.

Nova Série
Bol. Soc. Bras. Mat., Vol. 25, N. 1, 1-30

© 1994, Sociedade Brasileira de Matemdtica
DA SOCIEDADE BRASILEIRA DE MATEMATICA

Julia and John
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Abstract. Using a recent result of Mafié [Ma] we give a classification of polynomials
whose Fatou components are John domains.

1. Introduction
Let P be a polynomial of degree d > 2. We denote by K the filled-in
Julia set, by J = 0K the Julia set, and by A, = C\K the basin at
infinity. We also denote by {F;} the bounded Fatou components, i.e.
the connected components of K\J. For x € J we denote by w(z) the
closure of the forward orbit {P™(x) : n > 1}. The purpose of this paper
is to give a description of when A, and the F; are John domains.
Recall that a domain Q is an (¢) John domain if there is a “center”
20 € Q (20 = oo when Q is unbounded and 99 is compact) such that for
all 21 € Q there exists an arc v C Q connecting 21 to zp and

5(z) 2 elz— 21|, z €.

By 6(2) we mean distance §(z,09) (in the Euclidean metric). See [C,J],
[J] and [N,V]for background on John domains.

We will prove that the property of A, and all F; being John do-
mains is equivalent to a weak version of hyperbolicity of P on J. The
polynomial P is said to be hyperbolic on a set E if there are c¢,n > 0

such that p
| —P"(z)| > cl+n)", z€ E.
dz

Received 13 September 1993

L Supported in part by NSF Grant DMS-8916968



2 L. CARLESON, P. W. JONES and J.-C. YOCCOZ

In [C,J] it is proven that A, and all F; are John domains if P is hy-
perbolic on J, or if P satisfies a Thurston-Misiurewicz condition. In
the latter case P is not hyperbolic on J, but it is hyperbolic with re-
spect to a different (non-Euclidean) metric that was introduced earlier
by Douady and Hubbard.

The main point of this paper is that A, and all the F; are John
domains if and only if a certain analogue of hyperbolicity holds. We
call this property semi-hyperbolicity. Roughly speaking, a polynomial
is semi-hyperbolic if for any sufficiently small disk B centered on J, any
choice of P~™ (restricted to B) has bounded ramification degree. A
definition in terms of forward iterates is also given.

Theorem 1.1. The following conditions are equivalent:
(1.1) P is semi-hyperbolic.
(1.2) P has no parabolic orbits and ¢ ¢ w(c) whenever P'(c) = 0 and
Y=
(1.3) A is a John domain.
1.4) A, is a John domain and every F; has OF; a quasicircle (hence
F;j is a John domain).

The theorem allows us to state in a very precise manner when the
Julia set J is a fractal. Let us take for our definition of “fractal” that for
all z € J and r < diameter (J) there is a holomorphic scaling function
F = F,, defined on B(z,2r) = {|z — x| < 2r} such that |F(z)| < C on
B(zx,2r), j

F(J N Blx,ri =¥

and
F has bounded degree < Dg on B(z,2r).

Then by classical distortion theorems, e.g. our Lemma 2.2, F' behaves
“like a univalent function”, so that F is a bounded degree version of
a linear scaling function. (This means we could also define J to be
a fractal if there were scaling functions F, that were not necessarily
holomorphic, but simply satisfied the geometric distortion properties of
holomorphic scaling functions.) Our Proposition 2.1, Part (C’) states
that P is semi-hyperbolic if and only if P™ (n = n(x,)) acts as a scaling
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function. By Theorem 1.1 we thus have
J is fractal < P is semi-hyperbolic < A is John.

Theorem 1.1 also allows an almost complete classification of when
various components of C\J are John domains, and this is most attractive
when P(z) = 2% + c. In that case the classification theorem of Sullivan
states that either P has an attractive basin, a flower (from a parabolic
periodic point), a Siegel disk, or J is a dendrite (and there are no F;’s).
If there is a Siegel disk with center 2y and multiplier A\ = e2™® we have
the usual number theoretic conditions o may satisfy. We say « is of
constant type (o € C.T.) if |a — p/q| > c¢q~2 for all p,q € Z and we say
«a satisfies a Diophantine condition (o € D) if |a —p/q| > c¢q™7 for some
c>0,7 < oco. Wesay a € B if «a satisfies the Brjuno condition. By
combining our result with work of Michael Herman [H|, we obtain the
following table for 22 +¢. A slash in a column for the JF; indicates there
are no Fy:

Classification A, John? All F; John? OF; = quasicircle?

c¢ M Yes — ——
Attractive Yes Yes Yes
asin
Parabolic Basin, No Yes No
one Petal
Parabolic Basin, No Yes Yes
> 2 Petals
Siegel Disk, No Yes Yes
aeCT.
Siegel Disk, No ? No
aeD\CT.
Siegel Disk No ? ?
a€ B\D
Dendrite, o ¢ w(0) Yes —— ——
Dendrite, o € w(0) No —— =

We remark that Michael Herman [H| has produced an example where
a € B\ D and where all 0F; are quasicircles.
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The John condition turns out to be very closely related to hyperbol-
icity on the w-critical orbit, i.e. the union of all w(c), P'(c) = 0. This
in turn is closely related to the so-called Misiurewicz condition [M],
¢ & w(c) for all ¢ (or some similar condition). (The Thurston condition
is the special and important subcase where critical points are preperi-
odic but not periodic.) A recent paper of Mafié [Ma] shows that when
condition (1.2) holds, P is semi-hyperbolic on the critical orbit, and this
easily implies semi-hyperbolicity.

In certain situations one could have the F; being John domains, but
A, is not a John domain. As the table indicates, we will show this
to be the case for polynomials having a parabolic basin plus a natural
side condition. (In the case of quadratic polynomials, this side condition
holds automatically.) In this case there is not hyperbolicity or even a
weaker semi-hyperbolicity on the critical orbit, but there is still some
“vestige” of hyperbolicity, as was discovered by Douady and Hubbard
[DH]. In this case we prove all F; are John domains, and 9F; is a
quasicircle if and only if there are two or more flower petals.

Section 2 is devoted to a discussion of semi-hyperbolicity and other
notions of hyperbolicity. We also discuss Mané’s theorem there. These
results are used in Section 3 to start the proof of Theorem 1.1, Sections 4
and 5 are devoted to the remainder of the proof of that result. Parabolic
fixpoints are discussed in Section 6. In Section 7 we present the proofs
for our table on “Johnness.” We conclude in Section 8 with an example,
P = 224¢, ¢ € R, where one can construct J “by hand.” This allows one
to see more clearly how the Misiurewicz condition relates to the John
geometry of A,,. In Appendix 1 we present a technical computation for
flower petals.

The work contained herein was carried out in several stages. Certain
portions, e.g. the results on flower petals had been proved in 1990, and
have been announced earlier. The three authors first got together as

an ensemble in July 1992 at a conference on dynamical systems held at -

the Institut Mittag-Leffler. It was here that we discovered the notion of
‘semi-hyperbolicity and proved Theorem 1.1. During the writing of this
paper we became aware of the result of Mané [Mal, which we use in our
Section 2. The authors are grateful to the Institut Mittag-Leffler for
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the use of its facilities, and to NUTEK, the Swedish fund for Research
and Development, which provided financing for the conference. The
second author also wishes to thank the Goran Gustafsson Foundation
for financing a 1990 visit to Stockholm, where some initial work on
flower petals was done. We wish to thank Michael Herman for allowing
us access to preliminary versions of his paper [H]. Finally, we thank
Alexander Volberg for his comments which led us to rewrite Section 5.

2. Semi-hyperbolicity

For z € C, let B(z, p) be the open ball {z : |z — x| < p}. Let P™"(z) be
any inverse branch of P and let By(x,¢€) be a connected component of
P~"(B(z,¢)). By the maximum principle, By (z,€) is simply connected.
P" defines a ramified covering of B, to B and we denote by dy(B5) its

degree.

Definition. We say that P is semi-hyperbolic if there is ¢ > 0 and
D < oo so that for all z € J and all choices of inverse branches,

dn(Bu(z,2)) £ D,

Remark. An equivalent definition, as is easily proved via a compactness

argument, is that for all z, there exists ¢ > 0 such that

sup,, dn(Bp(z,€)) < oo.

Theorem 2.1. The following are equivalent:

(A) P is semi-hyperbolic.

(B) There exists € > 0,¢>0,0 <0 <1, and D < oo such that forzxed
and n € N,

dn(Bn(z,€)) < D,
diameter(By,(z,€)) < cd".
(C) If z € J and n is the first integer such that P"(J N B(z,r)) = J,
then P™ has degree < Dgy on B(x,2r), where Dy is independent of x
and r.

(D) P has no parabolic periodic points and for all ¢ with P'(c) = 0 and
c € J, it holds that ¢ ¢ w(c).
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In condition (C) we mean by “degree < Dy” that P™ is at most Dy
valent. In the proof, we shall need the following (well known) p-valent
version of classical distortion theorems.

Lemma 2.2. Let D C C be a simply connected domain and let F : D —
D = {|z| < 1}, F(0D) C 9D, be p-valent (i.e. degree p). Then if p
denotes the hyperbolic metric, '

{weD: pp(F(20),w) < C'} C F({z € D pp(2, 20) < 1})
C{w e D: pp(F(20),w) < 1},

where C depends only on p.

To prove the lemma, use Mdbius transformations to reduce to the
case where zg = F'(20) = 0 and distance (0,0D) = 1. Let G(-,¢) denote
Green’s function with pole at (. Then

—log |F(2)| = 2Gp(z, 25)

where the sum has at most p terms (and these are the points where
F(z;) = 0. The classical Koebe type distortion theorems applied to each
term in the above sum imply there is 211 L < % such that

|F(2)| > C’_l, 2=,

By Rouché, that yields the first inclusion in the statement of the lemma.
The second inclusion is Schwarz’s Lemma. i

The main difficulty of the proof is (D) = (A). "This result is due to
Mané. As explained in the introduction, we originally had this only in
the real quadratic case when results by Misiurewicz on 1-dimensional
dynamics could be used. Since Maifié’s theorem in our situation admits
a very short proof, we include this here.

Before we begin the proof, let us note that under the conditions of
theorem 2.1, P has no neutral periodic points. B(z, ) around a periodic
fixed point x in f clearly violates (B). The same is true if z is in the
boundary of a Siegel disk.

1. (A) = (B). Let € be the number in the definition of semi-hyperboli-
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city. We first prove that

lim sup diam(By(x, i)) =0.
q

n—oo er

Suppose this is false. We can then choose z = z, and D, =
P~"(Bp(xp, g)) so that Dy, tends to a simply connected domain D. This
is an immediate consequence of Lemma 2.2. From Lemma 2.2 we also
have P"(D) C B(z,¢). But any open set U in J satisfies J C P*(U) for
all large n, which is a contradiction.

Now, choose ng so that whenever n > ny

€ €
diam B = -.
liam (@ 2) < 7

By lemma 2.2 for some 0,0 < 6 < 1,

_ € €
diam Bogy, (=, 5) < 19

and we find
€

&
diam Bin,(z, =) < ng'

[N

2. (B) = (D). As observed above, it follows from (B) that P has no
parabolic fixed points. Suppose that for some critical point ¢ € J,
¢ € w(c). We consider an (¢, €) for a sequence n; constructed inductively
so that c € Bn].. an contains P™i+1(c) for some suitable large M1
and we need only define n;11 = nj + m,y1 to see that the branching
from B(c, ¢) is unbounded which contradicts the assumption (B).

3. (B)& (C). To see that (B)= (C) let z € J and let n be the largest
integer such that diameter (P"(B(z,r)) < €/2. Then by (B), P" has
degree < Dy on B(z,r), and by Lemma 2.2, B(P"(z), ce) C P"(B(z,r))
for some ¢ > 0. We now use the fact that there is an integer m such
that J C P™(B(y,ce)) for all y € J. To see that (C) = (B), notice that
Lemma 2.2 shows that (C) = (A).

4. (D) = (A) (Mané). Following Mané, we first introduce some nota-
tion. Let S(z,e) denote the square of side length 2¢ and center = having
sides parallel to the coordinate axis. We fix a constant p > 0 suitably
small, independent of € and . We call S(z,¢) admissible if S(z, 3¢) is
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contained in a p-neighborhood of J. Recall that there are no parabolic

periodic points.

Lemma 2.3. Given e > 0 and N < oo there exists § > 0 so that if S(z, 0)
is an admissible square and Sy, is a connected component of P~"(S) such
that the degree of P™ on S, is < N, then we have for the same branch

diam(P~"(S(«, %(5)) < &

Proof. Suppose not. Then there exist = z;, S* = S(x;,27%) admissible 7

and diam V; = P~™(S(x;, 27=1))> ¢y > 0, and P™ has degree < N on
P~"i(S%). We distinguish two cases.

(i). Suppose for a sequence i = i, — oo that V; contains a disk D; of
a positive radius 7. We may assume D; — D and DN J = ¢. Hence
D is included in some Fatou component F' of P. There is however no
possible component. F' cannot be an attractive component; there are no
parabolic components. Finally, F' cannot be a Siegel disk. The sequence
x; must then tend to its boundary and D must intersect the component
at oo.
Hence this case does not occur and we must have

(ii). The maximal disk in V; has radius — 0. This means, by Lemma
2.2, that P~™i(z) — constant on S(z;,k27%),k < 1. But this contradicts
the existence of gq. .

We now now prove (D) = (A).

Let & be the number from the lemma with N = 2¢~1 d = degree P.
We shall first prove that the conclusion of lemma 2.3 holds without the
assumption on the degree.

Let n be the smallest integer for which there exists S(z,n),n < 6, ad-
missible with diam(V) > &,V = P~"(S(z, n)). Let V' = P™"(S(,n)).
Then the degree of P" on V' is > N and there exist 1 and z] € V' with
the following properties. For some critical point ¢, P™(z1) = P'm/(a:’l) —
cand 0 < m' < m < n. We take m maximal with this property. Con-
sider

W' e POV
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Then ¢ € W’ and also Pm‘m/(c) € W'. Hence for p suitable small, it
follows that diam(W') > 20N p.

Let us now consider the 20 natural squares of side %n adjacent to
S(x,m). For at least one of these, S1 = S(y, in) say,

diam(P~"*™(S1)) > p

S(y, %77) is admissible and n — m < n which is a contradiction.
We have therefore proved that given € > 0 for ¢ small enough

diam P™"(S(z,0)) <, n = 0.
The argument above now shows that the degree of P" is < 2¢-1.

Remark 1. While it is true that for second degree polynomials, semi-
hyperbolicity is equivalent to hyperbolicity on w(c), this is not true
even for third degree real polynomials. More precisely, there is a semi-
hyperbolic real third degree polynomial such that P is not hyperbolic
on both of the limit sets w(cy),w(ca). To see this pick c1,c2 € R such
that

e < P3(c1) = P%(c1) < ¢1 < P(ey)
and
P2%(c9) € [P%(c1), P(c1)] and has dense orbit in this interval.

Then one checks that P is semi-hyperbolic but w(cg) contains ¢; and
hence is not hyperbolic.

Remark 2. When P is semi-hyperbolic but not hyperbolic, it is relatively
easy to write down metrics A for which P is hyperbolic. Suppose for
example P(z) = 2% + ¢ is semi-hyperbolic and 0 € J. Then since P is
hyperbolic on w(0), the metric A(z)|dz| is hyperbolic for P, where

A(z) = distance (2, w(0))” 2.

This is well known (see [C,G| or [D,H]) when P satisfies a Thurston
condition. The A metric is well behaved, e.g.

dr(z,w) < c|z — w[%
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In the general case an analogous explicit metric can be written.

3. Semi-hyperbolic implies John
In this section we prove, following [C,J], that (1.1) implies (1.4). That
(1.3) implies (1.1) will be proved in sections 4 and 5.

Case I. J is connected. Our first step will be to prove that (1.1) implies
(1.3). For this, we will require an equivalent definition of John domains.
Let z € A, and let " be the geodesic on A, U{co} which contains z and
co. Here we mean geodesic in the Poincaré metric p(-,-) on A, U{oc}.
Then the point z splits I' into two arcs. We let 7, be that arc which
does not contain oo. In other words, v, is a (half) geodesic which runs
from z “to J”. Then

P(Vz) 7= fyP(z))Z & Aooa
and
G(P(2)) = dG(z),

where G(z) is Green’s function for A,, with pole at oo, and d is the
degree of P.

Lemma 3.2. There are C,a > 0 such that whenever §(z) <1

)

8(z) < CG(2)®%, z€ A,

Proof. Fix ¢ > 0 such that condition (B) of Theorein 2.1 holds and sup-
pose 6(z9) < €. Then if P™(z) = 29, 6(2) < CO™ and G(z) = d""G(zp).
=]

Lemma 3.3. length(7,) = £(v,) < CG(2)?, §(z) < 1.
Proof. Let z = 23 and pick z, € v,,n > 1, such that

p(Zn_1,Zn) = 1,” > 1.
Then by Koebe,
£rz) ~ Y 8(zn)

n=0
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and since G(zp,) ~ A"G(zg) for some A < 1, it follows from Lemma 3.2
that .
vz) < C Y A"G(z0)*.
n=0 y

We now use a condition that is equivalent to the John condition, for
simply connected domains, namely, there is M > 0 such that whenever
z € Ay, 6(2) <1, then w € v, and p(w, 2) > M implies

o(w) < Eé(z). (3.1)

That (3.1) is equivalent to the standard definition is not difficult (see
e.g. [J]).
Lemma 3.4. Condition (8.1) holds for A.

Proof. Let ¢ be as in condition (B) of Proposition 2.1. Then by Lemma
3.3 there is § > 0 such that whenever G(z) < 6, there is x € J such that

7 C Bz, 2). (3.2)

By compactness, there is for every n > 0 an M > 0 such that whenever
G(z) ~ 6 and 2’ € v;,p(2,%2") > M, then

6(2") < né(2). (3.3)
Now let w € Ay, G(w) < 6, and assume n is the integer such that
d"16 < G(w) < d™™8.

Applying P~" on B(z,¢) (with = as in condition (3.3) for z = P"(w))
along with Lemma 2.2, we see that if > 0 is small enough there is M
such that for w’ € 7, and p(w,w") > M,

6(w') < S6(w),

N | =

as was demanded.

Case II. A, is infinitely connected. The proof requires only minor modi-
fications from Case I. We must replace geodesics by Green’s lines. Recall
that a Green’s lines for G(z) (with pole at co) is a curve of steepest de-
scent for G. These lines may bifurcate at a critical point of G so that
we choose 7, to be a Jordan arc, which is a subarc of the Green’s line
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through z, and which “runs to J”. (In other words, if z lies on a critical
Green’s line, we choose a direction at every critical point encountered.
The choice of direction, left or right, must be taken consistently.) Then
Yp(z) = P(72) so we can proceed. It is useful later in this paper to record
that the hyperbolic metric behaves as in the simply connected case, i.e.

dp(z) ~ 8(z)"Ydz|, 6(2) < 1. (3.4)

To prove (3.4), notice that the estimate dp(z) < C6(2)~Ydz| is true
for any planar domain. To obtain the opposite conclusion, let oo =
min{G(2) : P'(z) = 0} so that a > 0. Suppose d—2a < G(z) < dla.
Then there is € > 0 such that every branch P~" on D = {2’ : |z—2'| < e}
is univalent, because there are no critical values of P™ on D. Here we
pick € > 0 so that distance (D,J) > e. Let w = P~(2) and D,, =
P~"(D). Then

Gw) _ G,
su —~ . — Ssu

webn GW) ~ 2ep G) = "

‘or some 7 > 0 independent of z. Therefore condition (3.4) holds, and

J is said to be uniformly perfect [P]. This concludes the proof of (1.1)
= (1.3)

Remark 1. We have actually shown that A, is a John domain if and
nly if every Green’s line v terminates at some point zp € J and for all
ey }
6(2) > elz — 20| |
The proof of the implication (1.1) = (1.4) needs only a bit more
vork. By Sulllivan’s non wandering theorem every component F; is
rreperiodic, so it is sufficient to treat the case where F; = F is periodic.
3y taking an iterate if necessary, we may assume P(F) = F. Now since
)F is locally connected, the maximum principle implies F is a Jordan
urve. Fix zg, 21 € OF and let 7y be the arc of smaller diameter between
0 and z1, v C OF. Let n be the last integer such that diameter (P, (y)) =
iameter(y") < g diameter(9F), and set w; = Pp(z;),5 = 0,1. Then by
ompactness,

diameter(0F) ~ |wg — wy|-
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diameter(y) ~ |zg — 21].
In other words, OF is a quasicircle.

Remark 2. With just a bit more work one sees that there is M < oo
such that every 0F; is an M-quasicircle.

4. John Implies Semi-Hyperbolicity - Step I

In this section, we complete the proof of Theorem 1.1 under the addi-
tional assumption that A, is simply connected. The infinitely connected
case is discussed in Section 5, where some technical modifications are
needed. The basic idea is to show that for all z € J and r > 0 there is
a point zg € Ay N B(z,r) such that 6(z9) > cr and G(z) < CG(2p) in,
say, B(z,2r). If G(zg) ~ d~™, these two conditions will imply that P"
has the correct properties of a scaling function.

Fix r > 0,z € J, and a disk B(z,r). We will show that P" is of
bounded degree on B(z,r) for n suitably large, i.e. part (C) of Propo-
sition 2.1 holds. In [J], Section 4, the construction shows that for some
constant M < oo, independent of 7, we can cover A, N {6(z) < r} by
simply connected (¢’) John domains 2; having the following properties
(4.1) diameter(Q;) < Mr
(4.2) Q; and Q4 have disjoint interiors when j # k.

(4.3) There is a point z; € Q; with 6(z;) ~ r and
sup G(z) £ MG(zj).
zer
Here G(z) is Green’s function for A, with pole at oo.

By (4.1)-(4.3) there are N domain Q;, where N is bounded by a

constant independent of z, 7, such that

N
AN B(z,2r) C | J @
j=1

and (for some other constant ¢ > 0) there is ¢, 2r < t < 3r such that
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either Q; is inside {|z — z| <t} or
GN{le—zl=txt}+£¢, forallt!, 0< ¥ <er (4.4)

Let © be the polynomial hull of B(z,t) U(JQ;, so that Q is simply
connected and let p(-,-) be the Poincaré metric on Q. Then by construc-
tion,

p(z,25) < Cp, |2|<7, 1<j<N. (4.5)

Suppose G(21) > G(zj), 1 < j < N and let G(21) ~ d™™. Then by
(4.3), |P™(2)] < Cp,z € Q, because |P"(z)| < C,z € K,n > 0. On
the other hand, the distortion theorem for univalent functions (or just
Koebe) shows

d
|£Pn(z1)|5(21) ~ 6(P"(21)) ~ 1

and by the first estimate in (4.3), (6(z1) ~ r‘l),

d 1

\EP”(zl)] ~ T, (4.6)

Condition (C) of Proposition 2.1 now follows from (4.5), (4.6) and
the following easy remark:

Suppose F' is holomorphic on D, |F(2)| < 1, and there is z; € D with
p(0,z1) < M and |F'(21)| > . Then F is of degree < K on {|z| < r}
where K = K(M,e,r) and r < 1.

5. The Infinitely Connected Case )

In this section, we conclude the proof of Theorem 1.1, by show-
ing that if A, is an infinitely connected (¢) John domain, P is semi-
hyperbolic. An examination of the argument at the end of Section 4
shows that it is sufficient to prove that there exist £; > 0 and C' < 0,
depending only on €, such that for every z € J and r < diameter(.J ),
there is A,1 < A < C, and zy € B(x, Ar) such that

0(20) > e1rand  sup  G(2) < CG(z). (5.1}
z2€B(z,Ar)

We first require some information on Green’s lines. Let v be a
Green’s line, 21,22 € 7, G(21) < G(29), and suppose p(z1,22) > 1.
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Then if 6(21) < 1, it follows from (3.4) and the paragraph following it,
that

G(z1) < 0G(z9),

where 6 < 1 is independent of 21, z5. This implies there is ¢ > 0 such
that if y(z1, 22) is the subarc of -y connecting 21 to 29, and p(z1, z2) > 1,

ds(w)
¥ (w) }

G(z2) > G(z1) exp {c / (5.2)

Y (21,22

where ds denotes the element of arclength. This estimate is a weak
version of the Ahlfors estimate for simply connected domains, see e.g.
[B] and [C,J].

Now let 21,22 € v,|21 — 22| < r. We will divide 7(z1, 29) into a
bounded number of equivalence classes. Let {wy,... ,wn} be a collec-
tion of points in A, such that distance (wj,v(21,292)) < 7,1 < j < N,
such that

6(wj) >er, 1<j<N,
and such that whenever w € A, and 6(w) > er, distance (w, y(z, 22)) <
T?

Jnf | plw,wy) < 1. (5.3)

By the (e) John condition, we can find such a collection with
N < Const. 2,

For each z € (21, 22) we fix an index j such that the John curve T from
%z to oo contains a point w with p(w,w;) < 1. We say that z € S; =
Sj(v(z1, 22)) and notice by the John condition,

r
< Nty
p(z7w]) < Clog (2)

It follows from Harnack, (5.3), and (3.4) that
G(2)

)
- < e
S eT ‘— e
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This means that if z, 2’ € S; and G(z) < G(2'), then there is a constant
A = 2C’ such that

G(2') < G(2) exp{A log m}. (5.4)

Lemma 5.1. Suppose f(z) > 0 is a measurable function, integrable
over [0,1], and that [0,1] is the disjoint union of N measurable sets
51, , SN Suppose further that whenever Tz & S z <,

dt 1
/z =4 8 oy

Then sup f(z) > c(N,A) >0
z€[0,1]

Proof By renumbering, we may assume ]Sll > N1, Define

={ze8:279< f(x) < 279+1}, Then since we may as well assume
= ¢ when j <0, there is k > 1 such that

|Fx| > 6r—2N-1§-2,

Let 1 = 1nf T,r2 = supx. Then
Fy, £y,

o a
L f(t)z/Fk @ = IR,

while by the hypothesis on S, :

2 dt <A lo \1
, F@&) =7 @) F(za)
<Ak log 4.

Combining the last three inequalities yields
6r 2N Y20 L < A beg 4,

ie. sup f(z)>2%and k< ko(A,N). m
z€[0,1]

We now return to our Green’s line Y(21, 22), |21 — 22| < r, which
is divided into N disjoint classes Sj. By (5.2) and (5.4), whenever
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el 65y
ds(w) _1 r2

v(2,2')
If the arclength of (21, 22) = r, we may pull back (5.5) to [0,1]. (Let
@ :[0,1] — v(21,292), |¢'| =7, and set f(z) = r~18(p()).) We obtain by
Lemma 5.1, A
sup  6(z) >nr, (5.6)
z€7(21,22)

where 7 > 0 depends only on the John constant.

We now use (5.6) to prove (5.1). Fix z € J and 7 > 0. Let Cy > 1
be a large constant, and suppose that for JEN,2<j <M,

sup C1G(2) < sup G(2). (5.7)
z€B(z,jr) z€B(z,jr)
é(z)zCrtr

Assuming M > 72, we will draw a contradiction as follows.

Let G(z) assume its maximum over B(z, jr) at the point wj. Let v;
be a Green’s line passing through wj, v = (W, wj), Gwj) < G(w;),
where length(y;) = r. Then by (5.6), there is zj € v; with G(2;) > G(w,)
and

6(25) = nr. | (5.8)
Now if M = Const. =2, there are two indices Jj < k < M such that there
exist John curves I'; and T (from zj,2) and a point w € B(x,2Mr)
such that
p(w,T'5), p(w,Tx) < 1.
From (5.8), it follows as in the argument for (5.4), that
4M?r2 _

5(zj)5(zk)}
< (@M HAG (). (5.9)

G(z) < G(z;) exp {A log

Now by (5.7), C1G(z;) < G(zj41) < G(z). (Here we use zj € B(z, (j +
1)r) and G(zj) > G(wj).) But by (5.9) this implies

C1 < (4M2~2)4,
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which is a contradiction. Therefore, if Cy > (4M 224, (5.7) fails for
some j < M, i.e. there exists Z € B(z, jr) such that 0(2) > Cl_lr and
sup  G(2) < C1G(2).
z€B(z,jr)

Moving from Z to z by distance %C’l‘lfr, we obtain a point 2’ € B(z, jr)
with

1
8(z) > SCp'r,

and by Harnack, G(2) < Const. G(z). This means that (5.1) holds,
and the proof of Theorem 1.1 is complete.

6. Flowers

Suppose P(z) has a parabolic periodic point (of some order) at some
point zg. Then by conjugating and taking a high enough iterate, we
may assume 29 =0 and P’(0) = 1, i.e.

Ple=g—gV s, (6.1)

Then P has N — 1 “fower petals” F1,-..,FN_1 meeting at 0, and
P(F;) = Fj,1 < j < N — 1. We will make a natural assumption on the
critical orbit:

If P'(c) = 0, either all but finitely many iterates P"(c) € F;

for some j, or w(c) N 0F; = ¢ for all j. - (6.2)
This means that either P™(c) F; for some j, or w(c) misses a
neighborhood of UF;.

Remark. When P is an iterate of Py and Py has only one critical point,

assumption (6.2) holds automatically because each F; contains a critical
point of P.

The main reason we require condition (6.2) is that by modifying the
reasoning of Douady and Hubbard [D,H], it implies

OFj is locally connected. (6.3)

We will prove (6.3) in Appendix 1.
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Theorem 6.1. Under hypotheses (6.1) and (6.2) we have the following
dichotomy:

(A) If N =2, 0F; is not a quasicircle, but F1 is a John domain.

(B) If N > 3, i.e. if there are at least two petals, then 0F; is a
quasicircle, 1 < j < N — 1 (and hence Fj is a John domain).
Proof. We require some classical facts about flower petals. By renum-
bering, we have for some € > 0 that

J2m(=1)

(0,ee” N-1]C F;.

We may as well choose F; = F1 = F. Then for every 6 > 0 there is
R > 0 such that

Wz{rei9:0<r<R,|0|<ﬁ—6}C.’F (6.4)

and
v

N -1

Fn{lzl <R} c{re® :0<r<R,|0 < + 6}.

In other words, OF is well approximated at the origin by an angle. Note
that this also implies, if N = 2, that 0F is not a quasicircle.

Since P is a polynomial, F is simply connected, and we may conju-
gate P to a Blaschke product B(z) on D, with a parabolic fixpoint at
1. Then degree (B) > 2 because P has a critical point in F. Any such
Blaschke product has Julia set = T, i.e., it has two flower petals D and
D*. Incidentally, this means that if we put w = z — 1, then in the w

coordinate system B has form
B(w)=w—aw3+-'-

for some a > 0.
The critical orbits w(c) for B lie in a Stolz cone which is either in D

or D* according to where c lies, and w(c) accumulates only at 1. Because
of this, the reasoning of Douady and Hubbard applies and there is a C*
metric A(z)|dz| such that

A(z) =1 for z near 1,z — 1| < &
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and B is hyperbolic in the A\ metric near T and away from 1:
_ [P @A PR)
A(z)
1-B<|z| <1481 -2 > a.
See [C,G] or [D,H] for details.
Mimicking the definition of (6.4) we now set

|D;P(z)| P Bl (6.5)

W={1-w:0<|w|<R,|arg w[<g—5}

so that W c D. Then W and W essentially map to each other under
the conjugating maps. If R is small enough and c is a critical point of
P with w(c) N F + ¢,

s

w(e) N{|z] < R} C {|arg z| < Y 2}. (6.6)

This follows from the local dynamics of P. Similarly, if ¢ is a critical
point of B and R is small enough,

w©)N {1 - 2| < R} C {Jarg(z — 1)| < g} U {|arg(1 — a)| < g}. (6.7)

In Section 3, we used the fact that in A, geodesics are mapped by
P to geodesics. In our setting, this is no longer true, i.e. B(z) does not
map radial line segments to line segments. On the other hand, this is
essentially true as long as we do not iterate too long.

We first implement this philosophy on D. Let z € D and let n be

the largest integer such that -
1-|B*z)| <n, B*2)¢W, o0<k<n.

Let 7. denote the “half geodesic through 2”, ie. v, =DN{tz:¢t > 1.5 8
Then v, terminates at e, g, = arg z and we let e?n — B"(ei%). Let
w = |B"(2)|e®n and let v = Yw- We say p(B™(v,); ") < M if whenever
z' € 7, and w' € y" satisfy

p<Zv ZI) = p(w7 ’U)/),
then

p(B™(),w") < M.

Here p(-,-) denotes the Poincaré metric on .
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Lemma 6.2. p(B"(7,),7) < Cp.
Proof. By the definition of n and (6.4) when we set 1 — |B™(2)| = r,
there is a large constant M such that

B¥(c) ¢ {¢: 1€ — B™(2)| < Mr}

for all k£ < 0 and all critical points ¢ of B lying on the Riemann sphere.
The lemma now follows from the classical distortion theorems for uni-
valent maps (B~* is univalent on the above defined disk about B"(z))
and the fact that B : T — T. O i

We now verify that F is a John domain, using definition (3.1) for
“John”. Define as in (6.4)

T
Wo =W N {|arg z|<N_1}-

Let z € F,6(z) <7, and let n be the largest integer such that
§(PF(z) <n, PFlz) ¢ Wp,0<k<n.

Case 1. P"(2) = z, € Wy. Then if & : 7 — D is the map conjugat.ing P
to B and if we apply Lemma 6.2, we see the geodesic (in F) 7, is not
badly distorted by P". Let 4 = ®~1(%) where 7 is defined as in Lemma
6.2 with respect to the point ®(z). Call the endpoint of 4 by 2’ so that
p(2n,2') < Cy. Then by (6.4) we can take M > 1 (if § < 1) so that

when w € 4, p(w, 2') = M, we have
S(w) K 8(2") ~ b6(zp). (6.8)

(This implies (3.4) if n = 0).
Now P~1(zn) = 2,1 ¢ Wy and

§(P~H(w)) < 8(2n-1) = bn1 (6.9)

because taking one inverse image does not effect (6.8).1 Now by (6.6)
there is a simply connected domain D with =1 = Br=l(y,) C D,

distance(y" "1, 8D) ~ 6,_1,

and
wle)ND=¢
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for all critical points ¢ of P. Then P~"*1 is univalent on D, so by the
distortion theorem and (6.9)

O(P™(w)) < é(2),
i.e. (3.1) holds.

Case 2. P"(z) = 2, ¢ Wy. Then 6(zn) > n and, since §(z,_;) < n, it
must be that §(z,) < Cn. Now since 8F is a, Jordan curve, v,,, cannot
terminate at 0. (If v, terminates at 0 and 6(z) < Cn < R, then by
elementary arguments - e.g. normal families - z € Wp.) To be a bit
more precise, let 2’ and 4 be as in Case 1. Then

distance(y, Wy) > a > 0

and 4 also has distance > « to all critical orbits w(c). Consequently,

there is a simply connected domain D such that ¥ C D,w(c)ND = 10}
when P’(c) = 0, and

distance(¥, 9D) > 8 > 0.

Now since OF is a Jordan curve, there is M < oo such that for w € 4
and p(w, 2') = M (where p(-,-) is on Fl

6(w) < 6(2).

This follows from a compactness argument and the fact that 6(2') > cn.
Since P~" is univalent,

S(P"(w)) < 8(2),

and our result now follows from Lemma 6.2.

We have established for Part (A) of the theorem that 8F is a John
domain. When there is only one petal, F contains all z #0,|arg 2| <
m—6 when |z| is small. Thus 6F has a cusp at 0 and is not a quasicircle.
This completes the proof of Part (A).

We now turn to the proof of Part (B). Our first step is to find the
correct definition of quasicircles, and this turns out to be the following
criterion. Let T be a Jordan curve bounding a bounded domain . Then
I' is a quasicircle if and only if Q is a John domain and for all points
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w, z € Q, the Poincaré geodesic v from w to z satisfies
diameter(y) < M|w — z|. (6.10)

Since OF is a John curve, a compactness argument shows it is suf-
ficient to treat the case where |w — z| is small. Let v = P™(v) and let
&n € Y™ maximize §(§). We choose n to be the first integer so that either

YN Wy # ¢ or 6(n) > 1.

Case 1. Y""NWy # ¢. Let w, = P*(w), 2, = P™(2). Then by (6.4), and
the fact that F is a John domain, it is easy to see that diameter(y") <
M|wp — 2| and &, is within a bounded hyperbolic distance (on F)
of Wy. Pulling back P‘l(’y”) = v 1 we still have diameter(y"~1) <
M|wp_1 — 2,_1|. Now since y*~1 N Wy = ¢, it follows from (6.4) that

distance(Y" 1, w(c)) > a > 0

for all critical c. As in the proof of Part (A), we build a domain D such
that y*~1 ¢ D, distance (y*1,0D) > 3 , and P~""! is univalent on
D. The result now follows from the distortion theorem for univalent

functions.

Case 2. 6(&n) > n,Y"NWy = ¢. Then by (6.4) |z, |wn| > €0|2n —wy|, s0
there is again a good domain D containing v, on which P~" is univalent.

7. The Periodic Table

In this section we discuss the table for 22 + ¢ presented in the introduc-
tion. Our results follow easily from the previous sections plus works of
Herman [H| and Mané [Ma].

Case 1. ¢ ¢ M = Mandelbrot set. Then J is totally disconnected and it
is well known that P is hyperbolic on J. To see this, simply note that if
€ = distance(0, J), P~™ is univalent on B(z,6),z € J. Now A, is John
by Theorem 1.1.

Case 2. Attractive Basin. This case is proved in [C,J]. It is the same as
Case 1 because distance(w(0), J) > 0, so Theorem 1.1 applies.

Case 3. Parabolic Basin, One Petal. This is Theorem 6.1, Part (A).
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Case 4. Parabolic Basin, > 2 Petals. This is Theorem 6.1, Part (B).

Case 5. Siegel disk, @ € C.T. By a remarkable results due to Herman
[H], the Siegel disk is bounded by a quasicircle, and hence so is every
bounded Fj. A, cannot be John because condition (D) of Theorem 6.1
fails for z in the boundary of the Siegel disk.

Case 6. Siegel disk, & € D\ C.T. The results of [H] assert for certain
values of «, the boundary of the Siegel disk is a Jordan curve, but not a
quasicircle. (Whether the boundary is always a Jordan curve for a € D
is not yet known.) As in Case 5, A, is not a John domain.

Case 7. Siegel disk, & € B\ D. We do not know much about this case,
except that Michael Herman [H] has proved the existence of o € B \D
with a Siegel disk bounded by a quasicircle.

Case 8. Dendrite, 0 ¢ w(0). Then by Theorem 1.1 (Estimate (1.2)), Ao
is John.

Case 9. Dendrite, 0 € w(0). Then by Lemma 2.3, A is not John.

8. An Exalhple
In this section we show by pictures how .J is built in the case 22+ ¢,c €
RN M, 0 ¢ w(0), and we can “see” exactly why A, is John. In this
case, the Julia set intersects R in an interval J — [a,b] (assuming there
are no bounded components Fj) and a, b are given by

IetogM = ag

—
Since ¢ < 0, we have the interval Iy from 0 to id in J, where ¢ — d2? = q.
The Julia set is now given by the closure of

Tu{PY(1y):n >0},

and we notice that by Proposition 2.1, diameter(P~"(Ij)) < CO" so that
these “intervals” are shrinking geometrically. Suppose we did not know

Theorem 1.1, and attempted to visually inspect J to determine whether
A, is John.
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The first obstruction to “Johnness” would be that an interval I =
P~"(Ip) has center z7 € R and I makes a small angle with R at )i
(More precisely, I7* N Ri ¢ {|g —arg(z ~a})| < § —¢} . .

A look at the picture in Figure 1 shows that the I start bending

‘as n increases, but the bending stabilizes so as to prevent small angles.

(One could observe that this easily follows from the distortion theorem
for univalent functions and the hypothesis 0 ¢ w(0).)

$od ?t.%.t.#.t.’fu.%t.#.ft— R %:t,?::# ;#.ﬁ:%.{i :z:
#l #"%'*‘%"'#.'% "i"‘, “ %t% % % %
Figure 1

Let Fy = {I} : I7hR} where h means transverse, and define induc-
tively
Fr ={I} : I’ for some I' € Fp_1}.

The same reasoning as in the previous paragraphs shows I} € Fj
does not make a small angle with I’ € F,_1, and this is seen read-
ily in the picture. We define in a natural way J(I}'), [} € Fj, as the
piece of J which is “attached” to Iz, but not to I' € Fj_1, where
I?mI’. The reason that A, is John is that distance(J(I}'), J(I;")) >
¢ min(diameter(J(I}"), diameter(J(Iy")))) and one also sees this in the

picture below.

Appendix 1. Locally Connected Petals

In this appendix we outline a proof that, under the assumptions }n Sec-
tion 6, flower petals have locally connected boundaries. (Note that we
are not proving the entire Julia set is locally connected.) The idea is to
combine the ideas of Douady-Hubbard [D,H] with elementary properties
of the petals at the parabolic fixpoint.
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Let us assume that P(z) = z — 22 + H.O.T. has a parabolic fixpoint
at the origin. Then P has one petal, F, with fixpoint at 0. (The proof
when P has more than one petal is virtually identical.) Our assumption
is that if P'(c) = 0, either w(c) \ F is finite (i.e. some iterate of ¢ lands
in F) or w(c) has positive distance to F. Following [D,H], we take a
finite sheeted cover R of

C\w(C),

where w(C) is the union of all w(c), P'(c) = 0. The idea of [D,H] is that
there is a metric A (coming from the Poincaré metric on the Riemann
surface R) such that P is ezpanding in the A metric by a definite factor,
if we stay away from w(C). As in [D,H] we can thus modify A to be
identically 1 when |2| < 2p,A > 0is C® in a neighborhood of F\ {|z| <

2p}. Then
[P'(2)|M(P(2))
Dy\P(z) = —27 7)) '
W P(2) 0 >1+e¢ (9.1)
if z € FN{|z| > p}. (Note: p, not 2p.) By taking e small enough, we
may take p as small as we please. Then for all z'e F DR 0 P9 as

long as we avoid the wedge
7
W={0<|z| < 2p,|arg 2| < §7r}

Note that W C F if p is small enough. On W we have the “trivial”
estimate

G(z) 2 ||, if p < py, A (9.2)
for Green’s function G(z) with pole at some fixed zgp € F. This is
because F contains “asymptotically” {|arg z| < 7} as we approach
zero. (Actually, G looks essentially like ]zl% in W, but we don’t need a

sharp estimate).
Now let A be a large positive number and suppose

A2l £ Q) < A2,

Observe that G(P(z)) < AG(z),z € F; the existence of such an A is
easily seen by moving to D, where P is conjugate to a Blaschke product.
Our aim is to prove

8x(2) < eym=3/2, (9.3)
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where 6)(-) denotes the distance in the A metric to F. This would
immediately imply that OF is locally connected because if z € F satisfies
G(z) ~ A™2" then for v, the “half geodesic” defined in section 6, we

: .
have a collection of points z,, on 7, with G(zp) ~ A™“™ and by Koebe,

length(7y,) < C lengthy(7z)
<d Y bx(zm)

m=n

oo
- —1/2
< 3mSR

m=n
As noted in (9.2), estimate (9.3) need only be verified for z ¢ W. We
therefore fix z € F\ W, with z close to 0F, and we suppose by induct;on
that (9.3) holds for 1,2,....,m — 1, and A1« GQ(2) S A,
Because P is conjugate to a Blaschke product on D (see Section 6)‘We
see (following a short argument on the image of W in D) that there is a

smallest n such that either

P'(z) e W

or
A—2m+2 Z G(Pn<z)) > A_2m+1‘ (94)

We first suppose P"(z) € W and break into different cases.
Case 1. For some k, 1 < k < n, |P¥(2)| > p. Then by (9.1),
8x(2) < (1+)716x(P*(2))
< (1+) 716 (P"(2))
and by (9.2),
S\(P™(z)) = distance(P"(2),0F)
—2m+2
<|P(2)| < G(P™(2)) < A727H2,
so that (9.3) holds.
Case 2. |P*(z)| < p,1 < k < n. Then one checks by using the local
behavior of P at 0 that
larg 2| < (1 — A~
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If p is small enough, we still have G(z) > |2| > 6x(2) so that (9.3) holds.

We now assume that P*(z) ¢ W, 1 < k < n, and that (9.4) holds.
Again we break into several cases.

Case 1. |z| > p. Then by (9.1),

x(2) < BA(P™(2))(1 + &)™
<eci(m—1)"32(1 4 )1

<em32,

Case 2. 1/m < |z| < p. Then by (9.1) we can ignore the expansion after

the first iterate and obtain, first using smoothness of P, then expansion,
then induction, the estimate

ox(2) ~ BA(P(2))|P'(2)|7t
< B\(P™(2)|P'(2) 7!
< e1m = 1)7¥2(1 47 [z

Serfm—1) 2+ Ly

< em3/2,

because 7 1 > Here we use ~ to ignore logarithmic errors of order m—2
Case 3. |z| < L1 |P"(z) — 2| < Com~2

Then since the hypothesis G(P"(z)) > AG( ) forces the hyperbolic
distance in F from z to P"(z) to be > 1, Koebe yields

6r(z) = distance(z, OF)
< cCalz — P™(2)|
< Clm_2a

if C7 is large enough with respect to (.

l
Case 4. |2| < -, |P™(2) — 2| > Com=2. We may assume |z| > m~3/2,
One checks easily from the expansion

P(z) =2 — 22 +O(z3)
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that

n > cCom™2|2|~2

because from step k to step k+1 we move by ~ |P(z3)|?. Because P¥(z)
is never in W for k < n, g

d n 7 n
[P 2 (14 2]

T
>1+ ZcCgm_2|z|_1

7
Z 1+ ZCOQm_l.

As in Case 3,
Br(2) < BA(P™(2)(1 + 1cCym™1) !

< Oy lm— 1)~ + ZZCCQm_l)

< Cym=3/2

as soon as (' is large enough, i.e. ZECCQ > %

Notice that at several points above we could have changed m~1 to
m~% for a = %, say. There is really no point because once F is locally
connected, Section 6 shows F is a John domain and so §(z) < CG(z)8.
This is much stronger than (9.3).
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