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This semester I hope to cover the following topics:

• Review of complex analysis

• Extremal length and conformal modulus,

• Logarithmic capacity, harmonic measure

• Geometric definition of quasiconformal mappings, compactness

• Compactness corollaries: quasisymmetry, extension, removability, weldings

• Analytic definition and the measurable Riemann mapping theorem

• Analytic dependence on the dilatation

• Astala’s theorems on area and dimension distortion

• More topics?: QC maps metric spaces, David maps, conformal dimension,...



Quasisymmetric maps



A homeomorphism h : R → R is called M-quasisymmetric if |h(I)| ≤
M |h(J)| whenever I and J are adjacent intervals of equal length. Equivalently,

sup
t∈R,x>0

h(x + t)− h(t)

h(t)− h(x− t)
≤M.

A homeomorphism is called quasisymmetric if it is M -quasisymmetric for

some M < ∞. Later we will discuss quasisymmetric map of the unit circle to

itself, but for the moment we stick to maps of R to R.



The cross ratio of four points a, b, c, d on the real line

(a− c)(b− d)

(b− c)(a− d)
,

and is equal to
a− c
b− c

,

if d =∞.

When f is M -quasisymmetric on R and a, b, c, d equal x + t, x − t, x,∞, the

cross ratio is−1. The cross ratio of the image points is between−M and−1/M .



Theorem 5.1. A homeomorphism h : R→ reals is quasisymmetric if and

only if it extends to a quasiconformal mapping of the plane to itself.

Proof. First we show that if f is a K-quasiconformal map of the plane that

maps R to itself, then the restriction of f to R is quasisymmetric.

Without loss of generality we may assume I = [0, 1/2] and J = [1/2, 1] and

that f fixes 0 and 1.

Consider the modulus of the topological annulus A = C \ ([0, 1] ∪ [2,∞). This

has a fixed finite, non-zero modulus, so its imageB = f (A) = C\([0, x]∪[1,∞))

also has modulus bounded between two positive real numbers that depend only

on K.



If x = f (1/2) is too close to 0 or 1, then B clear has modulus close to 0 or

∞ respectively, a contradiction. Thus x is bounded away from both 0 and 1

with an estimate depending only on K, and hence h is M -quasiconformal with

a constant depending only on K.



Next suppose h : R→ R is M -quasisymmetric. We will assume h is increasing;

the other case is handled by a similar argument. We will use the fact that the

hyperbolic upper half-plane can be tesselated by hyperbolically identical right

pentagons. The corresponding picture for the disk is shown below.

Hyperbolic space is tesselated by hyperbolically identical right pentagons. There

is a corresponding picture on the upper half-plane model.



Each right pentagon in the tesselation of the upper half-plane determines five

hyperbolic geodesics containing its sides, and these determine ten distinct points

on the real line.

The h images of these point are also ten distinct points and the same pairs of

point determine five new geodesics that define a hyperbolic pentagon (it need

not be regular or right).



There is a diffeomorphism of the right pentagon to this new one that preserves

arc-length along the edges in the sense that on each side of the pentagon length

are multiplied by the ratio of the image length over the starting length.

This ensures that the diffeomorphisms defined on adjacent pentagons agree on

the common sides. These diffeomorphisms come from a compact family of pos-

sibilities, thus have uniformly bounded dilatations, and hence define a quasicon-

formal map of the half-plane to itself that agrees with h on the boundary.



Sides of a hyperbolic right pentagon determine 5 geodesics and 10 boundary

points. The images of these 10 points determine 5 geodesics, which give a

hyperbolic pentagon.

We take any QC map between the pentagons that multiplies hyperbolic ar-

clength on each edge by a constant (the ratio of the lengths of an edge and it

image).

�



This proof is just a more hyperbolic version of a proof due to Jerison and Kenig

using a tiling of the upper half-plane by rectangles (upper halves of dyadic

Carleson squares).

There are several other well known extensions. We mention two without proof.



Beurling-Ahlfors extension: Given a quasisymmetric homeomorphism f

on the real line define

u(z) =

∫ 1

0

f (x + ty)dt =
1

y

∫ x+y

x

f (s)ds

v(z) =

∫ 1

0

f (x− ty)dt =
1

y

∫ x

x−y
f (s)ds

and set

F (z) =
1 + i

2
(u(z) + iv(z)) .



Douady-Earle extension, 1986: this gives an extension E from T to D
that is C∞, biLipschitz in the hyperbolic metric (hence quasiconformal) and

conformally natural, i.e.g., for any Möbius transformations φ and ψ, E(φ ◦ f ◦
ψ) = φ ◦ E(f ) ◦ ψ. Let

G(z, w) =
1

2π

∫
T

f (ζ)− w
1− wf (ζ)

1− |z|2

|z − ζ|2
|dζ|.

If z ∈ D there is a unique point w so G(z, w) = 0. We set F (f )(z) = w.

If z = 0, we apply Möbius transformations to f until its “average” lies at the

orgin.

A different equivariant extension was given by Tukia in 1985.



It was a question of Dennis Sullivan whether there was an extension operator

from quasisymmetric maps on the circle to quasiconformal maps of the disk,

that was a homomorphism with respect to composition.

In 2007 Epstein and Markovic proved there is no such extension.

https://www.math.stonybrook.edu/~bishop/classes/math627.S25/Stop_Dreaming.pdf


Quasicircles



We say that a curve γ satisfies the 3-point condition, if there is a M <∞ so

that given any x, z ∈ γ and y on the smaller diameter arc γ(x, y) ⊂ γ between

x, y, we have

|x− y| ≤M |x− z|,

Equivalently,

diam(γ(x, z)) ≤M |x− z|.

This is also called the Ahlfors M-condition or bounded turning.

It is immediate from Lemma 4.5 that the image of the real line under any

quasiconformal mapping of the plane is bounded turning, and below we shall

prove the converse is also true.



The similar looking, but stronger, condition

`(γ(x, z)) ≤M |x− z|
where we assume γ is locally rectifiable is called the chord-arc condition. Such

curves are called chord-arc curves or Lavrentiev curves, and form a

special, but very important, subclass of the bounded turning curves.

It turns out that chord-arc curves are exactly the images of the real line under

bi-Lipschitz maps of the plane, but we will not prove this here.



Lemma 5.2. Suppose γ is bounded turning with constant M and 0, 1,∞ ∈
γ.

Suppose Ω is one of the connected components of C \ γ and suppose x is a

point on γ between 0 and 1.

Let γ1, γ2, γ3, γ4 denote the disjoint subarcs of γ from −∞ to 0, from 0 to

x, from x to 1 and from 1 to +∞ respectively.

Let Γ be the path family joining the arc γx ⊂ γ from 0 to x to the disjoint

half-infinite arc γ1 ⊂ γ joining 1 to ∞.

Then M(Γ)→ 0 as x→ 0 with upper and lower bounds that depend only

on |x| and M



Proof. The 3-point condition implies that

dist(γ2, γ4) ≥
1

M
− |x|,

so for |x| sufficiently small every path in Γ crosses the round annulus

{z : M |x| < |z| < 1

2M
} ⊂ {z : diam(γ2) < |z| < dist(γ2, γ4)}.

For |x| small, this implies M(Γ) is small.

0 1/2 1
0

x

1



To prove a lower bound on M(Γ) it suffices to prove an upper bound on the

reciprocal modulus of the path family connecting γ1 to γ3.

By the 3-point condition, these arcs are at least distance |x|/M apart, so the

metric ρ = M/|x| on the disk of radius M around the origin is admissible.

The reciprocal family has modulus at most πM 4/|x|2, so M(γ) ≥ |x|2/M 4π.

0

x

Since dist(γ1, γ3) ≥ |x|/2M , the metric ρ = 1/2M is admissible. �



Lemma 5.3. If γ has bounded turning, and f, g are the conformal maps

from the upper and lower half-planes to the two sides of γ (mapping ∞ to

∞ in both cases), then h = g−1 ◦ f is a quasisymmetric homeomorphism of

the line.

Proof. Consider two adjacent intervals of equal length on the real line.

After renormalizing by linear maps, we may assume these are I = [0, 1/2] and

[[1/2, 1] and that h fixes both 0 and 1. By two applications of Lemma 5.2,

f (1/2) can’t be too close to either 0 or 1, and hence h(1/2) = g−1(f (1/2)) can’t

be too close to 0 or 1 either.



Thus h is quasisymmetric with a constant depending only on the 3-point con-

stant.

0 1/2 1
0

x

1

The path family in the upper half-plane connecting [0, 1/2] to [1,∞) has mod-

ulus 1, so its conformal image also has modulus 1. Therefore x = f (1/2) can’t

be too close to either 0 or 1. �



Lemma 5.4. A curve γ is a quasi-line if and only if it has bounded turning.

Proof. If γ is the quasiconformal image of a line, then it satisfies the 3-point

condition by Lemma 4.5, as mentioned earlier.

On the other hand, if γ satisfies the 3-point condition, then h = g−1 ◦ f is

quasisymmetric, and hence extends to a quasiconformal map H of the whole

plane.

Now set F = f on the lower half-plane and F = g ◦ H on the upper half-

plane. Clearly this is quasiconformal on each half-plane and on the real line

g ◦H = g ◦ g−1 ◦ f = f so the two definitions agree. Thus H is quasisymmetric

on the whole plane and F (R) = f (R) = γ. �



Actually, the previous proof has a small error.

We claimed that if a homeomorphism of the plane is quasiconformal in both the

upper and lower half-planes, then it is quasiconformal in the whole plane.

This is true, but not yet proven.

It is trivial from analytic definition; a little harder from the geometric definition.

We will prove a much stronger result.

For the proof of Lemma 5.4 we can assume the QC map H is piecewise smooth

on a hyperbolic tesselation, since we proved the QS extension theorem using an

explicit construction that did this (other extensions methods even give smooth

maps on whole half-plane).



Lemma 5.5. If F is a homeomorphism of the plane that is quasiconformal

on the upper and lower half-planes, and is piecewise smooth on a countable

decomposition of each of these half-planes (such as given by a hyperbolic

tesselation), then F is quasiconformal on the whole plane.

We leave the proof to reader.

It follows the proof we gave that the piecewise differentiable definition of QC im-

plies the geometric definition, except now we use that each line hits the partition

boundary countably often instead of finitely often.

However, the result is true, even without assuming any smoothness.



Removable Sets



When f is continuously differentiable, it is relatively easy to check whether it is

quasiconformal; we just compute the complex dilatation µ = fz/fz and check

that |µ| < k < 1 everywhere.

For some applications in dynamics, functions arise that that are homeomor-

phisms f on C, but which are only C1 on an open set Ω = C \K. If we know

the dilatation is bounded on just Ω, can we still deduce that f is quasiconformal?

If we can, then we say K is removable for quasiconformal mappings.



Removability depends on the “size” and “shape” of K.

We have already (implicitly) seen that K is removable if it a countable union of

analytic arcs.

If K has interior, then it is easy to construct counterexamples; choose a disk

D ⊂ K and any non-quasiconformal homeomorphism of the disk to itself that

is the identity on the boundary and extend it to be the identity off D.

If K has positive area, there are also counterexamples corresponding to appli-

cations of the measurable Riemann mapping theorem to a dilatation that is a

non-zero constant on K and zero off K.



Even if K is quite small, there can be counterexamples. For example, given any

guage function h such that h(t) = o(t) as t↘ 0, there is a closed Jordan curve

γ and a homeomorphism of the sphere that is conformal on both components

of C \ γ but which is not Möbius.

On the other hand, if K has finite or sigma-finite 1-measure then it is removable.

These examples show that it is the “shape” rather than the “size” of K that is

crucial in most cases of interest.



Recall that we proved this earlier:

Lemma 5.6. Suppose Q is a square, λ > 1 and f is K-quasiconformal on

λQ. Then

area(f (Q)) ≥ εdiam(f (Q))2,

where ε > 0 depends only on λ and K.



A Whitney decomposition of an open set Ω consists of a collection of dyadic

squares {Qj} contained in Ω so that

(1) the interiors are disjoint,

(2) the union of the closures is all of Ω,

(3) for each Qj, diam(Qj) ' dist(Qj, ∂Ω).

The existence of such a collection is easy to verify be taking the set of dyadic

squares Q so that

diam(Q) ≤ 1

4
dist(Q, ∂Ω),

and that are maximal with respect to this property (i.e., the parent square fails

this condition).





Suppose K is compact, δ > 0 and for each x ∈ K let γx be a Jordan arc in

Ω = C \K that connects x to Ωδ = {z ∈ Ω : dist(z,K) ≥ δ}. For a single x,

γx may consist of several arcs that connect x to Ωδ.

Each boundary point is connected to a point distance δ from ∂Ω. Some points

may be connected by more than one curve.





For each Whitney square Q ⊂ Ω, let S(Q) = {x ∈ K : γx ∩Q 6= ∅}.

This is called the “shadow” of Q on K; the name comes from the special case

when K is connected and does not separate the plane and γx is a hyperbolic

geodesic connecting x to ∞.

If we think of∞ as the “sun” and the geodesics as light rays, then S(Q) is the

part of K that blocked from ∞ by Q, i.e., it is Q’s shadow.



The paths connecting a Whitney square to its shadow can sometimes hit larger

Whitney squares after hitting smaller ones.

However the size of the hit squares tends to zero as the path approaches the

boundary. Hence there is a“largest” square hit.



Let C(Q) be the union of all Whitney squares hit by the arc γ connecting Q

to some point of its shadow; this is the “filled shadow” and corresponds to a

Carleson square in the unit disk.



We will assume three things about the Whitney squares and their shadows:

(S1) S(Q) is closed.

(S2) diam(S(Q))→ 0 as diam(Q)→ 0,

(S3) limn→∞
∑

Q:`(Q)≤2−n diam(S(Q))2 = 0, where the sum is over all Whitney

squares for Ω of side length 2−n.

Theorem 5.7 (Jones-Smirnov). Suppose Ω has a Whitney decomposition

so that the corresponding shadow sets satisfy conditions (S1)-(S3) above.

Then K = ∂Ω is removable for quasiconformal maps.

The Jones-Smirnov paper

https://www.math.stonybrook.edu/~bishop/classes/math627.S25/Jones_Smirnov_Removability.pdf


If the map f is conformal off ∂Ω (i.e., K = 1), then we will show that the

extension is conformal everywhere.

If the map f is K-quasiconformal off ∂Ω then we only prove that it is C-

quasiconformal for some C <∞.

However, it then follows from the analytic definition that f is actually K-

quasiconformal on the whole plane.

The weaker version is sufficient for many applications.



Proof of Theorem 5.7. Recall that Ω is the complement of K. Suppose F is a

homeomorphism of the plane that is quasiconformal on Ω.

Suppose that W is any bounded quadrilateral in the plane, say of modulus m

and that W ′ = F (W ) has modulus m′. We want to show that m′ ≤ Cm where

C <∞ depends only on K as in the statement of the theorem.

We will do this by mimicking the proof of Theorem 4.1, that showed that any

piecewise differentiable map with bounded dilatation was quasiconformal (in the

geometric sense).



Let ϕ : W → R = [0,m] × [0, 1] and ψ : W ′ → [0,m′] × [0, 1] be conformal

maps of these quadrilaterals to rectangles R,R′ (vertices mapping to vertices).

Define X = ϕ(∂Ω ∩W ) ⊂ R.



The proof is somewhat involved because we are going to to consider three

different Whitney decompositions. Let

• {Wj} denote a Whitney decomposition for W ,

• {Qj} a Whitney decomposition for Ω, and

• {Uj} a Whitney decomposition for U = R \X .



Fix some ε > 0.

Fix a Whitney cube Wj for W .

We assume the decomposition is chosen so that 2Wj ⊂ W .

Suppose δ > 0 is so small (depending on our choice of Wj) that the following

two conditions all hold.



(1) If Qk is a Whitney square for Ω with diameter less than δ and the shadow

S(Qk) hitsWj, then S(Qk) ⊂ 2Wj and the entire Whitney chain connecting

any point x ∈ S(Qk) to Qk is contained in 2Wj.

This is possible by condition (S2) on shadow sets (small squares have small

shadows).

Note that two points x, y ∈ S(Qk) can be connected by a chain of adjacent

Whitney squares for Ω, all in the “shadow” of Qk.



(2) Let S(Wj) denote the collections of all Whitney squares Qk for Ω so that

diam(Qk) ≤ δ and S(Qk)) ∩Wj 6= ∅. Then

∑
Qk∈S(Wj)

diam(S(Qk))
2 ≤ ε · area(Wj).

This holds for small enough δ, because by condition (S3) on shadows, this

sum over all Whitney squares for Ω is finite, so removing all the squares

bigger than δ gives a sum that tends to 0 as δ tends to zero.

The sum is less than ε · area(Wj) if δ is small enough (depending on Wj).



Let S = ∪Wj
S(Wj).

This is the collection of all shadow sets of all Whitney squares Qk for Ω so

that (1) diam(Qk) < δ and (2) S(Qk) is contained in S(Wj) for some Whitney

square Wj of W .

Note that each point x ∈ ∂Ω ∩ Wj is associated to a Whitney chain that

contains a square with diameter comparable to δ. There are only finitely many

such squares, so their shadows form a finite collection that covers ∂Ω ∩Wj.



Suppose L = [a + iy, b + iy] is a horizontal segment, compactly contained in

the interior of R at height y.

Let g : R→ R′ be the composition ψ ◦ f ◦ ϕ−1. We wish to show that

∫ 1

0

|g(b + iy)− g(a + iy)|dy ≤ C
√
mm′,(5.11)

where C depends only on K.



If we can do this, then by letting a→ 0 and b→ m we get

m′ ≤ lim
a→0,b→m

|g(b + iy)− g(a + iy)|,

and hence

m′ ≤ lim
a→0,b→m

∫ 1

0

|g(b + iy)− g(a + iy)|dy ≤ C
√
mm′,

which gives the desired inequality m′ = O(m).

The reversed inequality, m = O(m′), can be deduced from the same argument

applied to the other pair of opposite sides of Q, since the corresponding path

families have the reciprocal moduli. Thus it suffices to prove (5.11).



Since L is compactly contained in the interior of R and X is relatively closed in

the interior of R, L ∩X is compact. Thus ϕ−1(L ∩X) is a compact set of W ,

hence covered by finitely many Whitney squares for W and hence is covered by

finitely many shadows sets in S .

Let X be the image of the elements of S under ϕ. Then L ∩X is covered by

finitely many elements of X , say X1, . . . Xn.



For k = 1, . . . , n, let Yk = [ak, bk] be the smallest closed interval in L that

contains Xk ∩ L (this is the convex hull of Xk ∩ L, i.e., the interval with the

same leftmost and rightmost point as Xk ∩ L).

Then Y1, . . . , Yn also cover L ∩ X and we can extract a subcover with the

property that Yj ∩ Yk 6= ∅ implies |j − k| ≤ 1.



Since the points ak, bk are both in the same set Xk, we can deduce that the

preimage points ϕ−1(ak), ϕ
−1(bk) are both in the same element of S .

Thus they are both in the shadow set of some Whitney square for Ω and are

associated to a two sided chain of distinct Whitney squares {Qm}∞−∞ of Whitney

squares for Ω.

If two chains arising in this way, say from Yk and Ym withm > k, have a Whitney

square in common, then we can combine the chains to form a chain connecting

ak to bm consisting of distinct squares. We can replace Yk, Yk+1, . . . Ym by the

single interval Z = [ak, bm] which covers the same part of L ∩X ..



Doing this for all intersections, we obtain a finite collection of closed intervals

Zk in L which covers the same set as the union of the Yk’s.

Furthermore, the two endpoints of each Zk correspond to a two-sided Whit-

ney chain in Ω and that different intervals use different Whitney squares (no

overlapping chains).

Moreover, if Zk has endpoints ck, dk and the corresponding chain is {Qn}, then

|g(ck)− g(dk)| ≤
∑
n

diam(ψ(f (Qn))).



The set V = L \ ∪kZk consists of finitely many open intervals in U = R \ X
with their endpoints in X .

We break V into countable many sub-intervals by intersecting it with the Whit-

ney squares for U = R \ X (without loss of generality, we can assume the

endpoints of L occur on the boundary of a Whitney square for U).



On each Whitney square Uk for U we define the constant function

Dg =
diam(g(Uk))

diam(Uk)
.

Then if Lj = L ∩ Uj, ∫
Lj

Dgdx = diam(g(Uj))/
√

2.



Thus if ZL is the union of all the Zk ∩ L, we get

∫
L\ZL

Dgdx '
∑
j

diam(g(Uj)),

where the sum is over Whitney squares for U that hit L.

Thus

|g(b + iy)− g(a + iy)| .
∫
L∩U

Dgdx +
∑
n

diam(ψ(f (Qn))).

The sum is over Whitney squares Qj for Ω that have diameter ≤ δ.



Now integrate in y to get

∫ 1

0

|g(b + iy)− g(a + iy)|dy .
∫∫

U

Dgdx +
∑
n

diam(ψ(f (Qn)))µn,

where µn is the Lebesgue measure in [0, 1] of the set of lines Ly that use the

Whitney squareQn in at least one of the two-sided chains associated to a interval

Z ⊂ Ly.



The Lebesgue measure of this set is no more than its diameter, which is no more

than the diameter of Xn = ϕ(S(Qn)). Thus

∫ 1

0

|g(b+ iy)− g(a+ iy)|dy .
∫∫

U

Dgdxdy+
∑
n

diam(ψ(f (Qn)))diam(Xn),

We want this to be = O(
√
m ·m′).



We now estimate the second term using the Cauchy-Schwarz inequality.

∑
n

diam(ψ(f (Qn)))diam(Xn)

≤

(∑
n

diam(ψ(f (Qn)))2

)1/2(∑
n

diam(Xn)2

)1/2

≤ A

(∑
n

area(ψ(f (Qn)))

)1/2

×∑
Wk

[
diam(ϕ(Wk))

diam(Wk)

]2 ∑
Qn∈S(Wk)

diam(S(Qn))2

1/2

.

We have used Koebe’s theorem to estimate the size of the images.



Now use Lemma 5.6,

≤ A

(∑
n

area(ψ(f (Qn)))

)1/2
∑

Wk

[
diam(ϕ(Wk)

diam(Wk)

]2
· ε · area(Wk))

1/2

≤ A
[
area(R′)1/2 · ε · area(R)

]1/2
≤ A
√
ε ·m ·m′.

where A just depends on the distortion estimate for conformal maps and ε is as

small as we wish (this was Condition 2 in our choice of δ).



The other term is also bounded by Cauchy-Schwarz∫∫
U

Dgdx =
∑
k

∫∫
Uk

Dgdxdy

≤

(∑
k

∫∫
Uk

(Dg)2dxdy

)1/2(∑
k

∫∫
Uk

dxdy

)1/2

≤

(∑
k

(diam(g(Uk))
2

)1/2(∑
k

area(Uk)

)1/2

≤ C

(∑
k

(area(g(Uk))

)1/2

area(R)1/2

≤ Carea(R′)1/2 · area(R)1/2 ≤ C
√
m′m.

Thus ∫ 1

0

|g(b + iy)− g(a + iy)|dy .
√
m′m + O(ε),

Taking ε→ gives the desired inequality. �



Corollary 5.8. If K satisfies the conditions of Theorem 5.7, then K is

removable for conformal homeomorphisms, i.e., any homeomorphism of

the plane that is conformal off K is conformal everywhere.

Proof. Theorem 5.7 implies that f is quasiconformal on the plane, so the point

is to show that we can take the quasiconformal constant to be 1.

If we redo the proof assuming f is conformal off ∂Ω, then the piecewise constant

function Dg can be replaced by the usual derivative |g′|.

This leads to the inequality m′ ≤
√
m′m, or m′ ≤ m.

The reverse inequality follows by considering the reciprocal path family in each

quadrilateral. Together, these imply f is 1-quasiconformal, and hence conformal.

�



Corollary 5.9. If f, g are quasiconformal maps of the upper and lower

half-planes that agree on the real line, then they define a quasiconformal

map on the whole plane.

Proof. This is immediate since a line clearly satisfies the Jones-Smirnov criteria:

just consider R as the boundary of the upper half-plane and for x ∈ R, let γx

be a vertical line ray.

Then the shadow of any square is its vertical projection, and the square of the

shadows length is comparable to the area of the square.

Thus any compact segment of R is removable, and since quasiconformality is a

local property (Theorem 4.15), the whole line is removable. �



Corollary 5.10. If f is a quasiconformal map of the upper half-plane to

itself, mapping the real line to itself, then the extension of f to the whole

plane by f (z̄) = f (z) is quasiconformal in the whole plane.

Proof. Immediate from the previous result since composing a quasiconformal

map with reflections gives another quasiconformal map. �



Corollary 5.11. Quasicircles are removable.

Proof. If Γ = g(R) is a quasiconformal image of the reals and f is a homeo-

morphism that is quasiconformal on each side of Γ, then h = f ◦ g is a homeo-

morphism that is quasiconformal on each side of R, then quasiconformal on the

whole plane.

Thus f = h◦g−1 is a composition of quasiconformal maps and hence is QC. �



An open, connected set Ω in R2 is called a John domain if any two points

a, b ∈ Ω can be connected by a path γ in Ω with the property that dist(z, ∂Ω) &

min(|z − a|, |z − b|).

The domain on the left is a John domain, but the one on the left is not; inward

pointing cusps are OK, but outward pointing cusps are not.



Lemma 5.12. The Riemann map ϕ from the unit disk to a bounded John

domain satisfies

diam(ϕ(I(Q))) ≤ Cdiam(ϕ(Q)),

dist(ϕ(Q), ϕ(I(Q))) ≤ Cdiam(ϕ(Q)),

for some constant C <∞ and any Whitney square Q and is shadow I(Q).

Proof. The second inequality follows directly from Lemma 2.23 by considering

the path family of radial lines connecting Q to I .



To prove the first inequality, consider the Whitney-Carleson boxes Q1 and Q2

that are adjacent to Q and of the same size. By Lemma 2.23 each is connected

to its shadow by a radial segment whose image under f has length comparable

to diam(f (Q)).

Thus there is a geodesic crosscut γ of the disk that passes through Q and whose

image has length comparable to diam(f (Q)). Now suppose x is in the shadow

of Q.



Any curve connecting 0 to x crosses γ, so any curve Γ connecting f (0) and f (x)

crosses f (γ) and hence contains a point z ∈ f (γ) ∩ Γ that is at most distance

O(diam(f (Q))) from ∂Ω. Thus by the definition of John domain, either

dist(f (0), z) = O(diam(f (Q))) or dist(f (x), z) = O(diam(f (Q))).

In a bounded domain, the first can only happen for finitely many Q’s; for

the remainder, the second must hold and hence f (I(Q)) is contained in a

O(diam(f (Q))) neighborhood of f (Q). �



Corollary 5.13. Boundaries of simply connected John domains are remov-

able.

Proof. Let Ω be a simply connected John domain and suppose f : D → Ω is

conformal.

Each Whitney squareQ′ for Ω is covered by a uniformly bounded number images

f (Q) of Whitney squares for D and its shadows is contained in the union of

corresponding shadows.

This and Lemma 5.12 imply diam(S(Q′)) = O(diam(Q′).

The three conditions (1)-(3) in Theorem 5.7 follow easily.. �



A simply connected plane domain Ω is called a Hölder domain if the Riemann

map D→ Ω is Hölder.

Lemma 5.14. Boundaries of Hölder domains are removable.

Sketch of proof. Fix a base point in Ω. The Hölder condition implies that {Qk
j}

lists the Whitney squares of Ω approximately hyperbolic distance k from the

base point then diam(S(Qk
j )) ≤ Ce−ak.

We also need an estimate of Jones and Makarov that for Hölder domains,∑
k

diam(S(Qk
j ))

2−ε < M <∞

for some ε > 0 and M < ∞ independent of k. depending on the Hölder

constant. Then∑
k

∑
j

diam(S(Qk
j ))

2 ≤
∑
k

∑
j

diam(S(Qk))
2−εdiam(S(Qk

j ))
ε ≤

∑
k

Cεe−εakM <∞ �



Corollary 5.15. Julia sets of Collet-Eckmann polynomials are removable.



The Jones-Smirnov result (Theorem 5.7) places restrictions on the set E, but

none on the mapping (besides being a homeomorphism). An earlier result of

Rickman makes an assumption on the mapping, but none on the set K:

Lemma 5.16 (Rickman’s lemma). Suppose Ω is a planar domain and K ⊂ Ω

is compact. Suppose f is homeomorphism of Ω that is quasiconformal on

Ω \ K and F is quasiconformal on all of Ω. If f = F on K, then f is

quasiconformal on all of Ω.



Proof. Isolated points of K are clearly removable and there are only countable

many such points, so we may assume that K has only accumulation points.

The idea proof is the same as the proof of Theorem 5.7: we consider a quadri-

lateral W and its image W ′ = f (W ) and conformally map each to rectangles

of modulus m and m′ respectively.



Let G = ψ ◦ F ◦ ϕ−1 and g = ψ ◦ f ◦ ϕ−1.

Our assumption implies g = G on X .

As before, we want to prove the estimate (5.11):∫ 1

0

|g(b + iy)− g(a + iy)|dy ≤ C
√
mm′,

However, this time we cover X by dyadic squares that are so small that G is

quasiconformal on 6Q ⊂ R for each square Q used, and the image G(Q) lies in

R′.

The union of these squares plays the role of the set Z in the earlier proof.



Given a compact horizontal line segment L inR, we let {Yk}{[ck, dk]} enumerate

the convex hulls of sets of the form L ∩Q for Q in our cover of X .

Then defining Dg exactly as before on R \X , and using g = G on X , we get

|g(b + iy)− g(a + iy)| ≤
∫
L∩U

Dgdx +
∑
k

|g(ck)− g(dk)|

≤
∫
L∩U

Dgdx +
∑
k

|G(ck)−G(dk)|

≤
∫
L∩U

Dgdx +
∑

Q:Q∩L6=∅

diam(G(Q)).



Integrating over y then gives∫ 1

0

|g(b + iy)− g(a + iy)|dy ≤
∫
U

Dgdx +
∑
Q

diam(G(Q))`(Q).

The first term is bounded exactly as before and the second is bounded by

∑
Q

diam(G(Q))`(Q) ≤ [
∑
Q

diam(G(Q))2]1/2 · [
∑
Q

`(Q)2]1/2

≤ C[
∑
Q

area(G(Q))]1/2 · [
∑
Q

area(Q)]1/2

≤ C[area(R′)]1/2 · [area(R)]1/2

≤ C
√
m′m.

The rest of the proof is them completed just as before. �



BiLipschitz Reflections



Lemma 5.17. A quasisymmetric map f : R → R can be extended to a

quasiconformal map of the upper half-plane that is also biLipschitz for the

hyperbolic metric.

Proof. Go back and check the proof of the extension theorem. �



Lemma 5.18. If f is a hyperbolic biLipschitz map of the upper half-plane

to itself, then f is quasiconformal.

Proof. Easy to check that length and area change by at most a bounded factor,

so modulus of any quadrilateral changes by a bounded factor (just transfer ρ

without change). �



Theorem 5.19. An unbounded Jordan curve Γis a quasiline iff it has a

biLipschitz reflection, i.e., there is a bi-Lipschitz map of the plane that

fixes Γ pointwise and swaps the two complements.

Quasiline implies biLipschitz reflection. Let f and g be the conformal maps

from the upper and lower half-planes to the two sides of Γ, each fixing ∞.

Since Γ is a quasiline, h = g−1 ◦ f is quasisymmetric and has a quasiconformal

extension H to the lower half-plane that is biLipschitz for the hyperbolic metric.

Let r(z) = z be reflection across the real line and define R(z) = g ◦H ◦ r ◦ f−1.
this is a quasiconformal map from one side of Γ to the other and it fixes Γ

pointwise.



IfH is defined by our hyperbolic pentagon map, then each pentagon is associated

to several subintervals of R that all have comparable harmonic measures for any

point in the pentagon.

Thus the R maps the region f−1(P ) to g(r(P )) and these regions have compa-

rable diameters since the associated subintervals on Γ are the same.



Since R is a hyperbolic biLipschitz map between two domains of bounded hy-

perbolic diameter and comparable Euclidean size, it is a Euclidean biLipschitz

map on these regions.

From this it is easy to check R is Euclidean Lipschitz everywhere. Since R =

R−1, it is automatically biLipschitz. �



biLipschitz reflection implies quasiline. As above, let f and g denote confor-

mal maps of the upper and lower half-plane to the two sides of Γ that fix ∞.

Suppose R is a biLipschitz reflection across Γ. Then r◦g−1◦R◦f is a hyperbolic

biLipschitz map of the upper half-plane to itself that extends the welding map

h = g−1 ◦ f .

Hyperbolic Lipschitz implies quasiconformal, so h must be quasisymmetric,

which in turn implies Γ is a quasiline. �



Remark: A set E is K-biLipschitz homogeneous if for any x, y ∈ E there is

a K-biLipschitz map f : E → E so that f (x) = y.

It is known that a biLipschitz homogeneous closed curve must be a quasicircle.

Question: is a biLipschitz homogeneous continuum a closed curve?

There are homogeneous continua for (non-biLipschitz) homeomorphisms that

are not curves (e.g., the pseudo-arc and the circle of pseudo-arcs). These ex-

amples are not locally connected. Does requiring biLipschitz maps eliminate

these?

A complete classification of homogeneous plane continua by L.C. Hoehn and

L.G. Oversteegen, 2016.

https://arxiv.org/pdf/1409.6324


Remark: A hyperbolic quasi-isometry f : D→ D is a map so that
1

A
ρ(z, w)−B ≤ ρ(f (z), f (w)) ≤ Aρ(z, w) + B.

Informally, these are biLipschitz at large scales.

Every quasiconformal map f : D→ D is a hyperbolic isometry. See 2004 Annals

paper by Epstein, Marden and Markovic.

Conversely, every hyperbolic quasi-isometry has boundary values that are qua-

sisymmetric. Thus there is a quasiconformal map with the same boundary

values.

https://www.math.stonybrook.edu/~bishop/classes/math627.S25/QC_Convex_Hull.pdf


Conformal Welding



Suppose Γ is a closed Jordan curve and f, g are conformal maps from D and

D∗ = {|z| > 1} to the inside and outside complementary domains of Γ.

By Carathéodorty’s theorem, both these maps extend to be homeomorphisms

of T → Γ, so h = g−1 ◦ f is a homeomorphism of the unit circle to itself (for

brevity, we call this a circle homeomorphism).

Such a circle homeomorphism is called a conformal welding or welding.

Sometimes called a conformal sewing or gluing.

There is an analogous definition for unbounded Γ and homeomorphisms of R.



Not every homeomorphism is a welding.

Oikawa showed that if h(x) = −|x|α for x ≤ 0 and h(x) = xβ for x > 0, and

α 6= β, then h is not a conformal welding.



Let Γ be the union of the graph of sin(1/x) and the segment [i,−i]. This set

divides the plane into two simply connected regions, so there are an associated

conformal maps f , g that define a circle homeomorphism h. One can prove that

h is not a conformal welding.



A polygon (looks like Texas)





Texas reflected through a circle.
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Conformal welding of Texas



David Mumford

2D-shape analysis using conformal mappings

by E. Sharon and D. Mumford

https://www.math.stonybrook.edu/~bishop/classes/math627.S25/Mumford_CW.pdf


Theorem 5.20 (Fundamental Theorem of Conformal Welding). A circle home-

omorphism is quasisymmetric if and only if it is the conformal welding of

a quasicircle.

Of course, there are many weldings that are not quasisymmetric, e.g., the welding

of any non-quasicircle.

Given any circle homeomorphism h and any ε > 0 there is a welding map φ so

that h = φ except on a set of Lebesgue measure ε. See My 2007 Annals paper.

https://www.math.stonybrook.edu/~bishop/papers/koebe1.pdf


The Annals paper also proves that “wild” homeomorphisms are weldings.

We say a homeomorphism h is log-singular if there is set E ⊂ T of zero loga-

rithmic capacity so that h(T \ E) also has zero capacity.

Theorem: If h is log-singular then it is a conformal welding.

The resulting curve is very far from unique: any closed curve can be approxi-

mated by a curve with welding h.

Using this, Alex Rodriguez recently proved that any circle homeomorphism is a

composition of two conformal weldings. See his paper on arXiv.

https://arxiv.org/abs/2501.06347


The fundamental theorem is is due to Pfluger, and has several proofs, e.g, using

the measurable Riemann mapping theorem.

Assuming MRMT (for smooth µ), we can argue as follows.

Suppose h : R→ R is quasisymmetric and let H be a QC extension to R2.

Choose a QC map G so that µG = µH in upper half plane amd µG = 0 in lower

half-plane. (Then G ◦H−1 is conformal in H and G is conformal in Hl).

We claim Γ = G(R) has welding h. Note f = G is conformal from lower half-

plane to one side of Γ. Next, g = G ◦H−1 is conformal from upper half-plane

to other side of Γ. Finally g−1 ◦ f = H ◦G−1 ◦G = H = h on R.



We will give a proof that is very geometric and only uses the following facts:

• K-quasiconformal maps are compact.

• Quasisymmetric maps on T extend to be quasiconformal on the disk.

• Circles are removable for quasisymmetric maps.

• The uniformization theorem (for finitely connected planar domains).

• Koebe’s circle domain theorem.

The first four we have discussed before.



Koebe’s’ circle domain theorem states that every finitely connected planar do-

main can be conformally mapped to a domain bounded only by circles or points.

This we will accept on faith.

One proof of this theorem is given in 2005 thesis of Karyn Lundberg.

https://www.math.stonybrook.edu/~bishop/Lundberg.pdf


We define a circle chain C to be a finite union of closed disks {Dk}n1 in R2

which have pairwise disjoint interiors and such that Dk is tangent to Dk+1 for

k = 1, . . . , n − 1, Dn is tangent to D1 and there are no other tangencies. We

also assume the disks are numbered in counterclockwise order.

The complement, X = S2 \ ∪kDk, of a circle chain consists of two disjoint

Jordan domains. We denote the bounded component by Ω and the unbounded

component by Ω∗.



Let f : D→ Ω and g : D∗ → Ω∗ be Riemann maps.

We call (f, g) a normalized circle chain pair if f (0) = 0, g(∞) = ∞ and

dist(0, ∂Ω) = 1.

Clearly, given a circle chain, we can always obtain a normalized pair by com-

posing with a Möbius transformation.



Lemma 5.21. Suppose h : T→ T is an orientation preserving homeomor-

phism and suppose {xk}n1 ⊂ T is a finite collection of distinct points listed

in counterclockwise order. Let Ik = (xk, xk+1), k = 1, . . . , n (modulo n).

Then there is a normalized circle chain pair so that for each k,

f (Ik) = ∂Dk ∩ ∂Ω,

g(h(Ik)) = ∂Dk ∩ ∂Ω∗.

We will say that any circle chain that satisfies this conclusion corresponds to h.



Another way of stating the lemma is that given any finite positive sequences

{ak} and {bk} such that
∑n

k=1 ak =
∑n

k=1 bn = 1 we can find a circle chain so

that the harmonic measure of each disk in the chain satisfies

ω(Dk, 0,Ω) = ak, k = 1, . . . n,

ω(Dk,∞,Ω∗) = bk, k = 1, . . . n.

It is a fact that this circle chain is unique up to Möbius transformations, but we

will not need this here.



Proof of Lemma 5.21. We apply the Koebe circle domain theorem to a domain

Ω = Ωε constructed as follows.

Given n points {xk} on the unit circle T, let yk = 2h(xk) ∈ 2T = {z : |z| = 2}.
Let γn be disjoint smooth Jordan arcs which connect xk to yk in the annulus

A = {z : 1 ≤ |z| ≤ 2}.

Let {Ik} ⊂ T be the arcs bounded by the points {xk} and let {Jk} be the

corresponding arcs on 2T. Thus Jk has harmonic measure |h(Ik)| with respect

to ∞. Let δ = infk |h(Ik)| be the smallest of these harmonic measures.



Our domain Ωε is the union of D, 2D∗ = {z : |z| > 2} and an ε-neighborhood of

each γn, where ε is assumed to be so small that these neighborhoods are pairwise

disjoint and ∂Ω has n components.

Let fε : Ωε → Ω∗ε be the map given by Koebe’s theorem. Using a Möbius

transformation we may assume f (0) = 0, f (∞) =∞ and dist(0, ∂Ωε) = 1.



We claim that the n circles in the complement of Ω∗ε , are all contained in some

disk D(0, R) with R independent of ε (but R may depend on h and n).

To see this, suppose the union of closed disks satisfies ∪kDk ⊂ {1 ≤ |z| ≤ R}
and that it hits both boundary components. Let Ω1 be the connected component

of fε(Ωε ∩D(0, 3/2)) containing 0.

Then for ε small enough, each interval Ik has harmonic measure ≥ 1/2n in Ω1

and hence has capacity in Ω1 which is bounded away from zero depending only

on n.



Thus by Lemma 2.23, every disk must hit {|z| ≤M1}, for some M1 depending

only on n.

Similarly for Ω2 (the connected component of fε(Ω ∩ {|z| > 3/2}) containing

∞), i.e., there is a M2 depending only on δ such that every disk must hit

{|z| ≥ R/M2}.



If R is so large that R/M2 > 3M1, then every disk in our chain hits both

{|z| ≤ M1} and {|z| ≥ 3M1}. Therefore For large n this contradicts the

following fact:

Lemma 5.22. At most 6 disjoint disks can hit both {|z| = 1} and {|z| = 3}.

Proof. Each such disk has a subdisk of radius 1 contained in the annulus {1 ≤
|z| ≤ 3}. Each of these intersects the circle {|z| = 2} in an arc of angle measure

2 arctan(1/2) ≈ .9273 > π/3, and hence there can be at most 6 such disks. �



Since we now know that the n disks all reamin inside a fixed annulus {1 ≤ |z| <
R}, every disk remains bounded.

Since each disk has a fixed harmonic measure from 0, its radius remains uni-

formly bounded away from zero.

Thus we can pass to the limit as ε→ 0, and get a circle chain of n non-degenerate

tangent circles, that each have the correct harmonic measure.

Consequtive circles must touch in the limit, since the extremal distance be-

ween them is zero. Non-conequtive circles do not touch because their extremal

distance is positive.

This proves Lemma 5.21. �



Proof of the Fundamental Theorem. Given a homeomorphism h and n equidis-

tributed points {xk}n1 ⊂ T, let yk = h(xk) for k = 1, . . . n and consider the

corresponding circle chain Cn as given by Lemma 5.21.

As before, let Ωn, Ω∗n denote the bounded and unbounded complementary do-

mains. By reflecting through each circle we obtain a new chain with n(n − 1)

circles. Continuing in this way we obtain, in the limit, a Jordan curve Γn, with

complementary components Dn (bounded) and D∗n (unbounded).



This shows the original chain and the domain Ωn on the left, three iterations of

the reflections in the center and the corresponding domain Dn on the right.



Similarly, given a circle chain Dn of n circles of equal size, with tangent points

along the unit circle, we can reflect through the circles, getting a nested sequence

of circle chains which limit on the unit circle, as shown below.

If h quasisymmetric, we know it is the boundary extension of someK-quasiconformal

selfmap of the disk.



We claim there is a K-quasiconformal map of the plane sending the circles this

figure to the circles in the previous figure. We will prove this by constructing

the map separately inside and outside the unit circle.





Let Wn = S2 \ {x1, . . . , xn}. We may assume n ≥ 3, so there is a universal

covering map Π : D→ Wn.

Let Un be the component of Π−1(D) containing the origin, and note that by

symmetry Un may be chosen to be bounded by hyperbolic geodesics with end-

points at the xk’s (the arcs T \ ∪{xk} are hyperbolic geodesics in Wn; this is

even clearer if we map T to R by a Möbius transformation).
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Reflecting these arcs across T gives the circle chain Dn in the figure below.

The conformal map fn ◦ Π : Un → Ωn can be extended by repeated Schwarz

reflection to a conformal map Fn : D→ Dn.
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Similarly, Koebe’s theorem gives a conformal map gn : D∗ → Ω∗n. Let W ∗
n =

S2 \ {y1, . . . , yn} and consider Π : D∗ → W ∗
n as the universal cover of W ∗

n .

As above, we can lift gn to map of Π−1(D∗) → Ω∗n and use Schwarz reflection

to extend it to a map Gn from D∗ → D∗n. See below.
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n

By assumption h is the boundary extension of a K-QC map of the disk to itself.

By reflection we can extend this is a K-QC map H of S2 to itself.



Then H maps Wn to W ∗
n and lifts to a K-QC map of the universal covers.

We can represent these by D∗ so we get a K-quasiconformal map Hn : D∗ → D∗

which conjugates the covering groups.
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Thus Gn ◦Hn is a K-quasiconformal map of D∗ to D∗ whose boundary values

agree with Fn on T, and hence these maps together define a K-quasiconformal

map of S2, since circles are removable for QC mappings.

This map takes T to Γn and the circle chain Dn to the chain Cn.

Taking n → ∞, using the uniform continuity of K-quasiconformal mappings

and passing to a subsequence if necessary, we see that our circle chains converge

uniformly to a K-quasicircle and that h is the corresponding conformal welding,

as desired. �










