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This semester I hope to cover the following topics:

• Review of conformal mappings

• Extremal length and conformal modulus, log capacity, harmonic measure

• Geometric definition quasiconformal mappings

• Basic properties

• Quasisymmetric maps and boundary extension

• Removable sets

• Conformal welding

• Analytic definition of quasiconformal mappings

• The measurable Riemann mapping theorem

• Further topics



Statement of the MRMP



Our goal in this section is to prove:

Theorem 6.1. [Measurable Riemann Mapping Theorem] Given any mea-

surable function µ on the plane with ‖µ‖∞ = k < 1, there is a K =

(k + 1)/(k − 1) quasiconformal map f with dilatation µf = µ Lebesgue

almost everywhere on C.



The idea of the proof is fairly simple.

Given a measurable µ find a sequence of “nice” functions {µn} with µn → µ

pointwise and supC |µn(z)| ≤ k = ‖µ‖∞ < 1.

For nice dilatations, there are corresponding K-QC map fn with dilatation µn,

and we may assume these maps are normalized to fix 0 and 1.

By compactness of K-QC maps there is a subsequence that converges uniformly

on compact subsets of the plane to a K-QC map f .

Finally, we have to prove f is differentiable almost everywhere, and its dilatation

µf equals µ almost everywhere.



The last step is the hard one, and requires two deep theorems.

Proposition 6.2. A K-quasiconformal map f defined on a planar domain

Ω is differentiable almost everywhere on Ω. The dilatation µf = fz/fz is

well defined and less than k < 1 almost everywhere.

Proposition 6.3. Suppose {fn}, f are all K-quasiconformal maps on the

plane with dilatations {µn}, µf respectively, that fn → f uniformly on

compact sets and that µn → µ pointwise almost everywhere. Then µf = µ

almost everywhere.

On the other hand, finding the “nice” dilatations is relatively easy.



For now, “nice” dilatation will mean piecewise constant on a triangulations.

Later, we will also show that we can take smooth dilatations of compact support,

and prove existence using integral operators..



We say that a linear map f is K-quasiconformal if Df ≤ K. The linear

map need not be defined on the whole plane.

Given two triangles T1, T2 with vertices a, b, c and A,B,C, there is a unique

affine map T1 → T2 taking a→ A, b→ B and c→ C.

The map is orientation preserving if both triangles were labeled in the same

orientation.

a b

c C

B

A



There is an obvious affine map between these triangles and we can easily compute

its quasiconformal constant of this map as follows.

First use a conformal linear map to send each triangle to one of the form {0, 1, a}
and {0, 1, b}. The affine map is then of the form f (z)→ αz+βz̄ where α+β = 1

and β = (b− a)/(a− ā) and from this we see that

Kf =
1 + |µf |
1− |µf |

,

where

µf =
fz̄
fz

=
β

α
=
b− a
b− ā

,

If the triangle T ′ is degenerate, or has the opposite orientation as T , we simply

give ∞ as our QC bound K.



Triangulate the plane using a triangular grid with elements of size δn.

Given a measurable µ on the plane, define µn to be the average of µ on each

triangle of the grid.

Clearly ‖µn‖∞ ≤ ‖µ‖∞ and µn → µ (by the Lebesgue differentiation theorem).



For each triangle T in the grid let T ′ be the triangle so that affine map between

them has constant dilatation µn|T .

Then attach these triangles T ′ in the same pattern as the T ’s.

We get a simply connected, non-compact Riemann surface Rn and a QC map

gn : C→ Rn.

By the uniformization theorem, Rn is conformally equivalent either the plane or

the disk.



Since this surface is QC equivalent to the plane, it must be the plane, i.e., there

is a conformal map fn → Rn → C. (Can’t be the disk by Lemma 4.3.)

This gives a quasiconformal map φn = fn ◦ gn : C → C with dilatation µ. By

composing with a conformal linear map, we can assume 0 and 1 are fixed by fn.

Since the dilatations µn have absolute value bounded above by ‖µ‖∞ < 1, there

is a subsequence that converges uniformly on compact sets to a quasiconformal

map f .

As noted above, we now have to show the hard part: f has a well defined

dilatation and this is equal to µ.



The main technical difficulty involves Pompeiu’s formula:

f (w) =
1

2πi

∫
∂Ω

f (z)

z − w
dz − 1

π

∫∫
Ω

fz
z − w

dxdy.(6.12)

However, it is not even clear whether this formula makes sense for a quasicon-

formal map; since f is continuous, the first integral is well defined, but it is not

clear whether the second integral is well defined in general; we need to verify

that fz is defined.



We expect (but have not yet proved) that

area(f (Ω)) =

∫
Ω

Jfdxdy

=

∫
Ω

|fz|2 − |fz|2dxdy

=

∫
Ω

|fz|2(1− |µf |2)dxdy,

which would imply fz and fz are in L2 locally.

However, |z − w|−1 is not in L2, so we can’t be sure that the area integral in

the Pompeiu formula is convergent.



But |z − w|−1 it in Lq locally for every q < 2, so the integral will be bounded

if we can show fz ∈ Lp locally for some p > 2.

This is a fundamental result of Bojarski in C and of Gehring in dimensions ≥ 2

and we will prove it later in this chapter, using the 2-dimensional version of

Gehring’s proof.

Most of the work consist of showing that for a K-quasiconformal map f , fz ∈ Lp

for some p > 2 that depends only on K.



Some facts from Real Analysis I



Next we recall some facts from real analysis.

Theorem 6.4 (Wiener’s Covering Lemma). Let B = {Bj} be a finite collec-

tion of balls in Rd. Then there is a finite, disjoint subcollection C ⊂ B so

that

∪B∈BB ⊂ ∪B∈C3B.
In particular, the Lebesgue measure of the set covered by the subcollection

is at least 3−d times the measure covered by the full collection.

Theorem 6.5 (Vitali Covering Lemma). Suppose E ⊂ Rd is a measurable

set and B = {Bj} ⊂ Rd is a collection of balls so that each point of E is

contained in elements of B of arbitrarily small diameter. Then there is a

subcollection C ⊂ B so that E \ ∪B∈CB has zero d-measure.



Theorem 6.6 (Lebesgue Dominated Convergence theorem). Suppose g ∈
L2(µ) and {fn} satisfy |fn| ≤ g and lim fn = f pointwise. Then lim

∫
fndµ =∫

fdµ.

Theorem 6.7 (Egorov’s Theorem). Suppose µ is a finite positive measure

and {fn} is a sequence of measurable functions that converge to f pointwise

almost everywhere on a set E with respect to µ. Then for every ε > 0 there

is a subset F ⊂ E so that µ(E \ F ) < ε and fn → f uniformly on F .



Lemma 6.8 (The Calderon-Zygmund lemma). ) Suppose Q is a square, u ∈
L1(Q, dxdy) and suppose

α >
1

area(Q)

∫
Q

|u|dxdy.

Then there is a countable collection of pairwise disjoint open dyadic sub-

squares of Q so that

α ≤ 1

area(Qj)

∫
Qj

|u|dxdy < 4α,(6.13)

|u| ≤ α almost everywhere on Q \ ∪jQj,(6.14)

∑
area(Qj) ≤

1

α

∫
Q

|u|dxdy(6.15)



Proof. We say a subsquare ofQ has property P is the first conclusion above holds

and we define a collection of subsquares by iteratively dividing squares that do

not have property P into four, equal sized disjoint subsquares, and stopping

when property P is achieved.

If the average of u over a square is less than α then average over each of the

four subsquares is < 4α, so every stopped square has property P .



Any point not in a stopped square is a limit of squares where the average of u

is < α, so by the Lebesgue differentiation theorem u ≤ α at almost every such

point. Finally, ∫
Q

|u|dxdy ≥
∑
j

αarea(Qj),

which proves the third property. �



For a locally integrable function f , the Hardy-Littlewood maximal func-

tion of f is defined as

HLf (x) = sup
r>0

1

|B(x, r)|

∫
B(x,r))

|f (y)dy.

.

Here the supremum is over balls centered at x, but it is easy to see that we get

some of comparable size we take all ball containing x.



Theorem 6.9 (Hardy-Littlewood maximal theorem).HL maps L1 into weak-

L1, i.e., there is a constant d so that for all α > 0

|{x : HLf (x) > α}| ≤ C

α

∫
|f (x)|dx.

Also, HL is a bounded operator on Lp for 1 < p ≤ ∞, i.e., there is a

constant Cp so that ‖HLf‖p ≤ Cp‖f‖p.

Lemma 6.10. If φ ≥ 0 is a compactly supported, radial, decreasing function

with ‖φ‖1 = 1 and f is locally integrable, then |f ∗ φ(x)| ≤ HLf (x).



Theorem 6.11 ( Marcinkiewicz interpolation theorem). Suppose (X,µ) and

(Y, ν) are measure spaces, and suppose p0, q0, p1, q1 ∈ [1,∞], such that p0 ≤
q0, p1 ≤ q1 and

1

p
=

1− t
p0

+
t

p1
,

1

q
=

1− t
q0

+
t

q1

for some 0 < t < 1. If T is a sub-linear map from Lp0(µ) + Lp1(µ) to the

space of measurable functions on Y that is weak-type (p0, q0)

In particular, a sublinear operator that maps L1(µ boundedly into weak-L1

and is bounded on L∞ is also bounded from Lp to Lp for all 1 < p <∞.

For the proof see Theorem 6.28 Folland’s book.



Absolute Continuity on Lines



The main type of K-quasiconformal maps used in this text are piecewise C1

functions that satisfy

|fz| ≤ k|fz|,(6.16)

where k − (K − 1)/(K + 1).

We discussed earlier that this equation holding almost everywhere is not enough

to guarantee a map is quasiconformal.



For example, suppose g : [0, 1]→ [0, 1] is the usual Cantor singular function.e.,

a continuous function that increases from 0 to 1 on [0, 1] and is constant on each

complementary component {Ij} of the Cantor middle-1
3 set E. Then the map

f (x, y) = (x + g(x), y), is a homeomorphism of [0, 1] × [0, 1] to [0, 2] × [0, 1]

that is a translation (hence conformal) on each rectangle Ij × [0, 1], where Ij is

a complementary interval of the Cantor set. Thus fz = 0 almost everywhere,

but there are several way to check that f is not quasiconformal,



It is not conformal because does not preserve the modulus of [0, 1]2.

If I is a covering interval of the Cantor set of length 2−n whose image under g

has length 3−n, then the modulus of I × [0, 1] is changed by a factor of (3/2)n.



A map f : R→ C is absolutely continuous if for every compact interval I ⊂ R
and ε > 0 there is a δ > 0 so that E ⊂ I and |E| < δ imply |f (E)| < ε.

It is a theorem of real analysis that a function is absolutely continuous if it is

differentiable almost everywhere, its derivative is locally in L1, and the funda-

mental theorem of calculus holds: f (b)− f (a) =
∫ b
a f
′(x)dx.



Theorem 6.12. If f is quasiconformal, then f is absolutely continuous on

almost every line in any given direction.

Proof. After applying a Euclidean similarity, we may consider horizontal lines

in Q = [0, 1]2. Define

A(y) = area(f ([0, 1]× [0, y])).

Then A(0) = 0, A(1) = area(f (Q)) <∞ and A is increasing.

A is continuous except on a countable set and has a finite derivative a.e..



Fix a value of y where both this things happen, and we will show that f is

absolutely continuous on the horizontal line Ly = [0, 1]× {y}.

The main idea is that if this failed, then modulus estimates relating length to

area will force A′(y) =∞.



Consider the long, narrow rectangle R = [0, 1] × [y, y + 1
n] and divide it into

m << n disjoint 1
m ×

1
n sub-rectangles {Rj}.

Let R′j = f (Rj) and let the “left”, “right”, and “bottom” edges of R′j be the

images under f of corresponding edges of Rj.

Let bj any value strictly less than the length of f (Ly ∩ ∂Rj), i.e., the length of

the bottom edge of R′j. This length might be finite or infinite, but bj is finite.



Fix ε > 0.

By taking n large enough, we can insure that any curve in f (Rj) than joins the

images of the vertical sides of Rj has length ≥ bj.

This follows because as n→∞, any curve in f (Rj) joining the opposite “verti-

cal” sides limits on the bottom edge and hence the liminf of the lengths of such

curves is at least the length of the bottom edge of R′j.



Since Rj is (1/n)× (1/m), by quasiconformality we deduce

M(R′j) ≥M(Rj)/K =
m

Kn
.

Using the metric ρ = 1/bj on R′j, shows

M(R′j) ≤
area(R′j)

b2
j

.

or

b2
j ≤

area(R′j)

M(R′j)
≤

area(R′j)

m/Kn
.



Using these inequalities and Cauchy-Schwarz,

(

m∑
j=1

bj)
2 ≤ (

m∑
j=1

b2
jm)(

m∑
j=1

1

m
) = m

m∑
j=1

b2
j

≤ m

m∑
j=1

area(R′j)

M(R′j)

≤ m

m∑
j=1

area(R′j)

m/Kn

≤ K

m∑
j=1

area(R′j)

1/n

≤ K ·
A(y + 1

n)− A(y)

1/n
→ K · A′(y).

If we can take
∑
bj arbitrarily large, then A′(y) = ∞. So if A′(y) < ∞, then

f (Ly) has finite length.



Given a compact set E ⊂ Ly, suppose E is hit by N of the rectangles Rj and

that m has been chosen so large that N/m ≤ 2m1(E).

Now repeat the argument above, but only summing over the j’s so that the

bottom edges of Rj hit E.



(
∑
j

bj)
2 ≤ (

∑
j

b2
jm)(

∑
j

1

m
)

≤ N
∑
j

area(R′j)

M(R′j)

≤ N
∑
j

area(R′j)

m/Kn

≤ N

m

m∑
j=1

area(R′j)Kn

≤ K ·m1(E) ·
A(y + 1

n)− A(y)

1/n
→ K ·m1(E) · A′(y).

Thusm1(E) small, implies
∑
bj is small, and hence f (E) has small 1-dimensional

measure. Hence f is absolutely continuous on Ly, as desired. �



Basic theorems of real analysis say that if f is absolutely continuous on a line

L , then its partial derivative along that lines exists almost everywhere and

f ((b)− f (a) =

∫ b

a

fnds,

where a, b ∈ L and fn is the partial in the direction from a to b.

Since we have shown that quasiconformal maps are absolutely continuous on

almost every horizontal and almost every vertical line, we see that the partial

fx, fy exist almost everywhere and hence fz, fz are defined almost everywhere,

So is µf = fz/fz almost everywhere that fz in non-zero.



Next we want to say that at a point w where these fz, fz exist, we have

f (z) = f (w) + fz(w)(z − w) + fz(w)(z − w) + o(|z − w|),

i.e., f is differentiable at w.

However, as explained in most calculus texts, the existence of partial derivatives

at at a point does not imply a function is differentiable there (consider f (x, y) =

xy/(x2 + y2) at the origin).



Theorem 6.13. [Gehring-Lehto] If f is a homeomorphism of Ω ⊂ C and

has partials almost everywhere, then it is differentiable almost everywhere.

Proof. By Egorov’s theorem the limits

fx(z) = lim
h→0

f (z + h)− f (z)

h
,

fy(z) = lim
h→0

f (z + ih)− f (z)

h
,

are uniform and converge to a continuous functions on a compact set E ⊂ Ω so

that area(Ω \ E) is as small as we wish.



Almost every point of E is a point of density for the intersection of E with both

the vertical and horizontal lines through z0, so if suffices to prove differentiability

at such points.

For simplicity we assume 0 is such a point. The proof follows the usual case in

calculus where we assume the partials are continuous, except that here we have

to replace continuous on a neighborhood of 0 with continuous on a set E that

is measure dense around 0.



Because of the continuity and uniform convergence on E, for any ε > 0 there is

a δ > 0 so that

|fx(0)− fx(z)|, |fy(0)− fy(z)| < ε,

if z ∈ E ∩D(0, δ)-neighborhood of 0 and

|fx(z)− f (z + h)− f (z)

h
|, |fy(z)− f (z + ih)− f (z)

h
| < ε,

if z ∈ E ∩D(0, δ) and h ∈ [−δ, δ].



Note that for z = x + iy,

f (z)− f (0)− xfx(0)− yfy(0) = [f (z)− f (x)− yfy(x)]

+[f (x)− f (0)− xfx(0)]

+[yfy(x)− yfy(0)]

= I + II + III.

If |z| < δ and x ∈ E, then by the inequalities above,

I < ε|y|,
II < ε|x|,
III < εy.

thus the term on the far left is bounded by 3ε|z|, which proves differentiability

if x ∈ E. A similar proof works if iy ∈ E.



Fix ε > 0 and choose δ so small that if 0 < x < δ, then E ∩ ( x
1+ε, x) 6= ∅ (this

must be possible since E ∩ R has density 1 at 0) and E ∩ ( iy
1+ε, y) 6= ∅.

Thus if 0 < |x|, |y| ≤ δ/(1 + ε) can find points

x1 ∈ E ∩ (
x

1 + ε
, x) x2 ∈ (x, (1 + ε)x)

y1 ∈ E ∩ (
y

1 + ε
, y) y2 ∈ (y, (1 + ε)y)

so that z = x + iy is inside the rectangle R = (x1, x2)× (y1, y2).



Since f is a homeomorphism (all we need is that it is continuous and open), |f |
takes its maximum on the boundary, so

sup
z=x+iy∈R

|f (z)− f (0)− xfx(0)− yfy(0)|

≤ sup
w=u+iv∈∂R

|f (w)− f (0)− xfx(0)− yfy(0)|

≤ sup
w=u+iv∈∂R

|f (w)− f (0)− ufx(0)− vfy(0)|

+|(x− u)fx(0)| + |(y − v)fy(0)|

≤ 3ε|w| + sup
w=u+iv∈∂R

|x− u||fx(0)| + |y − v||fy(0)|

≤ 3ε(1 + ε)|z| = o(|z|).
�



Corollary 6.14. A K-quasiconformal map f defined on a planar domain

Ω is differentiable almost everywhere on Ω.

Proof. This is immediate from Theorems 6.12 and 6.13. �



Lemma 6.15. If f is K-quasiconformal then for every square Q,

∫
Q

Jfdxdy ≤ area(f (Q)) ≤ πdiam(f (Q))2.

Proof. We only use the quasiconformal hypothesis to deduce f is differentiable

almost everywhere; the result holds for all such maps.

The second inequality area ≤ πdiam2 is obvious.



At any point x where f is differentiable we can choose a small square Qx con-

taining x such that

area(f (Qx)) ≥ (1− ε)Jf(x)area(Qx),

and by the Lebesgue differentiation theorem, for almost every x we have∫
Q

Jfdxdy ≤ (1 + ε)Jf(x)area(Q),

for all small enough squares Q centered at x.



Combining these two estimates and using the Vitali covering theorem to extract

a collection of disjoint squares {Qj} with centers xj and with these properties

that cover almost every point of Q, we get∫
Q

Jfdxdy ≤
∑
j

∫
Qj

Jfdxdy

≤ (1 + ε)Jf(xj)area(Qj)

≤ 1 + ε

1− ε
area(f (Qj))

≤ 1 + ε

1− ε
area(f (Q)).

Taking ε↘ 0, gives area(f (E)) ≥
∫
E Jfdxdy. �



Since Jf = |fz|2 − |fz|2, we have

Jf = |fz|2 − |µ|2|fz|2 = (1− ‖µ|2)|fz|2 ≥ (1− k2)|fz|2

so

|fz|2 ≤
Jf

(1− k2)
.

Corollary 6.16. If f is K-quasiconformal then for every square Q,

∫
Q

|fz|2dxdy ≤
π

1− k2
diam(f (Q))2.



Lemma 6.17. If f is K-quasiconformal, then

(
∫
Q |fz|dxdy)2

area(Q)
& diam(f (Q))2.

with a uniform constant for every square Q.

Proof. The path family connecting opposite sides of a square Q has modulus 1,

so the image of this family in f (Q) has modulus between K and 1/K.

If the shortest path in f (Q) connecting the opposite sides of f (Q) was M ·
diam(f (Q)) than taking the constant metric ρ = 1/Mdiam(f (Q)) implies the

modulus of this path family is ≤ π/M 2, a contradiction if M is large.



This implies the shortest path in f (Q) connecting the opposite sides of f (Q)

has length ' diam(f (Q))

Thus so the integral of |fz|+ |fz| along any horizontal segment crossing Q is at

least Cdiam(f (Q)) for some fixed C > 0 (depending only on K).



Since |fz| ≤ |fz| + |fz| ≤ (1 + k)|fz|, the same is true for the integral of |fz|.

Integrating over all horizontal segments crossing Q gives

∫
Q

|fz|dxdy & diam(Q)diam(f (Q)).

Hence

(
∫
Q |fz|dxdy)2

area(Q)
&

[diam(Q)diam(f (Q))]2

area(Q)
& diam(f (Q))2.

�



Lemma 6.18. If f is K-quasiconformal, then

∫
Q

|fz|2dxdy ≤ C
(
∫
Q |fz|dxdy)2

area(Q)

Note, this goes in the opposite direction of the usual Cauchy-Schwarz estimate.



Proof. Note that for K-quasiconformal maps, |µf | ≤ k = (K− 1)/(K + 1) and

|fz|2(1− k2) ≤ |fz|2(1− |µ|2) ≤ |fz|2 − |fz|2 = Jf ≤ |fz|2,

so that Jf and |fz|2 are the same up to a bounded factor.

Thus combining the two previous results,

∫
Q

|fz|2dxdy . diam(f (Q))2 .
(
∫
Q |fz|dxdy)2

area(Q)

or

∫
Q

|fz|2dxdy ≤ C ·
(
∫
Q |fz|dxdy)2

area(Q)

for some constant C that depends only on the quasiconformal constant of f

(and not on the choice of the square Q). �



Hölder’s inequality implies∫
Q

|fz|dxdy ≤
(∫

Q

|fz|2dxdy
)(∫

Q

1dxdy

)
= area(Q) ·

(∫
Q

|fz|2dxdy
)

The inequality in the lemma goes in the opposite direction, and is called a reverse

Hölder inequality.

Such inequalities are fundamental to certain parts of PDE.

We shall see later that it has profound implications for the behavior of fz.



Gehring’s inequality and Bojarski’s theorem



Hölder’s inequality says that∫
fgdµ ≤ (

∫
f pdµ)1/p(

∫
gqdµ)1/q,

where 1 ≤ p, q ≤ ∞ satisfy 1
p + 1

q = 1.

Applying this to a non-negative function v and the constant 1 on a square Q,

and using p− 1 = p/q, we get

∫
Q

vdxdy eq

(∫
Q

vpdxdy

)1/p

(area(Q))1/q

(
1

area(Q)

∫
Q

vdxdy

)p
≤ 1

area(Q)

∫
Q

vpdxdy.

with equality if and only if v is a.e. constant.



Thus the “reverse Hölder inequality ”

1

area(Q)

∫
Q

vpdxdy ≤
(

K

area(Q)

∫
Q

vdxdy

)p
,

can only hold if K ≥ 1.

If it holds for single Q, this does not say much, except that v ∈ Lp ∩ L1.

However, if it holds for all Q’s, we can deduce that v ∈ Lp+ε for some ε > 0.

This remarkable “self-improvement” estimate is due to Gehring, although the

proof we give follows the presentation in Garnett’s book Bounded Analytic

Functions (Theorem VI.6.9).



Recall the distribution function of a measurable function f on a measure space

(X,µ) is

df(t) = µ({x : |f (x)| > t}),

and the Lp norm of f can be computed as∫
|f |pdµ = p

∫ ∞
0

tp−1df(t)dt.



We start with a technical lemma.

Lemma 6.19. Suppose that p > 1, v ≥ 0, Eλ = {z : v(z) > λ}, and that

∫
Eλ

vpdxdy ≤ Aλp−1

∫
Eλ

vdxdy,

for all λ ≥ 1. Then there is r > p and C <∞ so that(∫
Q

vrdxdy

)1/r

≤ C ·
(∫

Q

vpdxdy

)1/p

.



Proof. This is basically just arithmetic with distribution functions. Note that it

suffices to assume area(Q) = 1 and
∫
Q v

pdxdy = 1. Then if v > 1,

vr−p − 1 =

∫ v

1

(r − p)λr−p−1dλ

vr−p = 1 + (r − p)

∫ v

1

(λr−p−1dλ

so

∫
E1

vrdxdy =

∫
E1

vpvr−pdxdy

=

∫
E1

vp(1 + (r − p)

∫ v

1

λr−p−1dλ)dxdy

=

∫
E1

vp + (r − p)

∫ ∞
1

λr−p−1

∫
Eλ

vpdxdydλ



By our assumption,∫
E1

vrdxdy ≤
∫
E1

vp + A(r − p)

∫ ∞
1

λr−2

∫
Eλ

vdxdydλ

≤
∫
E1

vp + A(r − p)

∫
E1

v(

∫ v

0

λr−2dλ)dxdy

≤
∫
E1

vp + A
r − p
r − 1

∫
E1

vrdxdy

≤
∫
E1

vp +
1

2

∫
E1

vrdxdy

where the last inequality holds if r is close enough to p (depending on A and p).



Subtracting the last term of the last step from the first step gives∫
E1

vrdxdy ≤ 2

∫
E1

vpdxdy.

Off E1 we have v ≤ 1 so vr ≤ vp and hence∫
Q

vrdxdy ≤ 3

∫
Q

vpdxdy.

Because of our normalizations, this proves the lemma. �



Theorem 6.20. Let p > 1. If v(x) ≥ 0 and v ∈ Lp(Q, dxdy), and if the

“reverse Hölder inequality”

(
1

area(Q)

∫
Q

vpdxdy) ≤ (K
1

area(Q)

∫
Q

vdxdy)p,

holds for all subsquares of a square Q0, then there is an r > p so that

(
1

area(Q0)

∫
Q0

vrdxdy)1/r ≤ C(K, p, r)

area(Q0)

∫
Q0

vdxdy.



Proof. We need only verify the hypothesis of Lemma 6.19.

Fix λ and set β = 2Kλ.

We split the integral∫
Eλ

vpdxdy =

∫
Eλ\Eβ

vpdxdy +

∫
Eβ

vpdxdy

into two pieces. The second piece is trivial to bound by the correct estimate

because ∫
Eλ\Eβ

vpdxdy ≤ βp−1

∫
Eλ\Eβ

vdxdy ≤ (2Kλ)p−1

∫
Eλ

vdxdy.



To bound the other piece of the integral, we use the Calderon-Zygmund lemma

(Lemma 6.8) to find a sequence of disjoint squares {Qj} so that

βp ≤ 1

area(Qj)

∫
Qj

vpdxdy < 4βp,

and v ≤ β almost everywhere off ∪Qj.

Thus Eβ \ ∪Qj has measure zero and∫
Eβ

vpdxdy ≤
∑
j

∫
Qj

vpdxdy ≤ 4βp
∑

area(Qj).



We now make use of the reverse Hölder hypothesis to write

βp ≤ 1

area(Qj)

∫
Qj

vpdxdy ≤

(
K

area(Qj)

∫
Qj

vdx

)p

,

area(Qj) ≤
K

β

∫
Qj

vdxdy

≤ K

β

(∫
Qj∩Eλ

vdxdy + λ · area(Qj)

)
≤ K

β

∫
Qj∩Eλ

vdxdy +
1

2
area(Qj)

since β = 2Kλ. Solving for area(Qj) gives

area(Qj) ≤
2K

β

∫
Qj∩Eλ

vdxdy ≤ 1

λ

∫
Qj∩Eλ

vdxdy.



Thus by the defining property of the Qj’s,

∫
Eβ

vpdxdy ≤
∑
j

∫
Qj

vpdxdy

≤ 4βp
∑
j

area(Qj)

≤ 4βpλ−1
∑
j

∫
Qj∩Eλ

vdx

≤ 2p+2Kpλp−1

∫
Eλ

vdx.

Thus the hypothesis of Lemma 6.19 holds with A = (2K)p−1 + 2p+2Kp, and we

deduce that v ∈ Lr(Q, dxdy) for some r > p. �



Theorem 6.21 (Bojarski’s Theorem). If 1 ≤ K <∞, there is a p > 2 and

A,B < ∞ so that the following holds. If f : C → C is K-quasiconformal,

and Q ⊂ C is a square, then

(
1

area(Q)

∫∫
Q

|fz|pdxdy)1/p ≤ A(
1

area(Q)

∫
Q

|fz|2dxdy)1/2 ≤ B
diam(f (Q))

diam(Q)

Proof. To apply Gehring’s inequality to the partial derivatives of quasiconformal

maps, we have to show that these partial satisfy a reverse Hölder inequality.

What we want is ∫
Q

|fz|2dxdy ≤
C

area(Q)
(

∫
Q

|fz|dxdy)2,

with a uniform C for all squares in the plane. This was Lemma 6.18. �



Lemma 6.22. If f fixes 0, 1,∞, then∫
Q

|Lf(x)− 1|2dxdy ≤ ε · area(Q),

where Lf = |fz| + |fz| and ε→ 0 as ‖µf‖∞ → 0.

Proof. Fix a square Q with sides parallel to the axes, let `(Q) denote its side

length and let S1, S2 denote the two vertical sides of S.

By Cauchy-Schwarz

0 ≤ (
1

area(Q)

∫
Q

|Lf − 1|dxdy)2 ≤ 1

area(Q)

∫
Q

|Lf − 1|2dxdy.



Now expand and rearrange

=
1

area(Q)

∫
Q

(L2
f − 2Lf + 1)dxdy

=
1

area(Q)

∫
Q

(L2
f − 1− 2Lf + 2)dxdy

=
1

area(Q)

∫
Q

(L2
f − 1)dxdy − 2

area(Q)

∫
Q

(Lf − 1)dxdy



Now use (Lf )2 = (|fz| + |fz|)2 ≤ K(|fz| − |fz|)(|fz| + |fz|) = KJf to get

≤ 1

area(Q)

∫
Q

(KJf − 1)− 2

area(Q)

∫
Q

(Lf − 1)dxdy

≤ 1

area(Q)

∫
Q

(KJf + Jf − Jf − 1)− 2

area(Q)

∫
Q

(Lf − 1)dxdy

=
1

area(Q)

∫
Q

(K − 1)Jfdxdy

+
1

area(Q)

∫
Q

(Jf − 1)dxdy

− 2

area(Q)

∫
Q

(Lf − 1)dxdy

We claim each terms tends to zero with ‖µ‖∞. Since the quantity we are

bounding is non-negative, we have to find upper bounds for the first two terms

tending to 0, and a lower bound for the last integral tending to zero.



First,

1

area(Q)

∫
Q

(K − 1)Jfdxdy = O(‖µ‖∞)
1

area(Q)

∫
Jfdxdy

= O(‖µ‖∞).

Next, since f tends to the identity on Q,

1

area(Q)

∫
Q

(Jf − 1)dxdy =
1

area(Q)

∫
Q

Jfdxdy −
1

area(Q)

∫
Q

1dxdy

= area(f (Q))− area(Q)→ 0.



Finally, the integral of |fz|+ |fz| over a horizontal segment in Q gives an upper

bound for the length of the image curve, and this must be at least the distance

between the two vertical sides of f (Q). Thus

2

area(Q)

∫
Q

(Lf − 1)dxdy = 2

(
1

area(Q)

∫
Q

Lfdxdy − 1)

)
≥ 2

(
dist(S1, S2)`(Q)

area(Q)
− 1

)
≥ 2

(
dist(S1, S2)

`(Q)
− 1

)
where S1, S2 are the vertical sides of f (Q). This tends to zero since f tends

uniformly to the identity on Q.

Because of the negative sign in front of the third term in our sum of integrals,

this proves the result. �



Corollary 6.23. If f fixes 0, 1,∞, then there is a p > 2, so that∫
Q

|Lf(x)− 1|pdxdy → 0,

where Lf = |fz| + |fz| as ‖µf‖∞ → 0.

Proof. We know there is a t = 2 + 2ε > 2 so that Lf ∈ Lt(Q) with a bound

depending only on t and Q. Taking s = (q+2)/2 = 2+ε, then 2 < s < t and we

can use Hölder’s inequality with exponents p = 4/s < 2 and q = (4 + 4ε)/s > 2

to write

‖Lf − 1‖s ≤ ‖Lf‖s/42 · ‖Lf − 1‖s/(4+4ε)
t .

The L2 norm on the right tends to zero by Lemma 6.22 and the Lt is uniformly

bounded by Bojarski’s theorem, if t is chosen close enough to 2. Thus the

product tends to zero. �

This will be important later when we want to show the map µ→ fµ is continuous

from the unit ball of L∞ to Hölder continuous functions.



Corollary 6.24 (Pompeiu formula). If Ω has a piecewise C1 boundary and

f is quasiconformal on Ω, then

f (w) =
1

2πi

∫
∂Ω

f (z)

z − w
dz − 1

π

∫∫
Ω

fz
z − w

dxdy.(6.17)

Proof. Smooth and take a limit using the Lp boundedness of the the Hardy-

Littlewood maximal theorem and the Lebesgue dominated convergence theorem.

�



Corollary 6.25. If f is quasiconformal, then f maps sets of zero area to

zero area and

area(f (E)) =

∫
E

Jfdxdy.

Proof. Since ν(E) = area(f (E)) and µ(E) =
∫
E Jfdxdy are both non-negative

Borel measures, it suffices to show that they are equal for some convenient basis

of sets, say squares with sides parallel to the coordinate axes. Let Q be such a

square.

We have already proved the “≥” direction in Lemma 6.15.



To prove the other direction, we use the fact that Jf ∈ Lp(Q, dxdy) for some

p > 1. Define a smoothed version fn of f by convolving f with a smooth,

non-negative bump function ϕn of total mass 1 and support in D(0, 1
n).

Since f is continuous on C, fn → f uniformly on Q. Since convolution is

linear, the partials of fn are the partials of f convolved with ϕn and therefore

the supremum over n of these partials is bounded by the Hardy-Littlewood

maximal function of fz, i.e.,

sup
n
|(fn)z(x)| ≤ HL(fz)(x),

and similarly for fz.



Because the Hardy-Littlewood maximal operator is bounded on Lp for 1 <

p < ∞, and fz, fz ∈ Lp for some p > 1, we see that {(fn)z)}, {(fn)z)} are

dominated by an Lp function and hence by an L2 function on Q (since Lp ⊂ L2

on bounded sets).

Thus the sequence of Jacobians {Jfn} is dominated by an L1 function on Q, so

by the Lebesgue dominated convergence theorem,∫
Q

Jfndxdy →
∫
Q

Jfdxdy.



Moreover, since fn is smooth∫
Q

Jfndxdy ≥ area(fn(Q)).

(equality may not hold since we don’t know fn is 1-to-1, and the integral com-

putes area with multiplicity).

Since fn → f uniformly, fn(Q) eventually contains any compact subset of f (Q)

and hence

lim sup
n

area(fn(Q)) ≥ area(f (Q)).

Thus area(f (Q)) ≤
∫
Q Jfdxdy, as desired. �



Corollary 6.26. If f is quasiconformal, then |fz| > 0 almost everywhere.

Proof. The inverse of f is also quasiconformal and so f−1 maps zero area sets

to zero area. Thus f can’t map sets of positive measures to zero measure. Thus

Jf can’t vanish on a set of positive measure. Neither can fz since Jf/(1−k2) ≤
|fz|2. �



Weak convergence of dilatations



Lemma 6.27. Suppose {gn} ∈ Lp(R, dxdy) for some p > 2 and

lim
n

∫∫
R

gn(z)

z − w
dxdy = 0

for all w ∈ R. Then limn

∫∫
R gndxdy = 0.

Proof. Fix rectangles R′′ ⊂ R′ ⊂ R, each compactly contained in the interior

of the next.



Using the Cauchy integral formula for the constant function 1 on the curve ∂R′

we see that we can uniformly approximate the constant function 1 on R′′ by a

finite sum s(z) =
∑ ak

z−wk
with wk ∈ ∂R′ and

∑
|ak| is uniformly bounded.



Then

∫∫
R

gn(z)dxdy =

∫∫
R

gn(z)s(z)dxdy +

∫∫
R

gn(z)(1− s(z))dxdy

= o(1) +

∫∫
R′′
gn(z)(1− s(z))dxdy

+

∫∫
R\R′′

gn(z)(1− s(z))dxdy.

For a fixed n, the integral

∫∫
R′′
gn(z)(1− s(z))dxdy

can be made as close to zero as we wish by taking s close to 1 on R′′.



The other integral

∫∫
R\R′′

gn(z)(1− s(z))dxdy

be made small by taking area(R \R′′)→ 0

This implies the Lp norm of gn on R \R′′ tends to zero whereas the Lq norm of

s remains uniformly bounded (it is a combination of Lq functions with bounded

norm O(
∑
|aj|)).

So by Hölder’s inequality, the integral of the product tends to zero.

Thus is
∫∫

R gndxdy as small as we wish for n large, proving the lemma. �



Lemma 6.28. If {gn} are K-quasiconformal maps that converge uniformly

on compact sets to a quasiconformal map g, then for any rectangle R,

∫∫
R

[(gn)z − gz]dxdy → 0,

∫∫
R

[(gn)z − gz]dxdy → 0.

and (gn)z → gz and (gn)z → gz weakly.



Proof. First consider the z-derivative. Let hn = (gn)z − gz.

By the Pompeiu formula

f (w) =
1

2πi

∫
∂Ω

f (z)

z − w
dz − 1

π

∫∫
Ω

fz
z − w

dxdy.

and the fact that gn → g uniformly on R, we have

lim
n→∞

∫∫
R

hn(z)

z − w
dxdy = 0

for any w ∈ R. Then
∫∫

R hndxdy → 0, follows from Lemma 6.27.



To prove weak conference, take any continuous f of compact support and uni-

formly approximate it to within ε by a function f̃ that is constant on finite union

of rectangles. Then∫∫
fhndxdy =

∫∫
(f − f̃ )hndxdy +

∫∫
f̃hndxdy.

The first integral is bounded by ε
∫∫
|hn|dxdy, which is small since ‖hn‖1 ≤

C‖hn‖p is uniformly bounded on a large ball containing the support of both f

and f̃ .

The second integral tends to zero since is a finite linear combination of integrals

of hn over rectangles.

The result for z-derivatives follows from the same proof applied to the complex

conjugates of g and {gn}, using the fact that (f̄ )z = fz. �



Completing the proof of the MRMT



Theorem 6.29. Suppose {fn}, f are all K-quasiconformal maps on the

plane with dilatations {µn}, µf respectively, that fn → f uniformly on

compact sets and that µn → µ pointwise almost everywhere. Then µf = µ

almost everywhere.

Proof. We restrict attention to some domain Ω with compact closure. We know

that fz̄ = µffz almost everywhere, and we know that fz is non-zero almost

everywhere, so it suffices to show that for almost every w,

fz̄(w)− µ(w)fz(w) = 0.

By the Lebesgue dominated convergence theorem, it suffices to show that the

integral of fz̄(w)− µ(w)fz(w) over any rectangle R is zero.



We re-write this function as

fz̄(w)− µ(w)fz(w) = [fz̄(w)− (fn)z̄(w)]

+[(fn)z̄(w)− µn(w) · (fn)z(w)]

+[µn(w) · (fn)z(w)− µ(w) · (fn)z(w)]

+[µ(w) · (fn)z(w)− µ(w)fz(w)]

= I + II + III + IV.

Term II equals zero almost everywhere, so we need only show that the integrals

of the other three terms over any rectangle R tend to zero as n tends to ∞.



Term I: The integral of fz̄(w) − µ(w)fz(w) over R tends to zero by Lemma

6.28.

Term IV: The same lemma as in Case I, but applied to fz = (f̄ )z̄.

Since (f̄ )z = (fz), we have∫∫
R

(fz − (fn)z)dxdy → 0.

Term III is the only remaining case.



Term III: By Cauchy-Schwarz, the integral of the third term is bounded by(∫∫
R

(µ− µn)2dxdy

)1/2

(

∫∫
R

|(fn)x|2dxdy)1/2,

The first integrand tends to zero pointwise and is bounded above by 2 almost ev-

erywhere, so this integral tends to zero by the Lebesgue dominated convergence

theorem.



On the other hand (∫∫
R

|(fn)x|2dxdy
)1/2

' diam(fn(R)),

by Lemma 6.16, and since {fn} converges uniformly on compact sets, this re-

mains bounded.

Thus the integral of III is bounded by the product of a uniformly bounded term

and a term tending to zero. Hence it also tends to zero.



Now approximate µ in the Lq(R, dxdy) norm by a function ν that is constant

on a finite collection of disjoint squares (such functions are dense in Lq). Then

lim
n

∫∫
R

µ · (fz − (fn)z)dxdy = lim
n

∫∫
R

(µ− ν)(fz − (fn)z)dxdy

≤ lim
n
‖µ− ν‖q‖(fz − (fn)z)‖p.

The first term is as small as we wish and the second is uniformly bounded, so

the product is as small as we wish. Thus the limit must be zero, as desired. �

This completes the proof of the measurable Riemann mapping theorem in the

general case.



Theorem 6.30. If two quasiconformal maps have the same dilatation and

both fix 0, 1,∞, then they are the same map.

Proof. Suppose f and g are two such maps.

The map h = f ◦ g−1 is quasiconformal and has dilatation 0, hence hz = 0.

Since h is abosulutely continuous on almost all lines it is holmorphic in the sense

of distributions, so by Weyl’s lemma, it a a classical holomorphic funtion. (See

Thm 9.26, the Elliptic Regularity Theorem in Folland’s book).

Since h is a holomorphic homeomorphism of the plane, it is linear, and since

it fixes 0 and 1, it must be the identity map. Thus f = g.

�


