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This semester I hope to cover the following topics:

e Review of complex analysis

e Extremal length and conformal modulus,

e Logarithmic capacity, harmonic measure

e Geometric definition of quasiconformal mappings, compactness

e Compactness of QC maps: quasisymmetry, extension, removability, weldings
e Analytic definition and the measurable Riemann mapping theorem

e Cauchy and Beurling transforms, analytic dependence

e Astala’s theorems on area and dimension distortion

e Smirnov’s 1 + k? theorem

e [.ehto maps

e Holomorphic motions



We have proven the measurable Riemann mapping theorem: given a dilatation

p with [|u]|o = k < 1, there is a quasiconformal mapping f with dilatation pu.
Next, we would like to show f : C — C is unique if it normalized.
Two point normalization: f(0) =0 and f(1) = 1.

Principle solution: if u is compactly supported, then f(z) = z + O(1/|z|)

near 0.

The latter is sometimes called the hydrodynamic normalization.



We also want to show that f depends holomorphically on u, e.g., if 2 is fixed,
fiu(2) is a holomorphic function of ¢t € D(0,1/k).

The proofs of uniqueness and holomorphic dependence both use explicit formulas

involving the Cauchy transform and its “derivative”, the Beurling transform.

The latter is a singular integral operator and is the 2-dimensional analog of the

famous Hilbert transform on the real line.



The Cauchy Transform



Suppose f € LP(R?, dxdy) for p > 2. Define
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The function 1/(z — ¢) is not in L?* locally, but is in L? for all ¢ < 2, so the
integrand is locally integrable when f € LP for some p > 2.

The extra 1/z term occurs so that the difference decays like 1/|z|* near infinity;
and hence the difference is in L? for all ¢ > 1. Thus the integral makes sense
forall f € LP p> 2.



If f is compactly supported, this means that its Cauchy transform also decays
like 1/]2|?, which will be convenient when apply the Cauchy integral formula on
large circles. It also implies C(f) € LP, p > 2, in a neighborhood of oo, outside
the support of f.

Note that C(f)(0) = 0 since the kernel vanishes if { = 0.



Lemma 7.1. If f € LP, p > 2, then Cf 1s a-Holder continuous with
a=1-—1/p.

Proof. First note that the Cauchy transform on an L? function is bounded.
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The dependence on ( is obtained by a change of variable z = Cw

(7.18) / / 2z = Q) dady = / [Cw(Cw = Q)| *dudv
= |C\22q/ lw(w — 1)| " “dudw.

Since ¢ = p/(p — 1), 2 — 2¢ = 2/p and this implies

(7.19) CLO < Ky |IfIlp- ¢



Next,

CF(C) = Cf(C2)] =

o (e g)
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where h(z) = f(z + (7). Applying (7.19) to h, we get
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Lemma 7.2. If f s smooth and has compact support, then Cf is smooth
and (Cf)z=f.

Proof. Let 7. = 0D((,€) be a small circle around ¢. The convolution of a

smooth, compactly supported function is smooth and interchanging integration

and differentiation gives (Cf(())z = (C f2(()).



Recall
dzdz = (dx + idy)(dx — idy) = idydx — idxdy = —2idxdy.

By Stokes theorem and using the fact that |f| = O(1/]z]?),
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Corollary 7.3. If f € LP, p > 2, then (Cf)s = f in the sense of distribu-
110ns.

Proof. We must show that for any smooth ¢ with compact support,

(7.20) / / (Cf)b=dady = — / / o Fdzdy.



Take smooth functions { f,,} of compact support converging to f. By Holder’s

inequality
[ ot = gdudyl < ol 15 = Ful

The first term on the product is a finite constant and the other tends to 2y, so

[fofa— [fof



On the other hand if the support of ¢ has diameter d,

|//(Cf — Cfn)p=dxdy| < ||¢=|l1- sup |C(f — fu)(c)]

zesupp(o)
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and this tends to zero with n. Thus (7.20) holds.



The Beurling Transform



We will also need a few basic facts about the Beurling transform, which is usually

defined as a principle value integral

~ lim f(2) ,
THO _1%0//@ (> (2 = C)? dety.

For smooth, or even Holder, functions of compact support this is well defined

by rewriting the integral as

= lim // Qd:l:dy,
e—0 l2—C|>e Z—

since the kernel has integral zero on any circle centered at (.




The Beurling transform can be extended to a bounded linear operator from
LP(R?, dzdy) to itself for all 1 < p < oco.

We shall show below that 7 is an isometry on L?.

The standard proof of MRMT uses that 7 is bounded for p > 2 with an
operator norm that approaches 1 as p ~\, 2, but we will not need this fact; we
have already proven Bojarski’s theorem that f, € L? for a K-QC map, and this

will be suflicient for our applications.

d dz
/ © —om, / “_o.
z|=1 # 2|=1 <

dzdz = —2idzdy.

Recall



Lemma 7.4. If f is smooth and has compact support then Cf is smooth
and C(f,) =T f —Tf(0).

Proof. As in Lemma 7.2 we have that Cf is smooth and (Cf(()). = (Cf.(()).

Using Stokes theorem again
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From the above we get

(Tf>5 — C(fz)? — fz:

(Tf>z — C(fz)z — T(fz) - C(fzz) + T(fz)<0)



Lemma 7.5. The Beurling transform is an isometry on L*(R?, dzdy).



Proof. It is enough to check this on the dense set of smooth, compactly supported

functions. Then
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Uniqueness in MRMT



Lemma 7.6. If u is measurable, ||i]|cc = k < 1 and p has compact support,
then there is a unique K -quasiconformal map f (with K = (1+k)/(1—Fk))

that is absolutely continuous on almost all lines and satisfies f = uf, and
f. —1¢€ LP(R?) for some p > 1.



Proof. We already know uniqueness, so the L? bound is the main point.

Suppose f is such a solution. We know f, € L? locally, so fz — uf, € L? on
the plane. Hence C(f5) is well defined and (C f5)> = f= by Corollary 7.3.

Thus (f —Cfz)z = 0 in the sense of distributions and hence it is analytic on the
plane by Weyl’s lemma.



We assumed f, — 1 € LP, and Cf> € L? for any p > 2 (because it is O(]z| ™)
near infinity), so the holomorphic function F = f —Cfs — 1 has F' € L?.

This is only possible if F"' =1 or F(z) =z +c.

Because we assumed f(0) = 0, and Cf3(0) = 0, we must have ¢ = 0. Thus
f(z2) =C(f2)(2) + z and f. = T (u(f:)) + L.



If g were another solution, then using the fact that 7 is an isometry on L? gives

1z = g=ll2 = [T (S = g2 Dll2 < BT (f2 = g2)ll2,

and this is a contradiction unless || f, — ¢.|| —2 = 0.

Therefore f, = g, almost everywhere, and hence fz = uf. = ug. = g= almost

everywhere.

Thus f — g is both holomorphic and anti-holomorphic, hence constant. Since

f(0) = g(0) = 0, they must be equal everywhere. ]



Alternate proof of MRMP



Consider
h=T(uh)+Tu
The series
h=Tu+TpuTp+TuTpTp+ ...

converges in L if LP norm of T is less than 1/k, k = ||t

[f A is gvien by this series,set
f=Puh+1),
then u(h 4+ 1) € LP and P(u(h + 1) is continuous. Moreover,
fe=wh+1),  fo=T(uh+1)]+1=h+1,
S0 fz = pfs



Analytic dependence



Lemma 7.7. Suppose pu; = p(z,t) is a path of dilatations that is differ-

entiable at t = 0. Then the corresponding normalized (QC' maps are also
differentiable at t = 0.

More precisely, suppose u(z,t) = rv(z) + te(z,t) where v,e € L* and
le(,t)]|loc — O for t N\ 0. Let fF = f(z,t) be the quasiconformal map

with dilatation u(z,t) and normalized to have fized points 0,1,00. Then

FO) = = [ MR, Cdady

where
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Proof. We follow the proof in Ahlfors’s book.

For |(| < 1 the Pompeiu formula (Lemma 6.24) says

(7.21) f(z) = 1 flz)dz l/ 2) dxdy.

21 Jypj=1 2= C TS 12— ¢

We want to manipulate the line integral to get an integral formula for f in terms

of fz over the whole plane.



Since |(| < |z] = 1, we can write
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Using this, rewrite the line integral in (7.23) as

oo [ IBE_ g € / f(2)dz
|
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Apply the substitution z = 1/w, dz = —dw/w? in the last integral to obtain

o . f(2)dz 2 f(1/w)dw
(7:23) <2”2/|Z1z2<z—<> =2 /|w|1 @0 (1w — Q)

o f(1/w)wdw
= C27m/|w|_1 I —wl




Let g(z) = 1/f(1/z). Then g is quasiconformal and g(0) = 0.

It is easy to check that (1/g): = ¢=/¢* and that if h is holomorphic, then
(gh)z = g=h

Now appy ¢(0) = 0 and the Pompieu formula again,

270 Jwer 1 —w 2 1 —w(

B —_CQ / g=(w)wdw
270 Jj<1 92 (w)(1 — w()
The integrals converge because quasiconformal maps are biHolder and hence
lg(w)| > cy/|w] if ||p]|oo is small enough. (Then |w|/|g(w)]| is bounded.)

—_CQ f(l/w)wdw —_CQ g(w) lwdw
/|w|:1




We know that f is given by some formula of the form:

f=(2)

z]<1 # — C

"//Zm el b z<> ey

We guess (or solve for) the correct values of A, B:

fQ) = A+ BC— - dudy

f(<>=<_% |z<1f§<z>< S +<—1>

z2—C z-—1 2z

__//<19 (1—ZC 1C—ZZ> drdy

and can check this is correct by verifying f(0) = 0 and f(1) =




In the first integral set fz = puf, = p(f. — 1) + p and use a corresponding
expression for g with u,(2) = (2/2)*u(1/z).

Because || f. — 1||, = 0 as ||it]|/cc — O by Corollary ??, and p/t — v,

fo) i O =G

t—0 t

1 L ¢ ¢t
- /|z<1y<z>( —¢) Z_1+ < )dxdy

__//|z<1 v{1/2) (1—ZC 1%2) ey




If 1/z is taken as the integration variable in the second integral, it transforms

to the same integrand as in the first, so

where




Theorem 7.8. If u(z,t) is a holomorphic function of t, let fF(z,t) be the
quasiconformal map with dilatation u(z,t), normalized to fix 0, 1 and oo,
then for each fized z, f*(z,t) is a holomorphic function of t.

Corollary 7.9. Suppose ||it||c0c = k < 1 is the dilatation of f. Let u(z,t) =

(t/k)u(z). Then for each z, f'(z) is a holomorphic function of t € D so
that f* = f.



Proof of Theorem 7.8. 1t suffices to show that f!(z) is differentiable at each t.
We have already done this for ¢ = 0.

For arbitrary ¢y, since u(z,t) is differentiable in ¢, we may assume
p(z,t) = p(z, to) + vz, to)(t — to) + ot — ty),

and consider

fu(t) _ fA o fu(to)7

where (using the composition law for dilatations)

A= \t) = (Mt) _”<to>> o (fro)~t,

1 — p(t)plto)



Then

and

_f<27t> — f‘ofﬂo

ot
- ] (2 5s) o e prpsay

= — [ [ vlto 2P RU ), )y

This is the general formula for the derivative.



