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Preface

The purpose of these notes is to introduce readers to the basic results

about quasiconformal maps of planar domains and their application to vari-

ous problems of conformal dynamics. They are not exhaustive in any sense,

and are not nearly as complete as other sources such as [?], [?], [?], [?], [?],

[?]. Rather, they are intended to cover the “bare bones” needed to apply

modulus and quasiconformal maps in certain situations arising in confor-

mal. It is my assumption that once the reader has understood the basics,

then they can seek out more advanced results elsewhere as the need arises.

We start with a discussion of the basic conformal invariants: extremal

length, hyperbolic distance and harmonic measure and how they relate to

one another. We then define quasiconformal maps using the geometric def-

inition, i.e., as maps that quasi-preserve extremal length, and deduce the

all important compactness properties of K-quasiconformal maps. From this

we can deduce a weak version of the measurable Riemann mapping theo-

rem (basically for continuous dilatations) which is still sufficient for many

interesting applications in dynamics.

Next we turn to the analytic properties of quasiconformal mappings,

eventually leading to the full strength version of the measurable Riemann

mapping theorem. Our approach here is a little non-standard, but since there

are excellent treatments of this theorem elsewhere, it seemed worthwhile to

experiment with something slightly different.



CHAPTER 1

Conformal maps and conformal invariants

Quasiconformal maps are generalizations of conformal maps and a fun-

damental tool for understanding them are conformal invariants, i.e., nu-

merical values that can be associated to a certain geometric configurations

and that remain unchanged (or at least change in predictable ways) under

the application of conformal or holomorphic maps. There are three con-

formal invariants that will be particularly important throughout the notes:

extremal length, harmonic measure and hyperbolic distance. Of these, ex-

tremal length is the most important because it can be defined in many sit-

uations and estimated by direct geometric arguments. The other two are

defined on the disk and then transferred to other domains by a conformal

map. In this chapter, we introduce extremal length, hyperbolic distance and

harmonic measure, and derive a famous estimate for the latter, due to Arne

Beurling, using the former.

1. Extremal length

Our first conformal invariant is extremal length. Consider a positive

function ρ on a domain Ω. We think of ρ as analogous to | f ′| where f is

a conformal map on Ω. Just as the image area of a set E can be computed

by integrating
∫

E | f ′|2dxdy, we can use ρ to define areas by
∫

E ρ2dxdy.

Similarly, just as we can define ℓ( f (γ)) =
∫

γ | f ′(z)|ds, we can define the ρ-

length of a curve γ by
∫

γ ρds. For this to make sense, we need γ to be locally

rectifiable (so the arclength measure ds is defined) and it is convenient to

assume that ρ is Borel (so that its restriction to any curve γ is also Borel

and hence measurable for length measure on γ).

Suppose Γ is a family of locally rectifiable paths in a planar domain Ω
and ρ is a non-negative Borel function on Ω. We say ρ is admissible for Γ
if

ℓ(Γ) = ℓρ(Γ) = inf
γ∈Γ

∫

γ
ρds ≥ 1.

In this case we write ρ ∈ A (Γ). We define the modulus of the path family

Γ as

Mod(Γ) = inf
ρ

∫

M
ρ2dxdy,

1



2 1. CONFORMAL MAPS AND CONFORMAL INVARIANTS

where the infimum is over all admissible ρ for Γ. The extremal length of

Γ is defined as

λ (Γ) = 1/M(Γ).

Note that if the path family Γ is contained in a domain Ω, then we need

only consider metrics ρ are zero outside Ω. Otherwise, we can define a new

(smaller) metric by setting ρ = 0 outside Ω; the new metric is still admis-

sible, and a smaller integral than before. Therefore M(Γ) can be computed

as the infimum over metrics which are only nonzero inside Ω.

Modulus and extremal length satisfy several useful properties that we

list as a series of lemmas.

LEMMA 1.1 (Conformal invariance). If Γ is a family of curves in a do-

main Ω and f is a one-to-one holomorphic mapping from Ω to Ω′ then

M(Γ) = M( f (Γ)).

PROOF. This is just the change of variables formulas
∫

γ
ρ ◦ f | f ′|ds =

∫

f (γ)
ρds,

∫

Ω
(ρ ◦ f )2| f ′|2dxdy =

∫

f (Ω)
ρdxdy.

These imply that if ρ ∈ A ( f (Γ)) then | f ′| ·ρ ◦ f ∈ A ( f (Γ)), and thus by

taking the infimum over such metrics we get M( f (Γ)) ≤ M(Γ) Note that

there might be admissible metrics for f (Γ) that are not of this form, possibly

giving a strictly small modulus. However, by switching the roles of Ω and

Ω′ and replacing f by f−1 we see equality does indeed hold. �

LEMMA 1.2 (Monotonicity). If Γ0 and Γ1 are path families such that

every γ ∈ Γ0 contains some curve in Γ1 then M(Γ0)≤ M(Γ1) and λ (Γ0)≥
λ (Γ1).

PROOF. The proof is immediate since A (Γ0)⊃ A (Γ1). �

FIGURE 1.1. The Monotone rule: each curve of the first

family contains a curve of the second family.
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LEMMA 1.3 (Grötsch Principle). If Γ0 and Γ1 are families of curves in

disjoint domains then M(Γ0 ∪Γ1) = M(Γ0)+M(Γ1).

PROOF. Suppose ρ0 and ρ1 are admissible for Γ0 and Γ1. Take ρ = ρ0

and ρ = ρ1 in their respective domains. Then it is easy to check that ρ is

admissible for Γ0 ∪Γ1 and, since the domains are disjoint,
∫

ρ2 =
∫

ρ2
1 +∫

ρ2
2 . Thus M(Γ0 ∪ Γ1) ≤ M(Γ0) +M(Γ1). By restricting an admissible

metric ρ to each domain, a similar argument proves the other direction. �

The Grötsch principle and the monotonicity combine to give

COROLLARY 1.4 (Parallel Rule). Suppose Γ0 and Γ1 are path families

in disjoint domains Ω0,Ω1 ⊂ Ω that connect disjoint sets E,F in ∂Ω. If Γ
is the path family connecting E and F in Ω, then

M(Γ)≥ M(Γ0)+M(Γ1).

Ω2

E

F

ΩΩ1

FIGURE 1.2. The Parallel Rule: curves connecting two

boundary sets in the whole domain and in two disjoint sub-

domains.

LEMMA 1.5 (Series Rule). If Γ0 and Γ1 are families of curves in disjoint

domains and every curve of F contains both a curve from both Γ0 and Γ1,

then λ (Γ)≥ λ (Γ0)+λ (Γ1).

PROOF. If ρ j ∈ A (Γ j) for j = 0,1, then ρt = (1− t)ρ0 + tρ1 is ad-

missible for Γ. Since the domains are disjoint we may assume ρ0ρ1 = 0.

Integrating ρ2 then shows

M(Γ)≤ (1− t)2M(Γ0)+ t2M(Γ1),

for each t. To find the optimal t set a = M(Γ1), b = M(Γ0), differentiate the

right hand side above, and set it equal to zero

2at −2b(1− t) = 0.



4 1. CONFORMAL MAPS AND CONFORMAL INVARIANTS

Solving gives t = b/(a+b) and plugging this in above gives

M(F ) ≤ t2a+(1− t2)b =
b2aa2b

(a+b)2

=
ab(a+b)

(a+b)2
=

ab

a+b
=

1
1
a
+ 1

b

or
1

M(Γ)
≥ 1

M(Γ0)
+

1

M(Γ1)
,

which, by definition, is the same as

λ (Γ)≥ λ (Γ0)+λ (Γ1). �

Next we actually compute the modulus of some path families. The fun-

damental example is to compute the modulus of the path family connecting

opposite sides of a a× b rectangle; this serves as the model of almost all

modulus estimates. So suppose R = [0,b]× [0,a] is a b wide and a high

rectangle and Γ consists of all rectifiable curves in R with one endpoint on

each of the sides of length a.

LEMMA 1.6. Mod(Γ) = a/b.

PROOF. Then each such curve has length at least b, so if we let ρ be the

constant 1/b function on R we have
∫

γ
ρds ≥ 1,

for all γ ∈ Γ. Thus this metric is admissible and so

Mod(Γ)≤
∫∫

T
ρ2dxdy =

1

b2
ab =

a

b
.

To prove a lower bound, we use the well known Cauchy-Schwarz in-

equality:

(
∫

f gdx)2 ≤ (
∫

f 2dx)(
∫

g2dx).

To apply this, suppose ρ is an admissible metric on R for γ . Every horizontal

segment in R connecting the two sides of length a is in Γ, so since γ is

admissible, ∫ b

0
ρ(x,y)dx ≥ 1,

and so by Cauchy-Schwarz

1 ≤
∫ b

0
(1 ·ρ(x,y))dx ≤

∫ b

0
12dx ·

∫ b

0
ρ2(x,y)dx.
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Now integrate with respect to y to get

a =
∫ a

0
1dy ≤ b

∫ a

0

∫ b

0
ρ2(x,y)dxdy,

or
a

b
≤
∫∫

R
ρ2dxdy,

which implies Mod(Γ)≥ b
a
. Thus Mod(Γ) = b

a
. �

Another useful computation is the modulus of the family of path con-

necting the inner and out boundaries of the annulus A = {z : r < |z|< R}.

LEMMA 1.7. If A = {z : r < |z|< R} then the modulus of the path family

connecting the two boundary components is 2π/ log R
r
. More generally,

if Γ is the family of paths connecting rT to a set E ⊂ RT, then M(Γ) ≥
|E|/ log R

r
.

PROOF. By conformal invariance, we can rescale and assume r = 1.

Suppose ρ is admissible for Γ. Then for each z ∈ E ⊂ T,

1 ≤ (
∫ R

1
ρds)2 ≤ (

∫ R

1

ds

s
)(
∫ R

1
ρ2sds) = logR

∫ R

1
ρ2sds

and hence we get
∫ 2π

0

∫ R

1
ρ2sdsdθ ≥

∫

E

∫ R

1
ρ2sdsdθ ≥ |E|

∫ R

1
ρ2sds ≥ |E|

logR
.

When E = T we prove the other direction by taking ρ = (s logR)−1.

This is an admissible metric and

Mod(Γ)≤
∫ 2π

0

∫ R

1
ρ2sdsdθ =

2π

(logR)2

∫ R

1

1

s
ds =

2π

logR
. �

Given a Jordan domain Ω and two disjoint closed sets E,F ⊂ ∂Ω, the

extremal distance between E and F (in Ω) is the extremal length of the

path family in Ω connecting E to F (paths in Ω that have one endpoint

in E and one endpoint in F). The series rule is a sort of “reverse triangle

inequality” for extremal distance. See Figure 1.3.

Extremal distance can be particularly useful when both E and F are

connected. In this case, their complement in ∂Ω also consists of two arcs,

and the extremal distance between these is the reciprocal of the extremal

distance between E and F . This holds because of conformal invariance,

the fact that it is true for rectangles and an applications of the Riemann

mapping theorem (we can always map Ω to a rectangle, so that E and F go

to opposite sides (See Exercise 1.1).

Obtaining an upper bound for the modulus of a path family usually in-

volves choosing a metric; every metric gives an upper bound. Giving a
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Ω 1 Ω 2X Y Z

FIGURE 1.3. The series rule says that the extremal distance

from X to Z in the rectangle is greater than the sum the ex-

tremal distance from X to Y in Ω1 plus the extremal distance

from Y to Z in Ω2. The bottom figure show a more extreme

case where the extremal distance between opposite sides of

the rectangle is much larger than either of the other two

terms.

lower bound usually involves a Cauchy-Schwarz type argument, which can

be harder to do in general cases. However, in the special case of extremal

distance between arcs E,F ⊂ ∂Ω, a lower bound for the modulus can also

be computed by giving a upper bound for the reciprocal separating fam-

ily. Thus estimates of both types can be given by producing metrics (for

different families) and this is often the easiest thing to do.

LEMMA 1.8 (Points are removable). Suppose Q is a quadrilateral with

opposite sides E,F znd that Γ is the path family in Q connecting E and F.

If z ∈ Ω, let Γ0 ⊂ Γ be the paths that do not contain z. Then mod (Γ0) =
mod (Γ).

PROOF. Since Γ0 ⊂ Γ we have mod (Γ0)≤ mod (Γ) by monotonic-

ity, to prove the other direction we claim that any metric that is admissible

for Γ0 is also admissible for Γ.

Suppose ρ is not admissible for Γ. Then there is a γ ∈ Γ so that
∫

γ ρds <

1−ε . Choose a small r > 0 so D(z,r)⊂Ω and note that by Cauchy-Schwarz

(
∫ r

0
[
∫ 2π

0
ρtdθ ]dt)2 ≤ πr2

∫

D(z,r)
ρ2dxdy = o(r2).

Here we have used the fact that since ρ2 is integrable on Q, we have
∫

D(z,r)ρ2dxdy→
0 as r ց 0 (see [?]). Hence

∫ r

0
[
∫

Ct

ρds]dt =
∫ r

0
ℓρ(Ct)dt = o(r),
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where Ct is the circle of radius t around z. Thus we can find arbitarily small

circles centered at z whose ρ-length is less than ε . Then for the path γ
chosen above, replace it by a path that follows γ from E to the first time it

hits Ct , then follows an arc of Ct , and then follows γ from the last time it

hits Ct to to F . This path is in Γ0 but its ρ-length is at most the ρ-length

of γ plus the ρ-length of Ct , and this sum is less than 1. Thus ρ is also not

admissible for Γ0. This proves the claim and the lemma. �

The previous result will be useful in later chapters when we want to

prove that quasiconformal map of a punctured disk is actually quasiconfor-

mal on the whole disk.

If γ is a path in the plane let γ̄ be its reflection across the real line and

let

γu = γ ∩Hu, γℓ = γ ∩Hl, γ+ = γu ∪ γℓ,

where Hu = {x+ iy : y > 0}, Hl = {x+ iy : y < 0} denote the upper and

lower half-planes. For a path family Γ, define Γ = {γ̄ : γ ∈ Γ} and Γ+ =
{γ+ : γ ∈ Γ}.

γ
γ+

FIGURE 1.4. The curves γ and γ+

LEMMA 1.9 (Symmetry Rule). If Γ = Γ then M(Γ) = 2M(Γ+).
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PROOF. We start by proving M(Γ)≤ 2M(Γ+). Given a metric ρ admis-

sible for γ+, define σ(z) = max(ρ(z),ρ(z̄)). Then for any γ ∈ Γ,

∫

γ
σds =

∫

γu

σ(z)ds+
∫

γℓ
σ(z)ds

≥
∫

γu

ρ(z)ds+
∫

γℓ
ρ(z̄)ds

=
∫

γu

ρ(z)ds+
∫

γℓ
ρ(z)ds

≥
∫

γ+
ρds

≥ inf
γ∈Γ

∫

γ
ρds.

Thus if ρ admissible for Γ+, then σ is admissible for Γ. Since max(a,b)2 ≤
a2 +b2, integrating gives

M(Γ)≤
∫

σ2dxdy ≤
∫

ρ2(z)dxdy+
∫

ρ2(z̄)dxdy ≤ 2

∫
ρ2(z)dxdy.

Taking the infimum over admissible ρ’s for Γ+ makes the right hand side

equal to 2M(Γ+), proving Mod(Γ)≤ 2Mod(Γ+).
For the other direction, given ρ define σ(z) = ρ(z)+ ρ(z̄) for z ∈ Hu

and σ = 0 if z ∈Hl . Then

∫

γ+
σds =

∫

γ+
ρ(z)+ρ(z̄)ds

=
∫

γu

ρ(z)ds+
∫

γu

ρ(z̄)ds+
∫

γell
ρ(z)+

∫

γℓ
ρ(z̄)ds

=
∫

γ
ρ(z)ds+

∫

γ
ρ(z̄)ds

= 2inf
ρ

∫

γ
ρds.
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Thus if ρ is admissible for Γ, 1
2
σ is admissible for Γ+. Since (a+ b)2 ≤

2(a2 +b2), we get

M(Γ+) ≤
∫
(
1

2
σ)2dxdy

=
1

4

∫

Hu

(ρ(z)+ρ(z̄))2dxdy

≤ 1

2

∫

Hu

ρ2(z)dxdy+
∫

Hu

ρ2(z̄)dxdy

=
1

2

∫
ρ2dxdy.

Taking the infimum over all admissible ρ’s for Γ gives 1
2
M(Γ) on the right

hand side, proving the lemma. �

LEMMA 1.10. Let D∗ = {z : |z| > 1} and Ω0 = D
∗ \ [R,∞) for some

R > 1. Let Ω = D
∗ \K, where K is a closed, unbounded, connected set in

D
∗ which contains the point {R}. Let Γ0,Γ denote the path families in these

domains with separate the two boundary components. Then M(Γ0)≤M(Γ).

PROOF. We use the symmetry principle we just proved. The family Γ0

is clearly symmetric (i.e., Γ = Γ, so M(Γ+
0 ) =

1
2
M(Γ0). The family Γ may

not be symmetric, but we can replace it by a larger family that is. Let ΓR

be the collection of rectifiable curves in D
∗ \{R} which have zero winding

number around {R}, but non-zero winding number around 0. Clearly Γ ⊂
ΓR and ΓR is symmetric so M(Γ) ≥ M(ΓR) = 2M(Γ+

R ). Thus all we have

to do is show M(Γ+
R ) = M(Γ+

0 ). We will actually show Γ+
R = Γ+

0 . Since

Γ0 ⊂ ΓR is obvious, we need only show Γ+
R ⊂ Γ+

0 .

FIGURE 1.5. The topological annulus on top has smaller

modulus than any other annulus formed by connecting R to

∞.
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Suppose γ ∈ ΓR. Since γ has non-zero winding around 0 it must cross

both the negative and positive real axes. If it never crossed (0,R) then

the winding around 0 and R would be the same, which false, so γ must

cross(0,R) as well. Choose points z− ∈ γ ∩ (−∞,0) and z+ ∈ γ ∩ (0,R).
These points divide γ into two subarcs γ1 and γ2. Then γ+ = (γ1)+∪ (γ2)+.

But if we reflect (γ2)+ into the lower half-plane and join it to (γ1)+ it forms

a closed curve γ0 that is in Γ0 and (γ0)+ = γ+. Thus γ+ ∈ (Γ0)+, as de-

sired. �

Let Ωε,R = {z : |z|> ε}\ [R,∞). Note that Ω1,R is the domain considered

in the previous lemma (e.g., see the top of Figure 1.5). We can estimate the

moduli of these domains using the Koebe map

k(z) =
z

(1+ z)2
= z−2z2 +3z3 −4z4 +5z5 − . . . ,

which conformal maps the unit disk to R
2 \ [1

4
,∞) and satisfies k(0) = 0,

k′(0) = 1. Then k−1( 1
4R

z) maps Ωε,R conformally to an annular domain in

the disk whose outer boundary is the unit circle and whose inner boundary

is trapped between the circle of radius ε
4R
(1±O( ε

R
)). Thus the modulus of

Ωε,R is

2π log
4R

ε
+O(

ε

R
).(1.1)

FIGURE 1.6. Plot of the Koebe function.

Next we prove the Koebe 1
4
-theorem for conformal maps. The standard

proof of Koebe’s 1
4
-theorem uses Green’s theorem to estimate the power

series coefficients of conformal map (proving the Bieberbach conjecture

for the second coefficient). However here we will present a proof, due to

Mateljevic [?], that uses the symmetry property of extremal length.

THEOREM 1.11 (The Koebe 1
4

Theorem). Suppose f is holomorphic,

1-1 on D and f (0) = 0, f ′(0) = 1. Then D(0, 1
4
)⊂ f (D).
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PROOF. Recall that the modulus of a doubly connected domain is the

modulus of the path family that separates the two boundary components

(and is equal to the extremal distance between the boundary components).

Let R = dist(0,∂ f (D)). Let Aε,r = {z : ε < |z| < r} and note that by con-

formal invariance

2π log
1

ε
= M(Aε,1) = M( f (Aε,1)).

Let δ = min|z|=ε | f (z)|. Since f ′(0) = 1, we have δ = ε +O(ε2). Note that

f (Aε,1)⊂ f (D)\D(0,δ ), so

M( f (Aε,1))≤ M( f (D)\D(0,δ )).

By Lemma 1.10 and Equation (1.1),

M( f (D)\D(0,δ ))≤ M(Ωδ ,R) = 2π log
4R

δ
+O(

δ

R
).

Putting these together gives

2π log
4R

δ
+O(

δ

R
)≥ 2π log

1

ε
,

or

log4R− log(ε +O(ε2))+O(
ε

R
)≥− logε,

and hence

log4R ≥−O(
ε

R
)+ log(1+O(ε)).

Taking ε → 0 shows log4R ≥ 0, or R ≥ 1
4
. �

2. Logarithmic capacity

Logarithmic capacity associates a non-negative number to each Borel

subset of the unit circle. Applying a Möbius transformation can change this

value, so it is not a conformal invariant, but it will act as an intermediate

between extremal and harmonic measure (a conformal invariant that will be

defined later).

Suppose µ is a positive, finite Borel measure on C and define its poten-

tial function as

Uµ(z) =
∫

log
2

|z−w|dµ(w),z ∈ C.

and its energy integral by

I(µ) =
∫∫

log
2

|z−w|dµ(z)dµ(w) =
∫

Uµ(z)dµ(z).

We put the “2” in the numerator so that the integrand is non-negative when

z,w ∈ T, however, this is a non-standard usage.
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Sets of zero logarithmic capacity must be very small, indeed the follow-

ing computations will show that they must have dimension zero.

LEMMA 2.1. Suppose E ⊂D and ϕ is a Hausdorff gauge function. Then

H ϕ
∞ (E)≤Cϕ(

1

Caplog(E)
).

PROOF. By Frostman’s Lemma (e.g., Lemma 3.1.1 of [?]), if E has

positive dimension then there is a measure µ supported on E such that

‖µ‖ ≥ H ϕ
∞ and µ(D(x,r))≤Cϕ(r) for all x and some C < ∞. Let

Uµ(z) =
∫

log
2

|z−w|dµ(w) =
∫ 2

0
log

2

r
dµ(z,r)≤

∫ m∗

0
log

2

r
dϕ(r),

where ϕ(m∗) = m. Using integration by parts

Uµ(z)≤ m log
2

m∗ +
∫ m∗

0
ϕ(r)

dr

r

�

COROLLARY 2.2. If E has positive Hausdorff dimension, then it has

positive logarithmic capacity.

PROOF. By Frostman’s Lemma (e.g., Lemma 3.1.1 of [?]), if E has

positive dimension then there is a measure µ supported on E such that

µ(D(x,r)) ≤ Crα for all x and some C < ∞ and α > 0. By the previous

lemma, this implies E has positive capacity. �

LEMMA 2.3. Uµ is lower semi-continuous, i.e.,

liminf
z→z0

Uµ(z)≥Uµ(z0).

PROOF. Fatou’s lemma. �

Recall that µn → µ weak-* if
∫

f dµn → ∫
f dµ for every continuous

function f of compact support.

LEMMA 2.4. If {µn} are positive measures and µn → µ weak*, then

liminfnUµn
(z)≥Uµ(z).

PROOF. If we replace ϕ = log 2
|z−w| by the continuous kernel ϕr =max(r,ϕ)

in the definition of U to get U r, then weak convergence implies

lim
n

U r
µn
(z)րU r

µ(z).

Moreover, the convergence is increasing since the measures positive. So for

any ε > 0 we can choose N so that n > N implies

U r
µn
(z)≥U r

µ(z)− ε.
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As r → ∞ U r → U (by the monotone convergence theorem), so for r large

enough and n > N we have

Uµn
(z)≥U r

µn
(z)≥Uµ(z)−2ε.

which proves the result. �

LEMMA 2.5. If µn → µ weak*, then liminfn I(µn)≥ I(µ).

PROOF. The proof is almost the same as for the previous lemma, except

that we have to know that if {µn} converges weak*, then so does the product

measure µn×µn. However, weak convergence of {µn} implies convergence

of integrals of the form
∫∫

f (x)g(y)dµn(x)dµn(y).

and Stone-Weierstrass theorem implies that the finite sums of such product

functions are dense in all continuous function on the product space. Since

weak-* convergent sequences are bounded, the product measures µn × µn

also have uniformly bounded masses, and hence convergence on a dense

set of continuous functions of compact support implies convergence on all

continuous functions of compact support. This, together with the fact that

weak* convergent sequences are bounded ([?]), implies that µn × µn con-

verges weak*. �

Suppose E is Borel and µ is a positive measure that has its closed sup-

port inside E. We say µ is admissible for E if Uµ ≤ 1 on E and we define

the logarithmic capacity of E as

cap(E) = sup{‖µ‖ : µ is admissible for E}
and we write µ ∈ A (E). We define the outer capacity (or exterior capac-

ity) as

cap∗(E) = inf{cap(V ) : E ⊂V,Vopen}.
We say that a set E is capacitable if cap(E) = cap∗(E).

The logarithmic kernel can be replaced by other functions, e.g., |z−
w|−α , and there is a different capacity associated to each one. To be precise,

we should denote logarithmic capacity as caplog or logcap, but to simplify

notation we simply use “cap” and will often refer to logarithmic capacity as

just “capacity”. Since we do not use any other capacities in these notes, this

abuse should not cause confusion.

WARNING: The logarithmic capacity that we have defined is NOT the

same as is used in other texts such as Garnett and Marshall’s book [?], but

is related to what they call the Robin’s constant of E, denoted γ(E). The

exact relationship is γ(E) = 1
cap(E) − log2. Garnett and Marshall [?] de-

fine the logarithmic capacity of E as exp(−γ(E)). The reason for doing
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this is that the logarithmic kernel log 1
|z−w| takes both positive and negative

values in the plane, so the potential functions for general measures and the

Robin’s constant for general sets need not be non-negative. Exponentiating

takes care of this. Since we are only interested in computing the capac-

ity of subsets of the circle, taking the extra “2” in the logarithm gave us a

non-negative kernel on the unit circle, and we defined a corresponding ca-

pacity in the usual way. Since the kernel is the logarithm, we feel justified

in calling the corresponding capacity the logarithmic capacity, despite the

divergence with usual usage.

POSSIBLE ALTERNATES : Robin’s capacity, conformal capacity,

circular capacity.

LEMMA 2.6. Compact sets are capacitable.

PROOF. Since cap(E)≤ cap∗(E) is obvious, we only have to prove the

opposite direction. Set Un = {z : dist(z,E)< 1/n} and choose a measure µn

supported in Un with ‖µn‖ ≥ cap(Un)−1/n. Let µ be a weak accumulation

point of {µn} and note

Uµ(z) =
∫

log
2

|z−w|dµ(w)≤
∫

log
2

|z−w|dµn(w)≤ 1

so µ is admissible in the definition of cap(E). Thus

cap(E)≥ limsup‖µn‖= limcap(Un) = limcap(Un) = cap∗(E).

�

It is also true that all Borel sets are capacitable. Indeed, this holds for

all analytic sets (i.e., continuous images of complete separable topological

spaces). See Appendix B of [?].

It is clear from the definitions that logarithmic capacity is monotone

E ⊂ F ⇒ cap(E)≤ cap(F).(2.1)

and satisfies the regularity condition

cap(E) = sup{cap(K) : K ⊂ E,Kcompact}.(2.2)

LEMMA 2.7 (Sub-additive). For any sets {En},

cap(∪En)≤ ∑cap(En).(2.3)

PROOF. We can write any µ = ∑ µn as a sum of mutually singular mea-

sures so that µn gives full mass to En. We can then restrict each µn to a

compact subset Kn of En so that µn(Kn)≥ (1− ε)µ(En). These restrictions

are admissible for each En and hence

∑cap(En)≥ ∑µn(Kn)≥ (1− ε)∑µn(En) = (1− ε)‖µ‖.
Taking ε → 0 proves the result. �
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COROLLARY 2.8. A countable union of zero capacity sets has zero ca-

pacity.

COROLLARY 2.9. Outer capacity is also sub-additive.

PROOF. Given sets {En} choose open sets Vn ⊃ En so that cap(Vn) ≤
cap∗(En)+ ε2−n. By the sub-additivity of capacity

cap∗(∪En)≤ cap(∪Vn)≤ ∑cap(Vn)≤ ε +∑cap∗(En).

Taking ε → proves the result. �

Although capacity informally “measures” the size of a set, it is not ad-

ditive, and hence not a measure. See Exercise 6.

LEMMA 2.10. If µ has a bounded potential, then Caplog(E) = 0 implues

µ(E) = 0.

PROOF. If µ(E) > 0 then µ restricted to E also has bounded potential

function and proves that E has positive capacity. �

LEMMA 2.11. If E is compact has positive capacity, then there exists

an admissible µ that attains the maximum mass in the definition of capacity

and Uµ(z) = 1 everywhere on E, except possible a set of capacity zero.

PROOF. Let µn be a sequence of proability measures on E so that ‖µn‖→
R where R = inf I(µ) over all proability measures supported on E. This is

finite since E has positive capacity. By the Banach-Alogalu theorem there

is a weak-* convergent subsequence with limit µ , and by Lemma 2.5,

I(µ)≤ liminf
n

I(µn) = R.

We claim that Uµ ≥ R except possibly on a set of zero capacity. Other-

wise let T ⊂ E be a set of positive capacity on which Uµ < 1− ε and let σ
be a non-zero, positive measure on T which potential bounded by 1. Define

µt = (1− t)µ + tσ .

This is a measure on E so that

I(µt) ≤
∫

log
1

|z−w|((1− t)dµ + tdσ)((1− t)dµ + tdσ)

≤ (1− t)2I(µ)+2t

∫
Uµdσ + t2I(σ)

≤ I(µ)−2tI(µ)+2t

∫
Uµdσ +O(t2)

≤ I(µ)−2tI(µ)+2t(1− ε)‖σ‖+O(t2)

< I(µ),
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if t > 0 is small enough. This contradicts minimality of µ , and hence the

claim holds.

Next we show that Uµ ≤ 1 everywhere on the closed support of µ . By

the previous step we know Uµ ≥ 1 except on capacity zero, hence except

on a set of µ-measure zero. If there is a point z in the support of µ such

that Uµ(z) > 1, then by lower semi-continuity of potentials, Uµ is > 1+ ε
on some neighborhood of z and this neighborhood has positive µ measure

(since z is in the support of µ) and thus I(µ) =
∫

Uµdµ > ‖µ‖, a contradic-

tion.

Finally, let σ = µ/R. Then the potential function of σ is bounded by

1 everywhere, so σ is admissible for E and hence ‖σ‖ ≤ Caplog(E). If ν
is any other admissible measure for E, then ν({z ∈ E : σ(z) < 1}) = 0 by

Lemma 2.10. Hence

‖ν‖=
∫

1dν =
∫

Uσ dν =
∫

Uνdσ ≤
∫

1dσ = ‖σ‖,

and thus ‖sigma‖ ≥ Caplog(E). Thus Caplog(E) = ‖σ‖ = ‖µ/R‖ = 1/R.

Hence R = 1/Caplog(E) is the Robin’s constant of E. Since ‖σ‖ ≥ I(σ) =

I(µ)/R2 = 1/R

�

The following makes a connection between logarithmic capacity and ex-

tremal length. Eventually, this will become a connection between extremal

length and harmonic measure.

If K ⊂D is a compact connected set with smooth boundary with 0 in the

interior of K. Let K∗ be the reflection of K across T. For any E ⊂ T that is

a finite union of closed intervals, let Ω be the connected component of C\
(E ∪K ∪K∗) that has E on its boundary. Let h(z) be the harmonic function

in Ω with boundary values 0 on K and K∗ and boundary value 1 on E. By

the usual theory of the Dirichlet problem (e.g. [?]), all boundary points are

regular (since all boundary components are non-degenerate continua) and

hence h extends continuously to the boundary with the correct boundary

values. Moreover, h is symmetric with respect to T, and this implies its

normal derivative on T\E is 0. Let D(h) =
∫
D\K |∇h|2dxdy. Let ΓE denote

the paths in D\K that connect K to E.

LEMMA 2.12. With notation as above, M(ΓE) = D(h).

PROOF. Clearly |∇h| is an admissible metric for ΓE , so

M(ΓE)≤ D(h)≡
∫

D\K
|∇h|2dxdy.

Thus we need only show the other direction.



2. LOGARITHMIC CAPACITY 17

Green’s theorem states that
∫∫

Ω
u∆v− v∆udxdy =

∫

∂Ω
u

∂v

∂n
− v

∂u

∂n
ds.(2.4)

Using this and the fact that h = 1 on E, we have

∫

∂K

∂h

∂n
ds =−

∫

T

∂h

∂n
ds =−

∫

E

∂h

∂n
ds =−

∫

E
h

∂h

∂n
ds.

and
∫

∂K

∂h

∂n
ds = −1

2

∫

E

∂ (h2)

∂n
ds

=
1

2

∫

T\E

∂ (h2)

∂n
ds+

1

2

∫

∂K

∂ (h2)

∂n
ds+

1

2

∫

D\K
∆(h2)dxdy.

The first term is zero because h has normal derivative zero on T \E, and

hence the same is true for h2. The second term is zero because h is zero on

K and so
∂ (h2)

∂n
h2 = 2h∂h

∂n
= 0. To evaluate the third term, we use the identity

∆(h2) = 2hx ·hx +2h ·hxx +2hy ·hy +2h ·hyy

= 2h∆h+2∇h ·∇h

= 2h ·0+2|∇h|2

= 2|∇h|2,

to deduce
1

2

∫

D\K
∆(h2)dxdy =

∫

D\K
∆(h2)dxdy.

Therefore,
∫

∂K

∂h

∂n
ds =

∫

D\K
∆(h2)dxdy.

Thus the tangential derivative of h’s harmonic conjugate has integral

D(h) around ∂K and therefore 2πh/D(h) is the real part of a holomorphic

function g on D\K. Then f = exp(g) maps D\K into the annulus

A = {z : 1 < |z|< exp(2π/D(h))}

with the components of E mapping to arcs of the outer circle and the com-

ponents of T \E mapping to radial slits. The path family ΓE maps to the

path family connecting the inner and outer circles without hitting the ra-

dial slits, and our earlier computations show the modulus of this family is

D(h). �
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THEOREM 2.13 (Pfluger’s theorem). If K ⊂ D is a compact connected

set with smooth boundary with 0 in the interior of K. Then there are con-

stants C1,C2 so that following holds. For any E ⊂ T that is a finite union of

closed intervals,

1

cap(E)
+C1 ≤ πλ (ΓE))≤

1

cap(E)
+C2,

where ΓE is the path family connecting K to E. The constants C1,C2 can be

chosen to depend only on 0 < r < R < 1 if ∂K ⊂ {r ≤ |z| ≤ R}.

PROOF. Using Lemma 2.12, we only have to relate D(h) to the loga-

rithmic capacity of E. Let µ be the equilibrium probability measure for

E. We know in general that Uµ = γ where γ = 1/cap(E) almost every-

where on E (since sets of zero capacity have zero measure) and is con-

tinuous off E, but since Uµ is harmonic in D and equals the Poisson inte-

gral of its boundary values, we can deduce Uµ = γ everywhere on E. Let

v(z) = 1
2
(Uµ(z) +Uµ(1/z). Then since ∂K has positive distance from 0,

there are constants C1,C2 so that

v+C1 ≤ 0, v+C2 ≥ 0,

on ∂K. Note that C1 ≥ −γ by the maximum principle and C2 ≥ 0 triv-

ially. Moreover, since µ is a probability measure supported on the unit

circle, given 0 < r < R < 1, Uµ is uniformly bounded on both the annu-

lus {r ≤ |z| ≤ R} and its reflection across the unit circle, since these both

have bounded, but positive distance from the unit circle. This proves that

C1,C2 can be chosen to depend on only these numbers, as claimed in the

final statement of the theorem.

The following inequalities are easy to check on K, K∗ and E,

v(z)+C1

γ +C1
≤ h(z)≤ v(z)+C2

γ +C2
.

and hence hold on Ω by the maximum principle. Since we have equality on

E, we also get

∂

∂n
(
v(z)+C1

γ +C1
)≤ ∂h

∂n
≤ ∂

∂n
(
v(z)+C2

γ +C2
)

for z ∈ E. When we integrate over E, the middle term is −D(h) (we com-

puted this above) and by Green’s theorem

−
∫

E

∂

∂n

v(z)+C1

γ +C1
ds =

1

γ +C1

∫

D

∆(v)dxdy

=
π

γ +C1
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because v is harmonic except for a 1
2

log 1
|z| pole at the origin. A similar

computation holds for the other term and hence

π

γ +C1
≤ D(h) = M(ΓE)≤

π

γ +C2
,

since D(h) =
∫

E
∂h
∂n

ds. Hence

γ +C1 ≤ πλ (ΓE)≤ γ +C2.

This completes the proof of Pfluger’s theorem for finite unions of intervals.

�

Next we prove Pfluger’s theorem for all compact subsets of T. First we

need a continuity property of extremal length. Recall that an extended real-

valued function is lower semi-continuous if all sets of the form { f > α} are

open.

LEMMA 2.14. Suppose E ∩T is compact, K ⊂D is compact, connected

and contains the origin, and ΓE is the path family connecting K and E

in D \K. Fix an admissible metric ρ for ΓE and for each z ∈ T, define

f (z) = inf
∫

γ ρds where the infimum is over all paths in ΓE that connect K

to z. Then f is lower semi-continuous.

PROOF. Suppose z0 ∈ T and use Cauchy-Schwarz to get
∫ 2−n

2−n−1

(∫

|z−z0|=r
ρds

)2

dr ≤
∫ 2−n

2−n−1

(∫

|z−z0|=r
ρ2ds

)
dr

(∫

|z−z0|=r
1ds

)
dr

≤
∫ 2−n

2−n−1
r

∫ 2π

0
ρ2rdθdr

≤ π2−n

∫

2−n−1<|z−z0|<2−n
ρ2dxdy

= o(2−n).

Therefore we can choose circular cross-cuts {γn} ⊂ {z : 2−n−1 < |z− z0|<
2−n} of D centered at z0 and with ρ-length εn tending to 0. By taking s

subsequence we may assume ∑εn < ∞. Now choose zn → z0 with

f (zn)→ α ≡ liminf
z→z0

f (z).

We want to show that there is a path connecting K to z0 whose ρ-length

is as close to α as we wish. Passing to a subsequence we may assume zn

is separated from K by δn. Let cn be the infimum of ρ-lengths of paths

connecting γn and γn+1. By considering a path connecting K to zn, we see

that ∑n
1 ck ≤ f (zn), for all n and hence ∑∞

1 cn ≤ α .

Next choose ε > 0 and choose n so that we can connect K to zn (and

hence to γn) by a path of ρ-length less than α + ε . We can then connect γn
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to z0 by a infinite concatenation of arcs of γk, k > n and paths connecting γk

to γk+1 that have total length ∑∞
n (εn+cn) = o(1). Thus K can be connected

to z0 by a path of ρ-length as close to α as we wish. �

COROLLARY 2.15. Suppose E ⊂ T is compact and ε > 0. Then there

is a finite collection of closed intervals F so that E ⊂ F and

λ (ΓE)≤ λ (ΓF)+ ε,

where the path families are defined as above.

PROOF. Choose an admissible ρ so that
∫

ρ2dxdy ≤ M(ΓE)+ ε . Set

r = (
M(ΓE)+ ε

M(ΓE)+2ε
)1/2

By Lemma 2.14 V = {z∈T : f (z)> r} is open, and therefore we can choose

a set F of the desired form inside V . Then ρ/r is admissible for ΓF , so

M(ΓF)≤
∫
(
ρ

r
)2dxdy =

M(ΓE)+2ε

M(ΓE)+ ε

∫
ρ2dxdy ≤ M(ΓE)+2ε.

Thus an inequality in the opposite direction holds for extremal length. �

COROLLARY 2.16. Pfluger’s theorem holds for all compact sets in T.

PROOF. Suppose E is compact. Using Corollary 2.15 and Lemma 2.6

we can choose nested sets En ց E that are finite unions of closed intervals

and satisfy

λ (FEn
)→ λ (FE),

and

cap(En)→ cap(E).

Thus the inequalities in Pfluger’s theorem extend to E. �

3. Hyperbolic distance

We start on the disk, and then extend to simply connected domains via

the Riemann mapping theorem and to general planar domains via the uni-

formization theorem.

The hyperbolic metric on D is given by dρ(z) = |dz|/(1−|z|2). This

means that the hyperbolic length of a rectifiable curve γ in D is defined as

ℓρ(γ) =
∫

γ

|dz|
1−|z|2 ,(3.1)

and the hyperbolic distance between two points z,w ∈ D is the infimum of

the lengths of paths connecting them (we shall see shortly that there is an

explicit formula for this distance in terms of z and w). In many sources,
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there is a “2” in the numerator of (3.1), but we follow [?], where the defini-

tion is as given in (3.1). For most applications this makes no difference, but

the reader is warned that some of our formulas may differ by a factor of 2

from the analogous formulas in some papers and books.

We define the hyperbolic gradient of a holomorphic function f : D→
D as

DH
H f (z) = | f ′(z)| 1−|z|2

1−| f (z)|2 .

More generally, given a map f between metric spaces (X ,d) and (Y,ρ) we

define the gradient at a point z as

D
ρ
d f (z) = limsup

x→z

ρ( f (z), f (x))

d(x,z)
.

The use of the word “gradient” is not quite correct; a gradient is usually a

vector indicating both the direction and magnitude of the greatest change in

a function. We use the term in a sense more like the term “upper gradient”

that occurs in metric measure theory to denote a function ρ ≥ 0 that satisfies

| f (b)− f (a)| ≤
∫

γ
ρds,

for any curve γ connecting a and b. I hope that the slight abuse of the term

will not be confusing.

In these notes, the most common metrics we will use are the usual Eu-

clidean metric on C, the spherical metric

ds

1+ |z|2 ,

on the Riemann Sphere, S2 and the hyperbolic metric on the disk or on

some other hyperbolic planar domain. To simplify notation, we use E, S

and H to denote whether we are taking a gradient with respect to Euclidean,

spherical or hyperbolic metrics. For example if f : U →V , the symbol DH
H f

means that we are taking a gradient from the hyperbolic metric on U to

the hyperbolic metric on V (assuming the domains are clear from context;

otherwise we write DV
U or D

ρv
ρU

if we need to be very precise.)

In this notation, the spherical derivative of a function, usually denoted

f #(z) =
| f ′(z)|

1+ | f (z)|2 ,

is written DS
E f (z) since it is a limit of quotients where the numerator is

measured in the spherical metric and the denominator is measured in the

Euclidean metric. Similarly DS
H denotes a gradient measuring expansion

from a hyperbolic to the spherical metric. This particular gradient is im-

portant in the theory of normal families (e.g., see Montel’s theorem in [?]).
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Another variation we will use is DE
D

f . If this is bounded on the disk, then

f is a Lipschitz function from the hyperbolic metric on the disk to the Eu-

clidean metric on the plane. Such functions are called Bloch functions.

A linear fractional transformation is a map of the form

z → a+bx

c+dz
,

where a,b,c,d ∈C. These exactly the 1-to-1, holomorphic maps of the Rie-

mann sphere to itself. Such maps are also called Möbius transformations.

LEMMA 3.1. Möbius transformations of D to itself are isometries of the

hyperbolic metric.

PROOF. When f is a Möbius transformation of the disk we have

f (z) =
z−a

1− āz
, f ′(z) =

1−|a|2
(1− āz)2

.

Thus

DH
H f (z) =

1−|a|2
(1− āz)2

1−|z|2
1−| f (z)|2 =

1−|a|2
(1− āz)2

1−|z|2
1−| z−a

1−āz
|2

=
(1−|a|2)(1−|z|2)
|1− āz|2 −|z−a|2 =

(1−|a|2)(1−|z|2)
(1− āz)(1−az̄)− (z−a)(z̄− ā)

=
(1−|a|2)(1−|z|2)

(1− āz−az̄+ |az|2)− (|z|2 −az̄− zā+ |a|2)

=
(1−|a|2)(1−|z|2)

(1+ |az|2 −|z|2 −|a|2) = 1.

Note that

ℓρ( f (γ))≤
∫

γ
DH

H f (z)
|dz|

1−|z|2 .

Thus Möbius transformations multiply hyperbolic length by at most one.

Since the inverse also has this property, we see that Möbius transformation

preserve hyperbolic length. �

The segment (−1,1) is clearly a geodesic for the hyperbolic metric and

since isometries take geodesics to geodesics, we see that geodesics for the

hyperbolic metric are circles orthogonal to the boundary.

On the disk it is convenient to define the pseudo-hyperbolic metric

T (z,w) = | z−w

1− w̄z
|.
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The hyperbolic metric between two points can then be expressed as

ρ(w,z) =
1

2
log

1+T (w,z)

1−T (w,z)
.(3.2)

On the upper half-plane the corresponding function is

T (z,w) = |z−w

w− z̄
|,

and ρ is related as before.

LEMMA 3.2 (Schwarz’s Lemma). If f : D → D is holomorphic and

f (0) = 0 then | f ′(0)| ≤ 1 with equality iff f is a rotation. Moreover, | f (z)| ≤
|z| for all |z|< 1, with equality for z 6= 0 iff f is a rotation.

PROOF. Define g(z) = f (z)/z for z 6= 0 and g(0) = f ′(0). This is a

holomorphic function since if f (z) = ∑anzn then a0 = 0 and so g(z) =

∑anzn−1 has a convergent power series expansion. Since max|z|=r |g(z)| ≤
1
r

max|z|=r | f | ≤ 1
r
. By the maximum principle |g| ≤ 1

r
on {|z|< r}. Taking

r ր 1 shows |g| ≤ 1 on D and equality anywhere implies g is constant. Thus

| f (z)| ≤ |z| and | f ′(0)|= |g(0)| ≤ 1 and equality implies f is a rotation. �

In terms of the hyperbolic metric this says that

ρ( f (0), f (z)) = ρ(0, f (z))≤Hr(0,z),

which shows the hyperbolic distance from 0 to any point is non-increasing.

For an arbitrary holomorphic self-map of the disk f and any point w ∈ D

we can always choose Möbius transformations τ,σ so that τ(0) = w and

σ( f (w)) = 0, so that σ ◦ f ◦ τ(0) = 0. Since Möbius transformations are

hyperbolic isometries, this shows

COROLLARY 3.3. If f : D→ D is a holomorphic then ρ( f (w), f (z))≤
ρ(w,z).

LEMMA 3.4. If { fn} are holomorphic functions on a domain Ω that

converge uniformly on compact sets to f and if zn → z ∈ Ω, then fn(zn)→
f (z).

PROOF. We may assume {zn} are contained in some disk D⊂Ω around

z. Let E = {zn}∞
1 ∪{z}. This is a compact set so it has a positive distance

d from ∂Ω. The points within distance d/2 of E form a compact set F on

which the functions { fn} are uniformly bounded on E, say by M. By the

Cauchy estimate the derivatives are bounded by a constant M′ on E (e.g.,

see [?]). Thus

| f (z)− fn(zn)≤ | f (z)− fn(z)|+ | fn(z)− fn(zn)| ≤ | f (z)− fn(z)|+M′|z−zn|,
and both terms on the right tend to zero by hypothesis. �
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A planar domain Ω is called hyperbolic if C\Ω has at least two points.

THEOREM 3.5. Every hyperbolic plane domain Ω is holomorphically

covered by D (i.e., there is a locally 1-to-1, holomorphic covering map from

D to Ω).

We will prove this in three steps: bounded domains, simply connected

domains and finally the general case.

UNIFORMIZATION FOR BOUNDED DOMAINS. If Ω is bounded, then

by a translation and rescaling, we may assume Ω ⊂ D and 0 ∈ Ω. We

will define a sequence of domains {Ωn} with Ω0 = Ω and covering maps

pn : Ωn → Ωn−1 such that p(0) = 0. We will show that Ωn contains hy-

perbolic disks centered at 0 of arbitrarily large radius and that the covering

map qn = p1 ◦ · · · ◦ pn : Ωn → Ω0 = Ω converges uniformly on compacta to

a covering map q : D→ Ω.

If Ω0 = D we are done, since the identity map will work. In general

assume that we have qn : Ωn → Ω0 and that there is a point w ∈D\Ωn. Let

τ and σ be Möbius transformations of the disk to itself so that τ(w) = 0,

choose a square root α of τ(0) and choose σ so σ(α) = 0. Then pn+1(z) =

σ(
√

τ(z)) and let Ωn+1 be the component of U = p−1
n+1(Ωn) that contains

the origin (the set U will have one or two components; two if w is in a

connected component of D \Ωn that is compact in D, and one otherwise).

Since σ and τ are hyperbolic isometries and
√

z expands the hyperbolic

metric, we see that Ωn+1 contains a larger hyperbolic ball around 0 than Ωn

did.

More precisely, suppose dist(∂Ωn,0)< r < 1 for all n. Since f (z) = z2

maps the disk to itself, it strictly contracts the hyperbolic metric; a more

explicit computation shows

DH
H f (z) = |2z|1−|z|2

1−|z|4 =
2|z|

1+ |z|2 < 1.

Thus g(z) =
√

z is locally an expansion of the hyperbolic metric, at least on

a subdomain W ⊂ D where it has a well defined branch. For z 6= 0,

DH
Hg(z) = | 1

2
√

z
|1−|z|2

1−|z| ≥ 1+ |z|
2
√

z
.(3.3)

Then (3.3) says that

DH
H pn(0) = DH

H

√
z(τ(0))>

1+ r

2
√

r
> 1,

since |τ(0)|= |w|< r. Hence DH
Hqn(0) increases by this much at every step.

But DH
Hqn(0)≤ 1, which is a contradiction. Thus dn → 1.
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Thus {qn} is a sequence of uniformly bounded holomorphic functions

on the disk. By Montel’s theorem, there a subsequence that converges uni-

formly on compact subsets of D to a holomorphic map q : D → Ω. It is

non-constant since it has non-zero gradient at the origin; moreover, by Hur-

witz’s theorem (see [?]), q′ never vanishes on D since it is the locally uni-

form limit of the sequence {q′n}, and these functions never vanish since they

are all derivatives of locally univalent covering maps. Next we show that q

is a covering map D→ Ω.

Fix a ∈ Ω and let d = dist(a,∂Ω). Since Ω is bounded, this is finite. Let

D = D(a,d)⊂ Ω. Since qn is a covering map, every branch of q−1
n is 1-to-1

holomorphic map of D into D and hence each qn is a contraction from the

hyperbolic metric on D to the hyperbolic metric on D. Thus every preimage

of 1
2
D has uniformly bounded hyperbolic diameter.

Now fix a point b ∈ q−1(a). Since qn(b)→ q(b) = a, qn(b) ∈ 1
2
D for n

large enough, so there is branch of q−1
n that contains b. Since these branches

are uniformly bounded holomorphic functions, by Montel’s theorem we can

pass to a subsequence so that they converge to a holomorphic function g

from 1
2
D into D. Moreover,

q(g(z)) = lim
n

qn(q
−1
n (z)) = z,

by Lemma 3.4. �

This proves the existence of a covering map for bounded domains Ω.

If Ω is bounded and simply connected, then we have proved the Riemann

mapping theorem for Ω. For unbounded simply connected domains we use

the following argument.

RIEMANN MAPPING THEOREM. It suffices to show any simply con-

nected planar domain, except for the plane itself, can be conformally mapped

to a bounded domain. If the domain Ω is bounded, there is nothing to do.

If Ω. omits a disk D(x,r) then the map z → 1/(z− x) conformal maps Ω
to a bounded domain. Otherwise, translate the domain so that 0 is on the

boundary and consider a continuous branch of
√

z. The image is a 1-1,

holomorphic image of Ω, but does not contain both a point and its negative.

Since the image contains some open ball, it also omits an open ball and

hence can be mapped to a bounded domain by the previous case. �

The final step is to deduce the uniformization theorem for all hyperbolic

plane domains (we have only proved it for bounded domains so far). It

suffices to show that any hyperbolic plane domain has a covering map from

some bounded domain W , for then we can compose the covering maps D→
W and W → Ω. We can reduce to the following special case:
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THEOREM 3.6. There is a holomorphic covering map from D to C
∗∗ =

C\{0,1}
PROOF. Let

Ω = {z = x+ iy : y > 0,0 < x < 1, |z− 1

2
|> 1

2
} ⊂Hu.

This is simply connected and hence can be conformally mapped to Hu with

0,1,∞ each fixed. We can then use Schwarz reflection to extend the map

across the sides of Ω. Every such reflection of Ω stays in Hu maps to either

the lower or upper half-planes. Continuing this forever gives a covering

map from a simply connected subdomain U of Hu to W . Since U is simply

connected and not the whole plane (it is a subset of Hu) it is conformally

equivalent to D and hence a covering q : D→W exists. (Actually U =Hu,

but we do not need this stronger result. See Exercise 6.) �

UNIFORMIZATION OF GENERAL PLANAR DOMAINS. Let q :D→C
∗∗=

C\{0,1}. be a covering map of the twice punctured plane. If {a,b} ∈C\Ω
then h(z) = bq(z)+a is a covering map from U = h−1(Ω) ⊂ D to Ω. Any

connected component of U shows that Ω has a covering from a bounded

plane domain, finishing the proof. �

We can now define a hyperbolic metric ρ on any hyperbolic domain

using the covering map p : D → Ω. The function ρ should be defined so

that p is locally an isometry, i.e.,

1 = DΩ
D p(w)

= DE
DId(w) ·DE

E p(w) ·DρΩ
E Id(p(w))

=
1

ρD(w)
· |p′(w)| ·ρΩ(z)

and so we take

ρΩ(z) =
|p′(w)|
1−|w|2 = |p′(w)|ρD(w)

where p(w) = z. Different choices of p and w give the same value for ρΩ(z)
since they differ by an isometry of D. Thus every hyperbolic planar domain

has a hyperbolic metric.

We want to give some useful estimates for ρΩ in terms of more geomet-

ric quantities, such as the quasi-hyperbolic metric, defined as

ρ̃Ω(z)ds =
ds

dist(z,∂Ω)
.

For simply connected domains, ρ and ρ̃ are boundedly equivalent; for more

general domains this can fail, but some useful estimates are still available.
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The first observation is that if f : U →V is conformal and ρU(z)ds and

ρV (z)ds are the densities of the hyperbolic metrics on U and V then

ρV ( f (z)) = ρU(z)/| f ′(z)|.
Applying this to the map τ(z) = (z+ 1)/(z− 1) that maps the right half-

plane Hr = {x+ iy : x > 0} to the unit disk D, we see that the hyperbolic

density for the half-plane is

ρHr
(z) = |τ ′(z)|ρD(τ(z)) =

2

|z−1|2
1

1−|τ(z)|2 =
1

2x
=

1

2dist(z,∂Hr)
.

Thus the hyperbolic density on a half-plane is approximately the same as

the quasi-hyperbolic metric. Using Koebe’s theorem (Lemma 1.11) we can

deduce that that this is true for any simply connected domain.

LEMMA 3.7. For simply connected domains, the hyperbolic and quasi-

hyperbolic metrics are bi-Lipschitz equivalent, i.e.,

dρΩ ≤ dρ̃Ω ≤ 4dρΩ.(3.4)

PROOF. Using Koebe’s theorem,

ρΩ( f (z)) =
ρD(z)

| f ′(z)| ≤ ρD(z)
1−|z|2

dist( f (z),∂Ω
=

1

dist( f (z),∂Ω
= ρ̃( f (z)),

which is one half of the result. The other half is similar:

ρΩ( f (z)) =
ρD(z)

| f ′(z)| ≥
1

4
ρD(z)

1−|z|2
dist( f (z),∂Ω)

=
1

4
ρ̃( f (z)).

�

COROLLARY 3.8. If f : Ω → Ω′ is conformal, then

dist( f (z),∂Ω′)
4dist(z,∂Ω)

≤ | f ′(z)| ≤ 4dist( f (z),∂Ω′)
dist(z,∂Ω)

.

PROOF. Write f = g◦h−1 where g : D→ Ω′ and h : D→ Ω and use the

chain rule and Koebe’s theorem. �

The following is immediate from Schwarz’s lemma.

COROLLARY 3.9. If U ⊂V are both hyperbolic, then ρU ≥ ρV .

PROOF. If ΠU : D → U and ΠV : D → V are the covering maps then

the inclusion map U → V can be lifted to conformal map D→ Π−1
V (U) ⊂

D. Applying Schwarz’s lemma to this map (and using the fact that the

projections are local isometries) gives the result. �

LEMMA 3.10. If f is conformal on the disk, and ϕ = log f ′, then |ϕ ′(z)| ≤
6/(1−|z|2) for all z ∈ D.
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PROOF. Define

F(z) =
f (τ(z))− f (w)

(1−|w|2) f ′(w)
,

where

τ(z) =
z+w

1− w̄z
.

Then F is conformal, F(0) = 0 and F ′(0) = 1, so Lemma ?? says that

|F ′′(0)| ≤ 4. A computation shows

F ′′(0) =
f ′′(z)
f ′(z)

(1−|z|2)+(−2z),

and ϕ ′ = (log f ′)′ = f ′′/ f ′, so

|ϕ ′|(1−|z|2)≤ |F ′′(0)|+ |2z| ≤ 4+2 = 6.

�

Another way to state the lemma is that DE
Hϕ ≤ 6. In other words, ϕ is a

Lipschitz holomorphic function from the disk with its hyperbolic metric to

the plane with its Euclidean metric. The set of such functions is called the

Bloch class and is a Banach space with the norm

‖ϕ‖B = |ϕ(0)|+ sup
|z|<1

|ϕ ′(z)|(1−|z|2).

In a later chapter, we shall see that Lemma 6 leads to an intimate connec-

tion between conformal maps and martingales that allows various results

from probability theory about the latter to be directly to the former, e.g.,

Makarov’s law of the iterated logarithm.

4. Boundary continuity

The boundary of a simply connected domain need not be a Jordan curve,

nor even locally connected, and such examples arise naturally in complex

dynamics as the Fatou components of various polynomials and entire func-

tions. However, this makes little difference to the study of harmonic mea-

sure. In this section we show that, from the point view of harmonic measure,

it is always enough to consider regions with locally connected boundaries.

LEMMA 4.1. Suppose Q is a quadrilateral with opposite pairs of sides

E,F and C,D. Assume

(1) E and F can be connected in Q by a curve σ of diameter ≤ ε ,

(2) any curve connecting C and D in Q has diameter at least 1.

Then the modulus of the path family connecting E and F in Q is larger than

M(ε) where M(ε)→ ∞ as ε → 0.
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PROOF. Define a metric on Q by ρ(z) = 1
2
|z−a|−1/ log(1/2ε) for ε <

|z− a| < 1/2. Any curve γ connecting C and D must cross σ and since γ
has diameter ≥ 1 it must leave the annulus where ρ is non-zero. This shows

that the modulus of the path family in Q separating E and F is small, hence

the modulus of the family connecting them is large. �

E

F

C

D

FIGURE 4.1. Proof of Lemma 4.1.

The following fundamental fact says that hyperbolic geodesics are al-

most the same as Euclidean geodesics.

THEOREM 4.2 (Gehring-Hayman inequality). There is an absolute con-

stant C < ∞ to that the following holds. Suppose Ω ⊂ C is hyperbolic and

simply connected. Given two points in Ω, let γ be the hyperbolic geodesic

connecting these two points and let σ be any other curve in Ω connecting

them. Then ℓ(γ)≤Cℓ(σ).

PROOF. Let f : D→ Ω be conformal, normalized so that γ is the image

of I = [0,r] ⊂ D for some 0 < r < 1. Without loss of generality we may

assume r = rN1−2−N for some N. Let

Qn = {z ∈ D : 2−n−1 < |z−1|< 2−n},
and let

γn = {z ∈ D : |z−1|= 2−n},
zn = γn ∩ [0,1).

Let Q′
n ⊂ Qn be the sub-quadrilateral of points with |arg(1− z)|< π/6.

Each of these has bounded hyperbolic diameter and hence by Koebe’s the-

orem its image is bounded by four arcs of diameter ≃ dn and opposite sides

are ≃ dn apart. In particular, this means that any curve in f (Qn) separating

f (γn) and f (γn+1) must cross f (Q′
n) and hence has diameter & dn. Since

Qn has bounded modulus, so does f (Qn) and so Lemma 4.1 says that the
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shortest curve in f (Qn) connecting γn and γn+1 has length ℓn ≃ dn. Thus

any curve γ in Q connecting γn and γn+1 has length at least ℓn, and so

ℓ(γ) = O(∑dn) = O(∑ℓn)≤ O(ℓ(σ)). �

FIGURE 4.2. Proof of the Gehring-Hayman inequality.

If f : D→ Ω is conformal define

a(r) = area(Ω\ f (r ·D).
If Ω has finite area (e.g., if it is bounded), then clearly a(r)ց 0 as r ր 1.

LEMMA 4.3. There is a C < ∞ so that the following holds. Suppose f :

D→Ω and 1
2
≤ r < 1. Let E(δ ,r)= {x∈T : | f (sx)− f (rx)| ≥ δ for some r <

s < 1}. Then the extremal length of the path family P connecting D(0,r)
to E is bounded below by δ 2/Ca(r).

PROOF. Let z = f (sx) and suppose w ∈ f (D(0,r)). By the Gehring-

Hayman estimate, the length of any curve from w to z is at least 1/C times

the length of the hyperbolic geodesic γ between them. But this geodesic has

a segment γ0 that lies within a uniformly bounded distance of the geodesic

γ1 from f (rx) to z. By the Koebe distortion theorem γ0 and γ1 have com-

parable Euclidean lengths, and clearly the length of γ1 is at least δ . Thus

the length of any path from f (D(0,r)) to f (sx) is at least δ/C. Now let

ρ =C/δ in Ω\ f (D(0,r)) and 0 elsewhere. Then ρ is admissible for f (P)

and
∫∫

ρ2dxdy is bounded by C2a(r)/δ 2. Thus λ (P)≥ δ 2

C2a(r)
. �

LEMMA 4.4. Suppose f : D→ Ω is conformal, and for R ≥ 1,

ER = {x ∈ T : | f (x)− f (0)| ≥ R dist( f (0),∂Ω)}.
Then ER has capacity O(1/ logR) if R is large enough.
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PROOF. Assume f (0)= 0 and dist(0,∂Ω)= 1 and let ρ(z)= |z|−1/ logR

for z ∈ Ω∩{1 < |z|< R}. Then ρ is admissible for the path family Γ con-

necting D(0,1/2) to ∂Ω\D(0,R) and
∫∫

ρ2dxdy ≤ 2π/ logR. By definition

M(Γ) ≤ 2π/ logR and λ (Γ) ≥ (logR)/2π . By the Koebe distortion theo-

rem f−1(D(0,1/2)) is contained in a compact subset of D, independent of

Ω. By Pfluger’s theorem (Theorem 2.13),

∩(Er)≤
2

−2C2 + logR
,

which proves the result. �

COROLLARY 4.5. If f : D → Ω is conformal, then f has radial limits

except on a set of zero capacity (and hence has finite radial limits a.e. on

T).

PROOF. Let Er,δ ⊂T be the set of x ∈T so that diam( f (rx,x))> δ , and

let Eδ = ∩0<r<1Er,δ . If f does not have a radial limit at x ∈ T, then x ∈ Eδ

for some δ > 0, and this has zero capacity by Lemma 4.3. Taking the union

over a sequence of δ ’s tending to zero proves the result. The set where f

has a radial limit ∞ has zero capacity by Lemma 4.4, so we deduce f has

finite radial limits except on zero capacity. �

Combining the last two results proves

COROLLARY 4.6. Given ε > 0 there is a C < ∞ so that the following

holds. If f : D → Ω is conformal, z ∈ D and I ⊂ T is an arc that satisfies

|I| ≥ ε(1−|z|) and dist(z, I) ≤ 1
ε (1−|z|), then I contains a point w where

f has a radial limit and | f (w)− f (z)| ≤C dist( f (z),∂Ω).

We can now prove:
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THEOREM 4.7 (Carathéodory). Suppose that f : D → Ω is conformal,

and that ∂Ω is compact and locally path connected (for every ε > 0 there

is a δ > 0 so that any two points of ∂Ω that are within distance δ of each

other can be connected by a path in ∂Ω of diameter at most ε). Then f

extends continuously to the boundary of D.

PROOF. Suppose η > 0 is small. Since ∂Ω is compact Ω \ f ({|z| <
1− 1

n
}) has finite area that tends to zero as n ր ∞. Thus if n is sufficiently

large, this region contains no disk of radius η .

Choose {z j} to be n equally spaced points on the unit circle and using

Lemma ?? choose interlaced points {w j} so that f has a radial limit f (w j)
at w j and this limit satisfies | f (w j)− f (rw j)| ≤ Cη where r = 1− 1/n.

Then

| f (w j)− f (w j+1)| ≤ | f (w j)− f (rw j)|
+| f (rw j)− f (rw j+1)|

+| f (rw j+1)− f (w j+1)|
≤ Cδ ,

where the center term is bounded by Koebe’s theorem and the other two by

definition.

Fix ε > 0 and choose δ > 0 as in the definition of locally connected.

Thus if η is so small that Cη < δ , then the shorter arc of ∂Ω with endpoints

f (w j) and f (w j+1) can be connected in ∂Ω by a curve of diameter at most

ε . Thus the image under f of the Carleson square with base I j (the arc

between w j and w j+1) has diameter at most Cη + ε . This implies f has a

continuous extension to the boundary. �

FIGURE 4.3. Radius two disks with 30 and 100 radial slits

removed respectively. As the number of slits increases to

infinity, the conformal maps onto these regions converge on

compact sets to the identity, but each have modulus 2 on a

set of fixed, positive logarithmic capacity.
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Uniform convergence on compact subsets of D does not imply uniform

convergence on the boundary (see Figure 4.5). However, it is true that the

conformal boundary values will converge if the image domains have some

parameterizations that converge. In other words, if a sequence of simply

connected domains have boundaries with continuous parameterizations that

converge uniformly to the continuous parameterization of the limiting do-

main, then we also get uniform convergence for the conformal parameteri-

zations of the boundaries. (This is analogous to Carathédory’s theorem: if a

domain boundary has any continuous parameterization, then the conformal

parameterization is also continuous.) See Theorem 4.9.

It is an inconvenient fact is that conformal maps do not have to extend

continuously to the boundary. We noted above however, that radial do exist

almost everywhere. Another convenient substitute for full continuity says

that every conformal map is continuous on a subdomain of D whose bound-

ary hits “most of” ∂D. The precise statement requires a new definition.

Given a compact set E ⊂ T we will now define the associated “saw-

tooth” region WE Suppose {In} are the connected components of T\E and

for each n let γn(θ) be the circular arc in D with the same endpoints as In and

which makes angle θ with In (so γn(0) = In and γn(π/2) is the hyperbolic

geodesic with the same endpoints as In). Let Cn(θ) be the region bounded

by In and γn(θ), and let WE(θ) =D\∪nCn(θ). Let WE =WE(π/8) (and let

W ∗
E ⊂ D

c
be its reflection across T).

FIGURE 4.4. The sawtooth domain WE

If f : D→ Ω and 0 < r < 1, then define

d f (r) = sup{| f (z)− f (w)| : |z|= |w|= r and |z−w| ≤ 1− r}.(4.1)

If ∂Ω is bounded in the plane, then it is easy to see this goes to zero as

r ր 1, since otherwise any neighborhood of ∂Ω would contain infinitely
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many disjoint disks of a fixed, positive size by Koebe’s theorem (Theorem

1.11).

LEMMA 4.8. Suppose f : D→ Ω ⊂ S2 is conformal. Then for any ε > 0

there is a compact set X ⊂ T with cap(T\X)< ε such that f is continuous

on WX .

PROOF. By applying a square root and a Möbius transformation, we

may assume that ∂Ω is bounded in the plane. Given r < 1 let

E(δ ,r) = {x ∈ T : | f (sx)− f (tx)|> ε for some r < s < t < 1}
and note that by Pfluger’s theorem (Theorem 2.13) and Lemma 4.3

cap(E(δ ,r))≤ exp(−πε2/Ca(r)),

where a(r) = area( f (D) \ f (r ·D)), as before. Moreover, this set is open

since f is continuous at the points sx and tx. Fix ε > 0, take εn = 2−n,

and choose rn so close to 1 that cap(En) ≡ cap(E(εn,rn)) ≤ ε2−n. If we

define X = T \ ∪n>1En, then X is closed and T \X has capacity ≤ ε by

subadditivity.

To show f is continuous at every x ∈ WX , we want to show that |x−
y| small implies | f (x)− f (y)| is small. We only have to consider points

x ∈ ∂WX ∩T. First suppose y ∈ ∂WX ∩T. Choose the maximal n so that

s = |x− y| ≤ 1− rn. Then x,y /∈ En, so

| f (x)− f (y)| ≤ | f (x)− f (sx)|+ | f (sx)− f (sy)|+ | f (sy)− f (y)|.
The first and last terms on the right are ≤ εn−1 by the definition of X . The

middle term is at most d f (1−s) (defined in (4.1), which tends to 0 as s → 0.

Thus | f (x)− f (y)| is small if |x− y| is.

Now suppose x ∈ ∂WX ∩T, y ∈ ∂WX \T. From the definition of WX it

is easy to see there is a point w ∈ ∂WX ∩T such that |w− y| ≤ 2(1−|y|)≤
2|x−y|. For the point w we know by the argument above that | f (x)− f (w)|
is small. On the other hand,

| f (y)− f (w)| ≤ | f (y)− f (|y|w)|+ | f (|y|w)− f (w)|.
The first term is bounded by Cd f (|y|) and the second is small since w 6∈ En.

Thus | f (x)− f (y)| is small depending only on |x−y|. Hence f is continuous

on WX . �

However, even though uniform convergence on compacta of a sequence

of conformal maps does not generally imply convergence on all of ∂D, it is

true that the conformal boundary values will converge if the image domains

have some parameterizations that converge. In other words, if a sequence

of simply connected domains have boundaries with continuous parameter-

izations that converge uniformly to the continuous parameterization of the
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FIGURE 4.5. Radius two disks with 30 and 100 radial slits

removed respectively. As the number of slits increases to

infinity, the conformal maps onto these regions converge on

compact sets to the identity, but each have modulus 2 on a

set of fixed, positive logarithmic capacity.

limiting domain, then we also get uniform convergence for the conformal

parameterizations of the boundaries. (This is analogous to Carathéodory’s

theorem: if a domain boundary has any continuous parameterization, then

the conformal parameterization is also continuous.)

LEMMA 4.9. Suppose { fn} are conformal maps of D → Ωn that con-

verge uniformly on compact subsets of D to a conformal map f : D →
Ω. Suppose that the boundary of each Ωn is the homeomorphic image

∂Ωn =σn(T) and that {σn} converges uniformly on T to a homeomorphism

σ : T→ ∂Ω. Then fn → f uniformly on the D.

PROOF. Fix ε > 0 and choose n so large that if we divide T into n equal

sized intervals {J j}n
1, then σ maps each of them to a set I j of diameter at

most ε/2. Let Ik
j = fk(J j). Because σk → σ uniformly, the sets I j all have

diameter at most ε , if k is large enough.

Next choose η > 0 so small that if k,m > 1/η and σm(J j) and σk(Ji)
contain points at most distance Cη apart, then Ji and Jk are the same or

adjacent to each other. We can do this because of the uniform convergence

and the fact that σ is 1-to-1. By passing to the limit the same property holds

if we replace σm by σ .

Next choose m so large that f (D)\ f ({|z| < 1− 1
m
}) is contained in an

η-neighborhood of ∂Ω. Choose m points {z j} equally spaced on the circle

|z| = 1− 1
m

,and let Km
j ⊂ T be the arc centered at z j/|z j| of length 4π/m.

Fix a small number δ > 0 (δ will be determined below, depending only on

η).By Lemma 4.4 choose a point w j ∈ Km
j so that |w j − z j| ≤ 2/m and

| f (w j)− f (w j(1−
1

m
))| ≤Cδ .
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Similarly, choose points wk
j ∈ Km

j so that

| fk(w
k
j)− fk(z j)| ≤ 2Cδ .

This is possible since fk → f uniformly on the compact set {|z| ≤ 1 −
1
m
} and thus∂ fk(D) is contained in an2δ -neighborhood of ∂Ω for k large

enough and ∂Ωk is contained in a δ -neighborhood of ∂Ω because of the

uniform convergence of the parameterizations.

By taking m larger, if necessary, we can also arrange that each I j con-

tains at least one of the points f (zm/|zm|). Thus each f (Km
j ) is mapped into

the union of at most 2 of the I j and hence its image has diameter at most 2ε .

Also, the points f (wk
p) and f (wk

p+1) are at most Cδ apart, so belong to the

same or adjacent sets I j. Thus fk(Kp) is a union of at most 4 such adjacent

sets and hence has diameter O(ε).
For each wk

p there is an arc J j so that fk(w
k
p) ⊂ σk(J j). Similarly, there

is an arc Ji so that f (wp) ∈ Ii = σ(Ji). Since fk → f uniformly on the finite

set {zn}, we have, for k sufficiently large

| fk(w
k
n)− f (wn)| ≤ | fk(w

k
n)− fk(zn)|
+| fk(zn)− f (zn)|

+| f (zn)− f (wn)|
≤ (2C+1+C)δ .

This is less than η if δ is small enough. Since Ii and I j each have diameter at

most ε ,there union has diameter < 2ε and the union of the intervals adjacent

to these is at most 4ε . Similarly for Ik
i and Jk

j . Thus fk(Kp) and f (Kp) are

contained in O(ε)-neighborhoods of each other. Thus fk → f uniformly

on T. By the maximum principle, this implies uniform convergence on the

closed disk, as desired. �

COROLLARY 4.10. If { fn} are homeomorphisms that converge uni-

formly to a homeomorphism f then M( fn(Q))→ M( f (Q))

PROOF. ??? �

The convergence of modulus need not occur if the quadrilaterals merely

converge in the Hausdorff metric. See Figure 1.23

FIGURE SHOWING QUADS CONVERGING IN HAUSDORFF MET-

RIC BUT MODULI NOT CONVERGING

Even without the convergence of parameterizations, uniform conver-

gence on compact sets implies convergence of a subsequence on on “most”

of the boundary. See [?].

(reminder -Cite Lundberg and David Hamilton)
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5. Harmonic measure

Suppose Ω is a planar domain bounded by a Jordan curve, z ∈ Ω and

E ⊂ ∂Ω is Borel. Suppose f : DΩ is conformal and f (0) = z (by the Rie-

mann mapping theorem there is always such a map). By Carathéodory’s

theorem, f extends continuously (even homeomorphically) to the bound-

ary, so f−1(E) ⊂ T is also Borel. We define “the harmonic measure of the

set E for the domain Ω, with respect to the point z” as

ω(z,E,Ω) = |E|/2π,

where |E| denotes the Lebesgue 1-dimensional measure of E. This depends

on the choice of the Riemann map f , but any two maps, both sending 0 to z,

will differ only by a pre-composition with a rotation. Thus the two possible

pre-images of E differ by a rotation and hence have the same Lebesgue

measure. If we fix E and Ω, then ω(z,E,Ω) is a harmonic function of z

(Exercise 1.12), giving rise the name “harmonic measure”. Since we always

have 0≤ω(z,E,Ω)≤ 1, we can deduce that if E has harmonic measure with

respect to one point z in Ω then it has zero harmonic measure with respect

to all points (Exercise 1.13).

If ∂Ω is merely locally connected, then Carathéodory’s theorem still

implies that the Riemann map f has a continuous extension to the boundary,

so the same definition of harmonic measure works. We can define harmonic

measure for general simply connected domains, by taking an increasing

union of domains with locally connected boundaries as given by Lemma

4.8, but we will postpone this discussion until later, as we will postpone the

discussion of harmonic measure on multiply connected domains (defined

via covering maps). For the moment, Jordan domains and locally connected

sets will provide sufficiently many interesting examples.

We want estimate harmonic measure in terms of extremal length. We

have already seen how to relate extremal length to logarithmic capacity, and

the following relates the latter to harmonic measure:

LEMMA 5.1. For any compact E ⊂ T,

cap(E)≥ 1

1+ log2+π + log 1
|E|

.

If E ⊂ T has positive Lebesgue measure, then it has positive capacity. In

particular, if E ⊂ T is an arc, then

cap(E)≤ 1

log4+ log 1
|E|

.

For arcs of small measure, the two bounds are comparable.



38 1. CONFORMAL MAPS AND CONFORMAL INVARIANTS

PROOF. If µ is Lebesgue measure restricted to E, then clearly the cor-

responding potential function is less than potential function of an arc I of

the same measure evaluated at the center x of that arc. Since 2
π t ≤ |x−y| ≤ t

if the arclength between x,y ∈ T is t, this value is at most

∫

I
log

2

|x− y|dy ≤ 2

∫ |E|/2

0
log

π

t
dt = |E| log

2

|E| +(1+π)|E|

If we normalize the measure to have mass one, then we get

Uµ ≤ log
2

|E| +1+π = log
1

|E| +1+ log2+π.

If E is an arc, then the center x of the arc is at most distance |E|/2 from

any other point of the arc, and so

Uµ(x)≥ log
2

|E|/2
= log

4

|E| = log
1

|E| + log4,

for any probability measure supported on E. This gives the desired estimate.

�

The following is the fundamental estimate for harmonic measure, from

which all other estimates flow (at least, all the ones that we will use).

THEOREM 5.2. Suppose Ω is a Jordan domain, z0 ∈Ω with dist(z0,∂Ω)≥
1 and E ⊂ ∂Ω. Let Γ be the family of curves in Ω which connects D(z0,1/2)
to E. Then

ω(z0,E,Ω)≤C exp(−πλ (Γ)).

If E ⊂ ∂Ω is an arc then the two sides are comparable.

PROOF. Let f : D→ Ω be conformal. By Koebe’s 1
4
-theorem (Theorem

1.11), the disk D(z, 1
2
) in Ω maps to a smooth region K in the unit disk that

contains the origin, and ∂K is uniformly bounded away from both the origin

and the unit circle. Thus by Pfluger’s theorem applied to the curve family

ΓX connecting K and the compact set X = f−1(E),

1

cap(X)
+C1(K)≤ πλ (ΓX)≤

1

cap(X)
+C2(K),

for constants C1,C2 that are bounded independent of all our choices.

By Lemma 5.1 the right-hand side of

1+ log4+ log
1

|X | +C1(K)≤ πλ (ΓX)≤ 1+ log2+ log
1

|X | +C2(K).
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holds in general, and the left-hand side also holds if X is an interval. Multi-

ply by −1 and exponentiate to get

|X |
2e1+π+C2

≤ exp(−πλ (ΓX))≤
|X |

4eC1

under the same assumptions. Now use ω(z,E,Ω) = ω(0,X ,D) = |X |/2π
to deduce the result. �

One of the most famous and most useful applications of this result is

COROLLARY 5.3 (Ahlfors distortion theorem). Suppose Ω is a Jordan

domain, z0 ∈ Ω with dist(z0,∂Ω) ≥ 1 and x ∈ ∂Ω. For each 0 < t < 1 let

ℓ(t) be the length of Ω∩{|w− x|= t}. Then there is an absolute C < ∞, so

that

ω(z0,D(x,r),Ω)≤C exp(−π
∫ 1

r

dt

ℓ(t)
).

PROOF. Let K be the disk of radius 1/2 around z0 and let Γ be the

family of curves in Ω which connects D(x,r)∩∂Ω to K. Define a metric ρ
by ρ(z) = 1/ℓ(t) if z ∈ Ct = {z ∈ Ω : |x− z| = t} and ℓ(t) is the length of

Ct . Any curve γ ∈ Γ has ρ-length at least

L =
∫ 1/2

r

dt

ℓ(t)
,

and

A =
∫∫

Ω
ρ2dxdy ≥

∫ 1/2

r

∫

Cr∩Ω
ℓ(z)−2rdrdθ =

∫
ℓ(z)−1dr = L.

Therefore

λ (Γ)≥ A/L2 = 1/L,

and this proves the result. �

COROLLARY 5.4 (Beurling’s estimate). There is a C < ∞ so that if Ω
is simply connected, z ∈ Ω and d = dist(z,∂Ω) then for any 0 < r < 1 and

any x ∈ ∂Ω,

ω(z,D(x,rd),Ω)≤Cr1/2

PROOF. Apply Corollary 5.3 at x and use θ(t)≤ 2πt to get

exp(−π
∫ d

rd

dt

θ(t)t
)≤C exp(−1

2
logr)≤C

√
r.

�
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COROLLARY 5.5. There is an R < ∞ so that for any Ω is a Jordan

domain and any z ∈ Ω

ω(z,∂Ω\D(z,Rdist(z,∂Ω),Ω)≤ 1/2.

PROOF. Rescale so z = 1 and dist(z,∂Ω) = 1. Then apply w → 1/w

which fixes z and maps ∂Ω\D(z,R) into D(0,1/R− 1). Then Lemma 5.4

implies the result if R ≥ 4C2 +1 (C is as in Lemma 5.4). �

COROLLARY 5.6. For any Jordan domain and any ε > 0,

ω(z,∂Ω∩D(z,(1+ ε)dist(z,∂Ω)),Ω)>Cε,

for some fixed C > 0.

PROOF. Renormalize so z = 0 and 1 is a closest point of ∂Ω to z. By

Corollary 5.5, the set E = ∂Ω∩D(0,1+ ε) has harmonic measure at least

1/2 from the point 1− ε/R. Since ω(z,E,Ω) is a positive, harmonic func-

tion on D, Harnack’s inequality says it is larger than Cε/R at the origin. �

This is a weak version of the Beurling projection theorem which says

that the sharp lower bound is given by the slit disk D(0,1+ ε) \ [1,1+ ε).
The harmonic measure of the slit in this case can be computed as an explicit

function of ε because this domain can be mapped to the disk by sequence

of elementary functions.

6. Exercises

EXERCISE 1.1. If Ω is a Jordan domain and E,F ⊂ ∂Ω are disjoint

closed subarcs, then there is a conformal map of Ω to some rectangle so

that E and F map to opposite sides.

EXERCISE 1.2. If Ω is a topological annulus bounded by two Jordan

curves, show that it can be conformally mapped to a round annulus.

EXERCISE 1.3. Let E ⊂ C be a closed set and z a point not in E. Com-

pute the modulus of the path family connecting E to {z}.

EXERCISE 1.4. Let En ⊂ T be defined by {z : Re(zn) > 0}. Show that

Caplog(En) → Caplog(T) as n → ∞. Since T \En clearly has the same ca-

pacity as En, this implies capacity is not additive.

EXERCISE 1.5. Show that the linear fractional transformations that map

D 1-to-1, onto itself are exactly those of the form z → λ (z− a)/(1− az)
where |a|< 1 and |λ |= 1.

EXERCISE 1.6. Show a hyperbolic ball in the disk is also a Euclidean

ball, but the hyperbolic and Euclidean centers are different (unless they are

both the origin). Compute the Euclidean center and radius of a hyperbolic

ball of radius r centered at z in D.
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EXERCISE 1.7. Show that the only isometries of the hyperbolic disk are

Möbius transformations and their reflections across R.

EXERCISE 1.8. Show that the domain U constructed in the proof of

Theorem 3.6 is equal to Hu.

EXERCISE 1.9. If { fn} are holomorphic functions on a domain Ω that

converge uniformly on compact sets to f and if zn → z ∈ Ω, then fn(zn)→
f (z).

EXERCISE 1.10. Suppose E is compact and supports a positive measure

µ so that µ(D(x,r))≤ ϕ(r), where

∞

∑
n=0

nϕ(2−n)< ∞,

Then E has positive capacity.

EXERCISE 1.11. If E ⊂ T is compact and has positive Hausdorff di-

mension, then it has positive capacity.

EXERCISE 1.12. Suppose Ω is a planar Jordan domain and E ⊂ ∂Ω is

Borel. Prove that ω(z,E,Ω) is a harmonic function of z.

EXERCISE 1.13. Suppose Ω is a planar Jordan domain and E ⊂ ∂Ω is

Borel. Show that if ω(z,E,Ω) = 0 for some z ∈ Ω, then it is zero on all of

Ω.

EXERCISE 1.14. If {pk}n
k=1 are non-negative numbers and ∑n

k=1 pk = 1,

show that h = −∑n
k=1 pk log pk is maximized uniquely when pk = 1/n for

all k.

EXERCISE 1.15. Suppose g(z) = 1
z
+ b0 + b1z+ . . . is univalent in D.

Then ∑∞
n=0 n|bn|2 ≤ 1. In particular, |b1| ≤ 1. This is the area theorem.

EXERCISE 1.16. Use the area theorem to prove that if ϕ(z)= z+∑∞
n=2 anzn

is univalent on the unit disk with ϕ ′(0) = 1, then |a2| ≤ 2. This is the case

n = 2 of the Bieberbach conjecture (later to become deBrange’s theorem [],

[]).

EXERCISE 1.17. Use the previous exercise to give a second proof of the

Koebe 1
4
-theorem.

EXERCISE 1.18. If f is conformal on the disk, and ϕ = log f ′, then

|ϕ ′(z)| ≤ 6/(1−|z|2) for all z ∈ D.

SOLUTION. Define

F(z) =
f (τ(z))− f (w)

(1−|w|2) f ′(w)
,
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where

τ(z) =
z+w

1− w̄z
.

Then F is conformal, F(0) = 0 and F ′(0) = 1, so Lemma ?? says that

|F ′′(0)| ≤ 4. A computation shows

F ′′(0) =
f ′′(z)
f ′(z)

(1−|z|2)+(−2z),

and ϕ ′ = (log f ′)′ = f ′′/ f ′, so

|ϕ ′|(1−|z|2)≤ |F ′′(0)|+ |2z| ≤ 4+2 = 6.

EXERCISE 1.19. If ϕ is conformal on D then

1−|z|
(1+ |z|)3

≤ |ϕ ′(z)| 1+ |z|
(1−|z|)3

.

This is the distortion theorem. See e.g., Theorem I.4.5 of [?].

EXERCISE 1.20. If ϕ is conformal on D then

|z|
(1+ |z|)2

≤ |ϕ(z)| |z|
(1−|z|)2

.

This is the growth theorem. See e.g., Theorem I.4.5 of [?].

EXERCISE 1.21.

EXERCISE 1.22.

EXERCISE 1.23.

Solutions (eventually move to end of book)

SOLUTION. 1.1 First map Ω to the disk by the Riemann mapping the-

orem. Then use a Möbius transformation to arrange for the images of E

and F to be arcs centered at ±1 and symmetric with respect to the real line.

Then the Schwarz-Christoffel formula gives a map to the desired rectangle.

SOLUTION. Use uniformization theorem to get covering by disk. Then

use Riemann map to get covering by vertical strip with deck transforma-

tions being vertical translations. Then use exponential map to send strip to

annulus and collapsing orbits to single points.

SOLUTION. Take an annulus around the point that is disjoint from E,

but has modulus close to zero, and use monotonicity.

SOLUTION. The logarithmic capacity of the circle is 1/ log2. Com-

pute the potential of Lebesgue measure restricted to En and show that it is

bounded by 1/2log2+o(1) Therefore approximately twice this measure is

still admissible, which means the capacity of En is close to the capacity of

the circle, if n is large..
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SOLUTION.

SOLUTION. 1.9 We may assume {zn} are contained in some disk D⊂Ω
around z. Let E = {zn} ∪ {z}. This is a compact set so it has a positive

distance d from ∂Ω. The points within distance d/2 of E form a compact

set F on which the functions { fn} are uniformly bounded on E, say by M.

By the Cauchy estimate the derivatives are bounded by a constant M′ on E.

Thus

| f (z)− fn(zn)≤ | f (z)− fn(z)|+ | fn(z)− fn(zn)| ≤ | f (z)− fn(z)|+M′|z−zn|,
and both terms on the right tend to zero by hypothesis.

SOLUTION. 1.10 The condition easily implies Uµ is bounded, hence

supp(µ) has positive capacity.

SOLUTION. 1.11 This follows from Frostman’s theorem (Theorem ??)

since if dim(E) > 0 then E supports a measure that satisfies µ(D(x,r)) =
O(rε) for some ε > 0 and ∑n 2−εn < ∞.

SOLUTION. 1.12 Show that ω(z,E,D) must agree with the Poisson in-

tegral of the indicator function of E (the function that is 1 on E and 0 off E).

This holds because the derivative of a Möbius transformation of the disk to

itself has absolute value equal to the Poisson kernel when restricted to the

unit circle.

SOLUTION. 1.13 By the maximum principle, a harmonic function that

attains a minimum or maximum is constant.

SOLUTION. 1.15 For 0 < r < 1 let Dr =C\g(D(0,r)). If z = g(w) and

w = eiθ then dw = iwdθ , so by (??),

area(Dr) =
∫∫

Dr

dxdy =
1

2i

∫

∂Dr

z̄dz =
−1

2i

∫

∂D(0,r)
ḡ(w)g′(w)dw.

To evaluate the right hand side note that

g(z) =
1

z
+b0 +b1z+ . . . ,

g′(z) =
1

z2
+0+b1 +2b2z+ . . . ,

so that∫

|w|=r
ḡ(w)g′(w)dw = i

∫
ḡ(w)g′(w)wdθ

= i

∫
(

1

w̄
+ b̄0 + b̄1w̄+ . . .)(− 1

w
+b1w+2b2w+ . . .)dθ

= 2πi(− 1

r2
+ |b1|2r2 +2|b2|r4 + . . .)
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Thus,

0 ≤ area(Dr) = π(
1

r2
−

∞

∑
n=1

n|bn|2r2n).

Taking r → 1 gives the result.

SOLUTION. 1.16 Let F(z) = z
√

f (z2)/z2. Then the quantity inside the

square root is even and doesn’t vanish in D, so F is odd, univalent and

F(z) = z+
a2

2
z+ . . . .

Thus

g(z) =
1

F(z)
=

1

z
− a2

2
z+ . . . ,

is univalent and satisfies Theorem ??, so |a2| ≤ 2.

SOLUTION. 1.17 By pre-composing with a Möbius transformation and

post-composing by a linear map, we may assume z = 0, f (0) = 0 and

f ′(0) = 1. Then the right hand inequality is just Schwarz’s lemma applied

to f−1. To prove the left hand inequality, suppose f never equals w in D.

Then

g(z) =
w f (z)

w− f (z)

= w(z+a2z2 + . . .)
1

w
[(1+

1

w
(z+a2z2 + . . .)+

1

w2
(z+a2z2 + . . .)2 + . . .)]

= z+(a2 +
1

w
)z2 + . . . ,

is univalent with f (0) = 0 and f ′(0) = 1. Applying Corollary 1.16 to f and

g gives

1

|w| ≤ |a2|+ |a2 +
1

w
| ≤ 2+2 = 4.

Thus the omitted point w lies outside D(0,1/4), as desired.

SOLUTION.

SOLUTION. 1.19 Fix a point w ∈ D and write the Koebe transform of

f ,

F(z) =
f (τ(z))− f (w)

(1−|w|2) f ′(w)
,

where

τ(z) =
z+w

1− w̄z
.
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This is univalent, so by Corollary 1.16, |a2(w)| ≤ 2. Differentiation and

setting z = 0 shows

F ′(z) =
f ′(τ(z))τ ′(z)

(1−|w|2) f ′(w)
,

F ′′(z) =
f ′′(τ(z))τ ′(z)2 + f ′(τ(z))τ ′′(z)

(1−|w|2) f ′(w)
,

τ ′(0) = 1−|w|2,τ ′′(0) =−2(1−|w|2),

F ′′(0) =
f ′′(w)
f (w)

(1−|w|2)−2w̄.

This implies that the coefficient of z2 (as a function of w) in the power series

of F is

a2(w) =
1

2
((1−|w|2) f ′′(w)

f ′(w)
−2w̄).

Using |a2| ≤ 2 and multiplying by w/(1−|w|2), we get

|w f ′′(w)
f ′(w)

− 2|w|2
1−|w|2 | ≤

4|w|
1−|w|2 .

Thus
2|w|2 −4|w|

1−|w|2 ≤ w f ′′(w)
f ′(w)

≤ 4|w|+2|w|2
1−|w|2 .

Now divide by |w| and use partial fractions,

−1

1−|w| +
−3

1+ |w| ≤
1

|w|
w f ′′(w)

f ′(w)
≤ 3

1−|w| +
1

1+ |w|

∂

∂ r
log | f ′(reiθ )| =

∂

∂ r
Relog f ′(z)

= Re
z

|z|
∂

∂ z
log f ′(z)

=
1

|z|Re(
z f ′′(z)
f ′(z)

)

Since w = reiθ and f ′(0) = 1, we can integrate to get

log(1− r)−3log(1+ r)≤ log | f ′(reiθ )| ≤ −3log(1− r)+ log(1+ r).

Exponentiating gives the result.

SOLUTION. 1.23





CHAPTER 2

Geometric properties of quasiconformal maps

In this chapter we define quasiconformal maps and deduce a variety of

properties including compactness. In a later chapter we will study analytic

properties, such as differentiability almost everywhere.

1. Distortion of smooth maps

Conformal maps preserves angles; quasiconformal maps can distort an-

gles, but only in a controlled way. To make this distinction more precise we

must have a way to measure angle distortion and we start with a discussion

of linear maps.

Consider the linear map
(

x

y

)
→ M

(
x

y

)
=

(
a b

c d

)(
x

y

)
= (ax+by,cx+dy).

Let MT denote the transpose of the real matrix M, i.e., its reflection over

the main diagonal. Then

MT ·M =

(
a c

b d

)
·
(

a b

c d

)
=

(
a2 + c2 ab+ cd

ab+ cd b2 +d2

)
≡
(

E F

F G

)

is positive and symmetric and hence has two positive eigenvalues λ1,λ2,

assuming M in non-degenerate. The square roots s1 =
√

λ1, s2 =
√

λ2 are

the singular values of A (without loss of generality we assume s1 ≥ s2).

Then

M =U ·
(

s1 0

0 s2

)
·V,

where U,V are rotations. Thus M maps the unit circle to an ellipse whose

major and minor axes have length s1 and s2. Thus M preserves angles iff

it maps the unit circle to a circle iff s1 = s2. Otherwise M distorts angles

and we let D = s1/s2 denote the dilatation of the linear map M. This is the

eccentricity of the image ellipse and is ≥ 1, with equality iff M conformal.

The inverse of a linear map with singular values {s1,s2} has singular

values { 1
s2
, 1

s1
} and hence dilatation D = (1/s2)/(1/s1) = s1/s2. Thus the

dilatation of a linear map and its inverse are the same.

47
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Given two linear maps M,N with singular values s1 ≥ s2 and t1 ≥ t2 re-

spectively, the singular values of the composition MN are trapped between

s1t1 and s2t2 (this occurs for the maximum singular values since they give

the operator norms of the matrices and these are multiplicative; a similar

argument works for the minimum singular values and the inverse maps).

Thus the dilation is less than (s1t1)/(s2t2) i.e., dilatations satisfy

DM◦N ≤ DM ·DN .

The dilatation D can be computed in terms of a,b,c,d as follows. The

eigenvalues λ1,λ2 are roots of the

0 = det(MT ·M−λ I),

which is the same as

0 = (E −λ )(G−λ )−F2 = EG−F2 − (E +G)λ +λ 2.

Thus

λ1λ2 = EG−F2

= (a2 + c2)(b2 +d2)− (ab+ cd)2

= a2b2 +a2d2 + c2b2 +d2c2 − (a2b2 +2abcd + c2d2)

= a2d2 + c2b2 −2abcd

= (ad −bc)2

Similarly,

λ1 +λ2 = E +G = a2 +b2 + c2 +d2.

The values of λ1,λ2 can be found using the quadratic formula:

{λ1,λ2} =
1

2
[E +G±

√
(E +G)2 −4(EG−F2)]

=
1

2
[E +G±

√
(E −G)2 +4F2)].

Thus

λ1

λ2
=

E +G+
√
(E −G)2 +4F2

E +G−
√
(E −G)2 +4F2

=
(E +G+

√
(E −G)2 +4F2)2

(E +G)2 − (E −G)2 −4F2

=
(E +G+

√
(E −G)2 +4F2)2

4(EG+F2)
.
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and hence

D =
s1

s2
=

√
λ1

λ2
=

E +G+
√
(E −G)2 +4F2

2
√

EG+F2
.

This formula can be made simpler by complexifying. Think of the linear

map M on R
2 as a map f on C:

x+ iy → ax+by+ i(cx+dy) = u(x,y)+ iv(x,y) = f (x+ iy)

Then

M =

(
ux uy

vx vy

)

and we define

fz =
1

2
( fx − i fy) =

1

2
(ux + vy)+

i

2
(vx −uy),

fz =
1

2
( fx + i fy) =

1

2
(ux − vy)+

i

2
(vx +uy).

Some tedious arithmetic now shows that

4| fz|2 = (ux + vy)
2 +(vx −uy)

2

= u2
x +2uxvy + v2

y + v2
x −2vxuy +u2

y

4| fz|2 = (ux − vy)
2 +(vx +uy)

2

= u2
x −2uxvy + v2

y + v2
x +2vxuy +u2

y

so

(| fz|+ | fz|)(| fz|− | fz|) = | fz|2 −| fz|2 = uxvy − vxuy = s1s2 = det(M).

In particular, if we assume M is orientation preserving and full rank, then

det(M)> 0 and we deduce | fz|> | fz|. Similarly,

(| fz|+ | fz|)2 +(| fz|− | fz|)2 = 2(| fz|2 + | fz|2)
= u2

x + v2
x +u2

y + v2
x

= E +G

= λ1 +λ2

= s2
1 + s2

2.

From these equations and the facts s1 ≥ s2, | fz|> | fz| we can deduce

s1 = | fz|+ | fz|, s2 = | fz|− | fz|,
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and hence

D =
s1

s2
=

| fz|+ | fz|
| fz|− | fz|

.

Note that D ≥ 1 with equality iff f is a conformal linear map. It is often

more convenient to deal with the complex number.

µ =
fz

fz
,

which is called the complex dilatation (although sometimes we abuse no-

tation and just call thus the dilatation, if the meaning is clear from context).

Since | fz|< | fz|, we have |µ|< 1 and it is easy to verify that

D =
1+ |µ|
1−|µ| , |µ|= D−1

D+1
,

so that either D or |µ| can be used to measure the degree of non-conformality.

We leave it to the reader to check that the map

x+ iy → (ax+by)+ i(cx+dy)

can also be written as

(z,z)→ αz+β z,

where z = x+ iy, z = x− iy and α = α1 + iα2, β = β1 + iβ2, satisfy

α1 =
a+d

2
, α2 =

a−d

2
, β1 =

c−b

2
, β2 =

b+ c

2
,

In this notation µ = β/α and

D =
|β |+ |α|
|α|− |β | .

As noted above, the linear map f sends the unit circle to an ellipse of

eccentricity D. What point on the circle is mapped furthest from the origin?

Since

s1 = | fz|+ | fz|,
the maximum stretching is attained when fzz and fww have the same argu-

ment, i.e., when

0 <
fzz

fzz
=

z2

µ|z|2 ,
or

arg(z) =
1

2
arg(µ),

Thus |µ| encodes the eccentricity of the ellipse and arg(µ) encodes the

direction of its major axis.

If we follow f by a conformal map g, then the same infinitesimal ellipse

is mapped to a circle, so we must have µg◦ f = µ f . If f is preceded by a con-

formal map g, then the ellipse that is mapped to a circle is the original one
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rotated by −arg(gz), so µ f◦g = (|gz|/gz)
2µ f . To obtain the correct formula

in general we need to do a little linear algebra. Consider the composition

g◦ f and let w = f (z) so that the usual chain rule gives

(g◦ f )z = (gw ◦ f ) fz +(gw ◦ f ) f z,

(g◦ f )z = (gw ◦ f ) fz +(gw ◦ f ) f z.

or in vector notation(
(g◦ f )z

(g◦ f )z

)
=

(
fz f z

fz f z

)(
(gw ◦ f )
(gw◦)

)

The determinate of the matrix is

fz f z − f z fz = fz fz − fz fz = | fz|2 −| fz|2 = J,

which is the Jacobian of f , so by Cramer’s Rule,

(gw ◦ f ) =
1

J
[(g◦ f )z f z − (g◦ f )z f z],

(gw ◦ f ) =
1

J
[(g◦ f )z fz − (g◦ f )z fz],

so

µg ◦ f =
(g◦ f )z fz − (g◦ f )z fz

(g◦ f )z f z − (g◦ f )z f z

=
µg◦ f fz − fz

f z −µg◦ f f z

=
fz

fz

µg◦ f −µ f

1−µg◦ f µ f

.

Now set h = g◦ f or g = h◦ f−1 to get

µh◦ f−1 ◦ f =
fz

fz

µh −µ f

1−µhµ f

.

Thus if h and f have the same dilatation µ , then g = h◦ f−1 is conformal.

We will need this in the case when h is more general than an homeomor-

phism.

2. The geometric definition

The piecewise differentiable definition: h is K-quasiconformal on Ω
if there are countable many analytic curves whose union is a closed set Γ of

Ω such that h is continuously differentiable on each connected component

of Ω′ = Ω\Γ and Dh ≤ K on Ω′.
A quadrilateral Q is a Jordan domain with two disjoint closed arcs on

the boundary. By the Riemann mapping theorem and Caratheodory’s the-

orem, there is a conformal map from Q to a 1×m rectangle that extends
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continuously to the boundary with the two marked arcs mapping to the two

sides of length a. The ratio M = M(Q) = 1/m is called the modulus of

the four distinct marked on the boundary and is uniquely determined by Q.

The conjugate of Q is the same domain but with the complementary arcs

marked. Its modulus is clearly the reciprocal of Q’s modulus.

The geometric definition: A homeomorphism h, defined on a planar

domain Ω, is K-quasiconformal if the

1

K
M(Q)≤ M(h(Q))≤ KM(Q),

for every quadrilateral Q ⊂ Ω.

Our first goal is to check that this definition includes all the “obvious”

examples: piecewise C1 maps with bounded dilatations:

LEMMA 2.1. Suppose h a homeomorphism of Ω such that there are

countable many analytic curves whose union is a closed set Γ of Ω and h

is continuously differentiable on each connected component of Ω′ = Ω \Γ
and Dh ≤ K on Ω′. Then h is K-quasiconformal.

PROOF. Using conformal maps, it suffices to consider the case when

Ω and its image are both rectangles, say Ω = [0,a]× [0,1] and h(Ω) =
[1,b]× [0,1]. By integrating over horizontal lines in the first rectangle, we

see

b ≤
∫ a

0
(| fz|+ | fz|)dx.

We have used the piecewise analytic assumtion here to break the integral

into finitely many open segments where the fundamental theorem of calcu-

lus applies and then use the assumption that h is continous at the endpoints

to say the total integral is the sum of these sub-integrals (later in the chapter

we will use more difficult arguments to reach a similar conclusion when h

fails to be “nice” on a uncountable subset of the segment).

Integrating in the other variable,

b ≤
∫ 1

0

∫ a

0
(| fz|+ | fz|)dxdy.

By Cauchy-Schwarz,

b2 ≤ (
∫ 1

0

∫ a

0
(| fz|+ | fz|)(| fz|− | fz|)dxdy)(

∫ 1

0

∫ a

0

| fz|+ | fz|
| fz|− | fz|

dxdy)

≤ (
∫ 1

0

∫ a

0
(| fz|2 −| fz|2)dxdy)(

∫ 1

0

∫ a

0

| fz|+ | fz|
| fz|− | fz|

dxdy)

≤ (
∫ 1

0

∫ a

0
J f dxdy)(

∫ 1

0

∫ a

0
D f dxdy)

≤ baK,
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and so b ≤ Ka. The other direction follows by repeating the argument for

vertical lines instead of horizontal ones. �

In order for the proof to work we need two things: (1) the area of the

range to be bounded above by integrating the Jacobian over the domain

and (2) each horizontal line segment S to have an image whose length is

bounded above by the integral of | fz|+ | fz| over S. This certainly holds if fz

and fz are piecewise continuous on a partition of the plane given by count-

able many analytic curves, as we have assumed, but it holds much more

generally. The geometric definition of quasiconformality actually implies

that the map h has partials almost everywhere and is absolutely continuous

on almost every line. This, in turn, implies the necessary estimates holds.

This will be discussed later in Chapter ??

Next we record the annulus analog of the previous result for rectangles.

COROLLARY 2.2. If we have a piecewise differentiable K-quasiconformal

map f between annuli Ar = {1 < |z|< r} and AR = {1 < |z|< R} rectangle

with dilatation ≤ K, then 1
K

logr ≤ logR ≤ K logr.

PROOF. Slit Ar with [1,r] for form a quadrilateral Q ⊂ Ar and let Q′ =
f (Q)⊂ AR. See Figure 2.1 Then M(AR)≤ M(Q′)≤ KM(Q) = M(Ar). The

first inequality occurs because of monotonicity of modulus (Lemma 1.2);

every separating curve for the annulus connects opposite sides of Q′ (but

there are connecting curves that don’t correspond to closed loops). The

other direction follows by considering the inverse map. See Figure 2.2. �

FIGURE 2.1. Notation in the proof of 2.2.

3. Pointwise bounded and equicontinuous

In the next few sections we show that the collection of normalized K-

quasiconformal mappings is compact. This has several steps. First must

show that this family satisfies the hypotheses of the Arzela-Ascoli the-

orem, and hence is pre-compact, i.e., every sequence of normalized K-

quasiconformal maps contains a subsequence that converges uniformly on
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compact sets. Second, we have to show that a uniform limit if K-quasiconformal

maps is also K-quasiconformal.

LEMMA 3.1. Suppose Ω ⊂ C is a topological annulus of modulus M

whose boundary consists of two Jordan curves γ1,γ2 with γ2 separating γ1

from ∞. Then diam(γ1)≤ (1−ε)diam(γ2) where ε > 0 depends only on M.

PROOF. Rescale so diam(γ2) = diam(Ω) = 1 and suppose diam(γ1) >
1− ε . Then there are points a ∈ γ1 and b ∈ γ2 with |a− b| ≤ ε . Let ρ be

the metric on Ω defined by ρ(z) = 1
|z−a| log(1/2ε) for ε < |z−a|< 1/2. Then

any curve γ ⊂ Ω that separates γ1 and γ2 satisfies
∫

γ ρds ≥ 1 and
∫

ρ2dxdy ≤ π

4
log−2 1

2ε
.

Thus the modulus of the path family separating the boundary components

is bounded above by the right hand side, and the modulus of the reciprocal

family connecting the boundary components is bounded below by π
4

log2 1
2ε .

Thus ε ≥ 1
2

exp(−
√

πM/4). �

FIGURE 3.1. Proof of Lemma 3.1.

LEMMA 3.2. Suppose f : C→ C is a K-quasiconformal map that fixes

both 0 and 1. Then | f (x)| is bounded with an estimate depending on |x| and

K, but not on f .

PROOF. By composing with rotations (which do not alter the quasifor-

mal bounds), it is enough to assume x< 0. Consider the topological annulus

with boundary components consisting of the segment [x,0] and ray [1,∞).
See Figure ??. The modulus of the path family separating the two boundary

components is bounded below depending only on |x|. But if R = | f (x)| then

by using the metric ρ(z) = 1/(|z| logR), we see that the modulus of f (F )
is at most 1/ logR. This is a contradiction if R is too large. �
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0 1

x

0 1

f(x)

FIGURE 3.2. If | f (x)| ≫ |x| then the modulus of the path

family separating [0,x] and [0,∞) must change by more than

a factor of K.

THEOREM 3.3. A K-quasiconformal map of the plane that fixes both 0

and 1 is locally Hölder continuous.

PROOF. Suppose f is as in the lemma and x,y ∈ D(0,r). By Lemma

??, D(0,2r) is mapped into D(0,R) for some R = R(r,K). Surround {x,y}
by N = ⌊log2

r
|x−y|⌋ annuli {A j} of modulus log2. See Figure ??. The

image annuli { f (A j)} have moduli bounded away from zero, and hence

diam( f (A j+1))≤ (1− ε)diam( f (A j)) by Lemma 3.1. Therefore

| f (x)− f (y)| ≤R(1−ε)N ≤R2log2(1−ε)(1+log2 R−log2 |x−y|)≤C(R)|x−y|log2(1−ε).

�

Later we will compute the actual Hölder exponent as 1/K.

The proof can generalized to a slightly bigger class than the quasicon-

formal maps where the dilatation is allowed to grow to ∞ sufficiently slowly.

There have been a number of excellent papers written on explicit bounds for

this kind of result, but we will only need the “soft” version above. See [?],

[?], [?], [?], [?]. However, here we only give a simple “soft” version of such

a result:

THEOREM 3.4. If f is piecewise differentiable and the dilatation µ sat-

isfies certain estimates of the form

max
|x|≤R,r>1/R

1

r2

∫

D(x,r)
D f (z)dxdy ≤ φ(R),

then f has modulus of continuity that depends only on φ if φ ր ∞ slowly

enough as R → ∞.

PROOF. Repeat the proof of Theorem ??, only now the moduli of the

image annuli can tend to zero. However, as long as φ grow slowly enough,

then

diam( f (A j))≤
N

∏
j=1

(1− ε(φ(R)))
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FIGURE 3.3. Annuli of fixed modulus map to annuli with

modulus bounded below, and whose diameters shrink geo-

metrically. Thus f is Hölder continuous.

where ε(K) is as in Lemma 3.1. �

4. Boundary extension

In this section we prove.

THEOREM 4.1. If ϕ : D→ D is quasiconformal and onto, then ϕ is α-

Hölder on D, where α > 0 only depends on K. Thus ϕ extends continuously

to a homeomorphism of T= ∂D to itself.

The proof is very simuilar to the Hölder estimates for quasiconformal

maps in the plane, however, we will also need a trick for converting certain

quadrilaterals in the disk into annuli in the plane by reflecting across the

circle. The precise statement is:

LEMMA 4.2. Suppose Q ⊂Hu is a quadrilateral with a pair of opposite

sides being intervals I,J ⊂ R. Let A be the topological annulus formed

by taking Q∪ I ∪ J ∪Q∗ (where Q∗ is the reflection of Q across R. Then

M(A) = 1
2
M(Q) (here the modulus of Q refers to the modulus of the path

family connecting the two sides of Q that line on the unit circle).



4. BOUNDARY EXTENSION 57

PROOF. Using conformal invariance, assume Q is in the upper half-

plane and A is obtained by reflecting Q across the real line. See Figure ??.

Consider the path family ΓA in A that connects the two boundary compo-

nents of A, and the path family ΓQ in Q that separate the boundary arcs

Q∩R. Then (ΓA)+ = ΓQ (notation as in Lemma 1.9), so by the Symmetry

Rule

M(ΓA) = 2M((ΓA)+) = 2M(ΓQ).

The moduli in the lemma are the reciprocals of these moduli, so the result

follows. �

Q
A

FIGURE 4.1. Reflecting the quadrilateral Q across the line

gives an annulus with half the modulus.

PROOF OF THEOREM ??. We may assume f (0) = 0; the general case

then follows after composing with a Möbius transformation.

We first suppose ϕ extends continuously to the boundary. This may

seem a bit circular given the final statement of the theorem, but our plan is

to prove ϕ is α(K)-Hölder for assuming continuity, and then use a limiting

argument to remove the continuity assumption. More precisely, suppose

w,z ∈ D. We will show that

|ϕ(z)−ϕ(w)| ≤C|z−w|α ,
for constants C < ∞, α > 0 that depend only on the quasiconstant K of f .

This implies f is uniformly continuous and hence has a continuous exten-

sion to the boundary of D.

Let d = |z−w| and r = min(1− |z|,1− |w|). There are several cases

depending on the positions of the points z,w and the relative sizes of d and

r. See Figure ??.

To start, note that if |z−w| ≥ 1
10

we can just take C = 20 and α = 1. So

from here on, we assume |z−w|< 1/10.

Suppose r > 1/4, so z,w∈ 3
4
D. Surround the segment [z,w] by N ≃ logd

annuli with moduli ≃ 1. Then just as in the proof of Theorem ??, the image
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annuli have moduli ≃ 1 (with a constant depending on K) and hence

| f (z)− f (w)| ≤ (1− ε(K))N = O(|z−w|α),
for some α > 0 depending only on K.

Next suppose |z| ≥ 3/4 and d > r. Then separate [z,w] from 0 by N ≃
logd disjoint quadrilaterals with a pair of opposite sides being arcs of T,

and all with moduli ≃ 1. Since f (0) = 0 and the image quadrilaterals have

moduli ≃ 1, there diameters shrink geometrically, so

|z−w|= (1− ε(K))N = O(dα),

as desired.

FIGURE 4.2. The proof of Hölder estimates in the disk is

similar to the proof in the plane,except that we need to use

quadrilaterals, as well as annuli, if the pair of points in near

the boundary.

Finally, if r ≤ d we combine the two previous ideas: we start by sep-

arating [z,w] from 0 by ≃ logd quadrilaterals with as above. The smallest

quadrilateral then bounds a region of diameter approximately r containing

[z,w] and we then construct ≃ logr/d disjoint annuli with moduli ≃ 1 that

each separate [z,w] from this smallest quadrilateral. See Figure ??. The

same arguments as before now show

|z−w|= (1− ε(K))− logr(1− ε(K))logr/d = O(dα) = O(|z−w|α).
This proves the theorem assuming ϕ extends continuously to the bound-

ary. Now we have to remove this extra assumption. Assume ϕ is any K-

quasiconformal of D onto itself, such that ϕ(0) = 0. Take r close to 1 and

let Ωr = ϕ({|z|< r}) Then Ωr is a Jordan domain that satisfies

{|z|< 1−δ} ⊂ Ωr ⊂ D,
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with δ → 0 as r ր 1. Let fr : Ωr → D be the the conformal map so

that fr(0) = 0 and f ′r(0) > 0. By Caratheodory’s theorem fr is a home-

omorphism from the closure of Ωr to the closed unit disk, hence the K-

quasiconformal map gr = fr ◦ϕ is a homeomorphism from the closed unit

disk to itself. Thus the previous argument applies to gr, and we deduce gr

is α-Hölder.

As r ր 1, both fr and f−1
r tend to the identity on compact subsets of D.

In particular, for z,w ∈ D, we have

|ϕ(z)−ϕ(w)|= lim
rր1

| f 1−
r (gr(z))− f−1

r (gr(w))|= lim
rր1

|gr(z)−gr(w)| ≤C(K)|z−w|α ,

(by the Schwarz Lemma gr(z) and gr(w) remain in a compact subset of D

as r ր 1). Thus ϕ is α-Hölder as well. �

5. Compactness of K-QC maps

We have now verified that normalized K-quasiconformal maps satisify

the Arzela-Ascoli theorem, so they form a pre-compact family. To prove

compactness, we need to prove:

THEOREM 5.1. If { fn} is a sequence of K-quasiconformal maps on Ω
that converge uniformly on compact subsets to a homeomorphism f , then f

is K-quasiconformal.

This is immediate from:

THEOREM 5.2. Suppose {hn} are homeomorphisms defined on a do-

main Ω and Q ⊂ Ω is a generalized quadrilateral that is compactly con-

tained in Ω. If {hn} converge uniformly on compact sets to a homeomor-

phism h on Ω, then M(hn(Q))→ M(h(Q))

This, in turn, follows from the more technical looking:

LEMMA 5.3. Suppose { fn} are conformal maps of D → Ωn that con-

verge uniformly on compact subsets of D to a conformal map f : D →
Ω. Suppose that the boundary of each Ωn is the homeomorphic image

∂Ωn =σn(T) and that {σn} converges uniformly on T to a homeomorphism

σ : T→ ∂Ω. Then fn → f uniformly on the D.

This lemma is an analog of Carathéodory’s theorem. That result says

that if ∂Ω is a homeomorphic image of the unit circle under any map, then

it is the homeomoprhic image of the unit circle under a conformal map. The

lemma aboves says that if there are any homeomorphic parameterizations

of {∂Ωn} that converge uniformly to a homeomorphic parameterization of

∂Ω, then there are conformal parameterizations with this property. Not

surprisingly, the proof of the lemma is also very similar to the proof of

Carathéodory’s theorem.
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PROOF OF LEMMA 4.9. Fix ε > 0 and choose N so large that if we

divide T into N equal sized intervals {J j}N
1 , then σ maps each of them to an

arc I j of diameter at most ε . Let Ik
j = fk(J j). Because σk → σ uniformly,

the sets {σk(J j)}N
1 all have diameter at most 2ε , if k is large enough.

Since σ is a homeomorphism, ∂Ω = ∂ f (D) = σ(T) is a Jordan curve,

so f extends homeomorphically to the unit circle. Therefore f−1 send the

endpoints of {I j} to N distinct points on T. Therefore we can choose M so

large that 2π/M is less than the minimal separation between these points,

and define M equal length arcs {K j} on T. Clearly, the f image of any one

of these is contained in the union of at most two adjacent arcs I j, and hence

has diameter at most 2ε .

We want to show a similar estimate is true for images of K j under fk

when k is large enough. Choose η > 0 so small that if dist(I j, Iℓ) < 3η ,

then j = ℓ or I j and Iℓ are adjacent; this is possible because the distance

between non-adjacent arcs is positive and there are only finitely many pos-

sible pairs to consider. Because σk → σ uniformly, σk(J j) is contained in

η-neighborhood of I j for all sufficiently large k. For such k, if

dist(σk(Jn),σ j(Jm))≤ η ,

then dist(I j, Ik)< 3η . Thus σk(Jn) and σ j(Jm)) are at least distance η apart

when Jn and Jm are not the same or adjacent.

Suppose η > 0. Choose M so that W = Ω \ f (rM ·D), where rM =
1− 1/M, contains no disks of radius > η (why we can do this was ex-

plained in the proof of Carathéodory’s theorem). We claim that if k is

sufficiently large, then Wk = Ωk \ fk(rMD) contains no disks of radius >
3η . This is because this region is a topological annulus bounded by two

closed Jordan curves. One is σk(T) = ∂Ωk and it contains ∂Ω inside an η-

neighborhood of itself, if k is large enough, because σk → σ uniformly on

T. The other boundary curve is fk(rM ·T), which contains f (rM ·T) inside

an η-neighborhood of itself, since fk → f uniformly on the compact set

rM ·T. If Wk contained a disk of radius 3η , if follows that W would contain

a concentric disk of radius η , a contradiction, so the claim is proved.

Consider an arc K j and the two arcs K j−1,K j+1 adjacent on either side

of it. Choose z ∈ D with z/|z| ∈ K j and 1−|z| ≃ |K j. By Corollary 4.6, we

can find points xm ∈ Km for m = j−1, j, j+1 so that

| fk(w j−1)− fk(w j+1)| ≤ | fk(w j−1)− fk(z)|+ | fk(z)− fk(w j+1)|
≤ C dist( fk(z),∂Ωk)

≤ Cη .

When this happens, we know w j−1 and w j+1 lie in the union of two adjacent

arcs in {Jk}. Therefore the intermediate arc K j must also lie in the same
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union. Therefore its image under fk has diameter at most 4ε (the union of

two sets of diameter 2ε).

Moreover, fixing K j, choosing z as above, we also have

| fk(w j)− f (w j)| ≤ | fk(w j)− fk(z)|+ | fk(z)− f (z)|+ | f (z)− f (w j)|
≤ | fk(z)− f (z)|+C dist( fk(z),∂Ωk)

+C dist( f (z),∂Ω)

≤ | fk(z)− f (z)|+Cη .

The first term in the last line is less than ε if k is large enough since fk → f

on compact sets. Therefore fk(K j) is contained in a Cε +Cη neighborhood

of f (K j), and conversely. Thus fk → f uniformly on T, as desired. �

PROOF OF THEOREM ??. Recall that we want to prove that if quadri-

laterals {Qn} converge to Q in the sense that they have parameterizations

{hn} that converge uniformly to parameterization h of Q, then the moduli

of the {Qn} converge to the modulus of Q.

Let f : D→ h(Q) and fk : D→ hk(Q) be conformal maps, normalized

so fk → f uniformly on compact subsets of D. By Lemma 4.9 these maps

converge uniformly on the closed disk. The four corners of h(Q) have four

distinct f -preimages a,b,c,d on T. Then fk(a)→ f (a). Because f is home-

omorphism, if there was no fk-preimage of a corner of hk(Q) near a, this

corner could not approach f (a), contradicting hk → k. Thus a must be a

limit of fk-preimages of corners of hk(Q). Since modulus is clearly a con-

tinuous function of the points {a,b,c,d} (e.g., Exercise ??), we see that

mod (hk(Q))→ mod (h(Q)). �

PROOF OF THEOREM ??. Any quadrilateral Q ⊂ Ω has compact clo-

sure in Ω so f (Q) = limn fn(Q) is a quadrilateral in f (Ω) and M( f (Q)) =
limn M( fn(Q))≤ K limn M(Q) by Lemma 4.9. The opposite inequality fol-

lows by considering the inverse maps, so we see that f is K-quasiconformal.

�

LEMMA 5.4. Suppose f : C→ C is a K-quasiconformal map that fixes

both 0 and 1. Then there is a constant 0 <C < ∞, depending only on K so

that if |z|< 1/C, then

C−1|z|K ≤ | f (z)| ≤C|z|1/K ≤C|z|1/K.

PROOF. Since normalized K-quasiconformal maps form a compact fam-

ily, there here is a constant A = A(K) so that

f ({|z|= 1})⊂ { 1

A
< |z|< A}.
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By rescaling we also get that for any 0 < r < ∞

f ({|z|= r})⊂ {| f (r)|
A

< |z|< A| f (r)|}.

Thus if r < A−2,

{A| f (r)|< |z|< 1

A
}} ⊂ f ({r < |z|< 1})⊂ {| f (r)|

A
< |z|< A}}.

Comparing moduli in the first inclusion we get

1

2π
log

1

A2| f (r)| ≤ M( f ({r < |z|< 1}))≤ K

2π
log

1

r
,

which gives

| f (r)| ≥ rK/A2.

The second inclusion similarly gives

1

2π
log

A2

| f (r)| ≥ M( f ({r < |z|< 1}))≥ 1

2πK
log

1

r
,

which implies | f (r)| ≤ A2r1/K . Taking C = A2 proves the lemma. �

COROLLARY 5.5. For each K ≥ 1 there is a C =C(K)< ∞ so that the

following holds. If f : C → C is K-quasiconformal and γ is a circle, then

there is w ∈ C and r > 0 so that f (γ)⊂ {z : r ≤ |z−w| ≤Cr}.

PROOF. Without loss of generality, we can pre and post-compose so that

γ is the unit circle and f fixes 0,1. By Lemma ??, f (γ) is then contained in

an annulus { 1
C
≤ |z| ≤C}, and this gives the result. �

6. Locally QC implies globally QC

The definition of quasiconformality requires us to check the moduli of

all quadrilaterals. In this section we prove that it is enough to verify the

definition just on all sufficiently small quadrilaterals.

LEMMA 6.1. If f is a homeomorphism of Ω⊂C that is K-quasiconformal

in a neighborhood of each point of Ω, then f is K-quasiconformal on all of

Ω.

PROOF. Suppose Q⊂Ω is a quadrilateral that is conformally equivalent

via a map ϕ to a 1×m rectangle R and Q′ = f (Q) is conformally equivalent

a 1×m′ rectangle R′. Divide R into M equal vertical strips {S j} of dimen-

sion 1×m/M. See Figure ??. We have to choose M sufficiently large that

two things happen.

First choose δ > 0 so that f−1 is K-quasiconformal on any disk of ra-

dius δ centered at any point of Q′ (we can do this since Q′ has compact

closure in Ω). Next, note that the closure of Q′ is a union of Jordan arcs γ
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corresponding via f ◦ϕ−1 to vertical line segments in R. By the continu-

ity of f ◦ϕ−1 there is an η > 0 so that if z ∈ R then f (ϕ−1(D(z,η))) has

diameter ≤ δ . By the continuity of the inverse map, there is an ε > 0 so

that x,y ∈ Q′ and |x− y| < ε implies |ϕ( f−1(x))−ϕ( f−1(y))| ≤ η . Thus

for any δ > 0 there is an ε > 0 so that if x,y ∈ γ ⊂ Q′ are at most distance

ε apart, then the arc of γ between then has diameter at most δ (and ε is

independent of which γ we use).

Choose M so large that each region Q′
j = f (ϕ−1(R j)) contains a disk of

radius at most ρ , where ρ will be chosen small depending on ε . Map Ω j

conformally to a 1×m′
j rectangle S′j. Note that this rectangle is conformally

equivalent to the region R′
j = ψ( f (ϕ−1(R j))) ⊂ R j, both with the obvious

choice of vertices.

By Lemma ?? there is an absolute constant C so that every for every

y ∈ [0,1], there is a t ∈ (0,1) with |t − y| ≤ Cm j and so that the horizontal

cross-cut of R′
j at height t maps via ϕ−1

j to a Jordan arc of length ≤ Cρ .

Thus we can divide R′
j by horizontal cross-cuts into rectangles {R′

i j} of

modulus m′
i j ≃ 1 so that the preimages of these rectangles under φ j are

quadrilaterals with two opposite sides of length ≤ Cρ and which can be

connected inside the quadrilateral by a curve of length ≤Cρ .

Taking δ as above, choose ε as above corresponding to δ/4 and choose

ρ so that 3Cρ < min(ε,δ/4). Then all four sides of the quadrilateral Q′
i j

have diameter ≤ δ/4 and hence Q′
i j has diameter less than δ and hence

lies in a disk where f−1 is K-quasiconformal. Let mi j be the modulus of

corresponding preimage quadrilateral Qi j = f−1(Q′
i j). See Figure ??.

In S′j consider the path family Γ′
j that connects the “top” and “bottom”

sides of this rectangle and let m′
j denote the modulus of this path family (so

1/m′
j is its extremal length).. Let mi j denote the modulus of the path family

in the subrectangles S′i j (again we take the path family connecting the top

and bottom edges). These are conformally equivalent to path families con-

necting opposite sides of Q′
i j and via f−1 to path families in Qi j whose mod-

ulus is denoted mi j. Since these quadrilaterals were chosen small enough to

fit inside neighborhoods where f is K quasiconformal, we have

mi j

K
≤ m′

i j ≤ Kmi j.

Finally, let Γ j be the path family that connects the top and bottom of R j and

let Γ′
j be the family that connects the left and right sides of R′.

By the Series Rule

M

m
= λ (Γ j)≥ ∑

i

λ (Γi j) = ∑
i

1

mi j
.
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f

R

m

Q j

Q j

Rj
R

Q Q

R 1

m

m/M

j

FIGURE 6.1. Notation in the proof of Theorem ??.

Simlilary,

m′ = λ (Γ′)≥ ∑
j

λ (Γ′
j) = ∑

j

m′
j.

We get equality in the Series Rule when a rectangle is cut by vertical lines,

so
1

m′
j

= ∑
i

1

m′
i j

.

Hence

M

m
≥ ∑

i

1

mi j

≥ 1

K
∑

i

1

m′
i j

=
1

Km′
j

or
m

M
≤ Km′

j

for every j. Thus

m ≤
M

∑
j=1

m

M
≤ ∑

j

Km′
j ≤ Km′.
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mj

f
Q j

m/M

R SSR 1

Q ij Q ij

Q j

j j
ijij

FIGURE 6.2. More notation in the proof of Theorem ??.

Applying the same result to the inverse map shows f is K-quasiconformal.

�

If K = 1, then m = m′ the last line of the above proof becomes

m′ = m ≤ ∑
j

m

M
≤ ∑

j

m′
j ≤ m′.

so we deduce

∑
j

m′
j = m′,

whereas in general, we only have ∑ j m′
j ≤ m′. We want to use this to deduce

that 1-quasiconformal map must be conformal. We start with

LEMMA 6.2. Consider a 1 × m rectangle R that is divided into two

quadrilaterals Q1,Q2 of modulus m1 and m2 by a Jordan arc γ the con-

nects the top and bottom edges of R. Then if m = m1 +m2, the curve γ is a

vertical line segment.

PROOF. See Figure ??. Let ϕ1,ϕ2 be the conformal maps of Q1,Q2 onto

1×m1 and 1×m2 rectangles R1,R2 respectively. Set ρ = | f ′1| on Q1 and
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ρ = | f ′2| in Q2 and zero elsewhere. Then each horizontal line is cut by γ into

pieces one of which connects the left vertical edge of R to γ , and another that

connect γ to the right edge of R. The images of these connect the vertical

edges of R1 and R2 respectively. Thus the images have lengths at least

m1 and m2 respectively, there length of the image of the entire horizontal

segment in Q is ≥ m1 +m2. If we integrate over all horizontal segments in

Q, we see ∫

R
(ρ −1)dxdy ≥ m1 +m1 −m = 0.

Similarly,
∫

R
(ρ2−1)dxdy= area( f1(Q1)+area( f2(Q2))−area(R)= (m1+m2)−m≤ 0

(we would have equality if we knew γ had zero area). Thus
∫

Q
(ρ −1)2dxdy =

∫

Q
(ρ2 −1)−2(ρ −1)dxdy ≤ 0.

Since (ρ −1)2 ≥ 0, this implies the integral equals zero and hence that that

ρ = 1 almost everywhere, i.e., f1 and f2 are most linear and the curve γ is a

vertical line segment. �

1

m m1 2

f f21

R R21

Q Q
1 2

γ
R

FIGURE 6.3. A partition of a rectangle as in the proof of

Lemma ??.

LEMMA 6.3. If f is 1-quasiconformal on Ω, then it is conformal on Ω.

PROOF. If f is 1-quasiconformal in the proof of Theorem ??, then as

noted before Lemma ??, we must have

M

m
= ∑

i

1

mi j
,

1

m′
j

= ∑
i

1

m′
i j

, m′ = ∑
j

m′
j,
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Thus the map ψ = ϕ ′ ◦ f ◦ϕ−1 between identical rectangles must be the

identity map. Thus f = (ϕ ′)−1 ◦ϕ is a composition of conformal maps,

hence conformal. �

LEMMA 6.4. For any δ > 0 and and any r > 0 there is an ε > 0 so that

the following holds. If f : C→ C is (1+ ε)-quasiconformal and f fixes 0

and 1, then |z− f (z)| ≤ δ for all |z|< r.

PROOF. If not, there is a sequence of (1+ 1
n
)-quasiconformal maps that

all fix 0 and 1 and points zn ∈ D(0,r) so that |zn − fn(zn)| > δ . However,

there is a subsequence that converges uniformly on compact subsets of the

plane to a 1-quasiconformal map that fixes 0 and 1 and that moves some

point by at least δ . However a 1-quasiconformal map is conformal on C,

hence of form az+ b and since it fixes both 0 and 1, it is the identity and

hence doesn’t move any points, a contradiction. �

THEOREM 6.5. Suppose f is holomorphic on Ω and φ is quasiconfor-

mal and C1 on C. Suppose ψ is quasiconformal on Ω and µψ = µφ◦ f ev-

erywhere that f ′ 6= 0. Then there is a holomorphic function g on Ω′ = ψ(Ω)
so that

g◦ψ = φ ◦ f .

PROOF. Let g = φ ◦ f ◦ψ−1. Every point where f ′ is non-zero, there

is a disk where the composition is conformal. Thus g is continuous all

of Ω′ and holomorphic except on a countable set, hence is holomorphic

on all of Ω′ (since isolated points are removable for bounded holomorphic

functions). �

7. Removable sets for quasiconformal maps

When f is continuously differentiable, it is relatively easy to check

whether it is quasiconformal; we just compute the complex dilatation µ =
fz/ fz and check that |µ|< k < 1 everywhere. For some applications in dy-

namics, functions arise that that are homeomorphisms f on C, but which

are only C1 on an open set Ω = C \K on an open set Ω = C \K. If we

know the dilatation is bounded on just Ω, can we still deduce that f is qua-

siconformal? If we can, then we say K is removable for quasiconformal

mappings.

This depends on the “size” and “shape” of K. If K has interior, then it

is easy to construct counterexamples; choose a disk D ⊂ K and any non-

quasiconformal homeomorphism of the disk to itself that is the identity on

the boundary and extend it to be the identity off D. If K has positive area,

there are also counterexamples corresponding to applications of the measur-

able Riemann mapping theorem to a dilatation that is a non-zero constant on



68 2. GEOMETRIC PROPERTIES OF QUASICONFORMAL MAPS

K and zero off K. Even if K is quite small, there can be counter examples.

For example, given any guage function h such that h(t) = o(t) as t ց 0,

there is a closed Jordan curve γ and a homeomorphism of the sphere that is

conformal on both components of C \ γ but which is not Möbius (see e.g.,

[?], [?], [?]). On the other hand, if K has finite or sigma-finite 1-measure

then it is removable. These examples show that it is the “shape” rather than

the “size” of K that is crucial in most cases of interest.

In this section we give an elegant sufficient condition for K to be remov-

able that is due to Peter Jones and Stas Smirnov [?], generalizing an earlier

result of Jones [?]. We start by observing that quasiconformal images of

squares are “roundish” is a precise sense.

LEMMA 7.1. Suppose Q is a square, λ > 1 and f is K-quasiconformal

on λQ. Then

area( f (Q))≥ ε diam( f (Q))2,

where ε > 0 depends only on λ and K.

PROOF. By rescaling by conformal linear maps we may assume the

square Q is [−1,1]× [−1,1] and the map f fixes 0 and 1. Choose x ∈
∂Q; without loss of generality, assume x is in the left halfplane. Consider

A = λQ\ ([0,x]∪ [1,λ ). This is a topological annulus and has modulus that

is bounded and bounded away from zero independent of x. Thus the same

is true of f (A). If | f (A)| = R ≫ 1, then considering the metric 1/|z| logR

on {1 < |z|< R} shows that M( f (A))≤ 1/ logR ≪ 1, a contradiction. Thus

diam( f (Q)) is bounded depending only on K and λ .

The topological annulus B = λQ\ [0,1] also has bounded modulus, and

hence so does its image under f . Since 0,1 are fixed every curve sur-

rounding f ([0,1]) has length at lesat 2, so ρ = 1/2 is admissible. Thus

M( f (B)) ≤ area( f (Q))/4. Therefore area( f (Q)) is bounded below by a

constant depending only on λ and K, so the lemma is proven. �

ADD SOME FIGURES TO PROOF

AWhitney decomposition of an open set Ω consists of a collection of

dyadic squares {Q j} contained in Ω so that

(1) the interiors are disjoint,

(2) the union of the closures is all of Ω,

(3) for each Q j, diam(Q j)≃ dist(Q j,∂Ω).

The existence of such a collection is easy to verify be taking the set of

dyadic squares Q so that

diam(Q)≤ 1

4
dist(Q,∂Ω),

and that are maximal with respect to this property (i.e., the parent square

fails this condition).
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FIGURE 7.1. A Whitney decomposition.

Suppose K is compact, δ > 0 and for each x ∈ K let γx be a Jordan arc

in Ω = C\K that connects x to Ωδ = {z ∈ Ω : dist(z,K)≥ δ}. For a single

x, γx may consist of several arcs that connect x to Ωδ . See Figure ??.

FIGURE 7.2. Each boundary point is connected to a point

distance δ from ∂Ω. Some points may be connected by more

than one curve.

For each Whitney square Q ⊂ Ω, let

S(Q) = {x ∈ K : γx ∩Q 6= /0}.
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This is called the “shadow” of Q on K; the name comes from the special

case when K is connected and does not separate the plane and γx is a hy-

perbolic geodesic connecting x to ∞. If we think of ∞ as the “sun” and the

geodesics as light rays, then S(Q) is the part of K that blocked from ∞ by

Q, i.e., it is Q’s shadow. See Figure ??.

FIGURE 7.3. The shadow of a Whitney square on the boundary.

FIGURE 7.4. The paths connecting a Whitney square to its

shadow can sometimes hit larger Whitney squares. However

this path will hit a largest square, and there after only hit

smaller squares.
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Let C(Q) be the union of all Whitney squares hit by the arc γ connecting

Q to some point of its shadow; this is the “filled shadow” and corresponds

to a Carleson square in the unit disk.

We will assume three things about the Whitney squares and their shad-

ows:

(S1) S(Q) is closed.

(S2) diam(I(Q))→ 0 as diam(Q)→ 0,

(S3) limn→∞ ∑Q:ℓ(Q)≤2−n diam(I(Q))2 = 0 where the sum is over all Whit-

ney squares for Ω of side length 2−n.

These will hold in most situations we are interested in. For example,

if Ω is simply connected with locally connected boundary, and we take γx

to be arcs of hyperbolic geodesics connecting some base point z0 ∈ Ω to x,

then (S1) and (S2) always holds, (S3) holds if Ω is a John domain (defined

below).

THEOREM 7.2. Suppose Ω has a Whitney decomposition so that the

corresponding shadow sets satisfy conditions (S1)-(S3) above. Then K =
∂Ω is removable for quasiconformal maps.

f the chain associated to each x ∈ ∂Ω consists of adjacent squares (i.e.,

Q j touches Q j+1, then the same is true for their images under f , so condition

(??) is automatically satisfied. Thus we obtain:

COROLLARY 7.3. Suppose Ω has a Whitney decomposition so that the

corresponding shadow sets satisfy conditions (1)-(3) above and all the Whit-

ney chains are connected. The ∂Ω is removable to quasiconformal home-

omorphisms, i.e., any homeomorphism of the plane that is K-QC off ∂Ω is

quasiconformal on the whole plane.

This is the version given by Jones and Smirnov (restricted to the plane).

We have stated the more general version with (??) in order to include cer-

tain maps arising from groups of circle reflections where we require discon-

nected Whitney chains, but for which (??) is automatically fulfilled.

In both the theorem and the corollary if if the map f is conformal off

∂Omega (i.e., K = 1), then we will show that the extension is conformal ev-

erywhere. If the map f is K-quasiconformal off ∂Ω then we only prove that

it is C-quasiconformal for some C < ∞. However, it follows from this that

f is actually K-quasiconformal on the whole plane. Our hypotheses imply

that ∂Ω has zero area and hence |µ f ‖≤ (K−1)/(K+1) almost everywhere

and this implies f is K-quasiconformal if we use the analytic definition of

quasiconformality (which we are delaying until a later chapter). The weaker

version will be sufficient for our applications.
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PROOF OF THEOREM ??. Suppose that W is any bounded quadrilateral

in the plane, say of modulus m and that W ′ = F(W ) has modulus m′. We

want to show that m′ ≤ Cm where C < ∞ depends only on K and M as

in the statement of the theorem. We will do this by mimicking the proof

of Theorem 2.1, that showed that any piecewise differentiable map with

bounded dilatation was quasiconformal (in the geometric sense).

Let ϕ : W →R= [0,m]× [0,1] and ψ : W ′ → [0,m′]× [0,1] be conformal

maps of the quadrilaterals Q,Q′ to rectangles R,R′ of the same modulus. Let

X = ϕ(∂Ω∩W )⊂R. The main difficulty with the proof is that we are going

to consider three different Whitney decompositions: one for W , one for Ω
and one for U = R \X . To try to differentiate the different Whitney cubes

we we let {W j} denote a Whitney decomposition for W , {Q j} a Whitney

decomposition for Ω and {U j} a Whitney decomposition for U .

Fix some ε > 0. Fix a Whitney cube W j for W . We assume the decom-

position is chosen so that 2W j ⊂W . Suppose δ > 0 is so small (depending

on our choice of W j) that the following conditions all hold:

(1) If Qk is a Whitney square for Ω with diameter less than δ and the

shadow S(Qk) hits W j, then S(Qk) ⊂ 2W j and the entire Whitney

chain connecting any point x ∈ S(Qk) to Qk is contained in 2W j.

This is possible by condition (S2) on shadow sets.

(2) Let S (W j) denote the collections of all Whitney squares Qk for Ω
so that diam(Qk)≤ δ and S(Qk))∩W j 6= /0. Then

∑
Qk∈S (W j)

diam(S(Qk))
2 ≤ ε · area(W j).

This holds for small enough δ , because by condition (S3) on shad-

ows, this sum over all Whitney squares for Ω is finite, so removing

all the squares bigger than δ gives a sum that tends to 0 as δ tends

to zero. Thus we can make is less than ε · area(W j) by taking δ
small enough (depending on W j).

Let S = ∪W j
S (W j) be the collection of all shadow sets of all Whitney

squares for Ω that are in some S (W j) for some Whitney square W j of W .

Note that each point x ∈ ∂Ω∩W j is associated to a Whitney chain that

contains a square with diameter comparable to δ . There are only finitely

many such squares, so their shadows form a finite collection that covers

∂Ω∩W j.

Suppose L= [a+ iy,b+ iy] is a horizontal segment, compactly contained

in the interior of R at height y. We wish to show that

∫ 1

0
|g(b+ iy)−g(a+ iy)|dy ≤C

√
mm′,(7.1)
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where C depends only on K and M. If we can do this, then by letting a → 0

and b → m we get

m′ ≤ lim
a→0,b→m

|g(b+ iy)−g(a+ iy)|,

and hence

m′ ≤ lim
a→0,b→m

∫ 1

0
|g(b+ iy)−g(a+ iy)|dy ≤C

√
mm′,

which gives the desired inequality m′ = O(m). The reversed inequality,

m = O(m′), can be deduced from the same argument applied to the other

pair of opposite sides of Q, since the corresponding path famlies have the

reciprocal moduli. Thus it suffices to prove (??).

ADD FIGURE

Since L is compactly contained in the interior of R and X is relatively

closed in the interior of R, L∩X is compact. Thus ϕ−1(L∩X) is a compact

set of W , hence covered by finitely many Whitney squares for W and hence

is covered by finitely many shadows sets in S .

Let X be the image of the elements of S under ϕ . Then L ∩ X is

covered by finitely many elements of X , say X1, . . .Xn. For k = 1, . . . ,n,

let Yk = [ak,bk] be the smallest closed interval in L that contains Xk ∩L (this

is the convex hull of Xk ∩ L, i.e., the interval with the same leftmost and

rightmost point as Xk ∩ L). Then Y1, . . . ,Yn also cover L∩X and we can

extract a subcover with the property that Y j ∩Yk 6= /0 implies | j− k| ≤ 1.

Since the points ak,bk are both in the same set Xk, the preimage points

ϕ−1(ak),ϕ
−1(bk) are both in the same element of S . Thus they are both

in the shadow set of some Whitney square for Ω and are associated to a

two sided chain of distinct Whitney squares {Qm}∞
−∞ of Whitney squares

for Ω. If two chains arising in this way, say from Yk and Ym with m > k,

have a Whitney square in common, then we can combine the chains to form

a chain connecting ak to bm consisting of distinct squares.

After doing this for all intersections, we end up with a finite collec-

tion of closed intervals Zk in L which covers the same set as the union of

the Yk’s and such that the two endpoints of each Zk correspond to a two-

sided Whitney chain in Ω and that different intervals use different Whitney

squares (no overlapping chains). Moreover, if Zk has endpoints ck,dk and

the corresponding chain is {Qn}, then

|g(ck)−g(dk)| ≤ ∑
n

diam(ψ( f (Qn))).

The set V = L \∪kZk consists of finitely many open intervals in U =
R \ X with their endpoints in X . We break V into countable many sub-

intervals by intersecting it with the Whitney squares for U (without loss of
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generality, we can assume the endpoints of L occur on the boundary of a

Whitney square for U). On each Whitney square Uk for U we define the

constant function

Dg =
diam(g(Uk))

diam(Uk)
.

Then if L j = L∩U j,
∫

L j

Dgdx = diam(g(U j))/
√

2.

Thus if ZL is the union of all the Zk ∩ l, we get
∫

L\ZL

Dgdx ≃ ∑
j

diam(g(U j)),

where the sum is over Whitney squares for U that hit L. Thus

|g(b+ iy)−g(a+ iy)|.
∫

L∩U
Dgdx+∑

n

diam(ψ( f (Qn))).

Now integrate in y to get
∫ 1

0
|g(b+ iy)−g(a+ iy)|dy .

∫∫

U
Dgdx+∑

n

diam(ψ( f (Qn)))µn,

where µn is the Lebesgue measure in [0,1] of the set of lines Ly that use

the Whitney square Qn is at least one of the two-sided chains associated to

a interval Z ⊂ Ly. The Lebesgue measure of this set is no more than its

diameter, which is no more than the diameter of Xn = ϕ(S(Qn)). Thus
∫ 1

0
|g(b+ iy)−g(a+ iy)|dy.

∫∫

U
Dgdxdy+∑

n

diam(ψ( f (Qn)))diam(Xn),

We now estimate each term using the Cauchy-Schwarz inequality. First,

∑
n

diam(ψ( f (Qn)))diam(Xn)

≤ (∑
n

diam(ψ( f (Qn)))
2)1/2(∑

n

diam(Xn)
2)1/2

≤ A

(
∑
n

area(ψ( f (Qn)))

)1/2
(

∑
Wk

∑
Qn∈S (Wk)

[
diam(ϕ(Wk))

diam(Wk)
diam(S(Qn))

]2
)1/2

.

Now use Lemma ??,

≤ A(∑
n

area(ψ( f (Qn))))
1/2(∑

Wk

∑
Qn∈S (Wk)

[
diam(ϕ(Wk)

diam(Wk)

]2

ε area(Wk)))
1/2

≤ A

[
∑
n

area(R′)1/2 · ε · area(R)

]1/2

.
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where A just depends on the distortion estimate for conformal maps (Theo-

rem 1.23) and ε is as small as we wish. Thus this term is small.

The other term is also bounded by Cauchy-Schwarz
∫∫

U
Dgdx = ∑

k

∫∫

Uk

Dgdxdy

≤
(

∑
k

∫∫

Uk

(Dg)2dxdy

)1/2(

∑
k

∫∫

Uk

dxdy

)1/2

≤
(

∑
k

(diam(g(Uk))
2

)1/2

area(R)1/2

≤ C

(

∑
k

(area(g(Uk))

)1/2

area(R)1/2

≤ C area(R′)1/2 · area(R)1/2

≤ C
√

m′m.

Thus ∫ 1

0
|g(b+ iy)−g(a+ iy)|dy .

√
m′m+O(ε),

Taking ε → gives the desired inequality. �

COROLLARY 7.4. If K satisfies the conditions of Theorem ??, them K

is removable for conformal homeomorphisms, i.e., and homeomorphism of

the plane that is conformal off K is conformal everywhere.

PROOF. Theorem ?? implies that f is quasiconformal on the plane, so

the point is to show that we can take the quasiconformal constant to be 1.

If we redo the proof assuming f is conformal off ∂Ω, then the piecewise

constant function Dg can be replaced by the usual derivative |g′|. This leads

to the inequality

m′ ≤
√

m′m,

or m′ ≤ m. This, together with the reverse ineqaulity which follows by

considering the reciprocal path family in each quadrilateral, implies f is

1-quasiconformal, hence is conformal. �

COROLLARY 7.5. If f ,g are quasiconformal maps of the upper and

lower half-planes that agree on the real line, then they define a quasicon-

formal map on the whole plane.

PROOF. This is immediate since a line clearly satisfies the Jones-Smirnov

criteria: just consider R as the boundary of the upper half-plane and for

x ∈ R, let γx be a vertical line ray. Then the shadow of any square is its
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vertical projection, and the square of the shadows length is comparable to

the area of the square. Thus any compact segment of R is removable, and

since quasiconformality is a local property (Theorem ??), the whole line is

removable. �

COROLLARY 7.6. If f is a quasiconformal map of the upper half-plane

to itself, mapping the real line to itself, then the extension of f to the whole

plane by f (z̄) = f (z) is quasiconformal in the whole plane.

PROOF. Immediate from the previous result since composing a quasi-

conformal map with reflections gives another quasiconformal map. �

COROLLARY 7.7. Quasicircles are removable.

PROOF. If Γ = g(R) is a quasiconformal image of the reals and f is a

homeomorphism that is quasiconformal on each side of Γ, then h = f ◦g is

a homeomorphism that is quasiconformal on each side of R, then quasicon-

formal on the whole plane. Thus f = h◦g−1 is a composition of quasicon-

formal maps and hence is quasiconformal. �

An open, connected set Ω in R
2 is called a John domain if any two

points a,b ∈ Ω can be connected by a path γ in Ω with the property that

dist(z,∂Ω)& min(|z−a|, |z−b|). See Figure ??

FIGURE 7.5. The domain on the left is a John domain, but

the one on the left is not; inward pointing cusps are OK, but

outward pointing cusps are not.

LEMMA 7.8. The Riemann map ϕ from the unit disk to a bounded John

domain satisfies

diam(ϕ(I(Q)))≤C diam(ϕ(Q)),
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dist(ϕ(Q),ϕ(I(Q)))≤C diam(ϕ(Q)),

for some constant C < ∞ and any Whitney square Q and is shadow I(Q).

PROOF. The second inequality follows directly from Lemma 4.4 by

considering the path family of radial lines connecting Q to I. To prove the

first, consider the Whitney-Carleson boxes Q1 and Q2 that are adjacent to Q

and of the same size. By Lemma 4.4 each is connected to its shadow by a ra-

dial segment whose image under f has length comparable to diam( f (Q)).
Thus there is a geodesic crosscut γ of the disk that passes through Q and

whose image has length comparable to diam( f (Q)).
Now suppose x is in the shadow of Q. Any curve connecting 0 to x

crosses γ , so any curve Γ connecting f (0) and f (x) crosses f (γ) and hence

contains a point z ∈ f (γ)∩Γ that is at most distance O(diam( f (Q)) from

∂Ω. Thus by the definition of John domain, either

dist( f (0),z) = O(diam( f (Q))),

or

dist( f (x),z) = O(diam( f (Q))).

In a bounded domain, the first can only happen for finitely many Qs; for

the remainder, the second must hold and hence f (I(Q)) is contained in a

O(diam( f (Q)) neighborhood of f (Q). �

COROLLARY 7.9. Boundaries of John domains are removable.

PROOF. The conclusions of the Lemma ?? easily imply (1)-(3) in The-

orem ??. �

The Jones-Smirnov result (Theorem ??) places restrictions on the set

E, but none on the mapping (besides being a homeomorphism). An earlier

result of Rickman (e.g., [], []) makes an assumption on the mapping, but

none on the set K:

LEMMA 7.10 (Rickman’s lemma). Suppose Ω is a planar domain and

K ⊂ Ω is compact. Suppose f is homeomorphism of Ω that is quasiconfor-

mal on Ω\K and F is quasiconformal on all of Ω. If f = F on K, then f is

quasiconformal on all of Ω.

PROOF. Isolated points of K are clearly removable and there are only

countable many such points, so we may assume that every point of K is an

accumulation point.

The idea proof is the same as the proof of Theorem ??: we consider

a quadrilateral W and its image W ′ = f (W ) and conformally map each to

rectangles of modulus m and m′ respectively. Let G = ψ ◦ F ◦ ϕ−1 and

g = ψ ◦ f ◦ϕ−1. Then our assumption implies g = G on X .
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As before, we want to prove the estimate (??). However, this time we

cover X by dyadic squares that are so small that both g and G are quasicon-

formal on 6Q for each square Q used, and both images of Q lie in R′.
The union of these squares plays the role of the set Z in the earlier proof.

Given a compact horizontalline segment L in R, we let {Yk} enumerate the

convex hulls of sets of the form L∩Q for Q in our cover of X . Then defining

Dg exactly as before on R\X , and using g = G on X , we get

|g(b+ iy)−g(a+ iy)| ≤
∫

L∩U
Dgdx+∑

k

|g(ck)−g(dk)|

≤
∫

L∩U
Dgdx+∑

k

|G(ck)−G(dk)|

≤
∫

L∩U
Dgdx+ ∑

Q:Q∩L 6= /0

diam(G(Q)).

Integrating over y then gives
∫ 1

0
|g(b+ iy)−g(a+ iy)|dy ≤

∫

U
Dgdx+∑

Q

diam(G(Q))ℓ(Q).

The first term is bounded exactly as before and the second is bounded by

∑
Q

diam(G(Q))ℓ(Q) ≤ [∑
Q

diam(G(Q))2]1/2[∑
Q

ℓ(Q)2]1/2

≤ C[∑
Q

area(G(Q))]1/2[∑
Q

area(Q)]1/2

≤ C[area(R′)]1/2[area(R)]1/2

≤ C
√

m′m.

The rest of the proof is them completed just as before. �

8. Quasisymmetric maps and quasicircles

A homeomorphism h : R→ R is called M-quasisymmetric if |h(I)| ≤
M|h(J)| whenever I and J are adjacent intervals of equal length. Equiva-

lently,

sup
t∈R,x>0

h(x+ t)−h(t)

h(t)−h(x− t)
≤ M.

A homeomorphism is called quasisymmetric if it is M-quasisymmetric for

some M < ∞. Later we will discuss quasisymmetic map of the unit circle to

itself, but for the moment we stick to maps of R to R.

THEOREM 8.1. A homeomorphism h : R → reals is quasisymmetric if

and only if it extends to a quasiconformal mapping of the plane to itself.
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PROOF. First we show that if f is a K-quasiconformal map of the plane

that maps R to itself, then the restriction of f to R is quasisymmetric.

Without loss of generality we may assume I = [0,1/2] and J = [1/2,1]
and that f fixes 0 and 1. Consider the modulus of the topological annuus

A = C\ ([0,1]∪ [2,∞) This has a fixed finite, non-zero modulus, so its im-

age B = f (A) =C\ ([0,x]∪ [1,∞)) also has modulus bounded between two

positive real numbers that depend only on K. If x = f (1/2) is too close to 0

or 1, then B clear has modulus close to 0 or ∞ respectively, a contradiction.

Thus x is bounded away from both 0 and 1 with an estimate depending only

on K, and hence h is M-quasiconformal with a constant depending only on

K.

FIGURE 8.1. On the left is the topological annulus A. If

x = f (1/2) is too close to 0 or 1, the image annulus has

small or large modulus, contradicting 1
K

M(A)≤ M( f (A))≤
KM(A). The two possibilities are shown on the right.

Next suppose h : R → R is M-quasisymmetric. We will assume h is

increasing; the other case is handled by a similar argument. We will use the

fact that the hyperbolic upper half-plane can be tesselated by hyperbolically

identical right pentagons. The corresponding picture for the disk is shown

in Figure ??.

Each right pentagon in the tesselation of the upper half-plane determines

five hyperbolic geodesics containing its sides, and these deterine ten distinct

points on the real line. The h images of these point are also ten distinct

points and the same pairs of point determine five new geodesics that define

a hyperbolic pentagon (it need not be regular or right). There is a diffeo-

morphism of the right pentagon to this new one that presevers arc-length

along the edges in the sense that on each side of the pentagon length are

multiplied by the ratio of the image length over the starting length. This

ensures that the diffeomorphisms defined on adjacent pentagons agree on

the common sides. These diffeomorphisms come from a compact family

of possibilities, thus have uniformly bounded dilatations, and hence define
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FIGURE 8.2. Hyperbolic space is tesselated by hyperbol-

ically identical right pentagons. There is a corresponding

picture on the upper half-plane model.

a quasiconformal map of the half-plane to itself that agrees with h on the

boundary.

�

9. Quasicircles

We say that a curve γ satisifies the 3-point condition, if there is a M <∞
so that given any x,z ∈ γ and y on the smaller diameter arc γ(x,y) ⊂ γ
between x,y, we have

|x− y| ≤ M|x− z|,
Equaivalently,

diam(γ(x,z))≤ M|x− z|.
This condition is also called the Ahlfors M-condition or bounded turning.

It is immediate from Lemma ?? that the image of the real line under any

quasiconformal mapping of the plane is bounded turning, and below we

shall prove the converse is also true.

The similar looking, but stronger, condition

ℓ(γ(x,z))≤ M|x− z|
where we assume γ is locally rectifiable is called the chord-arc condition.

Such curves are called chord-arc curves or Lavrentiev curves, and form

a special, but very important, subclass of the bounded turning curves. It
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FIGURE 8.3. Two hyperbolic pentagons in the disk, both

normalized to have one side on the vertical axis and contain-

ing the origin. If the corresponding 10 points on the circle

are related by a M-quasisymmetric map, then the sides of

pentagons all have comparable hyperbolic length and can be

mapped to each other by a diffeomorphism that multiplies

lengths on each side and has dilatation bounded in terms of

M.

FIGURE 8.4. Sides of a hyperbolic right pentagon deter-

mine 5 geodesics and 10 boundary points. The images of

these 10 points detremine 5 geodesics, which give a hyper-

bolic pentatgon. We take any QC map between the pen-

tagons that multiplies hyperbolic arclengh on each edge by

a constant (the ratio of the lengths of an edge and it image).



82 2. GEOMETRIC PROPERTIES OF QUASICONFORMAL MAPS

turns out that chord-arc curves are exactly the images of the real line under

bi-Lipschitz maps of the plane, but we will not prove this here. See [], [].

To prove that bounded turning curves are quasicircles, we will need the

following lemma.

LEMMA 9.1. Suppose γ is bounded turning with constant M and 0,1 ∈
γ . Suppose Ω is one of the connected components of C\ γ and suppose z is

a point on γ between 0 and 1. Let γ1,γ2,γ3,γ4 denote the disjoint subarcs

of γ from −∞ to 0, from 0 to x, from x to 1 and from 1 to +∞ respectively.

Let Γ be the path family joining the arc γx ⊂ γ from 0 to x to the disjoint

half-infinite arc γ1 ⊂ γ joining 1 to ∞. Then M(Γ)→ 0 as x → 0 with upper

and lower bounds that depend only on |x| and M

PROOF. The 3-point condition implies that

dist(γ2,γ4)≥
1

M
−|x|,

so for |x| sufficiently small every path in Γ crosses the round annulus

{z : M|x|< |z|< 1

2M
} ⊂ {z : diam(γ2)< |z|< dist(γ2,γ4)}.

For |x| small, this implies M(Γ) is small.

0 1/2 1
0

x
1

FIGURE 9.1.

To prove a lower bound on M(Γ) it suffices to prove an upper bound

on the reciprocal modulus of the path family connecting γ1 to γ3. By the

3-point condition, these arcs are at least distance |x|/M apart, so the metric

ρ = M/|x| on the disk of radius M around the origin is admissible. Hence

the modulus of the reciprocal family is at most πM4/|x|2 and so M(γ) ≥
|x|2/M4π . �

LEMMA 9.2. If γ has bounded turning, and f ,g are the conformal maps

from the upper and lower half-planes to the two sides of γ (mapping ∞ to ∞
in both cases), then h = g−1 ◦ f is a quasisymmetric homeomorphism of the

line.

PROOF. Consider two adjacent intervals of equal length on the real

line. After renormalizing by linear maps, we may assume these are I =
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0

x

FIGURE 9.2. Since dist(γ1,γ3) ≥ |x|/2M, the metric ρ =
1/2M is admissible.

[0,1/2] and [[1/2,1] and that h fixes both 0 and 1. By two applications of

Lemma ??, f (1/2) can’t be too close to either 0 or 1, and hence h(1/2) =
g−1( f (1/2)) can’t be too close to 0 or 1 either. Thus h is quasisymetric with

a constant that depends only on the 3-point constant.

0 1/2 1
0

x
1

FIGURE 9.3. The path family in the upper half-plane con-

necting [0,1/2] to [1,∞) has modulus 1, so its conformal

image also has modulus 1. Therefore x = f (1/2) can’t be

too close to either 0 or 1.

�

LEMMA 9.3. A curve γ is a quasi-line if and only if it has bounded

turning.

PROOF. If γ is the quasiconformal image of a line, then it satisfies the

3-point condition by Lemma ??, as mentioned earlier. On the other hand,

if γ satisfies the 3-point condition, then h = g−1 ◦ f (as defined in Lemma

1.23) is quasisymemtric, and hence extends to a quasiconformal map H of

the whole plane. Now set F = f on the lower half-plane and F = g◦H on

the upper half-plane. Clearly this is quasiconformal on each half-plane and

on the real line g◦H = g◦g−1 ◦ f = f so the two definitions agree. Thus H
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is quasymmetric on the whole plane by Corollary 1.23 and F(R) = f (R) =
γ . �



CHAPTER 3

Analytic aspects of quasiconformal mappings

1. Piecewise affine maps

We say that a linear map f is K-quasiconformal if D f ≤ K. The linear

map need not be defined on the whole plane. Given two triangles T1, T2

with vertices a,b,c and A,B,C, there is a unique affine map T1 → T2 taking

a→A, b→B and c→C. The map is orientation preserving if both triangles

were labeled in the same orientation.

a b

c C

B

A
FIGURE 1.1. A pair of similarly oriented, labeled triangles

defines a linear map and has an associated dilatation.

There is an obvious affine map between these triangles and we can eas-

ily compute its quasiconformal constant of this map as follows. First use

a conformal linear map to send each triangle to one of the form {0,1,a}
and {0,1,b}. The affine map is then of the form f (z) → αz+ β z̄ where

α +β = 1 and β = (b−a)/(a− ā) and from this we see that

K f =
1+ |µ f |
1−|µ f |

,

where

µ f =
fz̄

fz
=

β

α
=

b−a

b− ā
,

If the triangle T ′ is degenerate, or has the opposite orientation as T , we

simply give ∞ as our QC bound K.

2. The mapping theorem

THEOREM 2.1. If µ is continuous on the plane and |µ| ≤ k < 1, then

there is a sequence of K-quasiconformal maps { fn} with dilatations µn so

85
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FIGURE 1.2. Two compatible triangulations of different

polygons. The most distorted triangle is shaded; this deter-

mines an upper bound for the piecewise linear map between

the polygons.

that |µn| ≤ k, supC |µ − µn| → 0 and so that { fn} converges uniformly on

compact sets to a K-quasiconformal map f .

PROOF. �

COROLLARY 2.2. Suppose f is an entire function and ψ is K-quasiconformal

map that has a continuous dilatation µ . Then there is a K-quasiconformal

map ϕ so that g = ψ ◦ f ◦ϕ is entire.

PROOF. �

The uniformization theorem states that any simply connected Riemann

surface is conformally equivalent to either the 2-sphere S, the complex plane

C or the unit disk D. If the surface is non-compact, the sphere is eliminated

and surface must be equivalent to either C or D. These two choices can be

distinguished using extremal length: choose a compact connect set K on the

surface and consider the set of rectifiable paths that separate K from ∞. If

this family has finite modulus, then the surface is equivalent to the disk and

otherwise the modulus is infinite and the surface is equivalent to the disk.

For our applications, we only need to use the uniformization theorem in

the case when R is built by attaching Euclidean triangles along their edges

in a way that is combinatorially identical to the usual triangulation of the

plane by identical equilateral triangles. See Figure ??.

Subharmonic function play an important role in the Perron process for

solving the Dirichlet problem on a planer domain or Riemann surface. Sup-

pose Ω is a Riemann surface and we are given a collection of subregions

{Ω j} on which we can solve the Dirichlet problem (e.g., a collection of

disks, where we can use the Poisson formula). If f ∈ C(∂Ω) and ∂Ω is

compact, then f has a lower bound M. Let F be the collection of subhar-

monic functions v on Ω that have continuous boundary values less than f

on ∂Ω. The collection is non-empty since the constant M is in it.
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Let u = sup{v : v ∈ F}. We claim u is harmonic. It is clearly subhar-

monic since it is a supremum of subharmonic functions. IN each Ωn we

can solve the Dirichlet problem in Ωn with boundary data u; if u were not

harmonic in Ωn, replacing u with this solution in Ωn would give a strictly

larger element of F .

The final step is to prove that u has the correct boundary values. This

requires some assumption on ∂Ω, since it is not true the Dirichlet problem

can be solved for every domain.

EXERCISE: Show that if Ω =D\{0} and we set f = 1 on T and f = 0

at 0, then the function u created by the Perron process is the constant 1, and

hence does not solve the Dirichlet problem. Indeed, there is no harmonic

function on Ω with the given boundary values.

We say a barrier exists at x ∈ ∂Ω if there is a r > 0 and a non-negative,

harmonic function V on Ω′ = Ω∩D(x,r) so that

limsup
z→x

V (x)≤ 0,

but

liminf
z→y

V (x)> 0,y ∈ ∂Ω′ \{x}

and V ≥ 1 on {|z− x|= r}∩Ω.

LEMMA 2.3. If there is a barrier at x then the Perron solution u extends

continuously to x and equals f there.

PROOF. First consider the special case when f takes values in [0,1] and

x is the unique point where f takes the minimal value 0. Suppose v ∈ F .

Since v is subharmonic on Ω′ = Ω∩D(x,r) and bounded above by 1, it is

bounded above by V �

LEMMA 2.4. If the dilatation is symmetric with respect to a circle (or

line), the corresponding quasiconformal function can be chosen to be sym-

metric with respect to the same circle (or line).

COROLLARY 2.5. If f is piecewise continuous K-quasiconformal on an

open set Ω ⊂ C then there is a K-quasiconformal map g : C → C so that

f ◦g is conformal on Ω.

PROOF. The dilatation µ of f is defined on Ω and set it to be zero on

the rest of the plane. Apply the construction above to generate a sequence

{gn} and limit g. Then gn◦ f �

COROLLARY 2.6. If f : D → D is K-quasiconformal an onto, and we

extend f to a map C→ C by reflection

f (1/z) = 1/ f (z),

then the extension is K-quasiconformal on the whole plane.
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COROLLARY 2.7. If ϕ is K-quasiconformal on C and g is holomorphic

on Ω then there is a K-quasiconformal map ψ on Ω such that f = ϕ ◦ g ◦
ψ−1 is holomorphic on ψ(Ω).

In this case the functional relation can be rewritten as

f ◦ψ = ϕ ◦g.

If Ω = C, such a pair of functions f and g are called quasiconformally

equivalent. We will examine such pairs in more detail in later sections (see

Sections 1.23, 1.23).

COROLLARY 2.8.

We can extend the mapping theorem from continuous dilatations µ to

measurable ones, using the following two results that will be proven later

(see Theorems ?? and ??):

PROPOSITION 2.9. A K-quasiconformal map f defined on a planar do-

main Ω is differentiable almost everywhere on Ω. The dilatation µ f = fz/ fz

is well defined and less than k < 1 almost everwhere.

PROPOSITION 2.10. Suppose { fn}, f are all K-quasiconformal maps

on the plane with dilatations {µn}, µ f respectively, that fn → f uniformly

on compact sets and that µn → µ pointwise almost everywhere. Then µ f =
µ almost everywhere.

Assuming this, we can deduce:

THEOREM 2.11. [Measurable Riemann Mapping Theorem] Given any

measurable function µ on the plane with ‖µ‖∞ = k < 1, there is a K =
(k + 1)/(k − 1) quasiconformal map f with dilatation µ f = µ Lebesgue

almost everywhere on C.

PROOF. Given a measurable µ find a sequence of continuous functions

{µn} with µn → µ pointwise and supC |µn(z)| ≤ k = ‖µ‖∞ < 1. Let fn be

the quasiconformal map with dilatation µn, normalized to fix both 0 and

1. Then since normalized, K-quasiconformal maps form a compact fam-

ily (Theorem 1.23) there is a subsequence of these maps that converges

uniformly on compact sets to a K-quasiconformal map f . This map has a

dilatation µ f . Then µ f = µ by Theorem ??. �

The main goal of this chapter is toprove the two propositions above, and

complet the proof of the mapping theorem. Another goal of this chapter

Pompeiu’s formula (proven for C1 functions in Chapter 1.23):

f (w) =
1

2πi

∫

∂Ω

f (z)

z−w
dz− 1

π

∫∫

Ω

fz

z−w
dxdy.(2.1)
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However, it is not even clear whether this formula makes sense for a qua-

siconformal map; since f is continuous, the first integral is well defined,

but it is not clear whether the second integral is well defined in general; we

need to verify that fw is defined.

We expect (but have not yet proved) that

area( f (Ω)) =
∫

Ω
J f dxdy =

∫

Ω
| fz|2 −| fz|2dxdy =

∫

Ω
| fz|2(1−|µ f |2)dxdy,

which would imply fz and fz are in L2 locally. However, |z−w|−1 is not

in L2, so we can’t be sure that the area integral in the Pompeiu formula

is convergent. However, |z−w|−1 it in Lq locally for every q < 2, so the

integral will be bounded if we can show fz ∈ Lp locally for some p> 2. This

is a fundamental result of Bojarski in C [] and of Gehring [] in dimensions ≥
2 and we will prove it later in this chapter, using the 2-dimensional version

of Gehring’s proof.

Another problem with proving the Pompeiu formula for quasiconformal

maps is a little more subtle. As noted above, we know the formula is valid

for smooth functions and to verify it for general quasiconformal maps, we

would like to smooth these functions (say by convolution with a smooth, ra-

dial bump function) and pass to a limit. In this case, the smoothed functions

converge uniformly to the limit, so the boundary integral term converges as

desired, but the integrand of the area integral only converges pointwise and

we need some extra condition to insure this integral also converges. In this

case, we can use Gehring’s result and the Lp boundedness of the Hardy-

Littlewood maximal theorem to deduce that the sequence integrands com-

ing from the smooth approximations of f is dominated by fixed L1 function,

so the Lebesgue dominated convergence theorem can be applied to verify

Pompeiu’s formula. Pompeiu’s formula can then we applied to prove the

differentiable dependence of f on its dilatation µ .

3. Covering lemmas and maximal theorems

We start with a review of some basic real analysis and them move to-

wards the theorem of Bojarski and Gehring and its consequences.

THEOREM 3.1 (Wiener’s Covering Lemma). Let B = {B j} be a finite

collection of balls in R
d . Then there is a finite, disjoint subcollection C ⊂B

so that

∪B∈BB ⊂ ∪B∈C 3B.

In particular, the Lebesgue measure of the set covered by the subcollection

is at least 3−d times the measure covered by the full collection.

The above lemma seems to be first due to Wiener [?].
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THEOREM 3.2 (Vitali Covering Lemma). Suppose E ⊂R
d is a measur-

able set and B = {B j} ⊂ R
d is a collection of balls so that each point of E

is contained in elements of B of arbitrarily small diameter. Then there is a

subcollection C ⊂ B so that E \∪B∈C B has zero d-measure.

THEOREM 3.3 (Lebesgue Dominated Convergence theorem). Suppose

g∈ L2(µ) and { fn} satisfy | fn| ≤ g and lim fn = f pointwise. Then lim
∫

fndµ =∫
f dµ .

THEOREM 3.4 (Egorov’s Theorem). Suppose µ is a finite positive mea-

sure and { fn} is a sequence of measurable functions that converge to f

pointwise almost everywhere on a set E with respect to µ . Then for every

ε > 0 there is a subset F ⊂ E so that µ(E \F) < ε and fn → f uniformly

on F.

LEMMA 3.5 (The Calderon-Zygmund lemma). ) Suppose Q is a square,

u ∈ L1(Q,dxdy) and suppose

α >
1

area(Q)

∫

Q
|u|dxdy.

Then there is a countable collection of pairwise disjoint open dyadic sub-

squares of Q so that

α ≤ 1

area(Q j)

∫

Q j

|u|dxdy < 4α,(3.1)

|u| ≤ α almost everywhere on Q\∪ jQ j,(3.2)

∑area(Q j)≤
1

α

∫

Q
|u|dxdy(3.3)

PROOF. We say a subsquare of Q has property P is the first conclusion

above holds and we define a collection of subsquares by iteratively divid-

ing squares that do not have property P into four, equal sized disjoint sub-

squares, and stopping when property P is achieved. If the average of u over a

square is less than α then average over each of the four subsquares is < 4α ,

so every stopped square has property P. Any point not in a stopped square

is a limit of squares where the average of u is < α , so by the Lebesgue

differentiation theorem u ≤ α at almost every such point. Finally,
∫

Q
|u|dxdy ≥ ∑

j

α area(Q j),

which proves the third property. �
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Hardy-Littlewood maximal function.

Marcinkiewicz interpolation

Lp boundedness of maximal function

Maximal function bounds maximal function of convolution with radial

L1 bump function.

4. Absolute continuity on lines

The main type of K-quasiconformal maps used in this text are piecewise

C1 functions that satisfy

| fz| ≤ k| fz|,(4.1)

where k− (K − 1)/(K + 1). By itself, this equation is not enough to guar-

antee a map is quasiconformal. For example, suppose g : [0,1] → [0,1] is

the usual Cantor singular function.e., a continuous function that increases

from 0 to 1 on [0,1] and is constant on each complementary component

{I j} of the Cantor middle-1
3

set E. Then the map f (x,y) = (x+g(x),y), is a

homeomorphism of [0,1]× [0,1] to [0,2]× [0,1] that is a translation (hence

conformal) on each rectangle I j × [0,1], where I j is a complementary inter-

val of the Cantor set. Thus fz = 0 almost everywhere, but there are several

way to check that f is not quasiconformal.

EXERCISE : Find rectangles whose modulus is increased by arbitrarily

large factors by f .

EXERCISE: Find a path family Γ of zero modulus, so that f (Γ) has

positive modulus.

EXERCISE: Show that f map some set of zero area to positive area

(later we will prove quasiconformal maps can’t do this).

The problem with this example is that it is not absolutely continuous on

horizontal lines, and so f cannot be recovered by integrating its partials.

A function f is called absolutely continuous on a line L if for every

ε > 0 there is a δ > 0 so that m1(E) < δ implies m1( f (E)) < ε where m1

denotes 1-dimensional Hausdorff measure.

THEOREM 4.1. If f is quasiconformal, then f is absolutely continuous

on almost every line in any given direction.

PROOF. After a Euclidean similarity, we may consider horizontal lines

in Q = [0,1]2. Define

A(y) = area( f ([0,1]× [0,y])).

Then A(0) = 0, A(1) = area( f (Q)) < ∞ and A is increasing. Thus A is

continuous except on a countable set and has a finite derivative almost ev-

erywhere. Fix a value of y where both this things happen, and we will show

that f is absolutely continuous on the horizontal line Ly = [0,1]×{y}. The
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main idea is that if this failed, then modulus estimates relating length to area

will force A′(y) = ∞.

Consider the long, narrow rectangle R = [0,1]× [y,y+ 1
n
] and divide

it into m << n disjoint 1
m
× 1

n
sub-rectangles {R j}. Let R′

j = f (r j) and

the the “left”, “right”, and “bottom” edges of R′
j be the images under f of

corresponding edges of R j. Let b j be length of f (Ly ∩∂R j), i.e., the length

of the bottom edge of R′
j. This number might be finite or infinite. Fix ε > 0.

In the first case, by taking n large enough, we can insure that any curve in

f (R j) than joins the images of the vertical sides of R j has length ≥ b j − ε .

In the second case, we can insure these curves all have length ≥ 1/ε . In

both case this follows because as n → ∞, any curve in f (R j) joining the

opposite “vertical” sides limits on the bottom edge and hence the liminf of

the lengths of such curves is at least the length of the bottom edge of R′
j.

By quasiconformality we know

M(R′
j)≥ M(R j)/K =

m

Kn
,

and using the metric ρ = 1 on R′
j, shows

M(R′
j)≤

area(R′
j)

b2
j

.

Thus by Cauchy-Schwarz,

(
m

∑
j=1

b j)
2 ≤ (

m

∑
j=1

b2
jm)(

m

∑
j=1

1

m
)

≤ m
m

∑
j=1

area(R′
j)

M(R′
j)

≤ m
m

∑
j=1

area(R′
j)

m/Kn

≤
m

∑
j=1

area(R′
j)Kn

≤ K
A(y+ 1

n
)−A(y)

1/n

→ KA′(y).

If any of the b j’s is infinite, so is A′(y), so f (Ly) has finite length for our

choice of y. Given a compact set E ⊂ Ly, suppose E is hit by N of the

rectangles R j and that m has been chosen so large that N/m ≤ 2m1(E).
Then repeating the argument above, but only summing over the j’s so that
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the bottom edges of R j hit E,

(∑
j

b j)
2 ≤ (∑

j

b2
jm)(∑

j

1

m
)

≤ N ∑
j

area(R′
j)

M(R′
j)

≤ N ∑
j

area(R′
j)

m/Kn

≤ N

m

m

∑
j=1

area(R′
j)Kn

≤ Km1(E)
A(y+ 1

n
)−A(y)

1/n

→ Km1(E)A
′(y).

Thus m1(E) small, implies ∑b j is small, and hence f (E) has small 1-

dimensional measure. Hence f is absolutely continuous on Ly, as desired.

�

Basic theorems of real analysis say that if f is absolutely continuous on

a line L , then its partial derivative along that lines exists almost everywhere

and

f ((b)− f (a) =
∫ b

a
fnds,

where a,b ∈ L and fn is the partial in the direction from a to b. Since we

have shown that quasiconformal maps are absolutely continuous on almost

every horizontal and almost every vertical line, we see that the partial fx, fy

exist almost everywhere and hence fz, fz,µ f = fz/ fz are all well defined

almost everywhere. Next we want to say that at a point w where these all

exist, we have

f (z) = f (w)+ fz(w)(z−w)+ fz(w)(z−w)+o(|z−w|),
i.e., f is differentiable at w. However, as explained in most calculus texts,

the existence of partial derivatives at at a point does not imply a function is

differentiable there (consider f (x,y) = x2y/(x2 + y2) at the origin).

However, a remarkable theorem of Gehring and Lehto [?], says that

is implication is true almost everywhere for homeomorphisms. Our proof

follows that in [?].

THEOREM 4.2. If f is a homeomorphism of Ω ⊂ C and has partials

almost everywhere, then it is differentiable almost everywhere.
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PROOF. By Egorov’s theorem the limits

fx(z) = lim
h→0

f (z+h)− f (z)

h
,

fy(z) = lim
h→0

f (z+ ih)− f (z)

h
,

are uniform and converge to a continuous functions on a compact set E ⊂ Ω
so that area(Ω\E) is as small as we wish.

Almost every point of E is a point of density for the intersection of

E with both the vertical and horizontal lines through z0, so if suffices to

proof differentiability at such points. For simplicity we assume 0 is such a

point. The proof follows the usual case in calculus where we assume the

partials are continuous, except that here we have to replace continuous on a

neighborhood of 0 with continuous on a set E that is measure dense around

0.

Because of the continuity and uniform convergence on E, for any ε > 0

there is a δ > 0 so that

| fx(0)− fx(z)|, | fy(0)− fy(z)|< ε,

if z ∈ E ∩D(0,δ )-neighborhood of 0 and

| fx(z)−
f (z+h)− f (z)

h
|, | fy(z)−

f (z+ ih)− f (z)

h
|< ε,

if z ∈ E ∩D(0,δ ) and h ∈ [−δ ,δ ].
Note that

f (z)− f (0)− x fx(0)− y fy(0) = [ f (z)− f (x)− y fy(0)]+ [ f (x)− f (0)− x fx(0)]

+[y fy(x)− fy(0)]

= I + II + III.

If |z| < δ and x ∈ E, then by the inequalities above, I < ε|y|, II < ε|x|
and III < εy, so the term on the far left is bounded by 3ε|z|, which proves

differentiability if x ∈ E. A similar proof works if iy ∈ E.

Fix ε > 0 and choose δ so small that if 0 < x < δ , then E ∩ ( x
1+ε ,x) 6= /0

(this must be possible since E ∩R has density 1 at 0) and E ∩ ( iy
1+ε ,y) 6= /0.

Thus if 0 < |x|, |y| ≤ δ/(1+ ε) can find points x1,x2 ∈ E ∩ ( x
1+ε ,(1+ ε)x)

and iy1, iy2 ∈ E ∩ i( y
1+ε ,(1+ ε)y) and so that x+ iy is inside the rectangle

R = (x1,x2)× (y1,y2). Since f is a homeomorphism (all we need is that it
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is continuous and open), | f | takes its maximum on the boundary, so

sup
z=x+iy∈R

| f (z)− f (0)− x fx(0)− y fy(0)|

≤ sup
w=u+iv∈∂R

| f (zw− f (0)− x fx(0)− y fy(0)|

≤ 3ε|w|+ sup
w=u+iv∈∂R

|x−u|| fx(0)|+ |y− v|| fy(0)|

≤ 3ε(1+ ε)|z|+ ε| fx(0)||z|+ ε| fy(0)||z|.
�

COROLLARY 4.3. A K-quasiconformal map f defined on a planar do-

main Ω is differentiable almost everywhere on Ω.

PROOF. This is immediate from Theorems ?? and ??. �

LEMMA 4.4. . If f is K-quasiconformal then
∫

Q
J f dxdy ≤

∫
≤ area( f (Q))≤ π diam( f (Q))2,

for every square Q.

PROOF. We only use the quasiconformal hypothesis to deduce f is dif-

ferentiable almost everywhere; the result holds for all such maps. At any

point x where f is differentiable we can choose a small square Qx containing

x such that

area( f (Q′))≥ (1− ε)J f (x)area(Q′),
and by the Lebesgue differentiation theorem, for almost every x we have

∫

Q′
J f dxdy ≤ (1+ ε)J f (x)area(Q′),

for all small enough squares centered at x. Combining these two estimates

and using the Vitali covering theorem to extract a collection of disjoint

squares {Q j} with centers x j and with these properties that cover almost

every point of Q, we get
∫

Q
J f dxdy ≤ ∑

j

∫

Q j

J f dxdy

≤ (1+ ε)J f (x j)area(Q j)

≤ 1+ ε

1− ε
area( f (Q j))

≤ 1+ ε

1− ε
area( f (Q)).

Taking ε ց 0, gives area( f (E))≥ ∫E J f dxdy. The inequality area≤ π diam2

is obvious. �
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Since | fz|2 ≤ J f /(1− k2), we also get

COROLLARY 4.5. If f is K-quasiconformal then
∫

Q
| fz|2dxdy ≤ π

1− k2
diam( f (Q))2,

for every square Q.

Next we turn to

LEMMA 4.6. If f is K-quasiconformal, then

(
∫

Q | fz|dxdy)2

area(Q)
& diam( f (Q))2.

with a uniform constant for every square Q.

PROOF. The path family connecting opposite sides of a square Q has

modulus 1, so the image of this family in f (Q) has modulus between K and

1/K. This implies the shortest path in f (Q) connecting the same sides has

length ≃ diam( f (Q)), so the integral of | fz|+ | fz| along any horizontal seg-

ment crossing Q is at least C diam( f (Q)) for some fixed C > 0 (depending

only on K). Since | fz| ≤ | fz|+ | fz| ≤ 1(1+ k)| fz|, the same is true for the

integral of | fz|. Integrating over all horizontal segments crossing Q gives
∫

Q
| fz|dxdy & diam(Q)diam( f (Q)).

Hence

(
∫

Q | fz|dxdy)2

area(Q)
&

[diam(Q)diam( f (Q))]2

area(Q)
& diam( f (Q))2.

�

Note that for K-quasiconformal maps, |µ f | ≤ k = (K −1)/(K +1) and

| fz|(1− k2)≤ | fz|2(1−|µ|2)≤ | fz|2 −| fz|2 = J f ≤ | fz|2,
so that J f and | fz|2 are the same up to a bounded factor. Thus

∫

Q
| fz|2dxdy ≤

∫
. diam( f (Q))2 .

(
∫

Q | fz|dxdy)2

area(Q)
or ∫

Q
| fz|2dxdy ≤C

(
∫

Q | fz|dxdy)2

area(Q)
for some constant C that depends only on the quasiconformal constant of

f (and not on the choice of the square Q). This is called a reverse Hölder

inequality and we shall see in the next section that it has profound implica-

tions for the behavior of fz.
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5. Gehring’s inequality and Bojarski’s theorem

Hölder’s inequality says that

∫
f gdµ ≤ (

∫
f pdµ)1/p(

∫
gqdµ)1/q,

where 1 ≤ p,q ≤ ∞ satisfy 1
p
+ 1

q
= 1. Applying this to a non-negative

function on a square Q we get

(
1

area(Q)

∫

Q
vpdxdy)≥ (

1

area(Q)

∫

Q
vdxdy)p,

with equality if and only if v is a.e. constant. Thus the “reverse Hölder

inequality ”

(
1

area(Q)

∫

Q
vpdxdy)≤ (K

1

area(Q)

∫

Q
vdxdy)p,

can only hold if K ≥ 1. If it holds for single Q, this does not say much,

except that v ∈ Lp ∩ L1. However, if it holds (with the same K) for all

Q’s we can deduce that v ∈ Lp+ε for some ε > 0. This remarkable “self-

improvement” estimate is due to Gehring [], although the proof we give

follows the presentation in Garnett’s book [?].

We start with a technical lemma.

LEMMA 5.1. Suppose that p > 1, v ≥ 0, Eλ = {z : v(z)> λ}, and

∫

Eλ

vpdxdy ≤ Aλ p−1
∫

Eλ

vdxdy,

for all λ ≥ 1. Then there is r > p and C < ∞ so that

(
∫

Q
vrdxdy)1/r ≤C(

∫

Q
vpdxdy)1/p.
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PROOF. This is basically just arithmetic with distribution functions. Note

that it suffices to assume area(Q) = 1 and
∫

Q vpdxdy = 1. Then

∫

E1

vrdxdy =
∫

E1

vpvr−pdxdy

= (r− p)
∫

E1

vp(1+
∫ v

1
λ r−p−1dλ )dxdy

= (r− p)
∫

E1

vp +(r− p)
∫ ∞

1
λ r−p−1

∫

Eλ

vpdxdydλ

≤ (r− p)
∫

E1

vp +A(r− p)
∫ ∞

1
λ r−2

∫

Eλ

vdxdydλ

≤ (r− p)
∫

E1

vp +A(r− p)
∫

E1

v(
∫ v

0
λ r−2dλ )dxdy

≤ (r− p)
∫

E1

vp +A
r− p

r−1

∫

E1

vrdxdy

≤ (r− p)
∫

E1

vp +
1

2

∫

E1

vrdxdy

where the last inequality holds if r is close enough to p (depending on A

and p). Subtracting the last term of the last step from the first step gives
∫

E1

vrdxdy ≤ 2(r− p)
∫

E1

vpdxdy.

Off E1 we have v ≤ 1 so vr ≤ vp and hence
∫

Q
vrdxdy ≤ (1+2(r− p))

∫

Q
vpdxdy.

Because of our normalizations, this proves the lemma. �

Next we show the reverse Hölder inequality implies the distribution

function hypothesis of the previous lemma, and hence Gehring’s inequal-

ity.

THEOREM 5.2. Let p > 1. If v(x) ≥ 0 and v ∈ Lp(Q,dxdy), and if the

“reverse Hölder inequality”

(
1

area(Q)

∫

Q
vpdxdy)≤ (K

1

area(Q)

∫

Q
vdxdy)p,

holds for all subsquares of a square Q0, then there is an r > p so that

(
1

area(Q0)

∫

Q0

vrdxdy)1/r ≤ (C(K, p,r)
1

area(Q0)

∫

Q0

vdxdy),
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PROOF. We need only verify the hypothesis of Lemma ??. Fix λ and

set β = 2Kλ . We will split the integral

∫

Eλ

vpdxdy =
∫

Eλ \Eβ

vpdxdy+
∫

Eβ

vpdxdy

into two pieces. The second piece is trivial to bound by the correct estimate

because
∫

Eλ \Eβ

vpdxdy ≤ β p−1
∫

Eλ \Eβ

vdxdy ≤ (2Kλ )p−1
∫

Eλ

vdxdy.

To bound the other piece of the integral, we use the Calderon-Zygmund

lemma (Lemma ??) to find a sequence of disjoint squares {Q j} so that

β p ≤ 1

area(Q j)

∫

Q j

vpdxdy < 2β p,

and v ≤ β almost everywhere off ∪Q j. Thus Eβ \∪Q j has measure zero

and
∫

Eβ

vpdxdy ≤ ∑
j

∫
Q jv

pdxdy ≤ 2β p ∑area(Q j).

We now make use of the reverse Hölder hypothesis to write

β p ≤ 1

area(Q j)

∫

Q j

vpdxdy ≤ (
K

area(Q j)

∫

Q j

vdx)p,

hence

area(Q j) ≤ K

β

∫

Q j

vdxdy

≤ K

β
(
∫

Q j∩Eλ

vdxdy+λ area(Q j)

≤ K

β

∫

Q j∩Eλ

vdxdy+
1

2
area(Q j).

Solving for area(Q j) gives

area(Q j) ≤ 2K

β

∫

Q j

vdxdy

≤ 1

λ

∫

Q j

vdxdy.
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Thus by the defining property of the Q j’s,

∫

Eβ

vpdxdy ≤ ∑
j

∫

Q j

vpdxdy

≤ 2β p ∑
j

area(Q j)

≤ 2β pλ−1 ∑
j

∫

Q j∩Eλ

vdx

≤ 2p+1K pλ p−1
∫

Eλ

vdx.

Thus the hypothesis of Lemma ?? holds with A = (2K)p−1 +2p+1K p, and

we deduce that v ∈ Lr(Q,dxdy) for some r > p. �

To apply Gehring’s inequality to the partial derivatives of quasiconfor-

mal maps, we have to show that these partial satisfy a reverse Hölder in-

equality. What we want is

∫

Q
| fz|2dxdy ≤ C

area(Q)
(
∫

Q
| fz|dxdy)2,

with a uniform C for all squares in the plane. This was proven in the previ-

ous section.

Thus we have proven the theorem of Bojarski and Gehring mentioned

earlier:

THEOREM 5.3. If 1 ≤ K < ∞, there is a p > 2 and A,B < ∞ so that the

following holds. If f : C→ C is K-quasiconformal, and Q ⊂ C is a square,

then

(
1

area(Q)

∫∫

Q
| fz|pdxdy)1/p ≤ A(

1

area(Q)

∫

Q
| fz|2dxdy)1/2 ≤ B

diam( f (Q))

diam(Q)

LEMMA 5.4. If f fixes 0,1,∞, then

∫

Q
|L f (x)−1|dxdy ≤ ε diam(Q),

where L f = | fz|+ | fz| and ε → 0 as ‖µ f ‖∞ → 0.

PROOF. Fix a square Q with sides parallel to the axes, let ℓ(Q) denote

its side length and let S1, S2 denote the two vertical sides of S Use fact that
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as ‖µ‖∞ → 0, f tends to the identity and

0 ≤ (
1

area(Q)

∫

Q
|v−1|dxdy)2 ≤ 1

area(Q)

∫

Q
|v−1|2dxdy

≤ 1

area(Q)

∫

Q
(v2 −1)− 2

area(Q)

∫

Q
(v−1)dxdy

≤ 1

area(Q)

∫

Q
(KJ f −1)− 2

area(Q)

∫

Q
(v−1)dxdy

=
1

area(Q)

∫

Q
(K −1)J f dxdy+

1

area(Q)

∫

Q
(J f −1)dxdy

− 2

area(Q)

∫

Q
(v−1)dxdy

≤ O(‖µ‖∞)
area( f (Q))

area(Q)
+

area( f (Q))− area(Q)

area(Q)
−2(

dist(S1,S2)

ℓ(Q)
−1).

Since f converges uniformly to the identity on Q as ‖µ‖∞ → 0, each term

in the last line tends to zero. �

COROLLARY 5.5. If Ω has a piecewise C1 boundary and f is quasicon-

formal on Ω, then

f (w) =
1

2πi

∫

∂Ω

f (z)

z−w
dz− 1

π

∫∫

Ω

fz

z−w
dxdy.(5.1)

PROOF. Smooth and take a limit using the Lp boundedness of the the

Hardy-Littlewood maximal theorem and the Lebesgue dominated conver-

gence theorem. �

COROLLARY 5.6. If f is quasiconformal, then f maps sets of zero area

to zero area and

area( f (E)) =
∫

E
J f dxdy.

PROOF. Since ν(E) = area( f (E)) and ν(E) =
∫

E J f dxdy are both non-

negative Borel measures, it suffices to show that they are equal for some

convenient basis of sets, say squares with sides parallel to the coordinate

axes. Let Q be such a square.

We have already proved the “≥” direction in Lemma ??. To prove the

other direction, we use the fact that J f ∈ Lp(Q,dxdy) for some p> 1. Define

a smoothed version fn of f by convolving f with a smooth, non-negative

bump function ϕn of total mass 1 and support in D(0, 1
n
). Since f is continu-

ous on C, fn → f uniformly on Q. Since convolution is linear, the partials of

fn are the partials of f convolved with ϕn and therefore the supremum over

n of these partials is bounded by the Hardy-Littlewood maximal function of
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fz, i.e.,

sup
n
|( fn)z(x)| ≤ H L( fz)(x),

and similarly for fz. Since the Hardy-Littlewood maximal operator is bounded

on Lp for 1 < p < ∞, and fz, fz ∈ Lp for some p > 1, we see that {(( fn)z)},

{(( fn)z)} are dominated by an Lp function and hence by an L2 function on

Q (since Lp ⊂ L2 on bounded sets). Thus the sequence of Jacobians {J fn}
is dominated by an L1 function on Q, so by the Lebesgue dominated con-

vergence theorem, ∫

Q
J fndxdy →

∫

Q
J f dxdy.

Moreover, since fn is smooth
∫

Q
J fndxdy ≥ area( fn(Q)),

(equality may not hold since we don’t known fn is 1-to-1, and the integral

computes area with multiplicity) and since fn → f uniformly, fn(Q) even-

tually contains any compact subset of f (Q) and hence

limsup
n

area( fn(Q))≥ area( f (Q)).

Thus area( f (Q))≤ ∫Q J f dxdy, as desired. �

LEMMA 5.7. Suppose {gn} ∈ Lp(R,dxdy) for some p > 2 and

lim
n

∫∫

R

gn(z)

z−w
dxdy = 0

for all w ∈ R. Then limn

∫∫
R gndxdy = 0.

PROOF. Fix rectangles R′′ ⊂ R′ ⊂ R, each compactly contained in the

interior of the next. Using the Cauchy integral formula for the constant

function 1 on the curve ∂R′ we see that we can uniformly approximate the

constant function 1 on R′′ by a finite sum s(z) = ∑
ak

z−wk
with wk ∈ ∂R′ and

∑ |ak| is uniformly bounded. Then
∫∫

R
gn(z)dxdy =

∫∫

R
gn(z)s(z)dxdy+

∫∫

R
gn(z)(1− s(z))dxdy

= o(1)+
∫∫

R′′
gn(z)(1− s(z))dxdy+

∫∫

R\R′′
gn(z)(1− s(z))dxdy.

For a fixed n, the first integral can be made as close to zero as we wish by

taking s close to 1 on R′′. The second integral can be made small by taking

area(R \R′′) → 0; this implies the Lp norm of gn on R \R′′ tends to zero

(hence so does its L1 norm) whereas the Lq norm of s remains uniformly

bounded (it is a convex combination of Lq functions with bounded norm).
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Thus we can make
∫∫

R gndxdy as small a we wish if n is large, proving the

lemma. �

LEMMA 5.8. If {gn} are K-quasiconformal maps that converge uni-

formly on compact sets to a quasiconformal map g, then for any rectangle

R. ∫∫

R
[(gn)z −gz]dxdy → 0,

∫∫

R
[(gn)z −gz]dxdy → 0.

and (gn)z → gz and (gn)z → gz weakly.

PROOF. First consider the z-derivative. Let hn = (gn)z − gz. By the

Pompeiu formula and the fact that gn → g uniformly on R, we deduce that

lim
n→∞

∫∫

R

hn(z)

z−w
dxdy = 0

for any w ∈ R. That ∫∫

R
hndxdy → 0,

follows from Lemma ??. To prove weak conference, take any continuous f

of compact support and uniformly approximate it to within ε by a function

f̃ that is constant on finite union of rectangles. Then
∫∫

f hndxdy =
∫∫

( f − f̃ )hndxdy+
∫∫

f̃ hndxdy.

The first integral is bounded by ε
∫∫ |hn|dxdy, which is small since ‖hn‖1 ≤

C‖hn‖p is uniformly bounded on a large ball containing the support of both

f and f̃ . The second integral tends to zero since is a finite linear combina-

tion of integrals of hn over rectangles.

The result for z-derivatives follows from the same proof applied to the

complex conjugates of g and {gn}, using the fact that ( f̄ )z = fz. �

6. Convergence of maps implies convergence of dilatations

We are now ready to use the second analytic fact that we assumed earlier

in the proof of the measureable Riemann mapping theorem (Theorem ??).

THEOREM 6.1. Suppose { fn}, f are all K-quasiconformal maps on the

plane with dilatations {µn}, µ f respectively, that fn → f uniformly on com-

pact sets and that µn → µ pointwise almost everywhere. Then µ f = µ al-

most everywhere.
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PROOF. We restrict attention to some domain Ω with compact closure.

We know that fz̄ = µ f fz almost everywhere and we know that fz is non-zero

almost everywhere, so it suffices to show that

fz̄(w)−µ(w) fz(w) = 0,

almost everywhere. To prove this it suffices to show that the integral of

fz̄(w)− µ(w) fz(w) over any rectangle R is zero (this is an application of

the Lebesgue differentiation theorem: at almost every point an integrable

function is the limit of its averages over rectangles shrinking down to that

point). We re-write this function as

fz̄(w)−µ(w) fz(w) = [ fz̄(w)− ( fn)z̄(w)]

+[( fn)z̄(w)−µn( fn)z(w)]

+[µn(w)( fn)z(w)−µ(w)( fn)z(w)]

+[µ(w)( fn)z(w)−µ(w) fz]

= I + II + III + IV.

Term II equals zero almost everywhere, so we need only show that the other

three terms tend to zero as n tends to ∞.

Case I: This is Lemma ??.

Case III: We use Cauchy-Schwarz to show the integral of the third term

is bounded by

(
∫∫

R
(µ −µn)

2dxdy)1/2(
∫∫

R
|( fn)x|2dxdy)1/2,

The first integrand tends to zero pointwise and is bounded above by 2 al-

most everywhere, so the integrals tend to zero by the Lebesgue dominated

convergence theorem. On the other hand

(
∫∫

R
|( fn)x|2dxdy)1/2 ≃ diam( fn(R)),

by Lemma ??, and since { fn} converges uniformly on compact sets, this re-

mains bounded. Thus the integral of III is bounded above by a term tending

to zero times a term that is uniformly bounded, and hence it tends to zero.

Case IV: The same lemma as in case I, but applied to fz = ( f̄ )z̄, and

using the fact that ( f̄ )w = ( fz), show that
∫∫

R
( fz − ( fn)z)dxdy → 0

for every rectangle R. Now approximate µ in the Lq(R,dxdy) norm by a

function ν that is constant on a finite collection of disjoint squares (such

functions are dense in Lq) and we deduce
∫

n

∫∫

R
µ(( fz−( fn)z)dxdy= lim

n

∫∫

R
(µ−ν)(( fz−( fn)z)dxdy≤ lim

n
‖µ−ν ‖q‖( fz−( fn)z)‖p.
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The first term is as small as we wish and the second is uniformly bounded,

so the product is as small as we wish. Thus the limit must be zero, as

desired. �

This completes the proof of the measurable Riemann mapping theorem

in the general case.





CHAPTER 4

Estimates for quasiconformal mappings

1. The Ahlfors formula

The dependence of f on its dilatation µ is non-linear (there is an explicit

power series relationship between the two in terms of certain singular inte-

gral operators, see, e.g., [?]), but it is possible to give a linear approximation

that is valid when ‖µ‖∞ is small, namely

f (w) = w− 1

π

∫

R2
µ(z)R(z,w)dxdy+O(‖µ‖2

∞),

for all |w| ≤ 1, where

R(z,w) =
1

z−w
− w

z−1
+

w−1

z
=

w(w−1)

z(z−1)(z−w)
.

The goal of this section is to prove this formula. The proof is basically a

manipulation of the Pompeiu formula

f (w) =
1

2πi

∫

∂Ω

f (z)

z−w
dz− 1

π

∫∫

Ω

fz

z−w
dxdy

where we use our Lp estimates on fz, fz to put certain terms into the error

term. We start by showing f is close to the identity in a precise Lp sense

when ‖µ‖ is small.

LEMMA 1.1. If k< 1 is small enough then there is a constant C3 =C3(k)
so that the following holds. Suppose ‖µ‖∞ ≤ k < 1. Then

‖ f µ
z −1‖p,1 ≡ (

∫

B1

| f µ
z −1|pdxdy)1/p ≤C3‖µ‖∞.

for all 2 ≤ p ≤ p(k).

PROOF. First assume µ is supported in D(0,R) and let ε = ‖µ‖∞. It is

proven on page 100 of [?] that ‖F
µ

z −1‖p ≤C‖µ‖p ≤CεR2/p if p < p(k).

107
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Since f µ = Fµ/Fµ(1), Lemma ?? implies

‖ f µ
z −1‖p,1 = ‖ F

µ
z

Fµ(1)
−1‖p,1

= |1− 1

Fµ(1)
|+ 1

Fµ(1)
‖Fµ

z −1‖p,1

≤ 2C2ε +
C(R)

1−Cε
ε

≤ Cε.

Now write f̌ (z) = 1/ f (1/z). We want to show

‖ f̌ µ
z −1‖p,R ≤C(R)ε,(1.1)

when µ has support in BR. Just as above, it suffices to show ‖F̌
µ

z −1‖p,R ≤
Cε. Note that F̌µ is analytic on {z : |z| < 3r} where r = 1/(3R). For an

analytic function f on a ball B(x,r) it is easy to see by the mean value

property and Hölder’s inequality that

| f (x)| ≤ 1

πr2

∫

B(x,r)
| f | ≤ 1

(πr2)1/p
‖ f‖Lp(B(x,r)).

Thus by the maximum principle,
∫

|z|<r
|F̌µ

z (z)−1|pdxdy ≤ C(r) sup
|z|=2r

|F̌µ
z (z)−1|p

≤ C(r)
∫

r<|z|<3r
|F̌µ

z (z)−1|pdxdy.

On the other hand, changing variables from z to 1/z gives
∫

r<|z|<R
|F̌µ

z (z)−1|pdxdy =
∫

1/R<|z|<1/r
|z

2F
µ

z (z)

Fµ(z)2
−1|p dxdy

|z|4

=
∫

1/R<|z|<1/r
|z

2(F
µ

z (z)−1)

Fµ(z)2
+

z2 −Fµ(z)2

Fµ(z)2
|p dxdy

|z|4

≤ C

∫

1/R<|z|<1/r
|z

2(F
µ

z (z)−1)

Fµ(z)2
|p + |z

2 −Fµ(z)2

Fµ(z)2
|p dxdy

|z|4

≤ C(R)
∫

1/R<|z|<1/r
|Fµ

z (z)−1|pdxdy

+C(R)
∫

1/R<|z|<1/r
|z−Fµ(z)|pdxdy

≤ C(R)ε p.

Since the integral over {|z|< 3r} was dominated by a constant (depending

only on R) times this estimate, we have proven (??).
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The general case now follows just as in [?]. Write f = ǧ ◦ h where

µh = µ f inside the unit disk and µh = 0 outside the unit disk. Then

‖ fz −1‖p,1 ≤ ‖[(ǧz −1)◦h]hz‖p,1 +‖hz −1‖p,1.

The second term is bounded by Cε by the first paragraph and the first term

is bounded using

‖[(ǧz −1)◦h]hz‖p
p,1 =

∫

B1

|(ǧz −1)◦h|p|hz|pdxdy

≤ 1

1− k2

∫

h(B1)
|ǧz −1|p|hz ◦h−1|p−2dxdy

≤ 1

1− k2
(
∫

h(B1)
|ǧz −1|2pdxdy

∫

B1

|hz|2p−4dxdy)1/2

Clearly h(B1) ⊂ {|z| < R} for some R depending only on k. Thus using

(??), the first integral is bounded by
∫

BR

|ǧz −1|2pdxdy ≤Cε2p,

(assuming 2p < p(k); but since p(k) → ∞ as k → 0 this holds for some

p > 2 if k is small enough). On the other hand
∫

B1

|hz|2p−4dxdy ≤C(
∫

B1

|hz|2pdxdy)1−2/p ≤ ‖µh‖p,1 +‖1‖p,1 ≤C,

since ‖hz −1‖p ≤C‖µh‖p. �

LEMMA 1.2. With notation as above,

f (w) = w− 1

π

∫

B1

fz̄(z)R(z,w)dxdy− 1

π

∫

B1

f̌z̄(z)

f̌ (z)2
zS(z,w)dxdy,

where R(z,w) = ( 1
z−w

− w
z−1

+ w−1
z
) and S(z,w) = w2

1−wz
− w

1−z
.

PROOF. This is where we use the Pompeiu formula. Assume |w| < 1

and apply the formula to the unit disk to get

f (w) =
1

2πi

∫

T

f (z)

z−w
dz− 1

π

∫∫

D

fz

z−w
dxdy.(1.2)

Replace z by 1/z in the boundary integral. We claim that

1

2πi

∫

T

f (
1

z
)

dz

z(1− zw)
= A+Bw+

w2

2πi

∫

T

dz

f̌ (z)(1− zw)

= A+Bw− w2

2π

∫

D

f̌z(z)dxdy

f̌ (z)2(1− zw)
.
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To see this, first suppose that on {|z|= 1} f (z) = zn. Then f (1
z
) = z−n, and

1

z(1− zw)
=

1

z
(1+ zw+(zw)2 + . . .),

so

1

2πi

∫

T

f (
1

z
)

dz

z(1− zw)

=
1

2πi

∫

T

z−n−1)(1+ zw+ z2w2 + . . .)dz

=
1

2πi

∫

T

z−n−1)(z−n−1 + z−nw+ zn+1w2 ++̇z−n−1+ jw j + . . .)dz.

This integral is only non-zero for the term containing z−1; this corresponds

to j = n, so for n ≥ 0,

1

2πi

∫

T

f (
1

z
)

dz

z(1− zw)
= wn

and the integral is zero for n < 0. By a similar argument, if n ≥ 2,

1

2πi

∫

T

f̌ (1
z
)−1zdz

(1− zw)
=

1

2πi

∫

T

z−n+1)(1+ zw+ z2w2 + . . .)dz

=
1

2πi

∫

T

z−n−1)(z−n+1 + z−nw+ zn+2w2 ++̇z−n+1+ jw j + . . .)dz.

= wn−2

and for n < 2 the integral is zero. So the two integrals differ by a factor of

w2 in general and for n = 0,1 the integral on the right can gives 1,w but the

integral on the left gives 0. Thus

1

2πi

∫

T

f (
1

z
)

dz

z(1− zw)
= A+Bw+

w2

2πi

∫

T

dz

f̌ (z)(1− zw)
.(1.3)
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We now rewrite the line integral as an area integral using Pompeiu’s

formula again with the change of variable α = wz

1

2πi

∫

|z|=1

f̌ (z)−1zdz

1− zw
= − 1

2πiw2

∫

|z|=1

f̌ (z)−1wzwdz

zw−1

= − 1

2πiw2

∫

α=|w|

f̌ (α
w
)−1αdα

α −1

= − 1

w2
[ f̌ (1)+

1

π

∫

|α |<|w|

[ f̌ (α
w
)−1α]zdadb

α −1

= − 1

w2
[ f̌ (1)+

1

π

∫

|z|<1

[ f̌ (z)−1wz]zw
2dxdy

zw−1

= − 1

w
+

1

π

∫

|z|<1

f̌z(z)zdxdy

f̌ 2(z)(zw−1)

Therefore,

1

2πi

∫

T

f (
1

z
)

dz

z(1− zw)
= A+Bw+w− w2

2π

∫

D

f̌z(z)dxdy

f̌ (z)2(1− zw)
(1.4)

as claimed.

Since we know f (0) = 0 and f (1) = 1 we can solve for the values of A

and B. When we do this we get

f (w) = w − 1

π

∫

|z|<1
fz(z)(

1

z−w
− w

z−1
+

w−1

z
)dxdy

− 1

π

∫

|z|<1

f̌z(z)

f̌ (z)2
(

w2z

1−wz
− wz

1− z
)dxdy.

As a check, the reader can set w= 0,1 and verify that both integrands vanish

in these cases. �

LEMMA 1.3. There is a 0 < k < 1 and a C4 < ∞ so that the following

holds. Suppose that f is a quasiconformal mapping of the plane to itself

which preserves Hu, fixing 0,1 and ∞ and the Beltrami coefficient of f is µ
with ‖µ‖∞ ≤ k. Then

| f (w)− [w− 1

π

∫

R2
µ(z)R(z,w)dxdy]| ≤C4‖µ‖2

∞,

for all |w| ≤ 1, where

R(z,w) =
1

z−w
− w

z−1
+

w−1

z
=

w(w−1)

z(z−1)(z−w)
.
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PROOF. Consider (??). If the first integral, we use

fz = µ fz = µ( fz −1)+µ.

The first term has Lp norm O(‖µ‖∞) by Lemma 1.23, so using Hölder’s

inequality shows that the first integral equals

1

π

∫

|z|<1
µ(z)(

1

z−w
− w

z−1
+

w−1

z
)dxdy+‖µ‖2

∞

=
1

π

∫

|z|<1
µ(z)

w(w−1)

z(z−1)(z−w)
dxdy+‖µ‖2

∞

=
1

π

∫

|z|<1
µ(z)R(z,w)dxdy+‖µ‖2

∞

where

R(z,w) =
w(w−1)

z(z−1)(z−w)
.

Using the same estimates, second integral is equal to

1

π

∫

|z|<1
µ(

1

z
)z−2(

w2z

1−wz
− wz

1− z
)dxdy+‖µ‖2

∞

where µ̌(z) = µ(1
z
)(z/z)2. If we replace z by 1/z in the second integral, the

integral over the disk transforms into the integral over its complement

1

π

∫

|1/z|<1
µ̌(

1

z
)(

w2/z

1−w/z
− w/z

1−1/z

−dxdy

|z|4

=
1

π

∫

|z|>1
µ(z)(z2/z2)(

w2

z−w
− w

z−1

1

z2z2
dxdy

=
1

π

∫

|z|>1
µ(z)(

w2(z−1)− (z−w)w

(z−w)(z−1)z2
dxdy

=
1

π

∫

|z|>1
µ(z)(

w(w−1)

(z−w)(z−1)z
dxdy.

This integrand has the same form as before which proves the lemma.

NEEDS CHECKING AND FIXING

By Lemma ?? we can write

f (w) = w− 1

π

∫

B1

fz̄(z)R(z,w)dxdy− 1

π

∫

B1

f̌z̄(z)

f̌ (z)2
zS(z,w)dxdy,
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where S(z,w) = w2

1−wz
− w

1−z
and as before f̌ (z) = 1/ f (1/z). Using fz̄ =

µ fz = µ +µ( fz −1), the first integral equals

∫

B1

µ(z)R(z,w)dxdy +
∫

B1

µ(z)( fz(z)−1)R(z,w)dxdy

=
∫

µ(z)R(z,w)dxdy+O(‖µ‖∞‖ fz −1‖p,1‖R‖q,1)

=
∫

µ(z)R(z,w)dxdy+O(‖µ‖2
∞),

by Lemma ?? and the fact that R ∈ Lq, for every q < 2 (with a bound de-

pending on q, but not on w for |w| ≤ 1).

The second integral is estimated by writing f̌z̄ = µ̌ + µ̌( f̌z − 1) where

µ̌(z) = (z/z̄)2µ(1/z). Repeating the argument above shows the second in-

tegral is equal to

∫

B1

µ̌(z)

f̌ (z)2
+

µ̌(z)( f̌z(z)−1)

f̌ (z)2
zS(z,w)dxdy

=
∫

B1

µ(
1

z
)[

1

z̄2
+

z2 − f̌ (z)2

z̄2 f̌ (z)2
]zS(z,w)dxdy

+
∫

B1

µ̌( f̌z −1)

f̌ (z)2
zS(z,w)dxdy

=
∫

B1

µ(
1

z
)

1

z̄2
zS(z,w)dxdy+ I + II

Using Lemma ??, we see

1

C
|z|1/α ≤ | f̌ (z)| ≤C|z|α ,

|z− f̌ (z)| ≤C‖µ‖∞|z|α ,

so we can estimate I by

I ≤ |
∫

B1

µ(1/z)
z2 − f̌ (z)2

z̄2 f̌ (z)2
zS(z,w)dxdy|

≤ C‖µ‖2
∞

∫

B1

|z|2α−1− 2
α S(z,w)dxdy

≤ C‖µ‖2
∞C(α),
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if 2α −1− 2
α >−2 (recall that we may take α as close to 1 as we wish, if k

is small enough). To estimate II, note that for 1
p
+ 1

q
= 1, Lemma ?? implies

II =
∫

B1

µ̌(z)( f̌z(z)−1)

f̌ (z)2
zS(z,w)dxdy

≤ C‖µ‖∞‖ f̌z −1‖p‖
zS(z,w)

f̌ (z)2
‖q

≤ ‖µ‖2
∞‖z1− 2

α S(z,w)‖q.

Fix some q < 2, and take k so small that α > 2q/(2+q), which implies the

Lq norm is finite (with bound depending only on α , hence only of k). Thus,

f (w) = w− 1

π

∫

B1

µ(z)R(z,w)dxdy− 1

π

∫

B1

µ(
1

z
)

1

z̄2
zS(z,w)dxdy+O(‖µ‖2

∞).

Changing variables from z to 1/z in the second integral converts the inte-

grand to the same form as the first (but now over {|z|> 1}). Hence,

f (w) = w− 1

π

∫

R2
µ(z)R(z,w)dxdy+O(‖µ‖2

∞),

as desired. �

COROLLARY 1.4. If µ(t) is continuous in the L∞ norm, then fµ(t)(z) is

a C1 curve in C.

PROOF. Think of the path γ(t) = ftµ(z). The key point is the formula

|γ(t)− (γ(0)+ γ ′(0)t)| ≤Ct2,

holds on an interval [−δ ,δ ] and with a constant C that do not depend on t

or z or µ (except for ‖µ‖∞). Thus using the same estimate at γ(t) and time

−t gives

|γ(0)− (γ(t)− γ ′(t)t)| ≤Ct2.

Thus adding the estimates and dividing by t gives

|γ ′(0)− γ ′(t)| ≤Ct

Thus ftµ(z) has a continuous derivative in t when t is real. When t is multi-

variable, the same argument shows we have continuous partial derivatives,

and this implies differentiability by the usual calculus argument (e.g., see

Rudin’s book [?]). �
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2. Teichmuller-Wittich theorem

3. Bilipschitz bounds

LEMMA 3.1. Suppose A,B are disjoint, planar sets and
∫

A

dxdy

|z−w|2 ≤C < ∞,

for all w ∈ B. If ϕ is a K-quasiconformal mapthat is conformal off A, then

ϕ is M-bi-Lipschitz on B with M depending only on C and K, i.e., for all

w,z ∈ B,

0 <
1

M(C,K)
≤ |ϕ(z)−ϕ(w)|

|z−w| ≤ M(C,K)< ∞.

PROOF. This is more-or-less immediate from results of Bojarski, Lehto,

Teichmüller and Wittich [?], [?], [?], [?] although we shall give specific ref-

erences to the more recent paper [?] which also gives the higher dimensional

versions of the two dimensional results we will use.

First we prove that ϕ is asymptotically conformal at ∞. Let w ∈ B.

Denote by µ(z) the dilatation of ϕ . This function is supported on A. Thus,

we get
∫

|z|>|w|

|µ(z)|dxdy

|z|2 ≤
∫

A∩{|z|>|w|}

dxdy

|z|2 ≤
∫

A

4dxdy

|z−w|2 ≤ 4C.

Hence, (see for example [?, Chapter V, Theorem 6.1]) there is a c 6= 0 so

that

lim
z→∞

ϕ(z)

z
= c.

Now suppose z,w ∈ B and let r = |z−w|. Note that

{ξ : |ξ − z|= R} ⊂ {ξ : R−|z| ≤ |ξ | ≤ R+ |z|}.
If R is large enough, ϕ maps the round annulus A(z,r,R) = {ξ : r < |ξ −
z| < R} to a topological annulus A′ whose outer boundary is contained in

the annulus A(ϕ(z), |c|R/2,2|c|R) and whose inner boundary is a closed

Jordan curve γ . By taking R large enough, we can assume γ hits the disk

D(ϕ(z), |c|R/4). Therefore,

mod(A′) =mod(A(ϕ(z),diam(γ),R))+O(1) = logR− logdiam(γ)+O(1).

On the other hand, Corollary 2.10 of [?] says that

mod(A′) = mod(A(z,r,R))+O
(∫

r<|ξ−z|<R
|µ(ξ )|
|ξ |2 dxdy

)

= mod(A(z,r,R))+O
(∫

A∩{r<|ξ−z|<R}
1

|ξ |2 dxdy
)

= logR− logr+O(1).
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Thus, logdiam(γ) = logr +O(1), or diam(γ) ≃ r.Since ϕ is quasiconfor-

mal, the segment S connecting z and w maps to a quasi-arc and hence sat-

isfies the Ahlfors three-point condition, so |ϕ(z)− ϕ(w)| ≃ diam(ϕ(S)),
and since quasiconformal maps are quasisymmetric diam(ϕ(S))≃ diam(γ).
Thus, |ϕ(z)−ϕ(w)| ≃ |z−w|, as desired. �

4. Thin support

If the dilatation µ of a quasiconformal map f : R2 → R
2 is small, then

we expect f to be close to conformal, hence close to linear. There are at

least two reasonable senses in which we can ask µ to be small: that ‖µ‖∞

is small or that {z : µ(z) 6= 0} is small. In this section we consider the latter

possibility.

To be more precise, we say a measurable set E ⊂ R
2 is (ε,ϕ)-thin if

ε > 0 and

area(E ∩D(z,1))≤ εϕ(|z|)
where ϕ : [0,∞)→ [0,π] is a bounded, decreasing function, such that

∫ ∞

0
ϕ(r)rndr < ∞,

for every n > 1. If a > 0, the function ϕ(r) = exp(−ar) satisfies this con-

dition, and this example suffices for many applications.

Recall that a quasiconformal map f : C → C is often normalized by

post-composing by a conformal linear map in one of two ways. First, we

can assume f (0) = 0 and f (1) = 1. We call this the 2-point normaliza-

tion. Second, if the dilatation of f is supported on a bounded set, then f

is conformal in a neighborhood of ∞ and then we can choose R large and

post-compose with a linear conformal map so that

| f (z)− z|= O(
1

|z|),

for |z|> R/2. We say that such an f is normalized at ∞. This is also called

the hydrodynamical normalization of f . We will first prove an estimate

for the hydrodynamical normalization and then deduce one for the 2-point

normalization.

THEOREM 4.1. Suppose F : C→ C is K-quasiconformal, and E = {z :

µ(z) 6= 0} is bounded (so F is conformal near ∞) and F is normalized so

|F(z)− z| ≤ M/|z|,
near ∞. Assume E is (ε,ϕ)-thin. Then for all z ∈ C,

|F(z)− z| ≤ εβ

|z|+1
,
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where β depends only on K and ϕ . In particular, as ε → 0, F converges

uniformly to the identity on the whole plane.

COROLLARY 4.2. Suppose f : C→ C is K-quasiconformal, F(0) = 0,

F(1) = 1, and E = {z : µ(z) 6= 0} is (ε,ϕ)-thin. Then

(1−Cεβ )|z−w|−Cεβ ≤ | f (z)− f (w)| ≤ (1+Cεβ )|z−w|+Cεβ ,(4.1)

where C and β only depend on k = ‖µ‖∞ and ϕ .

Similar estimates are known, e.g., compare to the well known result of

Teichmüller and Wittich (e.g., Theorem 7.3.1 of [?], [?], [?]) or estimates of

Dyn’kin [?]. The version stated above is intended for specific applications

to holomorphic dynamics, as in [?] and [?] (a particular consequence used

in the latter paper is given as Lemma ??). Because the quasiconformal

maps used in these references satisfy the strong ε-thin condition, it seemed

desirable to have a self-contained proof of the estimate above.

We will use the following facts about quasiconformal maps proved ear-

lier:

LEMMA 4.3 (Characterization of quasicircles). For each K ≥ 1 there is

a C =C(K)<∞ so that the following holds. If f :C→C is K-quasiconformal

and r > 0 so that f (γ)⊂ {z : r ≤ |z−w| ≤Cr}.

THEOREM 4.4 (Borjarki’s theorem). If 1 ≤ K < ∞, there is a p > 2 and

A,B < ∞ so that the following holds. If f : C → C is K-quasiconformal,

and Q ⊂ C is a square, then

(
1

area(Q)

∫∫

Q
| fz|pdxdy)1/p ≤ A(

1

area(Q)

∫

Q
| fz|2dxdy)1/2 ≤ B

diam( f (Q))

diam(Q)

LEMMA 4.5 (Pompeiu’s formula). If Ω has a piecewise C1 boundary

and f is quasiconformal on Ω, then

f (w) =
1

2πi

∫

∂Ω

f (z)

z−w
dz− 1

π

∫∫

Ω

fz

z−w
dxdy.(4.2)

If Ω is a topological annulus in the plane with boundary components

γ1,γ2 that are closed Jordan curves, then mod (Ω) refers to the modulus

of the path family in Ω that separates the boundary components. This is

the same as the extremal length of the path family that connects the bound-

ary components (also called the extremal distance between the boundary

components). If A(a,b) ≡ {z : a < |z| < b} then it is standard fact that

mod (A) = 1
2π log b

a
. Let

D f =
| fz|− | fz|
| fz|+ | fz|

,

J f = | fz|2 −| fz|2 = (| fz|− | fz|)(| fz|+ | fz|),
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denote the distortion and Jacobian of f respectively. Note that D f ≥ 1 and

f is conformal if and only if D f ≡ 1.

LEMMA 4.6. Suppose f is a K-quasiconformal map from Am =A(1,em)
to AM = A(1,eM). Then

M ≥ m− 1

2π

∫

A(1,em)
(D f (z)−1)

dxdy

r2
.

PROOF. Let ΓM be the path family connecting the boundary compo-

nents of AM. If ρ̃ is admissible for this family then

ρ(z) = ρ̃( f (z))(| fz|+ | fz|)
is admissible for Γm, the path family connecting the boundary components

of Am. Therefore the modulus of Γm satisfies

mod (Γm)≤
∫

Am

ρ̃( f (z))2(| fz|+ | fz|)2dxdy.

Applying this formula to the inverse of f shows that for any admissible ρ
for Γm,

mod ( f (Γm)) ≤
∫

Am

ρ(z)2 1

(| fz|− | fz|)2
J f dxdy

≤
∫

Am

ρ(z)2 1

(| fz|− | fz|)2
(| fz|2 −| fz|2)dxdy

≤
∫

Am

ρ(z)2 | fz|+ | fz|
| fz|− | fz|

dxdy

≤
∫

Am

ρ(z)2D f (z)dxdy.

Applying this with the admissible metric ρ(z) = 1
m|z| , we get

2π

M
= mod ( f (Γm)) ≤ 1

m2

∫

Am

D f (z)

|z|2 dxdy

=
1

m2
[
∫

Am

D f (z)−1

|z|2 dxdy+
∫

Am

1

|z|2 dxdy]

=
1

m2

∫

Am

D f (z)−1

|z|2 dxdy+
2π

m
.

Rearranging gives

m−M ≤ M

2πm

∫

Am

D f (z)−1

|z|2 dxdy,

or

M ≥ m− M

2πm

∫

Am

D f (z)−1

|z|2 dxdy.
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If M > m, the lemma is trivially true. If M ≤ m, then because the integral in

non-negative, the inequality above becomes

M ≥ m− 1

2π

∫

Am

D f (z)−1

|z|2 dxdy.

Thus in either case the lemma holds. �

LEMMA 4.7. Suppose f is a K-quasiconformal map from Am =A(1,em)
to AM = A(1,eM). Then

M ≤ m+
1

2π

∫

Am)
(D f −1)

dxdy

r2
.

PROOF. If we cut Am with a radial slit and let g = log( f ), then g maps

Am to a quadrilateral with its vertical sides on {x = 0} and {x = M}. This

quadrilateral has area 2πM. If we integrate over the radial segments in Am,

we get

M ≤
∫ exp(m)

1
(|gz|+ |gz|)dr

so integrating over all angles and using rdrdθ = dxdy gives

2πM ≤
∫ 2π

0

∫ exp(m)

1
(|gz|+ |gz|)drdθ ≤

∫

Am

(|gz|+ |gz|)
dxdy

r
.

Thus by Cauchy-Schwarz,

(2πM)2 ≤ (
∫

Am

(|gz|+ |gz|)(|gz|− |gz|)dxdy)(
∫

Am

|gz|+ |gz|
|gz|− |gz|

dxdy

r2
)

≤ (
∫

Am

Jgdxdy)(
∫

Am

Dg
dxdy

r2
)

≤ 2πM(
∫

Am

D f

dxdy

r2
),

where in the last line we have used the facts that g(Am) has area 2πM and

Dg = D f (since logz is conformal on the slit annulus). Thus

M ≤ 1

2π

∫

Am

1+(D f (z)−1)
dxdy

|z−w|2

= m+
1

2π

∫

Am

(D f (z)−1)
dxdy

|z−w|2 .

�

The following simply combines the last two results.
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COROLLARY 4.8. Suppose f is a K-quasiconformal map from Am =
A(1,em) to AM = A(1,eM). Then

M = m+O(
1

2π

∫

Am

D f (z)−1

r2
dxdy.)

A special case of this is:

COROLLARY 4.9. Suppose f is a K-quasiconformal map from Am =
A(1,em) to AM = A(1,eM). Suppose D f (z) ≤ D on Am. Suppose µ is the

dilatation of f , that E = {z : µ(z) 6= 0} and that Ek = E∩{2k−1 < |z|< 2k}.

If we choose an integer n so that m ≤ 2n, then

M = m+O((D−1)
n

∑
k=0

2−2k area(Ek)).

Next we apply these estimates to quasiconformal maps with dilatations

that have small suppport in a precise sense.

LEMMA 4.10. Suppose F is a K-quasiconformal map with dilatation

µ , that µ has bounded support, and that F has the hydrodynamical nor-

malization at ∞. Let E = {z : µ(z) 6= 0} and suppose for some t > 0, E

satisfies ∫

E\D(w,t)

dxdy

|z−w|2 ≤ a,

for every w ∈C. Then there is a C−C(K,a)< ∞, depending only on K and

a, so that for every w ∈ R
2 and r ≥ t,

1

C
≤ 1

r
diam(F(D(w,r))≤C.

PROOF. We need only prove this for r = t since for r > t, we can simply

apply the lemma after setting t = r (the integral just gets smaller).

The mapping G(z) = F(tx)/t, satisfies the same estimates as F , but with

t replaced by 1. If we prove the lemma for G, it follows for F , so it suffices

to assume t = 1.

By assumption we can choose R > 100 so that | f (z)− z| ≤ 1, for |z| >
R/8. The result is clear if |w| > R/2, so we may assume |w| ≤ R/2. Fix

such a w. Let m = logR, so R = em, and consider the annulus A = {z :

1 < |z−w| < em}. F(A) is a topological annulus and can be conformally

mapped to AM = {1 < |z|< eM} for some M > 1. By Corollary ??,

M = m+O(
∫

Am

D f −1

|z−w|2 dxdy).

By our assumptions, this becomes

M = m+O(
K −1

2π

∫

Am

1E(z)
dxdy

|z−w|2 ) = m+O(Ka),
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where 1E denotes the indicator function of E (the function that is one on

E and zero off E) and we have used the fact that E has finite planar area

and |z−w|−1 ≤ 1 on Am (recall w is the center of the annulus and the inner

radius is at least 1.).

he Hardy-Littlewood inequality on rearrangement of integrals states that

∫
R

2

f (z)g(z)dxdy ≤
∫

R
2

f ∗(z)g∗(z)dxdy

where f ∗,g∗ are the symmetric, decreasing rearrangements of f and g. This

inequality implies that we will maximize the integral by setting w = 0, so

λ ( f (A)) log2 R

r
≤ log

R

r
+Kε

∫

|z|>1
ϕ(|z|)dxdy|z|2

= log
R

r
+O(ε).

Thus

λ ( f (A)) ≤ (log
R

r
)−1 +

Kε

log2 R/r

which implies

M( f (A)) ≥ log
R

r
−Kε

By Corollary ??, the boundary components of f (Am) are each closed

curves that are contained in round annuli (with concentric circles) of bounded

modulus (depending on K). Thus f (Am) is contained in a topological an-

nulus A′ with circular boundaries γ1,γ2 (not necessarily concentric) whose

diameters are comparable to the diameters of the boundary components of

f (Am). By monotonicity of modulus, the modulus of the annulus A′ (de-

noted M′/2π) is larger than the modulus M/2π of f (A), hence M′ ≥ M.

Moreover, we claim

M′ ≤ log
diam(γ2)

diam(γ1)
.

This is well known to hold with equality if the circles γ1, γ2 are concentric.

If they are not, then we can apply a Möbius transformation that maps the

outer circle, γ2, to itself and moves the inner circle, γ1 to circle concentric

with γ2. This make the Euclidean diameter of γ1 larger and preserves the

modulus between the circles, and this proves the claimed inequality. Thus

M ≤ M′ ≤ log
diam(γ2)

diam(γ1)
,

or

diam(γ1)≤ diam(γ2) · e−M = diam(γ2) · e−m+O(KA).
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Since | f (z)− z| ≤ 1 on {|z| = R} we know diam(γ2) ≃ R = em. Using this

and the fact M = m+O(Ka) prove above gives

diam( f ({|z−w|= 1}))≃ diam(γ1) = O(eKa).

To get the other direction, we choose γ1, γ2 to be circles that bound an

annulus inside f (Am), again with diameters comparable to the diameters of

the corresponding components of ∂ f (Am). We then use monotonicity again,

and argue as before, but now we note that since f is close the identity for

|z|> R/2, the curve γ1 is not too close to γ2, i.e., the distance between them

is comparable to R. Thus in the argument above, where we moved γ1 be be

concentric with γ2, its Euclidean diameter was only changed by a bounded

factor. Thus

diam(γ1)& diam(γ2) · e−M = diam(γ2) · e−m−O(KA) & e−O(KA)..

This proves the lemma. �

If F is as above, Bojarski’s theorem (Theorem ??) says there is a p =
p(K) > 2 so that the Lp norm of Fz is uniformly bounded on every unit

radius disk. If a region can be covered by n such disks then the Lp norm is

O(n1/p) with a uniform constant, i.e.,

COROLLARY 4.11. If F satisfies the conditions of Lemma ??, and p =
p(K)> 2 is as above, then ‖Fz ·1D(z,r)‖p = O(r2/p) uniformly for all z ∈C.

PROOF OF THEOREM ??. Suppose the support of µ is contained in D(0,R).
The main idea is to use the Pompeiu formula

F(w) =
1

2πi

∫

|z|=r

F(z)

z−w
dz− 1

π

∫∫

|z|<r

Fz

z−w
dxdy.(4.3)

Because of our assumptions on F , the first integral is

1

2πi

∫

|z|=r

z+O(1/|z|)
z−w

dz = w+O(1/r).

The left-hand side of (??) and the second integral are both constant for

r > R, so the first integral must equal w for all r > R. Thus

F(w) = w− 1

π

∫∫

|z|<r

Fz

z−w
dxdy = w− 1

π

∫∫

|z|<r

µFz

z−w
dxdy.

Since |Fz|= |µFZ| ≤ k|Fz|, we get

|F(w)−w| ≤ k

π

∫

E
| Fz

z−w
|dxdy.

where k = (K −1)/(K +1) is our upper bound for |µ|.
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The estimate in the theorem already holds if |w| ≥ R, so assume |w|< R.

Let r = max(1, |w|/2). We will estimate the integral
∫

E
| Fz

z−w
|dxdy,

by cutting D(0,R) into three pieces:

D1 = {z : |z−w| ≤ 1}
A = {z : 1 ≤ |z−w| ≤ r}
X = D(0,R)\ (D1 ∪A),

and showing the integral over each piece is O(εβ/|w|) for some β > 0 de-

pending only on K.

First consider D1. With p as in Corollary ??, the Lp norm of Fz over

D1 is uniformly bounded, so using Hölder’s inequality with the conjugate

exponents, we get
∫

D1

| Fz

z−w
|dxdy = O(‖

1E∩D(w,1)

|z−w| ‖q).(4.4)

Since E ∩D(w,1) has area at most ϕ(|w|)≤ ϕ(r), the Lq norm on the right

side of (??) is bounded above by what happens when E ∩D(w,1) is a disk

of radius s ≃ (εϕ(r))1/2 centered at w. In this case we get the bound (using

polar coordinates and recalling 1 < q < 2)

O([
∫ s

0
r−qrdr]1/q) = O(s(2−q)/q) = O((εϕ(r))

1
q− 1

2 ).

Since ϕ tends to zero faster than any polynomial, this is =O(ε
1
q− 1

2 1
|w|). This

is the desired estimate with β = 1
q
− 1

2
> 0.

Next consider the integral over A:
∫

A
| Fz

z−w
|dxdy =

∫

A
1E(z)|Fz|dxdy

= (
∫

A
1E(z)

qdxdy)1/q(
∫

A
|Fz|pdxdy)1/p

= O(area(E ∩A))1/q‖Fz1A‖p

= O((εr2ϕ(r))1/q)r2/p

= O(ε1/q 1

|w|),

since ϕ decays faster than any power.

To estimate the integral over X , write

X = ∪R
k=1Xk = ∪R

k=1X ∩Ak = ∪R
k=1X ∩{z : k−1 ≤ |z|< k},
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Then ∫

Xk

1E(z)|Fz|dxdy = (
∫

Ak

1E(z)
qdxdy)1/q(

∫

Ak

|Fz|pdxdy)1/p

= (area(E ∩Ak))
1/q(

∫

Ak

|Fz|pdxdy)1/p

= (εkϕ(k))1/q(O(k))1/p

= O(ε1/qϕ(k))1/qk1+1/p)

= O(ε1/qk−2),

again since ϕ decays faster than any power. Summing over k gives the

desired estimate. This proves the theorem with β = 1
q
− 1

2
> 0. �

he argument in Section 1.23 only shows that q < 2 with some bound

depending on K, but

β = ε
1
q− 1

2 ,

where q < 2 is the conjugate exponent of p. We have only proved p > 2, but

a sharp estimate was given by Astala [?]: we can take any p ∈ (2,2K/(k−
1)).

The proof given above shows that the conclusion of Theorem ?? still

holds if
∫ ∞

0 ϕ(r)rndr < ∞ for some (large) finite n that depends on K (in

particular, it depends on the value p > 2 so that Fz ∈ Lp in Bojarski’s the-

orem). Similarly, we can assume less if we simply want a uniform bound

on |F(w)−w|, rather than the O(1/|z|) estimate above. We leave these

generalizations to the reader.

PROOF OF COROLLARY ??. First we note that it suffices to prove this

with the additional assumption that µ has bounded support, for a general

quasiconformal f is the pointwise limit of such maps (truncate µ f , apply

the measurable Riemann mapping theorem and show the truncated maps

converge uniformly on compact subsets to f ).

So assume µ = µ has bounded support, say inside the disk D(0,R).
Then f is conformal outside D(0,R), so we can post-compose by a confor-

mal linear map L to get a quasiconformal map

F(z) = z+O(
1

z
),

or

|F(z)− z| ≤C/|z|,
outside D(0,2R) with a constant that does not depend on F (this follows

from the distortion theorem for conformal maps). We apply Theorem ?? to

get

|F(z)− z| ≤Cεβ ,
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for all z with constants C,β that depend only on k. Note that

f (z) =
F(z)−F(0)

F(1)−F(0)
,

and that

|F(1)−F(0)−1| ≤Cεβ ,

so,

| f (z)− f (w)| = |F(z)−F(w)

F(1)−F(0)
|= |z−w|+O(εβ )

1+O(εβ )
,

and this implies (??). �

The following consequence of Theorem ?? is used in [?].

LEMMA 4.12. Suppose F : R2 → R
2 is K-quasiconformal, it fixes 0

and 1, maps R to R, and is conformal in the strip {x+ iy : |y| < 1}. Let

E = {z : µ(z) 6= 0} and suppose E is (ε,ϕ)-thin. If ε is sufficiently small

(depending on k and ϕ), then 0 < 1
C
≤ | f ′(x)| ≤C < ∞ for all x ∈R, where

C depends on K, ϕ and ε is otherwise independent of f . If we fix K and ϕ
and let ε → 0 then C → 1.

PROOF. For each x ∈ R, f is conformal on the disk D(x,1) ⊂ S, so

Koebe’s 1
4
-theorem says that

| f ′(x)| ≃ dist( f (x),∂ f (D(x,1))).

However taking z = x and w ∈ ∂D(x,1) in (??) shows that

dist( f (x),∂ f (D(x,1)))≃ 1.

This gives the first claim. When ε is small, then (??) implies that

(1−δ )S ⊂ f (S)⊂ (1+δ ),

where δ > 0 tends to zero with ε (for fixed k and a). Thus as ε → 0, f con-

verges uniformly to the identity on S. In particular, f ′ converges uniformly

to 1 on R. �

Exercises





CHAPTER 5

Constructing Eremenko-Lyubich funtions

The singular set of a entire function f is the closure of its critical values

and finite asymptotic values and is denoted S( f ). The Eremenko-Lyubich

class B consists of transcendental entire functions such that S( f ) is a bounded

set. The Speiser class S ⊂ B are those functions for which S( f ) is a finite

set. If f ∈ B then Ω = {z : | f (z)| > R} and f |Ω must satisfy certain sim-

ple topological conditions when R is sufficiently large. A model (Ω,F) is

an open set Ω and a holomorphic function F on Ω that satisfy these same

conditions. In this chapter we show any model can be approximated by an

Eremenko-Lyubich function in a precise sense. In many cases, this allows

the construction of functions in B with a desired property to be reduced to

the construction of a model with that property, and this is often much easier

to do. We shall see examples if this in the next chapter.

1. Models

Suppose Ω = ∪ jΩ j is a disjoint union of unbounded simply connected

domains such that

(1) sequences of components of Ω accumulate only at infinity,

(2) ∂Ω j is connected for each j (as a subset of C).

Such an Ω will be called a model domain. If Ω∩{|z| ≤ 1}= /0, we say the

model domain is disjoint type. The connected components {Ω j} of Ω are

called tracts. Given a model domain, suppose τ : Ω →Hr = {x+ iy : x > 0}
is holomorphic so that

(1) The restriction of τ to each Ω j is a conformal map τ j : Ω j →Hr,

(2) If {zn} ⊂ Ω and τ(zn)→ ∞ then zn → ∞ .

Given such a τ : Ω →Hr, we call F(z) = exp(τ(z)) a model function.

The second condition on τ is a careful way of saying that the conformal

map on each component sends ∞ to ∞. Even after making this condition,

we still have a (real) 2-dimensional family of conformal maps from each

component of Ω to Hr determined by choosing where one base point in

each component will map in Hr. A choice of both a model domain Ω and a

model function F on Ω will be called a model.

127
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Given a model (Ω,F) we let

Ω(ρ) = {z ∈ Ω : |F(z)|> eρ}= τ−1({x+ iy : x > ρ}),
and

Ω(δ ,ρ) = {z ∈ Ω : eδ < |F(z)|< eρ}= τ−1({x+ iy : δ < x < ρ}).
If Ω has connected components {Ω j} we let Ω j(ρ) = Ω(ρ)∩Ω j and simi-

larly for Ω j(δ ,ρ).

exp

τ

F

x > 0

|z| > 1 

|F| > 1

FIGURE 1.1. A model consists of an open set Ω which

may have a number of connected components called tracts.

Each tract is mapped conformally by τ to the right half-plane

and then by the exponential function to the exterior of the

unit disk. The composition of these two maps is the model

function F . In this paper, we are interested in knowing if a

holomorphic model function on Ω can be approximated by

holomorphic function on the entire plane.

Each function f in the Eremenko-Lyubich class that satisfies S( f ) ⊂ D

gives rise to a model by taking Ω = {z : | f (z)| > 1} and τ(z) = log f (z).
The log is well defined since each component of Ω is simply connected

and f is non-vanishing on Ω. Eremenko and Lyubich proved in [?] that τ
defined in this way is a conformal map from each component of Ω to Hr.
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We call a model arising in this way an Eremenko-Lyubich model. If f is in

the Speiser class, we call it a Speiser model.

THEOREM 1.1 (All models occur). Suppose (Ω,F) is a model and 0 <
ρ ≤ 1. Then there is f ∈ B and a quasiconformal ϕ : C→ C so that F =
f ◦ϕ on Ω(2ρ). In addition,

(1) | f ◦ϕ| ≤ e2ρ off Ω(2ρ) and | f ◦ϕ| ≤ eρ off Ω(ρ). Thus the com-

ponents of {z : | f (z)| > eρ} are in 1-to-1 correspondence to the

components of Ω via ϕ .

(2) S( f )⊂ D(0,eρ).
(3) the quasiconstant of ϕ is O(ρ−2) with a constant independent of

F and Ω,

(4) ϕ−1 is conformal except on the set Ω(ρ
2
,2ρ).

We sketch the proof of Theorem ?? quickly here to give the basic idea,

and give the details in later sections. Let W = C \Ω(ρ). It is simply con-

nected, non-empty and not the whole plane, so there is a conformal map

Ψ :W →D. Since Ψ maps ∂W to the unit circle, if we knew that F = f |Ω for

some entire function f , then B = e−ρ ·F ◦Ψ−1 would be an inner function

on D (i.e., a holomorphic function on D so that |B| = 1 almost everywhere

on the boundary).

The proof of Theorem ?? reverses this observation. Given the model and

the corresponding domain W and conformal map Ψ we construct a Blaschke

product B (a special type of inner function) on the disk so that G = B ◦Ψ
approximates F = eτ on ∂Ω(ρ) (the precise nature of the approximation

will be described later). This step is fairly straightforward using standard

estimates of the Poisson kernel on the disk. We then “glue” G to F across

∂W to get a quasi-regular function g that agrees with F on Ω(2ρ) and agrees

with G on W . This takes several (individually easy) steps to accomplish.

We then use Stoilow factorization (Theorem ??) to define a quasiconformal

mapping φ : C → C so that f = g ◦ φ is holomorphic on the whole plane.

The only critical points of g correspond to critical points of B, and critical

points introduced into Ω(ρ,2ρ) by the gluing process. We will show that

both types of critical values have absolute value ≤ eρ . A different argument

shows that any finite asymptotic value of f must correspond to a limit of B

along a curve in D, so all finite asymptotic values of f are also bounded by

eρ . Thus f ∈B. Since g is only non-holomorphic in Ω(ρ,2ρ), we will also

get that φ−1 is conformal everywhere except in Ω(ρ,2ρ).

2. Reduction of Theorem ?? to the case ρ = 1

We start the proof of Theorem ?? with the observation that it suffices to

prove the result for ρ = 1.



130 5. CONSTRUCTING EREMENKO-LYUBICH FUNTIONS

To do this we define two quasiconformal maps, ψρ and ϕρ . Define

L(x) =





x, 0 < x < ρ/2,

(2−ρ
ρ )(x−ρ/2)+ρ/2 ρ/2 ≤ x ≤ ρ,

x/ρ ρ ≤ x ≤ 2ρ.

This is a piecewise linear map that sends [ρ/2,ρ] to [ρ/2,1] and sends

[ρ,2ρ] to [1,2]. The slope on both intervals is less than 2/ρ . For z =
x+ iy ∈Hr, define

σρ(z) =

{
L(x)+ iy 0 < x ≤ 2ρ,

z+2−2ρ x > 2ρ.

This is quasiconformal Hr →Hr with quasiconstant K ≤ 2/ρ . Then set

ψρ(z) =

{
z, z 6∈ Ω

τ−1
j ◦σρ ◦ τ j(z), z ∈ Ω j.

Note that ψρ is the identity near ∂Ω, so ψρ is quasiconformal on the whole

plane by the Royden gluing lemma, e.g., Lemma 2 of [?], Lemma I.2 of [?]

on page 303, or [?].

The use of Royden’s lemma can be avoided in the argument above by

using a slightly more complicated L that is the identity on [0,ρ/2] and maps

[ρ/2,ρ] linearly to [ρ/2,1] and maps [ρ,2ρ] linearly to [1,2]. Then we

only need the gluing lemma across the smooth curves in ∂Ω(ρ/2), and this

is easier than the general case (and the dependence on ρ is only slightly

worse).

Next, define

ϕρ(z) =

{
z, |z|< eρ/2

exp(σρ(log(z))), |z| ≥ eρ/2
.

Note that even though log(z) is multi-valued, the function σρ does not

change the imaginary part of its argument, so the exponential of σρ(log(z))
is well defined. This is clearly a quasiconformal map of the plane with

quasiconstant 2/ρ . Note also that these functions were chosen so that if

F = exp◦τ is the model function associated to Ω and τ , then on Ω j

F ◦ψρ = exp◦τ j ◦ τ−1
j ◦σρ ◦ τ j

= exp◦σρ ◦ log◦exp◦τ j(2.1)

= ϕρ ◦F.

Now apply Theorem ?? to the model (Ω,F) with ρ = 1 to get a f ∈ B
and a quasiconformal map Φ :C→C so that f ◦Φ = F on Ω(2) and S( f )⊂
D(0,e1). Let gρ = ϕ−1

ρ ◦ f ◦Φ ◦ψρ . This is an entire function pre and
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post-composed with quasiconformal maps of the plane, so it is quasiregular.

By the measurable Riemann mapping theorem, there is a quasiconformal

Φρ : C→ C so that fρ = gρ ◦Φ−1
ρ is entire and clearly

S( fρ) = S(gρ)⊂ ϕ−1
ρ (S( f ))⊂ ϕ−1

ρ (D(0,e)) = D(0,eρ).

For z ∈ Ω(2ρ), ψρ(z) ∈ Ω(2), so using this and (??)

fρ ◦Φρ(z) = gρ(z)

= ϕ−1
ρ ( f (Φ((ψρ(z))))

= ϕ−1
ρ (F(ψρ(z)))

= F(z).

Similarly, | fρ ◦Φρ |= |gρ | is bounded by e2ρ off Ω(2ρ). The quasiconstant

of Φρ is, at worst, the product of the constants for Φ, ψρ and ϕρ , which is

K1 ·4ρ−2, where K1 is the upper bound for the quasiconstant in Theorem ??

in the case ρ = 1.

Finally, our construction in the next section will show that Φ is confor-

mal except on Ω(1,2) and that F has a quasiregular extension to the plane

that is holomorphic except on Ω(1,2) and is bounded by e off Ω(1) and

by e2 off Ω(2). This implies that gρ is holomorphic except on Ω(ρ/2,2ρ)

(since ψρ is holomorphic off Ω(ρ/2,2ρ) and ϕ−1
ρ is holomorphic off {eρ/2 <

|z|< e2}.) This, in turn, implies that Φρ is conformal except on Ω(ρ/2,2ρ),
as desired. Thus fρ satisfies Theorem ?? for the model (Ω,F) and the given

ρ > 0.

3. The proof of Theorem ??

In this section we give the proof of Theorem ?? for ρ = 1, stating certain

facts as lemmas to be proven in later sections.

Let W = C \Ω(1). This is an open, connected, simply connected do-

main that is bounded by analytic arcs {γ j} that are each unbounded in both

directions. See Figure ??. The same comments hold for the larger domain

W2 = C\Ω(2).
Let L1 = {x+ iy : x = 1} and L2 = {x+ iy : x = 2}. The vertical strip

between these two lines will be denoted S. Note that L1 is partitioned into

intervals of length 2π by the points 1+ 2πiN. This partition of L1 will be

denoted J . Note that τ j(γ j) = L1, so each curve γ j is partitioned by the

image of J under τ−1
j . We denote this partition of γ j by J j. Because

elements of J j are all images of a fixed interval J ∈ L1 ⊂ Hr under some

conformal map of Hr, the distortion theorem (e.g., Theorem I.4.5 of [?])

implies they all lie in a compact family of smooth arcs and that adjacent
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Ψ

L1

L2

τ

Ω(2)

Ω(1)
Ω(1)

Ω(1)

Ω(2)

Ω(2)

W

FIGURE 3.1. W is the complement of Ω(1); it is simply

connected and bounded by smooth curves. We are given the

holomorphic function F = eτ on Ω(2) and we will define a

holomorphic function on W using the Riemann map Ψ of

W to the unit disk, and a specially chosen infinite Blaschke

product B on the disk. We will then interpolate these func-

tions in Ω(2) \Ω(1) by a quasiregular function. Each com-

ponent of this set is mapped to a vertical strip by τ , and it is

in these strips that we construct the interpolating functions.

Note that the integer partition on the boundary of the half-

plane pulls back under τ to a partition of each component of

∂Ω(1), and that Ψ maps these to a partition of the unit circle

(minus the singular set of Ψ). The Blaschke product B will

be constructed so that B−1(1) approximates this partition of

the circle.

elements of J j have comparable lengths with a uniform constant, indepen-

dent of j, Ω and F .

Let Ψ : W → D be a conformal map given by the Riemann mapping

theorem. We claim that Ψ can be analytically continued from W to W2

across γ j. Let R1 denote reflection across L1 and for z ∈ Ω j∩W = τ−1
j ({x+

iy : 0 < x < 1}) let T = τ−1
j ◦R1 ◦ τ j; this defines an anti-holomorphic 1-

to-1 map from Ω j(0,1) to Ω j(1,2) that fixes each point of γ j. We can then

extend Ψ by the formula

Ψ(T (z)) = 1/Ψ(z),

(where the right hand side denotes reflection of Ψ(z) across the unit circle).

The Schwarz reflection principle says this is an analytic continuation of Ψ
to W2.



3. THE PROOF OF THEOREM ?? 133

Thus Ψ is a smooth map of each γ j onto an arc I j of the unit circle

T = ∂D = {|z| = 1}. The complement of these arcs is a closed set E ⊂ T.

The set E has zero logarithmic capacity by Corollary 4.5. In particular, E

has zero length and can’t contain an interval.

The partition J j of γ j transfers, via Ψ to a partition of I j ⊂ T into

infinitely many intervals {J
j
k},k ∈ N. We will let K = ∪ j,kJ

j
k denote the

collection of all intervals that occur this way. Thus T= E
⋃∪K∈K K.

Because Ψ conformally extends from W to W2, |Ψ′| has comparable

minimum and maximum on each partition element of γ j (with uniform con-

stants). Thus the corresponding intervals {J
j
k} have the property that adja-

cent intervals have comparable lengths (again with a uniform bound).

Recall from Chapter 1.23 that the hyperbolic distance between two points

z1,z2 ∈ D is defined as

ρ(z1,z2) = inf
γ

∫

γ

|dz|
1−|z|2 .

Also recall that hyperbolic geodesics are circular arcs in D that are perpen-

dicular to T, and that points hyperbolic distance r from 0 are Euclidean

distance
2

exp(2r)+1
= O(exp(−r)),

from the unit circle.

For any proper sub-interval I ⊂T, let γI be the hyperbolic geodesic with

the same endpoints as I and let aI be the point on γi that is closest to the

origin (closest in either the Euclidean or hyperbolic metrics; it is the same

point).

Since K are disjoint intervals on the circle,

∑
K∈K

(1−|aK |)< ∞,

and so

B(z) = ∏
K

|aK|
aK

aK − z

1−aKz
,

defines a convergent Blaschke product (see Theorem II.2.2 of [?]). Thus B is

a bounded, non-constant, holomorphic function on D that vanishes exactly

on the set {an}. Also, |B| has radial limits 1 almost everywhere. Moreover,

B extends meromorphically to C\E, where E is the accumulation set of its

zeros on T; this is the same set E as defined above using the map Ψ (the

zeros accumulate at both endpoints of every component of T\E, and since

these points are dense in E, the accumulation set of the zeros is the whole

singular set E). The poles of the extension are precisely the points in the

exterior of the unit disk that are the reflections across T of the zeros.
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Any subset M of K also defines a convergent Blaschke product. Fix

such a subset. The corresponding Blaschke product BM induces a partition

of each I j with endpoints given by the set {eiθ : BM (eiθ ) = 1} and this

induces a partition H j of each γ j via the map Ψ. This in turn, induces a

partition L j of L1 via τ j.

We would like to say that the partitions L j and J are “almost the

same”. The first step to making this precise is a lemma that we will prove

in Section ??:

LEMMA 3.1. There is a subset M ⊂ K so that if B is the Blaschke

product corresponding to M and L j is the partition of L1 corresponding to

B via τ j ◦Ψ−1, then each element of J hits at least 2 elements of L j and

at most M elements of L j, where M is uniform. In particular, no element of

J can hit both endpoints of any element of L j (elements of each partition

are considered as closed intervals).

In Section ?? we will prove

LEMMA 3.2. Suppose K = [1+ ia,1+ ib] ∈ L j and define

α(1+ iy) =
1

2π
arg(B◦Ψ◦ τ−1

j (1+ iy)),

where we choose a branch of α so α(1+ ia) = 0 (recall that B(Ψ(τ−1
j (1+

ia))) = 1 ∈ R). Set

ψ1(z) = 1+ i(a(1−α(z))+bα(z)) = 1+ i(a+(b−a)α(z)).

Then ψ1 is a homeomorphism from K to itself so that α ◦ψ−1
1 : K → [0,1]

is linear and ψ1 can be extended to a quasiconformal homeomorphism of

R = K × [1,2] to itself that is the identity on the ∂R \K (i.e., it fixes points

on the top, bottom and right side of R).

The main point of the proof is to show that arg(B◦Ψ◦τ−1
j ) : K → [0,2π]

is biLipschitz with uniform bounds.

Roughly, Lemma ?? says there are more elements of J than there are

of L j. This is made a little more precise by the following:

LEMMA 3.3. There is a 1-to-1, order preserving map of L j into (but not

necessarily onto) J so that each interval K ∈ L j is sent to an interval J

with dist(K,J)≤ 2π . Moreover, adjacent elements of L j map to elements of

J that are either adjacent or are separated by an even number of elements

of J .

This will be proven in Section ??. Again, the proof is quite elementary.

Partition J =J j
1 ∪J j

2 according to whether the interval is associated

to some element of L j by Lemma ?? (i.e., J j
1 is the image of L j under
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the map in the lemma). The maximal chains of adjacent elements of J j
2

will be called blocks. By the lemma, each block has an even number of

elements. We will say that the block associated to an element J ∈J j
1 is the

block immediately above J.

Thus each interval K in L j is associated to an interval J′ that consists

of the corresponding J given by Lemma ?? and its associated block. K and

J′ have comparable lengths and are close to each other, so the orientation

preserving linear map from J′ to K defines a piecewise linear map ψ̃2 : R→
R that is biLipschitz with a uniform constant. Using linear interpolation we

can extend this to a biLipschitz map ψ2 of the strip S = {x+ iy : 1 < x < 2}
to itself that equals ψ̃2 on L1 (the left boundary) and is the identity on L2

(the right side).

Each element J ∈ J j
2 is paired with a distinct element J∗ ∈ J j

2 that

belongs to the same block. The two outer-most elements of the block are

paired, as are the pair adjacent to these, and so on. Similarly, each point z is

paired with the other point z∗ in the block that has the same distance to the

boundary (the center of the block is an endpoint of J and is paired with

itself).

For each K ∈ L j, let JK be the corresponding element of J j
1 and let IK

be the union of JK and its corresponding block. Let RK = [1,2]× IK . Let

UK = RK \XK , where XK is the closed segment connecting the upper left

corner of RK to the center of RK . See Figure ??.

UK

RK

FIGURE 3.2. Definition of UK

LEMMA 3.4 (Simple folding). There is a quasiconformal map ψ3 :UK →
RK so that (ψ3 depends on j and on K, but we drop these parameters from

the notation)

(1) ψ3 is the identity on ∂RK \L1 (i.e., it is the identity on the the top,

bottom and right side of RK),
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(2) ψ−1
3 extends continuously to the boundary and is linear on each

element of J lying in IK ,

(3) ψ3 maps IK (linearly) to JK ,

(4) for each z ∈ IK , ψ−1
3 (z) = ψ−1

3 (z∗) ∈ Xk (i.e., ψ3 maps opposite

sides of Xk to paired points in Ik),

(5) the quasiconstant of ψ3 depends only on |IK|/|JK|, i.e., on the num-

ber of elements in the block associated to K. It is independent of

the original model and of the choice of j and K.

We call this “simple folding” because it is a simple analog of a more

complicated folding procedure given in [?]. In the lemma above, the image

domain is a rectangle with a slit removed and the quasiconstant of ψ3 is

allowed to grow with n, the number of block elements. This growth is not

important in this paper because here we only apply the folding construction

in cases where this number n is uniformly bounded (this will occur in our

application because of Lemma ??). In [?], the corresponding values may be

arbitrarily large but the folding construction there must give a map with uni-

formly bounded quasiconstant regardless. The construction in [?] removes

a collection of finite trees from Rk and does so in a way that keeps the qua-

siconstant of ψ3 bounded independent of n (there are also complications

involving how the construction on adjacent rectangles are merged).

We want to treat the boundary intervals in J1 and J2 slightly differ-

ently. The precise mechanism for doing this is:

LEMMA 3.5 (exp-cosh interpolation). There is a quasiregular map σ j :

S → D(0,e2) so that

σ j(z) =





exp(z), z ∈ J ∈ J j
1 ,

e · cosh(z−1), z ∈ J ∈ J j
2 ,

exp(z), z ∈Hr +2.

The quasiconstant of φ j is uniformly bounded, independent of all our choices.

This lemma will be proven in Section ?? and is completely elementary.

We now have all the individual pieces needed to construct the interpo-

lation g j between ez on L2 and B◦Ψ◦ τ−1
j on L1. Let U j be S minus all the

segments XK where K ∈ L j as in Lemma ??. Define a quasiconformal map

ψ : U j → S by

ψ = ψ1 ◦ψ2 ◦ψ3,

and let g j = σ j ◦ψ map U j into D(0,e2). By definition, each ψi, i= 1,2,3 is

the identity on L2, so g j(z) = ez on L2. For any K ∈L j, the map ψ sends the

boundary segments of ∂UK that lie on some XK linearly onto elements of

J j
2 , so boundary points on opposite sides of XK get mapped to points that
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are equidistant from 2πiN and cosh agrees at any two such points. Thus g j

extends continuously across each slit XK . Finally, the map ψ was designed

so that g j is continuous on S and agrees with B ◦ Ψ ◦ τ−1
j on L1. Thus

g j ◦ τ j continuously interpolates between B ◦Ψ on W and F on Ω(2) and

so defines a quasiregular g on the whole plane with a uniformly bounded

constant. Thus by the measurable Riemann mapping theorem there is a

quasiconformal ϕ : C→ C so that f = g◦ϕ is entire.

The singular values of f are the same as for g. On Ω(2), g = F = eτ ,

so g has no critical points in this region. In U j, g = g j is locally 1-to-1, so

has no critical points there either. Thus the only critical points of g in Ω(1)
are on the slits XK , then these are mapped by g onto the circle of radius e

around the origin. Thus every critical value of g (and hence f ) must lie in

D(0,e).

If g has a finite asymptotic value outside D(0,e), then it must be the

limit of g along some curve Γ contained in a single component of Ω. Then

ez has a finite limit along τ(Γ) ⊂ Hr; this is impossible, so f has no finite

asymptotic values outside D(0,e). Thus S( f )⊂ D(0,e), and so f ∈ B.

This proves Theorem ?? except for the proof of the lemmas.

4. Blaschke partitions

In this section we prove Lemma ??. We start by recalling some basic

properties of the Poisson kernel and harmonic measure in the unit disk D.

The Poisson kernel on the unit circle with respect to the point a ∈ D is

given by the formula

Pa(θ) =
1−|a|2
|eiθ −a2| =

1−|a|2
1−2|a|cos(θ −φ)+ |a|2 ,

where a = |a|eiφ . This is the same as |σ ′| where σ is any Möbius transfor-

mation of the disk to itself that sends a to zero. If E ⊂ T, we write

ω(E,a,D) =
1

2π

∫

E
Pa(e

iθ )dθ ,

and call this the harmonic measure of E with respect to a. This is the same

as the (normalized) Lebesgue measure of σ(E)⊂T where σ :D→D is any

Möbius transformation sending a to 0. It is also the same as the first hitting

distribution on T of a Brownian motion started at a (although we will not

use this characterization).

Suppose I ⊂ T is any proper arc, and, as before, let γI be the hyperbolic

geodesic in D with the same endpoints as I; then γI is a circular arc in D

that is perpendicular to T at its endpoints. Let aI denote the point of γI that

is closest to the origin.
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LEMMA 4.1. ω(I,aI,D) =
1
2
.

PROOF. Apply a Möbius transformation of D that sends aI to the origin.

Then γI must map to a diameter of the disk and I maps to a semi-circle. �

Given two disjoint arcs I,J in T, let γI,γJ be the two corresponding

hyperbolic geodesics and let aJ
I be the point on γI that is closest to J and let

aI
J be the point on γJ that is closest to I.

LEMMA 4.2. ω(I,aI
J,D) = ω(J,aJ

I ,D)

PROOF. Everything is invariant under Möbius maps of the unit disk to

itself, so use such a map to send I,J to antipodal arcs. Then the conclusion

is obvious. �

LEMMA 4.3. If z,w ∈ D and I ⊂ T, then

ω(I,z,D)

ω(I,w,D)
≤C

where the constant C depends only on the hyperbolic distance between z

and w.

PROOF. Suppose σ(z) = (z−w)/(1−wz) maps w to 0. Then u(z) =
ω(I,σ(z),D) is a positive harmonic function on D, so the lemma is just

Harnack’s inequality applied to u. �

Suppose I,J,⊂T are disjoint closed arcs and dist(I,J)≥ ε max(|I|, |J|).
Then we call I and J ε-separated. This implies the hyperbolic geodesics

γI,γJ are separated in the hyperbolic metric (with a lower bounded depend-

ing only on ε), but the converse is not true.

LEMMA 4.4. If I,J ⊂ T are ε-separated, then the hyperbolic distance

between aI and aJ
I is bounded, depending only on ε .

PROOF. Assume I is the longer arc and consider hyperbolic geodesic S

that connects aJ
I and aI

J . Then S is perpendicular to γI at aJ
I , so if 1−|aJ

I | ≪
1−|aI|, S will hit the unit circle without hitting γ j. See Figure ??. �

LEMMA 4.5. Suppose that I,J are ε-separated. Then

ω(I,aJ,D)≃ ω(J,aI,D),

where the constant depends only on ε .

PROOF. This follows immediately from our earlier results. �

LEMMA 4.6. Suppose that I and J are ε-separated and that aJ,aI are

at least distance R apart in the hyperbolic metric. Then

ω(J,aI,D)≤C(ε)e−R.
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aJ
γ

J

J

a
J
I

aI
γ

I

I

aJ
I

S

FIGURE 4.1. If the intervals I and J are ε-separated, then a

shortest path between γI and γJ must hit each geodesic near

the “top” points. A perpendicular geodesic that starts too

“low” on γJ will hit the unit circle without hitting γI .

PROOF. Since the intervals are ε-separated, the hyperbolic distance be-

tween aI and aJ is the same as the distance between aJ
I and aI

J , up to a

bounded additive factor. Thus if we apply a Möbius transformation of D so

that aJ = 0, aI is mapped to a point w with 1− |w| = O(e−R), which im-

plies ω(I,aJ,D) = O(e−R). Since the intervals are ε-separated, the reverse

inequality also holds by Lemma ??. �

Fix M < ∞ and suppose K is a collection of disjoint (except possibly

for endpoints) closed intervals on T so that any two adjacent intervals have

length ratio at most M. We say that two intervals I,J are S steps apart if there

is a chain of S+1 adjacent intervals J0, . . . ,JS so that I = J0 and J = JS.

Note that if I,J ∈K are adjacent, then aI,aJ are at bounded hyperbolic

distance T apart (and T depends only on M). Also, if I,J ∈ K are not

adjacent, then they are ε-separated for some ε > 0 that depends only on M.

LEMMA 4.7. For any R > 0 there is a collection N ⊂ K so that

(1) for any I ∈ K , there is a J ∈ N with ρ(aJ,aI)≤ R

(2) for any I,J ∈ N , ρ(aJ,aI)≥ R.

PROOF. Just let N correspond to a maximal collection of the points

{aK} with the property that any two of them are hyperbolic distance ≥ R

apart. �

Fix a positive integer S. For each J ∈ N choose the shortest element of

K that is at most S steps away from J. Let M ⊂ K be the corresponding

collection of intervals.

LEMMA 4.8. Suppose R, S, T are as above and R ≥ 4ST . If K and M
are as above, then for all K ∈ K ,

ε ≤ ∑
J∈M

ω(K,aJ,D)≤ µ,
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where ε > 0 depends only on R and µ → 1/2 as S → ∞.

PROOF. The left-hand inequality is easier and we do it first. Fix K ∈K .

There is a I ∈ N with ρ(aI,aK) ≤ R, and since adjacent elements of K
have points that are only T apart in the hyperbolic metric, there is an el-

ement J ∈ M with ρ(aK ,aJ) ≤ R+ ST ≤ 5
4
R. This implies |J| ≃ |K| ≃

dist(J,K) and these imply ω(K,aJ,D) ≥ ε with ε depending only on ρ .

Thus every element of K has harmonic measure bounded below with re-

spect to some point corresponding to a single element of M and hence the

sum of harmonic measures over all elements of M is also bounded away

from zero uniformly.

Now we prove the right-hand inequality. By our choice of R, points aJ

corresponding to distinct intervals in M are at least distance R/2 apart. Fix

K ∈ K . There is at most one point within hyperbolic distance R/4 of aK

and the harmonic measure it assigns K is at most 1/2 since the point lies on

or outside the geodesic γK .

All other points associated to elements of M are Euclidean distance

≥ exp(R/8)|K| away from K or are within this distance of K, and are within

Euclidean distance exp(−R/8)|K| of the unit circle (this is because of the

Euclidean geometry of hyperbolic balls in the half-space). We call these

two disjoint sets M1 and M2 respectively.

Using Lemma ?? we see that the

∑
J∈M1

ω(K,aJ,D) = O( ∑
J∈M1

ω(J,aK,D)) = O(exp(−R/8)).

To bound the sum over M2, we note that each interval in M2, is the

endpoint of a chain of S adjacent intervals that are each at least as long as

J. Since

|J| ≤ exp(−R/8)|K|,
and

dist(J,K)& |K|,
we can deduce

ω(J,aK,D)≤ O(
1

S
)ω(aK ,J,D),

so since the J’s are all disjoint intervals,

∑
J∈M2

ω(K,aJ,D) = O(
1

S
∑

J∈M2

ω(J,aK ,D)) = O(
1

S
).

Choosing first S large, and then R large (depending on S and separation

constant of K ), both sums are as small as we wish, which proves the

lemma. �
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COROLLARY 4.9. Suppose B is as above and K ∈ K . Then

ε ≤ 1

|K|
∂B

∂θ
≤C.

PROOF. If I,J are ε-separated, then it is easy to verify that

sup
z∈J

PaI
(z), inf

z∈J
PaI

(z),

are comparable up to a bounded multiplicative factor that depends only on

ε . The lemma then follows from our earlier estimates. �

We have now essentially proven Lemma ??; it just remains to reinterpret

the terminology a little. For the reader’s convenience we restate the lemma.

LEMMA 4.10 (The Blaschke partition). There is a subset M ⊂ K so

that if B is the Blaschke product corresponding to M and L j is the partition

of L1 corresponding to B via τ j ◦Ψ−1, then each element of J hits at least

2 elements of L j and at most M elements of L j, where M is uniform. In

particular, no element of J can hit both endpoints of any element of L j

(elements of each partition are considered as closed intervals).

PROOF. A computation shows that for the Blaschke product

B(z) = ∏
n

|an|
an

z−an

1− ānz
,

the derivative satisfies

|∂B

∂θ
(eiθ )|= ∑

n

Pan
(eiθ ),

and the convergence is absolute and uniform on any compact set K disjoint

from the singular set E of B (since B is a product of Möbius transformations,

and the derivative of a Möbius transformation is a Poisson kernel, this for-

mula is simply the limit of the n-term product formula for derivatives).

Lemma ?? now says we can choose M so that

2πε ≤
∫

J
| ∂

∂θ
B|dθ ≤ 3

4
·2π =

3π

2
.

Since the integral over an element of L has integral exactly 2π , the lower

bound means that an element of L can contain at most 1/ε elements of J
and hence can intersect at most 2+ 1

ε elements of J . The upper bound

says that each element K of L must hit at least 2 elements of J . Hence

it is not contained in any single element of J , and so no single element of

J can hit both endpoints of K. �
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5. Straightening a biLipschitz map

LEMMA 5.1. Suppose K = [1+ ia,1+ ib] ∈ L j and define

α(1+ iy) =
1

2π
arg(B◦Ψ◦ τ−1

j (1+ iy)),

where we choose a branch of α so α(1+ ia) = 0 (recall that B(Ψ(τ−1
j (1+

ia))) = 1 ∈ R). Set

ψ1(z) = 1+ i(a(1−α(z))+bα(z)) = 1+ i(a+(b−a)α(z)).

Then ψ1 is a homeomorphism from K to itself so that α ◦ψ−1
1 : K → [0,1]

is linear and ψ1 can be extended to a quasiconformal homeomorphism of

R = K × [1,2] to itself that is the identity on the ∂R \K (i.e., it fixes points

on the top, bottom and right side of R).

PROOF. The linearizing property of ψ1 is clear from its definition, so

we need only verify the quasiconformal extensions property.

Corollary ?? implies α ′ is bounded above and below by absolute con-

stants. Let R = K × [1,2] and define an extension of ψ1 by

ψ1(x+ iy) = u(x,y)+ iv(x,y) = x+ i[(2− x)ψ1(1+ iy)+(x−1)y)].

i.e., take the linear interpolation between ψ1 on L1 and the identity on L2.

We can easily compute
(

ux uy

vx vy

)
=

(
1 0

y−ψ(y) (2− x)(b−a)α ′(y)+(x−1)

)
.

Note that |y− h(y)| ≤ |K| is absolutely bounded. Also, since |b− a||α ′|
is bounded above and away from 0, so is vy. Thus the derivative matrix

lies in a compact subset of the invertible 2× 2 matrices and hence ψ1 is

quasiconformal (with only a little more work we could compute an explicit

bound for the quasiconstant, and even prove that the extension is actually

biLipschitz). �

6. Aligning partitions

Now we prove Lemma ??, which we restate for convenience.

LEMMA 6.1. There is a 1-to-1, order preserving map of L j into (but not

necessarily onto) J so that each interval K ∈ L j is sent to an interval J

with dist(K,J)≤ 2π . Moreover, adjacent elements of L j map to elements of

J that are either adjacent or are separated by an even number of elements

of J .
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PROOF. For each K ∈ K choose J ∈ J so that J contains the lower

endpoint of K (if two such intervals contain the endpoint, choose the upper

one). No interval J is chosen twice, since Lemma ?? says that no J can hit

both endpoints of any element of L .

Fix an order preserving labeling of the chosen J by N and denote it

{Jn}. By the gap between Jn and Jn+1 we mean the number of unselected

elements of J that separate these two intervals. The position of J0 is fixed.

If the gap between J0 and J1 is even (including no gap), we leave J1 where

it is. If the gap is odd, there is a least one separating interval and we replace

J1 by the adjacent interval in J that is closer to J0. If the gap between

(the new) J1 and J2 is even, we leave J2 alone; otherwise, we move it one

interval closer to J0. Continuing in this way, we can guarantee that for all

n ≥ 0, gaps are even and each Jn is either in its original position or adjacent

to its original position. Thus its distance to the associated element of K is

at most 2π . The argument for negative indices is identical. �

7. Simple Foldings

Now we prove Lemma ??. This is the step that makes the gluing proce-

dure a little different from a standard quasiconformal surgery.

LEMMA 7.1 (Simple folding). There is a quasiconformal map ψ3 :UK →
RK so that (ψ3 depends on j and on K, but we drop these parameters from

the notation)

(1) ψ3 is the identity on ∂RK \L1 (i.e., it is the identity on the the top,

bottom and right side of RK),

(2) ψ−1
3 extends continuously to the boundary and is linear on each

element of J lying in IK ,

(3) ψ3 maps IK (linearly) to JK ,

(4) for each z ∈ IK , ψ−1
3 (z) = ψ−1

3 (z∗) ∈ Xk (i.e., ψ3 maps opposite

sides of Xk to paired points in Ik),

(5) the quasiconstant of ψ3 depends only on |IK|/|JK|, i.e., on the num-

ber of elements in the block associated to K. It is independent of

the original model and of the choice of j and K.

PROOF. The proof is a picture, namely Figure ??. The map is defined

by giving compatible finite triangulations of Rk and Uk (compatible means

that there is 1-to-1 map between vertices of the triangulations that preserves

adjacencies along edges). Such a map defines linear maps between corre-

sponding triangles that are continuous across edges. Since each such map

is non-degenerate, it is quasiconformal and hence the piecewise linear map

defined between Uk and RK is quasiconformal (with quasiconstant given by
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the worst quasiconstant of the finitely many triangles). The other properties

are evident. �

FIGURE 7.1. The pictorial proof of Lemma ?? for n = 5.

8. Interpolating between exp and cosh

LEMMA 8.1 (exp-cosh interpolation). There is a quasiregular map σ j :

S → D(0,e2) so that

σ j(z) =





exp(z), z ∈ J ∈ J j
1 ,

e · cosh(z−1), z ∈ J ∈ J j
2 ,

exp(z), z ∈Hr +2.

The quasiconstant of σ j is uniformly bounded, independent of all our choices.

PROOF. As with the previous lemma, the proof is basically a picture;

see Figure ??. Suppose J ∈ J and let R = J× [1,2]. The exponential map

sends R to the annulus A = {e < |z| < e2}, with the left side of R mapping

to the inner circle and the top and bottom edges of R mapping to the real

segment [e,e2].
Now define a quasiconformal map φ : A → D(0,e2) that is the identity

on {|z| = e2} and on [e,e2], but that maps {|z| = e} onto [−e,e] by z →
1
2
(z+ e2

z
) (this is just a rescaled version of the Joukowsky map 1

2
(z+ 1

z
) that

maps the unit circle to [−1,1], identifying complex conjugate points).
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In Hr + 2 and in rectangles of the form J × [1,2] for J ∈ J1 we set

σ j(z) = exp(z). In the rectangles corresponding to elements of J2 we let

σ j(z) = φ(exp(z)). This clearly has the desired properties. �

exp φ

FIGURE 8.1. The exponential function maps the rectan-

gle [1,2]× J conformally to the slit annulus {e < |z| <
e2} \ [e,e2]. The map φ is chosen to map the annulus

A={e < |z| < e2} to the slit disk {|z| < e2} \ [−e,e] so that

it equals the identity on {|z| = e2} and equals 1
2
(z+ e2

z
) on

{|z|= e}.

Actually, the cosh function in the lemma can be replaced by any func-

tion h : J → [−1,1] that has the property that h(z) only depends on the

distance from z to the endpoint of J. This will ensure that after applying a

folding map, points that started on opposite sides of some slit Xk will end

up being identified by h, which is all we need.

This completes the proof of Theorem ??.
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CHAPTER 7

Wandering domains

1. Non-wandering in the Speiser class

In 1885 Dennis Sullivan proved that a rational map has no wandering

domains, a famous open problem dating back to the origins of the subject.

Two sets of researchers, Alex Eremenko and Misha Lyubich [?], and Lisa

Goldberg and Linda Keen [?], soon generalized Sullivan’s proof from ratio-

nal functions to the Speiser class:

THEOREM 1.1. If f is an entire function that has a finite singular set,

then f has no wandering domains.

In this section, we will give a proof of this result, first for polynomi-

als and then for the Speiser class (and with minor modifications, the proof

would also cover the original case of rational functions).

The main idea is fairly easy to state. If there were a wandering domain

U for f , then any dilatation µ on U could be extended to a dilatation on the

grand orbit of U so that the corresponding quasiconformal mapping has the

property that g= h◦ f ◦h−1 is also entire. This gives a continuous map from

dilatations on U to entire functions that are quasiconformally conjugate to

f , a finite dimensional space by Theorem ??. By an explicit construction,

we can choose a subspace of dilatations with larger dimension on which

the map must be 1-to-1 and this violates Brouwer’s invariance of domain

theorem (you can’t map an open subset of R
n continuously and 1-1 into

R
n−1). You can avoid the use of Brouwer’s theorem by proving that the

map from dilatations to entire functions is continuously differentiable and

then using the rank theorem instead.

t is interesting to note that the proof is mostly topological; the main steps

will be presented as lemmas that are applications of the following facts:

(1) the lifting lemma for covering spaces,

(2) the Jordan curve theorem,

(3) continuous images of connected sets are connected,

(4) Brouwer’s invariance of domain theorem.

The last is the only one that is not simple enough to be included in a first

course on topology, e.g., as in Munkres’ book [?]. It states that a continuous

map f from an open set in R
n+1 into R

n cannot be 1-to-1. In fact, we will

149
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use a strengthening of this that there must be a point z in the image so

that f−1(z) contains a non-trivial connected subset. Since this material is

not standard, we include a brief description of the relevant definitions and

results in Appendix ??.

This result from topological dimension theory can be replaced by a more

standard result, such as the rank theorem, that also proves the existence of

a non-trivial, connected preimage under the additional assumption that the

map f is continuously differentiable. It is a standard fact (e.g., see Ahlfors’

book [?]) that quasiconformal maps depend analytically on the dilatation

and from this we can deduce the necessary smoothness to apply the rank

theorem. See, e.g., the presentations of Sullivan’s theorem in [?], [?], [?],

[?], [?], [?]. We avoid the use of differentiability here only to offer an

alternate approach which trades topological technicalities for analytic ones,

but seems closer (at least to the author) to the heart of the matter.

We say that two entire functions f ,g are topologically equivalent if

there are homeomorphisms ϕ,ψ : C→ C such that

ψ ◦g = f ◦ϕ.

The maps are quasiconformally conjugate if ψ,ϕ can be taken to be qua-

siconformal homeomorphisms.

We say f and g are topologically conjugate if there is a homeomor-

phism ϕ : C→ C such ϕ ◦g = f ◦ϕ. and call the maps quasiconformally

conjugate if ϕ can be taken to be quasiconformal. Note that this a stronger

condition than equivalence and if f and g are conjugate then

f n = (ϕ ◦g◦ϕ−1)n = ϕ ◦gn ◦ϕ−1,

so that the dynamical behavior of f and g is essentially identical. Obviously

the identity map conjugates a map f to itself. The next result says that in

some situations, this is the only possible such conjugation.

LEMMA 1.2. Suppose {ϕt} is a family of quasiconformal maps on C so

that ϕt(z) : X → C is continuous each fixed z as a function of t ∈ X, X a

connected space. Suppose that ϕt0 is the identity for some to ∈ X. Suppose

that f ∈S has the property that ϕt ◦ f = f ◦ϕt for all t ∈ X. Then ϕt(z) = z

for all t ∈ X and all z ∈ J ( f ), i.e., every ϕt is the identity when restricted

to the Julia set of f .

PROOF. Because ϕt conjugates the action of f to itself, periodic points

are mapped to periodic points with the same period. Since there only count-

able many such points, they form a discrete set and so {ϕt(z) : t ∈ X} must

be a single point, since X is connected. Since one of these maps is the

identity, every map must fix every periodic point. Finally, since periodic
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points are dense in the Julia set (Theorem ??), and quasiconformal maps

are continuous, each map ϕt must fix every point in J ( f ). �

LEMMA 1.3. If f : D → Ω ⊂ C is conformal and ϕ : Ω → Ω is a

quasiconformal map that extends continuously to the identity on ∂Ω, then

Φ = f−1 ◦ϕ ◦ f is a quasiconformal map of the disk to itself that extends to

the identity on ∂D.

PROOF. Clearly Φ : D→ D is quasiconformal and hence extends con-

tinuously to a homeomorphism of the unit circle (see Theorem ??). If the

extension of Φ to ∂D is not the identity, then there is an arc I ⊂ T such that

I ∩Φ(I) = /0. Choose a point w ∈ I so that f has a finite radial limit at both

z and Φ(z); we can do this because (1) conformal maps have finite radial

limits except on a set of zero capacity (Corollary 4.5), and (2) sets of zero

capacity map to zero capacity under quasiconformal maps (immediate from

Pfluger’s theorem).

Take the union of the two radial line segments [0,w] and [0,Φ(w)]. Be-

cause ϕ extends as the identity to ∂Ω, the images of these radial segments

under f have the same endpoint on ∂Ω and hence their union is a a closed

Jordan curve γw. Now, choose a distinct point z ∈ I with the same proper-

ties and form the closed Jordan curve γz. Choose z so that the intersection

of γz with ∂Ω is different that the intersection of γw with ∂Ω; we can do this

because only a set of logarithmic capacity zero on the circle can have the

same radial limit. Then γz ∩ γw = f (0) and γz hits both sides of γw (since z

and Φ(z) are in different components of T\ ([0,w]∪ [0,Φ(w)]). See Figure

??. This contradicts the Jordan curve theorem, and thus Φ must extend to

the identity on the boundary. �

FIGURE JordanContradiction

LEMMA 1.4. A wandering domain for a polynomial must be simply

connected.

PROOF. The basin of ∞ is periodic, not wandering, so any wandering

domain must be bounded and have a bounded orbit. By the maximum prin-

ciple, the iterates of f are bounded in the interior of any closed curve in

the component and hence form a normal family inside the curve. Thus the

curve does not surround any Julia points and the component must be simply

connected. �

POLYNOMIALS HAVE NO WANDERING DOMAINS. Choose a smooth, non-

negative function h on C supported in D with gradient bounded by 1 and

such that h(0)> 0. Define a family of mappings of the upper half-plane to

itself by

Φt(z)z+ th(z).
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It is easy to check that these are quasiconformal self-maps of Hu if we

restrict t to a small enough interval [0,ε] and that Φ0 is the identity. If t > 0,

then the mapping is definitely not the identity since the cross ratio of the

points −1,0,1,∞ changes.

Now choose N disjoint intervals Ik = {[2k− 3,2k− 1]}N
1 and define an

N-dimensional family of maps by t = (t1, . . . , tN), and

Φt(z) = z+
N

∑
k=1

tkh(z− (2k−2))tkh(z− (2k−2)).

Suppose Ω were a wandering domain for f . Since f has only finitely

many critical values, we can replace Ω, if necessary, by an iterate of itself

so that neither it nor any iterate contains a critical point. Therefore we may

assume f is univalent on Ω and on all forward orbits.

By Lemma ?? Ω is simply connected, so we can map it conformally by

f to Hu and define a quasiconformal map ϕt = f−1 ◦Φt ◦ f . This defines a

dilatation µ on Ω that we extend to the grand orbit of Ω using the compo-

sition rule for dilatation so that the corresponding quasiconformal map Ψt

given by the measurable Riemann mapping theorem has the property that

gt = Ψ−1
t ◦ f ◦Ψt,

is entire. Doing the extension backwards is always possible; extending to

the forward iterates uses the assumption that f and all its iterates are univa-

lent on Ω.

A consequence of Brouwer’s invariance of domains theorem is that any

continuous map of an open set in R
n into R

k for k < n there is a point

z ∈ R
k whose preimage has topological dimension ≥ 1 and hence contains

a connected set X . Choose some s ∈ X and consider the maps Ψt ◦Ψ−1
s .

These conjugate f to itself and one of them is the identity, so by Lemma ??,

they are all the identity on J ( f ), hence on ∂Ω and hence the corresponding

maps Φt ◦Φ−1
s are extend to the identity on R. However, this is manifestly

false by construction; the boundary maps are not the identity unless s = t.

Therefore there a polynomial has no wandering domains. �

Next we show how the proof given above for polynomials adapts to en-

tire functions with finite singular sets. By Lemma ?? Ω is simply connected.

for Eremenko-Lyubich functions and hence Speiser class functions.

The only non-trivial new step is to prove that the collection of entire

functions with with a given finite singular set is finite dimensional.

By Lemma ?? Ω is simply connected.

Let Mg denote the collection of all entire functions f that are topologi-

cally equivalent to g. An important result of Eremenko and Lyubich [?] says

that for g ∈S , the collection Mg of all f that are topologically equivalent to
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g form a finite dimensional, complex analytic manifold. We shall just prove

a part of this, showing that Mg is finite dimensional in the following sense.

LEMMA 1.5. If f ,g ∈S have the same singular values then there is an

ε > 0 so that the following holds. If

ψ ◦g = f ◦ϕ,

where ψ,ϕ are (1 + ε)-quasiconformal, then g(z) = f (az + b) for some

a,b ∈ C,a 6= 0.

PROOF. The proof is essential an exercise about covering spaces, and

we will need the following lifting lemma that is Theorem 14.3 of Munkres’

book [?]:

THEOREM 1.6 (The general lifting lemma). Let p : E →B be a covering

map; let p(e0) = b0. Let f : Y → B be a continuous map with f (y0) = b0.

Suppose Y is path connected and locally path connected. The map f can be

lifted to a map F : Y → E such that F(y0) = e0 if and only if

f∗(π1(Y,y0))⊂ p∗(π1(E,e0)).

Here π1 denotes the fundamental group and f∗ is the map between fun-

damental groups induced by the continuous map f .

In our application, we let X = C \ S( f ) = C \ S(g) and let Y f = C \
f−1(S( f )),Yg = C\g−1(S(g)). Choose some point z0 ∈ Yg. By Lemma ??

f : Y f → X and g : Yg → X are covering maps.

Since S(g) is a finite set, there is a positive lower bound δ > 0 between

any two points in S(g). Since S(g) is bounded, there is an ε > 0 so that

any (1+ ε)-quasiconformal map fixing 0,1,∞ moves each point of S( f )
by less than δ/10. Thus if ϕ is (1+ ε)-quasiconformal, it is isotopic to

the identity via a path of quasiconformal maps that fix each point of S(g).
Thus for any closed loop γ in Yg, the image loop g(γ) = ψ−1 ◦ f ◦ϕ(γ) is

homotopic to f ◦ϕ(γ). Thus g∗(π1(Yg,z0))⊂ f∗(π1(Y f ,ϕ(z0))). In fact, we

have equality, since π1(Y f ) is isometric to π1(Yg) via the homeomorphism

ϕ . By the general lifting lemma we get a homeomorphism h : F : Yg → Y f

and this map is locally a composition of g and a branch of f−1 and hence is

holomorphic. Thus it must be conformal linear, i.e., h(z) = az+b,a 6= 0, as

claimed. �

alues of f and suppose

ψ0 ◦g = f0 ◦ϕ0,

ψ1 ◦g = f1 ◦ϕ1,

and that ψ0,ψ1 are the endpoints of an isotopy of the plane that fixes each

point of S (g) (i.e., ψt is a homeomorphism of the plane for each t and
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varies continuously as a function of t). We want to show that f0 and f1 are

the same up to a conformal linear change of variable.

Let X = C \S (g) and Y = C \C V (g) and recall (Lemma 1.23) that

g is a covering map from Y to X . The Covering Homotopy Theorem says

that given any homotopy ψt ◦ g : Y → X and any map Ψ : Y → Y so that

ψ0◦g = f0◦Ψ0, there exists a homotopy Φt : Y × [0,1]→Y so that Φ0 = ϕ0

and f0Φt = ψt ◦g. Taking t = 1 gives

f0 ◦Φ1 = ψ1 ◦g = f1 ◦ϕ1,

or

f0 = f1 ◦ϕ1 ◦Φ−1
1 .

Note that ϕ1 ◦Φ−1
1 is a homeomorphism of plane (since each part is) and is

holomorphic except on the (finite) singular set of f , since it is locally equal

to a branch of f0 ◦ f−1
1 . Thus it must be of the form ax+ b, so we have

f0(z) = f1(az+b).
Therefore, if we fix g, and two values z1,z2 where g takes distinct values,

then all the entire functions f that are topologically equivalent by homeo-

morphisms that are sufficiently close to the identity are uniquely determined

by the values of S ( f ), f (z1) and f (z2).
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