Rn, n ≥ 2. Then f is said to be K­quasi­
conformal,K ≥ 1, if

(2) K−1mod(f (Γ )) ≤ mod(Γ ) ≤ Kmod(f (Γ ))

for every curve family Γ inD. The conformal modulus
mod(Γ ) of a family Γ of curves inRn is the infimum of

the numbers
∫
Rn
ρn dxover all nonnegative Borel func­

tions ρ : Rn → [0,∞] such that
∫
γ ρ ds ≥ 1 for every

γ ∈ Γ . The definition of modulus is admittedly not

easy to digest at one glance, but once mastered it is a

powerful tool in geometric function theory. The geo­

metricdefinition (2) is aglobal requirement thatquick­

ly yields many strong properties of quasiconformal

mappings; for example, the inverse of a quasiconfor­

mal mapping is automatically quasiconformal, which

isnotatallobvious fromthemetricdefinition.

Also in the 1930s, an analytic definition for quasi­

conformal mappings was considered by Lavrentiev in

connection with elliptic systems of partial differential

equations. According to this definition, a homeomor­

phism f : D → D′ between domains inRn,n ≥ 2, is said

to be K­quasiconformal if the first distributional par­

tial derivatives of f are locally in the Lebesgue space

Ln and if the formal differential matrix Df = (∂ifj)

satisfies

(3) sup
h∈Rn ,|h|≤1

|Df(x)(h)|n ≤ K detDf(x)

for almost every x ∈ D. The use of distributional

derivatives is essential in this context; important com­

pactness properties of quasiconformal mappings are

lost if smoothmappingsonlyareconsidered.
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It is a deep fact that a homeomorphism f : D → D′

between domains in Rn, n ≥ 2, is quasiconformal

according to each of the three definitions—metric,

geometric, and analytic—if it is quasiconformal ac­

cording to any one of them. The parameters H and

K depend only on each other and on n. The equiva­

lence of these three definitions is a result of work by

Gehring, Väisälä, and many others, in the 1950s and

early 1960s.

There is a powerful existence theorem, proved

by Morrey in 1938, that lends a special flavor to the

2­dimensional theory: given a measurable complex

valued function µ in R2 such that ||µ||∞ < 1, there

exists a quasiconformal homeomorphism f : R2 → R2

(unique when properly normalized) such that ∂f =

µ ∂f in thesenseofdistributions,where∂ =
1
2
(∂x+i∂y)

and ∂ =
1
2
(∂x − i∂y) in complex notation. That is, one

can measurably preassign the eccentricity and an­

gle of the ellipses that are carried to a circle by the

almost everywhere defined derivative of f . This fact

has had tremendous impact on complex analysis and

dynamics, Teichmüller theory, and low­dimensional

topology.

The interplay of all three aspects of quasicon­

formality (metric, geometric, and analytic) is an

important feature of the theory; one cannot rely on

just one of them. Everyone who gives a graduate

course on quasiconformal mappings faces the dilem­

ma that a reasonably self­contained proof (using

contemporary real and harmonic analysis) of the

equivalence of all the preceding definitions would

easily take up half of the semester. I would like to

emphasize the fact, perhaps not widely realized, that

from the technical point of view the quasiconformal

mapping theory even in dimension n = 2 is much

more part of real than complex analysis. Instead of

power series, integral representations, or algebra­

ic techniques, the theory relies on singular integrals,

geometricmeasuretheory, andSobolevspaces.

There is another metric approach to quasicon­

formality that lately has found applications in a

variety of contexts. A homeomorphism, or more

generally an embedding, f : X → Y is said to be

η­quasisymmetric if η : [0,∞) → [0,∞) is a homeo­

morphism and if |x − y| ≤ t|x − z| implies |f (x) −

f (y)| ≤ η(t)|f (x) − f (z)| for every triple of points

x, y, z ∈ X. Anη­quasisymmetric mapping is obvious­

ly quasiconformal according to the metric definition,

with H = η(1), but the converse is not true in gen­

eral. It is another deep fact that the infinitesimal

condition (1) implies quasisymmetry for homeomor­

phisms f : Rn → Rn, n ≥ 2. Although this fact is a

statement about two purely metric conditions, all

known proofs use delicate geometry and analysis; in

particular, all known proofs give an η that depends

on H and dimension n (but nothing else). It is an

open problem whether a self­homeomorphism of an

infinite­dimensional Hilbert space that satisfies (1) is

alsoquasisymmetric.

Quasisymmetry is the right definition for quasicon­

formal mappings in dimension one, e.g., on the real

line. More generally, the concept of quasisymmetry

is a good analogue of quasiconformality in arbitrary

metric spaces, where condition (1) is often too weak

to give an interesting theory. On the other hand,

quasisymmetry is a global condition and simple ex­

amples show, for instance, that conformal mappings

between planar domains need not be quasisymmetric.

The following egg yolk principle describes a precise

relationship between quasisymmetry and quasicon­

formality for homeomorphisms between domains

in Rn, n ≥ 2: f : D → D′ is quasiconformal if and

only if there is η such that f |B(x,
1
2
dist(x, ∂D)) is

η­quasisymmetric for every x ∈ D. The assertion is

moreover quantitative in that the various parameters

dependonly on each other andn.

Today quasiconformal mappings are used eve­

rywhere in complex analysis of one variable. But

early on, the theory found applications beyond the

classical framework. Mostow’s proof of his celebrat­

ed rigidity results in general rank­one symmetric

spaces required a quasiconformal mapping theory in

sub­Riemannian manifolds. Sullivan showed that all

topological manifolds outside dimension four carry

quasiconformal structures, a fact later used by him,

Connes, and Teleman to develop a theory of charac­

teristic classes on topological manifolds. In the past

ten years, it has become known that a full­fledged qua­

siconformal mapping theory exists in rather general

metric measure spaces. This theory has subsequently

been applied to new rigidity studies in geometric

group theory. There is also a budding theory of quasi­

conformal mappings in infinite­dimensional Banach

spaces, based on the concept of quasisymmetry. From

the time of Lavrentiev and Morrey, the connection

between quasiconformal analysis and elliptic partial

differential equations via the analytic definition (3)

has been manifest. In harmonic analysis, an important

self­improving phenomenon associated with reverse

Hölder inequalities was first discovered in connection

with quasiconformal mappings by Gehring in 1973.

New generalizations have emerged from connections

to elasticity theory.

Quasiconformal mappings are fascinating objects

in mathematics. They are flexible enough to be ubiqui­

tous, yet they harbor enough subtle analytic and geo­

metric properties so as to be useful in a variety of con­

texts.
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