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This semester I hope to cover the following topics:

• Review of complex analysis

• Extremal length and conformal modulus,

• Logarithmic capacity, harmonic measure

• Geometric definition of quasiconformal mappings, compactness

• Compactness of QC maps: quasisymmetry, extension, removability, weldings

• Analytic definition and the measurable Riemann mapping theorem

• Cauchy and Beurling transforms, analytic dependence

• Astala’s theorems on area and dimension distortion

• Smirnov’s 1 + k2 theorem

• Lehto maps

• Holomorphic motions



We have proven the measurable Riemann mapping theorem: given a dilatation

µ with ‖µ‖∞ = k < 1, there is a quasiconformal mapping f with dilatation µ.

Next, we would like to show f : C→ C is unique if it normalized.

Two point normalization: f (0) = 0 and f (1) = 1.

Principle solution: if µ is compactly supported, then f (z) = z + O(1/|z|)
near ∞.

The latter is sometimes called the hydrodynamic normalization.



We also want to show that f depends holomorphically on µ, e.g., if z is fixed,

ftµ(z) is a holomorphic function of t ∈ D(0, 1/k).

The proofs of uniqueness and holomorphic dependence both use explicit formulas

involving the Cauchy transform and its “derivative”, the Beurling transform.

The latter is a singular integral operator and is the 2-dimensional analog of the

famous Hilbert transform on the real line.



The Cauchy Transform



Suppose f ∈ Lp(R2, dxdy) for p > 2. Define

Cf (ζ) = −1

π

∫∫
C
f (z)(

1

z − ζ
− 1

z
)dxdy.

The function 1/(z − ζ) is not in L2 locally, but is in Lq for all q < 2, so the

integrand is locally integrable when f ∈ Lp for some p > 2.

The extra 1/z term occurs so that the difference decays like 1/|z|2 near infinity,

and hence the difference is in Lq for all q > 1. Thus the integral makes sense

for all f ∈ Lp, p > 2.



If f is compactly supported, this means that its Cauchy transform also decays

like 1/|z|2, which will be convenient when apply the Cauchy integral formula on

large circles. It also implies C(f ) ∈ Lp, p > 2, in a neighborhood of∞, outside

the support of f .

Note that C(f )(0) = 0 since the kernel vanishes if ζ = 0.



Lemma 7.1. If f ∈ Lp, p > 2, then Cf is α-Hölder continuous with

α = 1− 1/p.

Proof. First note that the Cauchy transform on an Lp function is bounded.

|Cf (ζ)| ≤ 1

π
· ‖f‖p · ‖

1

z − ζ
− 1

z
‖q

=
1

π
· ‖f‖p · ‖

ζ

(z − ζ)z
‖q

=
|ζ|
π
· ‖f‖p · ‖

1

(z − ζ)z
‖q.



The dependence on ζ is obtained by a change of variable z = ζw

∫∫
|z(z − ζ)|−qdxdy =

∫∫
|ζw(ζw − ζ)|−q|ζ|2dudv(7.18)

= |ζ|2−2q
∫∫
|w(w − 1)|−qdudv.

Since q = p/(p− 1), 2− 2q = 2/p and this implies

|Cf (ζ)| ≤ Kp · ‖f‖p · |ζ|1−1/p(7.19)



Next,

|Cf (ζ1)− Cf (ζ2)| =

∣∣∣∣1π
∫∫

C
f (z)

(
1

z − ζ1
− 1

z − ζ2

)
dxdy

∣∣∣∣
=

∣∣∣∣1π
∫∫

C
f (z + ζ1)

(
1

z + ζ2 − ζ1
− 1

z

)
dxdy

∣∣∣∣
= |Ch(ζ2 − ζ1)|,

where h(z) = f (z + ζ1). Applying (7.19) to h, we get

|Cf (ζ1)− Cf (ζ2)| = |Ch(ζ2 − ζ1) ≤ Kp‖h‖p|ζ|1−1/p

= Kp‖f‖p|ζ|1−1/p.
�



Lemma 7.2. If f is smooth and has compact support, then Cf is smooth

and (Cf )z = f .

Proof. Let γε = ∂D(ζ, ε) be a small circle around ζ . The convolution of a

smooth, compactly supported function is smooth and interchanging integration

and differentiation gives (Cf (ζ))z = (Cfz(ζ)).



Recall

dzdz = (dx + idy)(dx− idy) = idydx− idxdy = −2idxdy.

By Stokes theorem and using the fact that |f | = O(1/|z|2),

(Cf (ζ))z = (Cfz(ζ)) = −1

π

∫∫
fz

z − ζ
dxdy

= − 1

2πi

∫∫
fz

z − ζ
dzdz

= − 1

2πi

∫∫
dfdz

z − ζ

= lim
ε→0

1

2πi

∫∫
fdz

z − ζ
= f (ζ).

�



Corollary 7.3. If f ∈ Lp, p > 2, then (Cf )z = f in the sense of distribu-

tions.

Proof. We must show that for any smooth φ with compact support,∫∫
(Cf )φzdxdy = −

∫∫
φfdxdy.(7.20)



Take smooth functions {fn} of compact support converging to f . By Hölder’s

inequality

|
∫∫

φ(f − fn)dxdy| ≤ ‖φ‖q · ‖f − fn‖p.

The first term on the product is a finite constant and the other tends to z0, so∫∫
φfn →

∫∫
φf .



On the other hand if the support of φ has diameter d,

∣∣∣∣∫∫ (Cf − Cfn)φzdxdy

∣∣∣∣ ≤ ‖φz‖1 · sup
z∈supp(φ)

|C(f − fn)(c)|

≤ ‖φz‖1 ·Kp · ‖f − fn‖pd1−1/p

and this tends to zero with n. Thus (7.20) holds. �



The Beurling Transform



We will also need a few basic facts about the Beurling transform, which is usually

defined as a principle value integral

T f (ζ) = lim
ε→0

∫∫
|z−ζ|>ε

f (z)

(z − ζ)2
dxdy.

For smooth, or even Hölder, functions of compact support this is well defined

by rewriting the integral as

T f (ζ) = lim
ε→0

∫∫
|z−ζ|>ε

f (z)− f (ζ)

(z − ζ)2
dxdy,

since the kernel has integral zero on any circle centered at ζ .



The Beurling transform can be extended to a bounded linear operator from

Lp(R2, dxdy) to itself for all 1 < p <∞.

We shall show below that T is an isometry on L2.

The standard proof of MRMT uses that T is bounded for p > 2 with an

operator norm that approaches 1 as p ↘ 2, but we will not need this fact; we

have already proven Bojarski’s theorem that fz ∈ Lp for a K-QC map, and this

will be sufficient for our applications.

Recall ∫
|z|=1

dz

z
= 2πi,

∫
|z|=1

dz

z
= 0.

dzdz = −2idxdy.



Lemma 7.4. If f is smooth and has compact support then Cf is smooth

and C(fz) = T f − T f (0).

Proof. As in Lemma 7.2 we have that Cf is smooth and (Cf (ζ))z = (Cfz(ζ)).

Using Stokes theorem again

(Cfz(ζ)) = −1

π

∫∫
fz

z − ζ
dxdy

=
1

2πi

∫∫
fz

z − ζ
dzdz

= lim
ε→0

[
− 1

2πi

∫
|z−ζ|=ε

fdz

z − ζ
+

1

2πi

∫∫
|z−ζ|>ε

fdzdz

(z − η)2

]
= T f (ζ).

�



From the above we get

(T f )z = C(fz)z = fz,

(T f )z = C(fz)z = T (fz) = C(fzz) + T (fz)(0).



Lemma 7.5. The Beurling transform is an isometry on L2(R2, dxdy).



Proof. It is enough to check this on the dense set of smooth, compactly supported

functions. Then

∫∫
|T f |2dxdy = − 1

2i

∫∫
|(Cf )z)|2dzdz

= − 1

2i

∫∫
(Cf )z(Cf )zdzdz = − 1

2i

∫∫
(Cf )z(Cf )zdzdz

=
1

2i

∫∫
Cf (Cf )zzdzdz =

1

2i

∫∫
Cf (Cf )zzdzdz

=
1

2i

∫∫
Cff zdzdz = − 1

2i

∫∫
(Cf )zfdzdz

= − 1

2i

∫∫
ffdzdz

=

∫∫
|f 2|dxdy �



Uniqueness in MRMT



Lemma 7.6. If µ is measurable, ‖µ‖∞ = k < 1 and µ has compact support,

then there is a unique K-quasiconformal map f (with K = (1 + k)/(1− k))

that is absolutely continuous on almost all lines and satisfies fz = µfz and

fz − 1 ∈ Lp(R2) for some p > 1.



Proof. We already know uniqueness, so the Lp bound is the main point.

Suppose f is such a solution. We know fz ∈ Lp locally, so fz − µfz ∈ Lp on

the plane. Hence C(fz) is well defined and (Cfz)z = fz by Corollary 7.3.

Thus (f −Cfz)z = 0 in the sense of distributions and hence it is analytic on the

plane by Weyl’s lemma.



We assumed fz − 1 ∈ Lp, and Cfz ∈ Lp for any p > 2 (because it is O(|z|−2)
near infinity), so the holomorphic function F = f − Cfz − 1 has F ′ ∈ Lp.

This is only possible if F ′ = 1 or F (z) = z + c.

Because we assumed f (0) = 0, and Cfz(0) = 0, we must have c = 0. Thus

f (z) = C(fz)(z) + z and fz = T (µ(fz)) + 1.



If g were another solution, then using the fact that T is an isometry on L2 gives

‖fz − gz‖2 = ‖T (µ(fz − gz))‖2 ≤ k‖T (fz − gz)‖2,

and this is a contradiction unless ‖fz − gz‖ − 2 = 0.

Therefore fz = gz almost everywhere, and hence fz = µfz = µgz = gz almost

everywhere.

Thus f − g is both holomorphic and anti-holomorphic, hence constant. Since

f (0) = g(0) = 0, they must be equal everywhere. �



Alternate proof of MRMP



Consider

h = T (µh) + Tµ

The series

h = Tµ + TµTµ + TµTµTµ + . . .

converges in Lp if Lp norm of T is less than 1/k, k = ‖µ‖∞.

If h is gvien by this series,set

f = P (µ(h + 1),

then µ(h + 1) ∈ Lp and P (µ(h + 1) is continuous. Moreover,

fz = µ(h + 1), fz = T (µ(h + 1)] + 1 = h + 1,

so fz = µfz.



Analytic dependence



Lemma 7.7. Suppose µt = µ(z, t) is a path of dilatations that is differ-

entiable at t = 0. Then the corresponding normalized QC maps are also

differentiable at t = 0.

More precisely, suppose µ(z, t) = rν(z) + tε(z, t) where ν, ε ∈ L∞ and

‖ε(·, t)‖∞ → 0 for t ↘ 0. Let fµ = f (z, t) be the quasiconformal map

with dilatation µ(z, t) and normalized to have fixed points 0, 1,∞. Then

ḟ (ζ) =
1

π

∫
C
ν(z)R(z, ζ)dxdy

where

R(z, ζ) =
1

z − ζ
− ζ

z − 1
+
ζ − 1

z
=

ζ(ζ − 1)

z(z − 1)(z − ζ)
.



Proof. We follow the proof in Ahlfors’s book.

For |ζ| < 1 the Pompeiu formula (Lemma 6.24) says

f (z) =
1

2πi

∫
|z|=1

f (z)dz

z − ζ
− 1

π

∫∫
|z|<1

fz(z)

z − ζ
dxdy.(7.21)

We want to manipulate the line integral to get an integral formula for f in terms

of fz over the whole plane.



Since |ζ| < |z| = 1, we can write
1

z − ζ
=

1

z
· 1

1− ζ/z

=
1

z
·
∞∑
n=0

(ζ/z)n

=
1

z
·

[
1 +

ζ

z
+
ζ2

z2

∞∑
n=0

(ζ/z)n

]
=

1

z
+
ζ

z2
+
ζ2

z2
1

z − ζ
.

Using this, rewrite the line integral in (7.23) as

1

2πi

∫
|z|=1

f (z)dz

z − ζ
= A + Bζ +

ζ2

2πi

∫
|z|=1

f (z)dz

z2(z − ζ)
.(7.22)



Apply the substitution z = 1/w, dz = −dw/w2 in the last integral to obtain

ζ22πi

∫
|z|=1

f (z)dz

z2(z − ζ)
= −ζ22πi

∫
|w|=1

f (1/w)dw

(w2)(1/w)2(1/w − ζ)
(7.23)

= −ζ22πi
∫
|w|=1

f (1/w)wdw

1− wζ
.



Let g(z) = 1/f (1/z). Then g is quasiconformal and g(0) = 0.

It is easy to check that (1/g)z = gz/g
2 and that if h is holomorphic, then

(gh)z = gzh

Now appy g(0) = 0 and the Pompieu formula again,

−ζ2

2πi

∫
|w|=1

f (1/w)wdw

1− wζ
=
−ζ2

2πi

∫
|w|=1

g(w)−1wdw

1− wζ

=
−ζ2

2πi

∫
|w|<1

gz(w)wdw

g2(w)(1− wζ)
.

The integrals converge because quasiconformal maps are biHölder and hence

|g(w)| > c
√
|w| if ‖µ‖∞ is small enough. (Then |w|/|g(w)| is bounded.)



We know that f is given by some formula of the form:

f (ζ) = A + Bζ − 1

π

∫
|z|<1

fz(z)

z − ζ
dxdy

−1

π

∫∫
|z|<1

gz(z)

g(z)2

(
ζ2z

1− zζ

)
dxdy.

We guess (or solve for) the correct values of A,B:

f (ζ) = ζ − 1

π

∫
|z|<1

fz(z)

(
1

z − ζ
− ζ

z − 1
+
ζ − 1

z

)
dxdy

−1

π

∫∫
|z|<1

gz(z)

g(z)2

(
ζ2z

1− zζ
− ζz

1− z

)
dxdy

and can check this is correct by verifying f (0) = 0 and f (1) = 1.



In the first integral set fz = µfz = µ(fz − 1) + µ and use a corresponding

expression for gz with µg(z) = (z/z)2µ(1/z).

Because ‖fz − 1‖p → 0 as ‖µ‖∞ → 0 by Corollary ??, and µ/t→ ν,

ḟ (ζ) = lim
t→0

f (ζ)− ζ
t

=
1

π

∫
|z|<1

ν(z)

(
1

z − ζ)
− ζ

z − 1
+
ζ − 1

z

)
dxdy

−1

π

∫∫
|z|<1

ν(1/z)

(
ζ2z

1− zζ
− ζz

1− z

)
dxdy.



If 1/z is taken as the integration variable in the second integral, it transforms

to the same integrand as in the first, so

ḟ (ζ) =
1

π

∫
C
ν(z)R(z, ζ)dxdy

where

R(z, ζ) =
1

z − ζ
− ζ

z − 1
+
ζ − 1

z
=

ζ(ζ − 1)

z(z − 1)(z − ζ)
.

�



Theorem 7.8. If µ(z, t) is a holomorphic function of t, let fµ(z, t) be the

quasiconformal map with dilatation µ(z, t), normalized to fix 0, 1 and ∞,

then for each fixed z, fµ(z, t) is a holomorphic function of t.

Corollary 7.9. Suppose ‖µ‖∞ = k < 1 is the dilatation of f . Let µ(z, t) =

(t/k)µ(z). Then for each z, f t(z) is a holomorphic function of t ∈ D so

that f k = f .



Proof of Theorem 7.8. It suffices to show that f t(z) is differentiable at each t.

We have already done this for t = 0.

For arbitrary t0, since µ(z, t) is differentiable in t, we may assume

µ(z, t) = µ(z, t0) + ν(z, t0)(t− t0) + o(t− t0),
and consider

fµ(t) = fλ ◦ fµ(t0),
where (using the composition law for dilatations)

λ = λ(t) =

(
µ(t)− µ(t0)

1− µ(t)µ(t0)

)
◦ (fµ0)−1.



Then

λ̇(t) =

(
ν(t0)

1− |µ0|2
· f

µ0
z

f
µ0
z

)
◦ (fµ0)−1,

and

∂

∂t
f (z, t) = ḟ ◦ fµ0

= −1

π

∫∫ (
ν(t0)

1− |µ0|2
· f

µ0
z

f
µ0
z

)
◦ (fµ0)−1R(z, fµ0(ζ))dxdy

= −1

π

∫∫
ν(t0, z)(fµ0z )2R(fµ0(z), fµ0(ζ))dxdy.

This is the general formula for the derivative. �


