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This semester I hope to cover the following topics:

• Review of conformal mappings

• Extremal length and conformal modulus, log capacity, harmonic measure

• Definitions of quasiconformal mappings; geometric and analytic

• Basic properties

• Quasisymmetric maps and boundary extension

• The measurable Riemann mapping theorem

• Removable sets

• Conformal welding

• David maps

• Astala’s theorems on area and dimension distortion

• Quasiconformal maps on metric spaces

• Conformal dimension



Some Linear Algebra (QC linear maps)



Conformal maps preserves angles; quasiconformal maps can distort angles, but

only in a controlled way.

To make this distinction more precise we must have a way to measure angle

distortion and we start with a discussion of linear maps.



Consider the linear map(
x
y

)
→M

(
x
y

)
=

(
a b
c d

)(
x
y

)
= (ax + by, cx + dy).

Let MT denote the transpose of the real matrix M , i.e., its reflection over the

main diagonal. Then

MT ·M =

(
a c
b d

)
·
(
a b
c d

)
=

(
a2 + c2 ab + cd
ab + cd b2 + d2

)
≡
(
E F
F G

)
is positive and symmetric and hence has two positive eigenvalues λ1, λ2, assum-

ing M in non-degenerate.



The square roots s1 =
√
λ1, s2 =

√
λ2 are the singular values of A (without

loss of generality we assume s1 ≥ s2). Then

M = U ·
(
s1 0
0 s2

)
· V,

where U, V are rotations.

Thus M maps the unit circle to an ellipse whose major and minor axes have

length s1 and s2.



Thus M preserves angles iff it maps the unit circle to a circle iff s1 = s2.

Otherwise M distorts angles and we let D = s1/s2 denote the dilatation of the

linear map M . This is the eccentricity of the image ellipse and is ≥ 1, with

equality iff M conformal.

The inverse of a linear map with singular values {s1, s2} has singular values

{ 1
s2
, 1
s1
} and hence dilatation D = (1/s2)/(1/s1) = s1/s2. Thus the dilatation

of a linear map and its inverse are the same.



Given two linear maps M,N with singular values s1 ≥ s2 and t1 ≥ t2 respec-

tively, the singular values of the composition MN are trapped between s1t1 and

s2t2 (this occurs for the maximum singular values since they give the operator

norms of the matrices and these are multiplicative; a similar argument works

for the minimum singular values and the inverse maps).

Thus the dilation is less than (s1t1)/(s2t2) i.e., dilatations satisfy

DM◦N ≤ DM ·DN .



The dilatation D can be computed in terms of a, b, c, d as follows.

The eigenvalues λ1, λ2 are roots of the

0 = det(MT ·M − λI),

which is the same as

0 = (E − λ)(G− λ)− F 2 = EG− F 2 − (E + G)λ + λ2.



Thus

λ1λ2 = EG− F 2

= (a2 + c2)(b2 + d2)− (ab + cd)2

= a2b2 + a2d2 + c2b2 + d2c2 − (a2b2 + 2abcd + c2d2)

= a2d2 + c2b2 − 2abcd

= (ad− bc)2

Similarly,

λ1 + λ2 = E + G = a2 + b2 + c2 + d2.



The values of λ1, λ2 can be found using the quadratic formula:

{λ1, λ2} =
1

2
[E + G±

√
(E + G)2 − 4(EG− F 2)]

=
1

2
[E + G±

√
(E −G)2 + 4F 2)].

Thus
λ1
λ2

=
E + G +

√
(E −G)2 + 4F 2

E + G−
√

(E −G)2 + 4F 2

=
(E + G +

√
(E −G)2 + 4F 2)2

(E + G)2 − (E −G)2 − 4F 2

=
(E + G +

√
(E −G)2 + 4F 2)2

4(EG + F 2)
.

and hence

D =
s1
s2

=

√
λ1
λ2

=
E + G +

√
(E −G)2 + 4F 2

2
√
EG + F 2

.



This formula can be made simpler by complexifying.

Think of the linear map M on R2 as a map f on C:

x + iy → ax + by + i(cx + dy) = u(x, y) + iv(x, y) = f (x + iy)

Then

M =

(
ux uy
vx vy

)
and we define

fz =
1

2
(fx − ify) =

1

2
(ux + vy) +

i

2
(vx − uy),

fz =
1

2
(fx + ify) =

1

2
(ux − vy) +

i

2
(vx + uy).



Some tedious arithmetic now shows that

4|fz|2 = (ux + vy)
2 + (vx − uy)2

= u2x + 2uxvy + v2y + v2x − 2vxuy + u2y

4|fz|2 = (ux − vy)2 + (vx + uy)
2

= u2x − 2uxvy + v2y + v2x + 2vxuy + u2y

so

(|fz| + |fz|)(|fz| − |fz|) = |fz|2 − |fz|2 = uxvy − vxuy = s1s2 = det(M).



In particular, if we assume M is orientation preserving and full rank, then

det(M) > 0 and we deduce |fz| > |fz|.

Similarly,

(|fz| + |fz|)2 + (|fz| − |fz|)2 = 2(|fz|2 + |fz|2)
= u2x + v2x + u2y + v2x

= E + G

= λ1 + λ2

= s21 + s22.



From these equations and the facts s1 ≥ s2, |fz| > |fz| we can deduce

s1 = |fz| + |fz|, s2 = |fz| − |fz|,
and hence

D =
s1
s2

=
|fz| + |fz|
|fz| − |fz|

.

Note that D ≥ 1 with equality iff f is a conformal linear map. It is often more

convenient to deal with the complex number,

µ =
fz
fz
,

which is called the complex dilatation.



Sometimes we abuse notation and just call thus the dilatation, if the meaning

is clear from context.

Since |fz| < |fz|, we have |µ| < 1 and it is easy to verify that

D =
1 + |µ|
1− |µ|

, |µ| = D − 1

D + 1
,

so that either D or |µ| can be used to measure the degree of non-conformality.



We leave it to the reader to check that the map

x + iy → (ax + by) + i(cx + dy)

can also be written as

(z, z)→ αz + βz,

where z = x + iy, z = x− iy and α = α1 + iα2, β = β1 + iβ2, satisfy

α1 =
a + d

2
, α2 =

a− d
2

, β1 =
c− b

2
, β2 =

b + c

2
,

In this notation µ = β/α and

D =
|β| + |α|
|α| − |β|

.



As noted above, the linear map f sends the unit circle to an ellipse of eccentricity

D. What point on the circle is mapped furthest from the origin?

Since

s1 = |fz| + |fz|,
the maximum stretching is attained when fzz and fzz have the same argument,

i.e., when

0 <
fzz

fzz
=

z2

µ|z|2
,

or

arg(z) =
1

2
arg(µ),

Thus |µ| encodes the eccentricity of the ellipse and arg(µ) encodes the direction

of its major axis.



If we follow f by a conformal map g, then the same infinitesimal ellipse is

mapped to a circle, so we must have µg◦f = µf .

If f is preceded by a conformal map g, then the ellipse that is mapped to a

circle is the original one rotated by − arg(gz), so µf◦g = (|gz|/gz)2µf .

To obtain the correct formula in general we need to do a little linear algebra.

Consider the composition g ◦ f and let w = f (z) so that the usual chain rule

gives

(g ◦ f )z = (gw ◦ f )fz + (gw ◦ f )f z,

(g ◦ f )z = (gw ◦ f )fz + (gw ◦ f )f z.

or in vector notation (
(g ◦ f )z
(g ◦ f )z

)
=

(
fz f z
fz f z

)(
(gw ◦ f )
(gw ◦ f )

)



The determinate of the matrix is

fzf z − f zfz = fzfz − fzfz = |fz|2 − |fz|2 = J,

which is the Jacobian of f , so by Cramer’s Rule,

(gw ◦ f ) =
1

J
[(g ◦ f )zf z − (g ◦ f )zf z],

(gw ◦ f ) =
1

J
[(g ◦ f )zfz − (g ◦ f )zfz],

so

µg ◦ f =
(g ◦ f )zfz − (g ◦ f )zfz

(g ◦ f )zf z − (g ◦ f )zf z
=
µg◦ffz − fz
f z − µg◦ff z

=
fz

fz
· µg◦f − µf

1− µg◦fµf
.



Now set h = g ◦ f or g = h ◦ f−1 to get

µh◦f−1 ◦ f =
fz

fz

µh − µf
1− µhµf

.

Thus if h and f have the same dilatation µ, then g = h ◦ f−1 is conformal. We

will need this in the case when h is more general than an homeomorphism.



Geometric Definition of Quasiconformal Maps



A quadrilateral Q is a Jordan domain with two specified disjoint closed arcs

on the boundary. (Equivalently, four distinct points and a choice of opposite

edges.)

By the Riemann mapping theorem and Caratheodory’s theorem, there is a con-

formal map from Q to a 1 × m rectangle that extends continuously to the

boundary with the two marked arcs mapping to the two sides of length a.

The ratio M = M(Q) = 1/m is called the modulus of the four distinct marked

on the boundary and is uniquely determined by Q.

The conjugate of Q is the same domain but with the complementary arcs

marked. Its modulus is clearly the reciprocal of Q’s modulus.



The geometric definition: A homeomorphism h, defined on a planar do-

main Ω, is K-quasiconformal if the

1

K
M(Q) ≤M(h(Q)) ≤ KM(Q),

for every quadrilateral Q ⊂ Ω.



The following is a helpful sufficient condition. Many of the maps we use in

practice are of this form.

The piecewise differentiable definition: h is K-quasiconformal on Ω if

there are countable many analytic curves whose union is a closed set Γ of Ω such

that h is continuously differentiable on each connected component of Ω′ = Ω\Γ

and Dh ≤ K on Ω′.

First we check that the piecewise definition implies the geometric definition.

A major goal for later is to replace piecewise differentiability with almost every-

where differentiability, but this requires some extra regularity assumptions.



Lemma 4.1. Suppose h a homeomorphism of Ω such that there are count-

able many analytic curves whose union is a closed set Γ of Ω and h is

continuously differentiable on each connected component of Ω′ = Ω \ Γ and

Dh ≤ K on Ω′. Then h is K-quasiconformal.



Proof. Using conformal maps, it suffices to consider the case when Ω and its

image are both rectangles, say Ω = [0, a]× [0, 1] and h(Ω) = [1, b]× [0, 1].

By integrating over horizontal lines in the first rectangle, we see

b ≤
∫ a

0

(|fz| + |fz|)dx.

We have used the piecewise analytic assumption here to break the integral into

finitely many open segments where the fundamental theorem of calculus applies

and then use the assumption that h is continuous at the endpoints to say the

total integral is the sum of these sub-integrals.

Fact: if f continuous on [a, b] and f ′ is continuous and bounded except at finitely

many points, then f (x) =
∫ x
a f
′(t)dt.



Integrating in the other variable,

b ≤
∫ 1

0

∫ a

0

(|fz| + |fz|)dxdy.

By Cauchy-Schwarz,

b2 ≤ (

∫ 1

0

∫ a

0

(|fz| + |fz|)(|fz| − |fz|)dxdy)(

∫ 1

0

∫ a

0

|fz| + |fz|
|fz| − |fz|

dxdy)

≤ (

∫ 1

0

∫ a

0

(|fz|2 − |fz|2)dxdy)(

∫ 1

0

∫ a

0

|fz| + |fz|
|fz| − |fz|

dxdy)

≤ (

∫ 1

0

∫ a

0

Jfdxdy)(

∫ 1

0

∫ a

0

Dfdxdy)

≤ baK,

and so b ≤ Ka. The other direction follows by repeating the argument for

vertical lines instead of horizontal ones. �



In order for the proof to work we need two things:

(1) the area of the range to be bounded above by integrating the Jacobian over

the domain and,

(2) each horizontal line segment S to have an image whose length is bounded

above by the integral of |fz| + |fz| over S.

These certainly hold if fz and fz are piecewise continuous on a partition of the

plane given by countable many analytic curves, as we have assumed, but it holds

much more generally.



The geometric definition of quasiconformality actually implies that the map h

has partials almost everywhere and is absolutely continuous on almost every

line. This, in turn, implies the necessary estimates holds. This will be discussed

later.



Corollary 4.2. If we have a piecewise differentiable K-quasiconformal map

f between annuli Ar = {1 < |z| < r} and AR = {1 < |z| < R} with

dilatation ≤ K, then 1
K log r ≤ logR ≤ K log r.



Proof. SlitAr with [1, r] to get a quadrilateralQ ⊂ Ar and letQ′ = f (Q) ⊂ AR.

Then M(AR) ≤M(Q′) ≤ KM(Q) = M(Ar).

The first inequality occurs because of monotonicity of modulus (Lemma 2.2);

every separating curve for the annulus connects opposite sides of Q′ (but there

are connecting curves that don’t correspond to closed loops).

The other direction follows by considering the inverse map. �



Theorem 4.3. There is no quasiconformal map between the plane and the

disk.



Proof. Suppose f : D → C were a K-quasiconformal map. We may assume

f (0) = 0.

Let K = {|z| ≤ 1/2}. The modulus of the annulus A = D \ K is finite and

non-zero (indeed equals (log 2)/2π, but since f (K) is compact, the topologoical

annulus C \ f (K) contain the round annuli AR = {diam(f (K)) < |z| <
Rdiam(f (K))} for any R > 1.

But by monotonicity

(logR)/2π = mod (AR) ≤ Mod(f (A)) ≤ KMod(A) <∞.
This is a contradiction for large R and shows there is no such map f . �



Compactness of K-quasiconformal maps



Theorem 10.5, Arzela-Ascoli Theorem: A family F of continuous

functions is normal on a region Ω ⊂ C if and only if

(1) F is equicontinuous on Ω, and

(2) there is a z0 ∈ Ω so that the collection {f (z0) : f ∈ F} is a bounded

subset of C.

This result is usually proven in MAT 532 (Chap 4 of Folland’s book).

We want to verify K-quasiconformal maps satisfy the Arzela-Ascoli theorem.



Lemma 4.4. Suppose Ω ⊂ C is open and simply connected and D ⊂ Ω is

a topological closed disk. If f is K-quasiconformal on Ω and x, y, z ∈ D

with |x− y| ≤ |x− z|. Then

|f (x)− f (y)| ≤M |f (z)− f (y)|,
where M depends on Ω, D and K, but not on x, y or z.



Proof. After renormalizing by conformal linear maps we may assume y = f (y) =

0 and z = f (z) = 1.

Then x is in the half-plane H that lies to the left of the bisector of 0 and 1 and

it suffices to show that |f (x)| is bounded depending only on K, D and Ω.



Connect 1 to ∂Ω by a real segment σ ⊂ Ω ∩ R; then D \ σ is connected and

there is an ε > 0 so that and 0 can be connected to any point of H ∩ D by a

path in D that is at least distance ε from σ.

Connect 0 to x by such a curve γ. Then A = Ω \ (γ ∪ σ) is a topological

annulus and ρ = 1/ε on {|z| ≤ ε + diam(D)} is admissible for the path family

connecting γ and σ in Ω.



Therefore the modulus of A, which is the modulus of the family separating the

two curves is greater than ε2/(ε + diam(D))2 > 0.

Moreover, the modulus of A differs by at most a factor of K from the modulus of

B = F (A). However, if |f (x)| � 1, then by considering the metric ρ(z) = 1/|z|
on the annulus {z : 1 < |z| < |f (x)|}, we see that B has modulus tending to

zero as |f (x)| ↗ ∞.

Thus |f (x)| is bounded in terms of K and the modulus of A, which, in turn,

depends only on D and Ω. �



Corollary 4.5. Suppose f : C → C is a K-quasiconformal map that fixes

both 0 and 1. Then |f (x)| is bounded with an estimate depending on |x|
and K, but not on f .

Proof. Take Ω = C and D = {|z| < |x| + 1} in Lemma 4.4. �

0
1

x



Lemma 4.6. Suppose Ω ⊂ C is a topological annulus of modulus M whose

boundary consists of two Jordan curves γ1, γ2 with γ2 separating γ1 from

∞. Then diam(γ1) ≤ (1− ε)diam(γ2) where ε > 0 depends only on M .



Proof. Rescale so diam(γ2) = diam(Ω) = 1 and suppose diam(γ1) > 1− ε.

Then there are points a ∈ γ1 and b ∈ γ2 with |a− b| ≤ ε. Let ρ be the metric

on Ω defined by ρ(z) = 1
|z−a| log(1/2ε) for ε < |z − a| < 1/2.

Then any curve γ ⊂ Ω that separates γ1 and γ2 satisfies
∫
γ ρds ≥ 1 and

∫
ρ2dxdy ≤ π

4
log−2

1

2ε
.

Thus the modulus of the path family separating the boundary components is

bounded above by the right hand side, and the modulus of the reciprocal family

connecting the boundary components is bounded below by π
4 log2 1

2ε.

Thus ε ≥ 1
2 exp(−

√
πM/4). �



A function f is α-Hölder continuous on a set E if there is a C <∞ so that

|f (x)− f (y)| ≤ C|x− y|α,
for all x, y ∈ E.

We say f is Hölder continuous on E if this holds for some α > 0.

We say f is locally α-Hölder on an open set Ω if each point of Ω has a neighbor-

hood on which f is α-Hölder. This implies that f is α-Hölder on any compact

set of Ω, although the multiplicative constant may depend on the set.

f is bi-Hölder if both f and f−1 are Hölder.



Theorem 4.7. A K-quasiconformal map of an open set Ω is locally α-

Hölder continuous for some α > 0 that only depends on K.

Later we will compute the actual Hölder exponent as α = 1/K.



Proof. It is enough to show that f is Hölder on any disk D so that 3D ⊂ Ω.

Without loss of generality, assume D = D(0, r), f (0) = 0 and x, y ∈ D(0, r).

By Lemma 4.4, D(0, 2r) is mapped into D(0, R) for some R = R(r,K). Sur-

round {x, y} by N = blog2
r
|x−y|c annuli {Aj} of modulus log 2.

The image annuli {f (Aj)} have moduli bounded away from zero, and hence

diam(f (Aj+1)) ≤ (1− ε)diam(f (Aj)) by Lemma 4.6. Therefore

|f (x)− f (y)| ≤ R(1− ε)N ≤ R2log2(1−ε)(1+log2R−log2 |x−y|)

≤ C(R)|x− y|log2(1−ε). �



We want to show that K-quasiconformal maps have continuous boundary ex-

tensions.

This essentially follows from the fact they are Hölder continuous, but our proof

of that fact is only local and may give a multiplicative constant that blows up

as we approach the boundary.

We will prove that this does not happen if the boundary itself is nice enough,

e.g., a circle:



Theorem 4.8. If ϕ : D → D is quasiconformal and onto, then ϕ is α-

Hölder on D, where α > 0 only depends on K. Thus ϕ extends continuously

to a homeomorphism of T = ∂D to itself.

The proof is very similar to the Hölder estimates for quasiconformal maps in

the plane, however, we will also need a trick for converting certain quadrilaterals

in the disk into annuli in the plane by reflecting across the circle. The precise

statement is:



Lemma 4.9. Suppose Q ⊂ H is a quadrilateral with a pair of opposite

sides being intervals I, J ⊂ R. Let A be the topological annulus formed by

taking Q ∪ I ∪ J ∪ Q∗ (where Q∗ is the reflection of Q across R. Then

M(A) = 1
2M(Q) (here the modulus of Q refers to the modulus of the path

family connecting the two sides of Q that line on the unit circle).



Proof. Using conformal invariance, assume Q is in the upper half-plane and A

is obtained by reflecting Q across the real line.

Consider the path family ΓA in A that connects the two boundary components

of A, and the path family ΓQ in Q that separate the boundary arcs Q∩R. Then

(ΓA)+ = ΓQ (notation as in Lemma 2.9), so by the Symmetry Rule

M(ΓA) = 2M((ΓA)+) = 2M(ΓQ).

The desired moduli are the reciprocals of these, so the result follows. �

Q
A



Proof of Theorem 4.8. We may assume f (0) = 0; the general case then follows

after composing with a Möbius transformation.

We first suppose ϕ extends continuously to the boundary. This may seem a

bit circular given the final statement of the theorem, but our plan is to prove

ϕ is α(K)-Hölder for assuming continuity, and then use a limiting argument to

remove the continuity assumption.

More precisely, suppose w, z ∈ D. We will show that

|ϕ(z)− ϕ(w)| ≤ C|z − w|α,
for constants C < ∞, α > 0 that depend only on the quasiconstant K of f .

This implies f is uniformly continuous and hence has a continuous extension to

the boundary of D.



Let d = |z−w| and r = min(1−|z|, 1−|w|). There are several cases depending

on the positions of the points z, w and the relative sizes of d and r.



To start, note that if |z−w| ≥ 1
10 we can just take C = 20 and α = 1. So from

here on, we assume |z − w| < 1/10.

Suppose r > 1/4, so z, w ∈ 3
4D. Surround the segment [z, w] by N ' log d

annuli with moduli ' 1. Then just as in the proof of Theorem 4.7, the image

annuli have moduli ' 1 (with a constant depending on K) and hence

|f (z)− f (w)| ≤ (1− ε(K))N = O(|z − w|α),

for some α > 0 depending only on K.



Next suppose |z| ≥ 3/4 and d > r. Then separate [z, w] from 0 by N ' log d

disjoint quadrilaterals with a pair of opposite sides being arcs of T, and all with

moduli ' 1. Since f (0) = 0 and the image quadrilaterals have moduli ' 1,

there diameters shrink geometrically, so

|z − w| = (1− ε(K))N = O(dα),

as desired.



Finally, if d ≤ r we combine the two previous ideas: we start by separating

[z, w] from 0 by ' log d quadrilaterals with as above.

The smallest quadrilateral then bounds a region of diameter approximately r

containing [z, w] and we then construct ' log r/d disjoint annuli with moduli

' 1 that each separate [z, w] from this smallest quadrilateral.

The same arguments as before now show

|z − w| = (1− ε(K))− log r(1− ε(K))log r/d = O(dα) = O(|z − w|α).



This proves the theorem assuming ϕ extends continuously to the boundary. Now

we have to remove this extra assumption. Assume ϕ is any K-quasiconformal of

D onto itself, such that ϕ(0) = 0. Take r close to 1 and let Ωr = ϕ({|z| < r})

Then Ωr is a Jordan domain that satisfies

{|z| < 1− δ} ⊂ Ωr ⊂ D,
with δ → 0 as r ↗ 1. Let fr : Ωr → D be the the conformal map so that

fr(0) = 0 and f ′r(0) > 0.

By Caratheodory’s theorem fr is a homeomorphism from the closure of Ωr

to the closed unit disk, hence the K-quasiconformal map gr = fr ◦ ϕ is a

homeomorphism from the closed unit disk to itself. Thus the previous argument

applies to gr, and we deduce gr is α-Hölder.



As r ↗ 1, both fr and f−1r tend to the identity on compact subsets of D. In

particular, for z, w ∈ D, we have

|ϕ(z)− ϕ(w)| = lim
r↗1
|f−1r (gr(z))− f−1r (gr(w))|

= lim
r↗1
|gr(z)− gr(w)|

≤ C(K)|z − w|α.

By the Schwarz Lemma gr(z) and gr(w) remain in a compact subset of D as

r ↗ 1.

Thus ϕ is α-Hölder as well. �



We have now verified that normalizedK-quasiconformal maps satisfy the Arzela-

Ascoli theorem, so they form a pre-compact family. To prove compactness, we

need to prove:

Theorem 4.10. If {fn} is a sequence of K-quasiconformal maps on Ω that

converge uniformly on compact subsets to a homeomorphism f , then f is

K-quasiconformal.



This is immediate from the following result (proven earlier):

Theorem 4.11. Suppose {hn} are homeomorphisms defined on a domain

Ω and Q ⊂ Ω is a generalized quadrilateral that is compactly contained in

Ω. If {hn} converge uniformly on compact sets to a homeomorphism h on

Ω, then M(hn(Q))→M(h(Q))

Proof of Theorem 4.10. Any quadrilateral Q ⊂ Ω has compact closure in Ω so

f (Q) = limn fn(Q) is a quadrilateral in f (Ω) and

M(f (Q)) = lim
n
M(fn(Q)) ≤ K lim

n
M(Q)

by Lemma 2.27. The opposite inequality follows by considering the inverse maps,

so we see that f is K-quasiconformal. �



Lemma 4.12. Suppose f : C → C is a K-quasiconformal map that fixes

both 0 and 1. Then there is a constant 0 < C < ∞, depending only on K

so that if |z| < 1/C, then

C−1|z|K ≤ |f (z)| ≤ C|z|1/K.



Proof. Since normalized K-quasiconformal maps form a compact family, there

here is a constant A = A(K) so that

f ({|z| = 1}) ⊂ { 1

A
< |z| < A}.

By rescaling we also get that for any 0 < r <∞

f ({|z| = r}) ⊂ {|f (r)|
A

< |z| < A|f (r)|}.

Thus if r < A−2,

{A|f (r)| < |z| < 1

A
}} ⊂ f ({r < |z| < 1}) ⊂ {|f (r)/A < |z| < A}}.



Comparing moduli in the first inclusion we get

1

2π
log

1

A2|f (r)|
≤M(f ({r < |z| < 1})) ≤ K

2π
log

1

r
,

which gives |f (r)| ≥ rK/A2.

The second inclusion similarly gives

1

2π
log

A2

|f (r)|
≥M(f ({r < |z| < 1})) ≥ 1

2πK
log

1

r
,

which implies |f (r)| ≤ A2r1/K. Taking C = A2 proves the lemma. �



Sharpness of the exponent 1/K can be proven using z → z · |z|(1/K)−1.



Corollary 4.13. For each K ≥ 1 there is a C = C(K) < ∞ so that the

following holds. If f : C → C is K-quasiconformal and γ is a circle, then

there is w ∈ C and r > 0 so that f (γ) ⊂ {z : r ≤ |z − w| ≤ Cr}.

Proof. Without loss of generality, we can pre and post-compose so that γ is the

unit circle and f fixes 0, 1. By Lemma 4.12, f (γ) is then contained in an annulus

{ 1C ≤ |z| ≤ C}, and this gives the result. �



The following is then immediate.

Corollary 4.14. If f is a K-quasiconformal mapping of the plane and D

is a disk, then diam(f (D))2 ' area(f (D)), with constants that depend only

on K.



Quasiconformality is local



In the geometric definition of K-QC we have to consider all quadrilaterals in Ω,

even those nearly as large as Ω.

The analytic definition requires only differentiability and absolute continuity,

which are both local conditions.

In this section we prove that it is enough to verify the geometric definition just

on all sufficiently small quadrilaterals.



Lemma 3.15. If f is a homeomorphism of Ω ⊂ C that is K-quasiconformal

in a neighborhood of each point of Ω, then f is K-quasiconformal on Ω.



Proof. Suppose Q ⊂ Ω is a quadrilateral that is conformally equivalent via a

map ϕ to a 1 × m rectangle R and Q′ = f (Q) is conformally equivalent a

1 ×m′ rectangle R′. Divide R into M equal vertical strips {Sj} of dimension

1×m/M . Similarly, let ψ : Q′ → R′ be conformal.

f

R

m

Q j

Q j

Rj

R

Q Q

R 1

m

m/M

j



We have to choose M sufficiently large that two things happen.

First choose δ > 0 so that f−1 is K-quasiconformal on any disk of radius δ

centered at any point of Q′ (we can do this since Q′ has compact closure in Ω).

Next, note that the closure of Q′ is a union of Jordan arcs γ corresponding via

f ◦ ϕ−1 to vertical line segments in R.

By the continuity of f◦ϕ−1 there is an η > 0 so that if z ∈ R then f (ϕ−1(D(z, η)))

has diameter ≤ δ.



By the continuity of the inverse map, there is an ε > 0 so that x, y ∈ Q′ and

|x− y| < ε implies |ϕ(f−1(x))− ϕ(f−1(y))| ≤ η.

Thus for any δ > 0 there is an ε > 0 so that if x, y ∈ γ ⊂ Q′ are at most

distance ε apart, then the arc of γ between then has diameter at most δ (and ε

is independent of which γ we use).



Choose M so large that each region Q′j = f (ϕ−1(Rj)) contains a disk of radius

at most ρ, where ρ will be chosen (later) to be very small, depending on ε.

Map Q′j conformally by φj to a 1×m′j rectangle S ′j.

Note that this rectangle is conformally equivalent to the regionR′j = ψ(f (ϕ−1(Rj))) ⊂
Rj, both with the obvious choice of vertices.

f

R

m

Q j

Q j

Rj

R

Q Q

R 1

m

m/M

j



By Lemma 2.25 there is an absolute constant C so that every for every y ∈ [0, 1],

there is a t ∈ (0, 1) with |t− y| ≤ Cmj and so that the horizontal cross-cut of

S ′j at height t maps via ϕ−1j to a Jordan arc of length ≤ Cρ in Q′j.

Thus we can divide S ′j by horizontal cross-cuts into rectangles {S ′ij} of modulus

m′ij ' 1 so that the preimages of these rectangles under φj are quadrilaterals

with two opposite sides of length ≤ Cρ and which can be connected inside the

quadrilateral by a curve of length ≤ Cρ.



Taking δ as above, (so f−1 is K-QC on δ-balls) choose ε as above corresponding

to δ/4 and choose ρ so that 3Cρ < min(ε, δ/4).

Then all four sides of the quadrilateral Q′ij have diameter ≤ δ/4 and hence Q′ij
has diameter less than δ and hence lies in a disk where f−1 is K-quasiconformal.

Letmij be the modulus of corresponding preimage quadrilateralQij = f−1(Q′ij).

f

R

m

Q j

Q j

Rj

R

Q Q

R 1

m

m/M

j



mj

f
Q j

m/M

R S
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Q ij Q ij

Q j

j j
ijij



In S ′j consider the path family Γ′j that connects the “top” and “bottom” sides

of this rectangle and let m′j denote the modulus of this path family (so 1/m′j is

its extremal length).

Let mij denote the modulus of the path family in the subrectangles S ′ij (again

we take the path family connecting the top and bottom edges). These are

conformally equivalent to path families connecting opposite sides of Q′ij and via

f−1 to path families in Qij whose modulus is denoted mij.



Since these quadrilaterals were chosen small enough to fit inside neighborhoods

where f is K quasiconformal, we have

mij

K
≤ m′ij ≤ Kmij.

Finally, let Γj be the path family that connects the top and bottom of Rj and

let Γ′j be the family that connects the left and right sides of R′.

By the Series Rule
M

m
= λ(Γj) ≥

∑
i

λ(Γij) =
∑
i

1

mij
.

Similarly,

m′ = λ(Γ′) ≥
∑
j

λ(Γ′j) =
∑
j

m′j.



We get equality in the Series Rule when a rectangle is cut by vertical lines, so
1

m′j
=
∑
i

1

m′ij
.

Hence
M

m
≥
∑
i

1

mij
≥ 1

K

∑
i

1

m′ij
=

1

Km′j
or

m

M
≤ Km′j

for every j. Thus

m =

M∑
j=1

m

M
≤
∑
j

Km′j ≤ Km′.

Applying the same result to the inverse map shows f is K-quasiconformal. �



If K = 1, then m = m′ the last line of the above proof becomes

m′ = m ≤
∑
j

m

M
≤
∑
j

m′j ≤ m′.

so we deduce ∑
j

m′j = m′,

whereas in general, we only have
∑

jm
′
j ≤ m′.

We claim this equality implies the curves cutting R′ into the R′j are straight

segments.

We will then deduce that a 1-quasiconformal map must be conformal.



We start with:

Lemma 3.16. Consider a 1×m rectangle R that is divided into two quadri-

laterals Q1, Q2 of modulus m1 and m2 by a Jordan arc γ the connects the

top and bottom edges of R. If m = m1 +m2, then the curve γ is a vertical

line segment.



Proof. Let ϕ1, ϕ2 be the conformal maps of Q1, Q2 onto 1 × m1 and 1 × m2

rectangles R1, R2 respectively.

Set ρ = |f ′1| on Q1 and ρ = |f ′2| in Q2 and zero elsewhere. Then each horizontal

line in Q is cut by γ into pieces one of which connects the left vertical edge of

R to γ, and another that connect γ to the right edge of R.

The images of these connect the vertical edges of R1 and R2 respectively.

1

m m1 2

f f21

R R21

Q Q
1 2

γ

R



Thus the images have lengths at least m1 and m2 respectively, therefore the

image of the entire horizontal segment in Q has length ≥ m1 + m2.

1

m m1 2

f f21

R R21

Q Q
1 2

γ

R



If we integrate over all horizontal segments in Q, we see∫
R

(ρ− 1)dxdy ≥ m1 + m1 −m = 0.

Similarly, ∫
R

(ρ2 − 1)dxdy = area(f1(Q1) + area(f2(Q2))− area(R)

= (m1 + m2)−m ≤ 0

(we would have equality if we knew γ had zero area). Thus∫
Q

(ρ− 1)2dxdy =

∫
Q

(ρ2 − 1)− 2(ρ− 1)dxdy ≤ 0.

Since (ρ − 1)2 ≥ 0, this implies the integral equals zero and hence that that

ρ = 1 almost everywhere, i.e., f1 and f2 are both linear and the curve γ is a

vertical line segment. �



Lemma 3.17. If f is 1-quasiconformal on Ω, then it is conformal on Ω.

Proof. If f is 1-quasiconformal in the proof of Theorem 3.15, then as noted

before Lemma 3.16, we must have

M

m
=
∑
i

1

mij
,

1

m′j
=
∑
i

1

m′ij
, m′ =

∑
j

m′j,

By the previous lemma, this implies the cuts in R′ forming the quadrilaterals

R′j are vertical segments, so R′j = S ′j.

Thus the map F = ψ ◦ f ◦ ϕ−1 sends a dense set of vertical segments in R to

vertical segments in R′. Thus F ′ > 0 everywhere. Since F ′ is holomorphic, it

must be the constant 1. Thus f = (ψ)−1 ◦ Id ◦ ϕ is a composition of conformal

maps, hence conformal. �



Lemma 3.18. For any δ > 0 and any r > 0, there is an ε > 0 so that the

following holds. If f : C → C is (1 + ε)-quasiconformal and f fixes 0 and

1, then |z − f (z)| ≤ δ for all |z| < r.

Proof. If not, there is a sequence of (1 + 1
n)-quasiconformal maps that all fix 0

and 1 and points zn ∈ D(0, r) so that |zn − fn(zn)| > δ.

However, there is a subsequence that converges uniformly on compact subsets

of the plane to a 1-quasiconformal map that fixes 0 and 1 and that moves some

point by at least δ.

However a 1-quasiconformal map is conformal on C, hence of form az + b and

since it fixes both 0 and 1, it is the identity and hence doesn’t move any points,

a contradiction. �



Lemma 3.19. (requires MRMT) Suppose E1 ⊃ E2 ⊃ . . . are closed sets

so that area(En) → 0. Suppose K ≥ 1 and that f : C → C is K-

quasiconformal map with dilatation supported on En, and that f fixes 0

and 1. Then f converges to the identity uniformly on compact sets.

Proof. By compactness, fn converges to K-quasi conformal map that is confor-

mal off ∩nEn, a set of zero area.

By the Measureable Riemann Mapping Theorem (to be proven later), f is con-

formal, hence linear and fixing 0, 1. Hence the identity. �



WARNING: there are homeomorphisms of the plane that are conformal except

on a compact set of zero area, but are not conformal everywhere. These cannot

be quasiconformal.

Example: suppose g is the Cantor singular function, i.e., a nonconstant, in-

creasing function that is constant on each complementary interval of the middle

thirds Cantor set C.

Then G(x) = g(x)+x is a homeomorphism of the line so that G′(x) = 1 except

on the Cantor set.

Thus (x, y) → (G(x), y) is a homeomorphism of the plane that is conformal

except on the zero area set C × R.






