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• Review of conformal mappings

• Extremal length and conformal modulus, log capacity, harmonic measure

• Definitions of quasiconformal mappings; geometric and analytic

• Geometric definition and basic properties

• Removable sets

• Analytic definition and measurable Riemann mapping theorem

• Conformal welding

• Further topics



Holomorphic and conformal mappings



A conformal map between planar domains is a C1, orientation preserving diffeo-

morphism which preserves angles. Write f (x, y) = (u(x, y), v(x, y)). We can

compute it derivative matrix

Df =

(
ux uy
vx vy

)
.

Since f preserves orientation and angles, the linear map represented by this

matrix must be an orientation preserving Euclidean similarity.



Thus it is a composition of a dilation and rotation and must have the form

(
a b
−b a

)
=

(
r 0
0 r

)(
cos θ sin θ
− sin θ cos θ

)
,

which implies

ux = vy, uy = −vx.
These are known as the Cauchy-Riemann equations. Thus f is conformal if it

is C1 diffeomorphism which satisfies the Cauchy-Riemann equations.



f
θθ

The simplest examples are the Euclidean similarities, and indeed, these are the

only examples if we want maps R2 → R2.

However, if we consider subdomains of R2, then there are many more examples.

The celebrated Riemann mapping theorem says that any two simply connected

planar domains (other that the whole plane) can be mapped to each other by a

conformal map.



After the linear maps, the next simplest holomorphic maps are quadratic poly-

nomials. If we take

f (x, y) = (u(x, y), v(x, y)) = (x2 − y2, 2xy),

then we can easily check that

Df (x, y) =

(
ux uy
vx vy

)
=

(
2x −2y
2y 2x

)
,

so the Cauchy-Riemann equations are satisfied.

The map is not conformal on the plane since f (−x,−y) = f (x, y) is 2-to-1 for

(x, y) 6= (0, 0) and Df vanishes at the origin. However, it is a conformal map

if we restrict it to a domain (an open, connected set) where it is 1-to-1, such as

the open square [0, 1]2. The map sends this square conformally to a region in

the upper half-plane.
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This illustrates the map z → z2 or (x, y)→ (x2− y2, 2xy). The top left shows

a grid in the square [0, 1]2. The top right shows the image under squaring map.
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The same square grid of [0, 2]2 and its image under ez.



0.5 1 1.5 2

1

2

3

4

5

6

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

This illustrates the exponential map ez = er(cos θ+ i sin θ).. We take the image

of [0, 2] × [0, 6]. The line at height 2π will be mapped into the positive real

axis. The top edge of the grid is just below this, so the image stops just before

it reaches the axis.



Cauchy’s Integral Formula Suppose γ is a cycle contained in a region

Ω and suppose ∫
γ

dζ

ζ − a
= 0

for all a /∈ Ω. If f is analytic on Ω and z ∈ C \ γ then
1

2πi

∫
γ

f (ζ)

ζ − z
dζ = f (z) · 1

2πi

∫
γ

1

ζ − z
dζ.



Cauchy’s formula: Suppose Ω is bounded by a piecewise smooth curve γ

and f is holomorphic on a neighborhood of Ω. Then

f (w) =
1

2πi

∫
γ

f (z)

z − w
dz.

Pompeiu formula: Suppose Ω is bounded by a piecewise smooth curve and

f is smooth on Ω.

f (w) =
1

2πi

∫
∂Ω

f (z)

z − w
dz − 1

π

∫∫
Ω

fz
z − w

dxdy.



Möbius transformations



A linear fractional transformation (or Möbius transformation) is a map of the

form z → (az + b)/(cz + d). This is a 1-1, onto, holomorphic map of the

Riemann sphere S2 = C ∪ {∞} to itself.

The non-identity Möbius transformations are divided into three classes.

(1) Parabolic transformations have a single fixed point on S2 and are conjugate

to the translation map z → z + 1.

(2) Elliptic maps have two fixed points and are conjugate to the rotation

z → eitz for some t ∈ R.

(3) The loxodromic transformations also have two fixed points and are conju-

gate to z → λz for some |λ| < 1. If, in addition, λ is real, then the map is

called hyperbolic.



Given two sets of three distinct points {z1, z2, z3} and {w1, w2, w3} there is a

unique Möbius transformation that sends wk → zk for k = 1, 2, 3. This map is

given by the formula

τ (z) =
w1 − ζw3

1− ζ
,

where

ζ =
(w2 − w1)

(w2 − w3)

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
.



A Möbius transformation sends the unit disk 1-1, onto itself iff it is if the form

z → λ
z − a
1− āz

,

for some a ∈ D and |λ| = 1. In this case, any loxodromic transformation must

actually be hyperbolic.

A polar grid in the disk and some images under Möbius transformations that

preserve the unit disk.



Given four distinct points a, b, c, d in the plane we define their cross ratio as

cr(a, b, c, d) =
(d− a)(b− c)
(c− d)(a− b)

.

Note that cr(a, b, c, z) is the unique Möbius transformation which sends a to 0,

b to 1 and c to ∞.

This makes it clear that cross ratios are invariant under Möbius transformations;

that cr(a, b, c, d) is real valued iff the four points lie on a circle; and is negative

iff in addition the points are labeled in counterclockwise order on the circle.



Möbius transformations form a group under composition. If we identity the

transformation (az + b)/(cz + d) with the matrix(
a b
c d

)
then composition of maps is the same as matrix multiplication.

For any non-zero λ, the translations (λaz + λb)/(λcz + λd) are all the same,

but correspond to different matrices.



We can choose one to represent the transformation, say the one with determinate

ad − bc = 1, and this identifies the group of transformations the the group

SL(2,C) of two by two matrices of determinate 1.

If ad = bc, then

az + b

cz + d
=
adz + bd

cdz + d2
=
bcz + bd

cdz + d2
=
b

d

cz + d

cz + d
=
b

d
,

is constant and not a Möbius transformation.



The mapping

z → az + b

cz + d
,

can be written as a composition of the maps

z → cz + d, z → 1

z
, z → a

c
+
bc− ad

c
z,

which equivalent to claiming(
a b
c d

)
=

(
c d
0 1

)(
0 1
1 0

)(
(bc− ad) a

0 c

)
.

Either claim follows by a direct computation.

The linear maps have the property that circles map to circles an lines map to

lines. The inversion also has this property, although it may interchange the two

types of sets.



Lemma 1.1. Möbius transformations map circles to circles, assuming the

convention that lines are considered as circles through infinity.

It is enough to check this for 1/z. The equation

x2 + y2 + αx + βy + γ = 0(1.1)

defines a circle in the plane, depending on the choice of α, β, γ. If we set

z = x + iy 6= 0 and 1
z = u + iv, then

u = Re(
x− iy
x2 + y2

) =
x

x2 + y2
,

v = Im(
x− iy
x2 + y2

) =
−y

x2 + y2
,

x =
u

u2 + v2
, y =

−v
u2 + v2

,



So (1.1) becomes

u2

(u2 + v2)2
+

v2

(u2 + v2)2
+

αu

(u2 + v2)2
+

−βv
(u2 + v2)2

+ γ = 0.

After simplifying this becomes
1

(u2 + v2)2
+

αu

u2 + v2
+
−βv
u2 + v2

+ γ = 0,

1 + αu− βv + γ(u2 + v2) = 0,

which is the equation of a circle or line (depending on whether γ 6= 0 or γ = 0).

Thus z → 1
z sends a circle missing the origin to a circle, and sends a circle

though 0 to a line (which is the same as a circle passing through ∞).



The reflection through a circle |z−c| = r is defined by arg(w∗−c) = arg(w−c)
and |w − c| · |w∗ − c| = r2. Möbius transformation preserve reflections, i.e., if

τ is a linear fractional transformation that send circle (or line) C1 to circle (or

line) C2 then pairs of symmetric points for C1 are mapped by τ to symmetric

points for C2.

Lemma 1.2. Every Möbius transformation can be written as a even number

of compositions of circle and line reflections.

The proof is left to the reader.

In higher dimensions, reflections through planes and spheres still makes sense.

In this case, Möbius transformations are defined as the group generated by any

even number of compositions of such maps (even so that the result is orientation

preserving).



The hyperbolic metric



The hyperbolic metric on D is given by

dρD = 2|dz|/(1− |z|2). This means that

the hyperbolic length of a rectifiable curve γ in D is defined as

`ρ(γ) =

∫
γ

2|dz|
1− |z|2

,

and the hyperbolic distance between two points z, w ∈ D is the infimum of the

lengths of paths connecting them (we shall see shortly that there is an explicit

formula for this distance in terms of

Corresponding metric on upper half-plane is ds/t.

This metric has constant curvature −4. Some sources use dρD = |dz|/(1−|z|2),

which has curvature −1.



On the disk it is convenient to define the pseudo-hyperbolic metric

ρ(z, w) = | z − w
1− w̄z

|.

The hyperbolic metric between two points can then be expressed as

ψ(w, z) = log
1 + ρ(w, z)

1− ρ(w, z)
.



On the upper half-plane the corresponding function is

ρ(z, w) = |z − w
w − z̄

|,

and ψ is given as before. A hyperbolic ball in the disk is also a Euclidean ball,

but the hyperbolic and Euclidean centers are different (unless they are both the

origin).



The orientation preserving isometries of the hyperbolic disk are exactly the

Möbius transformations that map the disk to itself. All of these have the form

eiθ
z − a
1− āz

,

where θ is real and a ∈ D.



Recall the sine and cosine rules for hyperbolic geometry (e.g., see page 148 of

Beardon’s book “The geometry of discrete groups”.

Let T denote a hyperbolic triangle with angles α, β, γ and opposite side lengths

denoted by a, b, c.
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Then we have the Sine Rule,
sinh a

sinα
=

sinh b

sin β
=

sinh c

sin γ
(1.2)

the First Cosine Rule,

cosh c = cosh a cosh b− sinh a sinh b cos γ(1.3)

and the Second Cosine Rule

cosh c =
cosα cos β + cos γ

sinα sin β
(1.4)





Normal families



A collection, or family, F of continuous functions on a region Ω ⊂ C is said to

be normal on Ω provided every sequence {fn} ⊂ F contains a subsequence

which converges uniformly on compact subsets of Ω.

• The family F1 = {fc(z) = z + c : |c| < 1} is normal in C but not countable.

• The family F2 = {zn : n = 0, 1, . . . } is normal in D but the only limit

function, the zero function, is not in F2.

• The sequence zn converges uniformly on each compact subset of D, but does

not converge uniformly on D.

• The family F3 = {gn}, where gn ≡ 1 if n is even and gn ≡ 0 if n is odd, is

normal but the sequence {gn} does not converge.



Definition: A family of functions F defined on a set E ⊂ C is

(1) equicontinuous at w ∈ E if for each ε > 0 there exist a δ > 0 so that

if z ∈ E and |z − w| < δ, then |f (z)− f (w)| < ε for all f ∈ F .

(2) equicontinuous on E if it is equicontinuous at each w ∈ E.

(3) uniformly equicontinuous on E if for each ε > 0 there exists a δ > 0

so that if z, w ∈ E with |z−w| < δ then |f (z)− f (w)| < ε for all f ∈ F .



The Arzela-Ascoli Theorem: A family F of continuous functions is

normal on a region Ω ⊂ C if and only if

(1) F is equicontinuous on Ω, and

(2) there is a z0 ∈ Ω so that the collection {f (z0) : f ∈ F} is a bounded

subset of C.

This result is usually proven in MAT 532 (Chap 4 of Folland’s book).



Definition: A familyF of continuous functions is said to be locally bounded

on Ω if for each w ∈ Ω there is a δ > 0 and M <∞ so that if |z−w| < δ then

|f (z)| ≤M for all f ∈ F .

Theorem: The following are equivalent for a family F of analytic func-

tions on a region Ω.

(1) F is normal on Ω.

(2) F is locally bounded on Ω.

(3) F ′ = {f ′ : f ∈ F} is locally bounded on Ω and there is a z0 ∈ Ω so that

{f (z0) : f ∈ F} is a bounded subset of C.



Montel’s Theorem: A family F of meromorphic functions on a region

Ω that omits three distinct fixed values a, b, c ∈ C∗ is normal in the chordal

metric.



Picard’s Great Theorem If f is meromorphic in Ω = {z : 0 < |z −
z0| < δ}, and if f omits three (distinct) values in C∗, then f extends to be

meromorphic in Ω ∪ {z0}.

• An equivalent formulation of Picard’s great theorem is that an analytic func-

tion omits at most one complex number in every neighborhood of an essential

singularity.

• f (z) = e1/z does omit the values 0 and∞ in every neighborhood of the essen-

tial singularity 0, so that Picard’s theorem is the strongest possible statement.

• The weaker statement that a non-constant entire function can omit at most

one complex number is usually called Picard’s little theorem.

See Emile Picard

https://mathshistory.st-andrews.ac.uk/Biographies/Picard_Emile/


Normal families can be used to prove results like:

Koebe: There is a K > 0 so that if f is analytic and one-to-one on D
with f (0) = 0 and f ′(0) = 1, then f (D) ⊃ {z : |z| < K}.

A sharper version is known and called the Koebe 1/4-theorem.



Theorem (Koebe 1/4-theorem): Assume f (z) = z + a2z
2 + . . . is uni-

valent on D. Then |a2| ≤ 2 and

dist(0, ∂f (D)) ≥ 1

4
.

Theorem (Koebe’s estimate): Suppose f is a conformal map from D to

a simply connected region Ω. Then for all z ∈ D,
1

4
|f ′(z)|(1− |z|2) ≤ dist(f (z), ∂Ω) ≤ |f ′(z)|(1− z|2)



The Riemann mapping theorem



The Riemann Mapping Theorem Suppose Ω ⊂ C is simply-connected

and Ω 6= C. Then there exists a one-to-one analytic map f of Ω onto

D = {z : |z| < 1}. If z0 ∈ Ω then there is a unique such map with f (z0) = 0

and f ′(z0) > 0.

Idea of proof:

• Show there is a conformal map of Ω into D so that f (z0) = 0 and f ′(z0) > 0.

• Among all such maps, choose one maximizing f ′(z0). (uses normality)

• Prove this map is 1-1 and onto D.



Georg Friedrich Bernhard Riemann

Stated RMT in 1851

https://mathshistory.st-andrews.ac.uk/Biographies/Riemann/


William Fogg Osgood

First proof of RMT, Trans. AMS, vol. 1, 1900

https://mathshistory.st-andrews.ac.uk/Biographies/Osgood/


The proof of Osgood represented, in my opinion, the “coming of age” of

mathematics in America. Until then, numerous American mathematicians

had gone to Europe for their doctorates, or for other advanced study, as

indeed did Osgood. But the mathematical productivity in this country in

quality lagged behind that of Europe, and no American before 1900 had

reached the heights that Osgood then reached.

J.L. Walsh, “History of the Riemann mapping theorem”, Amer. Math. Monthly,

1973.

https://mathshistory.st-andrews.ac.uk/Biographies/Walsh_Joseph/
https://www.math.stonybrook.edu/~bishop/classes/math401.F09/Walsh.pdf


Schwarz-Christoffel Formula: Suppose Ω is a bounded simply-connected

region whose positively oriented boundary ∂Ω is a polygon with vertices

v1, ..., vn. Suppose the tangent direction on ∂Ω increases by παj at vj,

−1 < αj < 1. Then there exists x1 < x2 < · · · < xn and constants c1, c2 so

that

f (z) = c1

∫
γz

n∏
j=1

(ζ − xj)−αjdζ + c2

is a conformal map of H onto Ω, where the integral is along any curve γz

in H from i to z.



Elwin Bruno Christtoffel Hermann Amandus Schwarz

https://mathshistory.st-andrews.ac.uk/Biographies/Christoffel/
https://mathshistory.st-andrews.ac.uk/Biographies/Schwarz/


f (z) = c1

∫
γz

n∏
j=1

(ζ − xj)−αjdζ + c2

The exponents {αj} are known from the target polygon, but the {xj} are not.

• The points are the preimages of the vertices under the conformal map.

• Finding these points numerically is challenging: there are several heuristics

that work in practice, but are not proven to work, e.g., SC-Toolbox program by

T. Driscoll.

• A provably correct algorithm is given in the paper Conformal mapping in

linear time and explained in the recorded lecture Fast conformal mapping via

computational and hyperbolic geometry.

https://tobydriscoll.net/project/sc-toolbox/
https://www.math.stonybrook.edu/~bishop/papers/time.pdf
https://www.math.stonybrook.edu/~bishop/papers/time.pdf
https://mediacentral.ucl.ac.uk/Play/69538
https://mediacentral.ucl.ac.uk/Play/69538


A Jordan region is simply-connected region in C∗ whose boundary is a Jordan

curve.

Carathéodory-Tohorst Theorem: If ϕ is a conformal map of D onto a

Jordan region Ω, then ϕ extends to be a homeomorphism of D onto Ω. In

particular ϕ(eit) is a parameterization of ∂Ω.



Although usually called “Carathéodory’s theorem, the result actually appears

in the 1917 Bonn thesis of Marie Torhorst, a student of Carathéodory.

For a discussion of the history, see On prime ends and local connectivity by Lasse

Rempe. Torhorst did not become an academic mathematician, but eventually

became Minister of Education for the state of Thüringen in communist East

Germany following WWII.

https://arxiv.org/pdf/math/0309022.pdf


A compact set K is called “locally connected” if whenever U is a relatively open

subset of K and z ∈ U ⊂ K, there is a relatively open subset of K that is

connected and such that z ∈ V ⊂ U .

This is equivalent to K being a continuous image of [0, 1].

Carathéodory’s extends to say that a conformal map f : D→ Ω has a continuous

extension to the boundary iff ∂Ω is locally connected.

We will prove the theorem later in the course. Proof uses “length-area” method

which is closely connected to extremal length and quasiconformal maps.



The uniformization theorem



Suppose W is a Riemann surface and p ∈ W .

The Green’s function on W with pole at p0 is a positive function G(z, p0) that

is harmonic on W \ {p}, has a logarithmic pole at p0 and tends to zero at ∞.

For example, log 1
|z| is the Green’s function for D with pole at 0.

Some Riemann surfaces have a Green’s function; some do not.

Very important distinction. Many different characterizations of two cases.



A Riemann surface has a Green’s function iff several other conditions hold.

(1) Brownian motion is recurrent.

(2) Geodesic flow on the unit tangent bundle of W is ergodic.

(3) Poincare series of covering group Γ diverges.

(4) Γ has the Mostow rigidity property (conjugating circle homeomorphisms

are Möbius or singular).

(5) Γ has the Bowen’s property (corresponding limit sets are either a circle or

have dimension > 1).

(6) Almost every geodesic ray is recurrent. Equivalently, the set of escaping

geodesic rays from a point p ∈ W has zero (visual) measure.



The Uniformization, Case 1: If W is a simply-connected Riemann

surface then the following are equivalent:

gW (p, p0) exists for some p0 ∈ W

gW (p, p0) exists for all p0 ∈ W,

There is a one-to-one analytic map ϕ of W onto D.

Moreover if gW exists, then

gW (p1, p0) = gW (p0, p1),

and gW (p, p0) = − log |ϕ(p)|, where ϕ(p0) = 0.



Paul Koebe

Proved uniformization theorem in 1907.

https://mathshistory.st-andrews.ac.uk/Biographies/Koebe/


The dipole Green’s function has two logarithmic poles with opposite signs, e.g.,

log

∣∣∣∣z − az − b

∣∣∣∣
on the plane. This has two opposite poles and tends to 0 at infinity.

The next lemma says that a dipole Green’s function always exists.

For surfaces with Green’s function this is easy: take G(z, p)−G(z, q) for p 6= q.



The Uniformization Theorem, Case 2 Suppose W is a simply-connected

Riemann surface for which Green’s function does not exist.

If W is compact, then there is a one-to-one analytic map of W onto C∗.
If W is not compact, there is a one-to-one analytic map of W onto C.



The Uniformization Theorem: Suppose W is a simply-connected Rie-

mann surface.

(1) If Green’s function exists for W , then there is a one-to-one analytic

map of W onto D.

(2) If W is compact, then there is a one-to-one analytic map of W onto

C∗.
(3) If W is not compact and if Green’s function does not exist for W , then

there is a one-to-one analytic map of W onto C.



Theorem: If U = C∗, C, or D and if G is a properly discontinuous group

of LFTs of U onto U , then U/G is a Riemann surface. A function f is

analytic, meromorphic, harmonic, or subharmonic on U/G if and only if

there is a function h defined on U which is (respectively) analytic, mero-

morphic, harmonic, or subharmonic on U satisfying h◦τ = h for all τ ∈ G
and h = f ◦ π where π : U → U/G is the quotient map. Every Riemann

surface is conformally equivalent to U/G for some such U and G.

Properly discontinuous: every point has a neighborhood U so U ∩ g(U) 6= ∅
implies g = Id.

The only Riemann surface covered by the C∗ is C∗ (Proposition 16.2).

The only surfaces covered by C are C, C \ {0}, and tori (Proposition 16.3).

Any other Riemann surface is covered by the disk D.




