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Abstract. We prove that Collet-Eckmann condition for rational functions,
which requires exponential expansion only along the critical orbits, yields
the Holder regularity of Fatou components. This implies geometric regu-
larity of Julia sets with non-hyperbolic and critically-recurrent dynamics. In
particular, polynomial Collet-Eckmann Julia sets are locally connected if
connected, and their Hausdorff dimension is strictly less than 2. The same is
true for rational Collet-Eckmann Julia sets with at least one non-empty fully
invariant Fatou component.

1. Introduction

We are interested in the dynamical characterization of geometric regularity
of the Fatou components and the persistence of hyperbolic subsets in Julia
sets. This direction of studies was originated by L. Carleson, P. Jones, and
J.-C. Yoccoz in their work “Julia and John” on the dynamical classification
of Fatou components which are John domains. They proved that the
property of Fatou components being John domains is equivalent to the
Misiurewicz condition (semi-hyperbolicity) for a polynomial. Holder
property is more general: every John domain is Holder but not conversely
(see [22], 5.2).
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Definition 1. A simply connected domain Q is called a Holder domain (with
exponent a € (0,1]) if the Riemann mapping ¢ : ID — Q can be extended to a
Holder continuous (with exponent o) mapping on the closed unit disk.

It is a well known theorem of G.H. Hardy and J.E. Littlewood (see [7], p. 74)
that this definition is equivalent to

9] < C(ﬁ) |

where z € D and C > 0 is a constant. Generally, Holder domains can be
defined in terms of quasihyperbolic distance (see Definition 8 in the Sect. 5
and [26]).

We prove that the Collet-Eckmann condition which requires exponential
expansion only along the critical orbits (see Definition 2 below) yields the
Holder regularity of Fatou components. The immediate consequence of our
main result is:

Corollary 1. Suppose that the boundary of some Fatou component of a C-E
rational function is connected, then it is locally connected. In particular,
connected Julia set of a C-E polynomial (or any C-E rational function with at
least one non-empty fully invariant Fatou component) is locally connected.

Julia sets of rational C-E maps need not be locally connected. A well-
known example of a hyperbolic Julia set which is not locally connected (and
is topologically a Cantor set of circles) can be found in Sect. 11.8 in the
book [3]. In the Corollaries 1 and 2 we use that if a rational Julia set has a
fully invariant Fatou component (for polynomials the basin of attraction to
infinity is fully invariant), then the whole Julia set coincides with its boun-
dary. Consult the books [3, 4] for this and other basic facts from holo-
morphic dynamics.

The recent work of P. Jones and N. Makarov [13] gives an upper esti-
mate of the Hausdorff (and even Minkowski) dimension of the boundary of
any simply connected Holder domain in terms of the Hoélder exponent o
only:

HD(Q) <2—ca ,

where ¢ is an absolute constant. In papers of W. Smith and D.A. Stegenga
[26], and P. Koskela and S. Rohde [14], the similar result is proved for any
Holder domain. See also [18] for the discussion of various related classes of
domains and their metric properties.

Therefore, we arrive at the following

Corollary 2. The boundary of Fatou component of a C-E rational function has
Hausdorff dimension less than 2. In particular, the Hausdorff dimension of the
Julia set for a C-E polynomial (or any C-E rational function with at least one
fully invariant Fatou component) is less than 2.



Collet, Eckmann and Holder 71

The first results on the dynamics of C-E rational maps were obtained by
F. Przytycki in [23] and [24]. In these papers he studies ergodic properties of
conformal measures, the existence of invariant measures in the class of
conformal measures with minimal exponent and the relation between vari-
ous dimensions of the Julia sets. His main result states that for C-E rational
maps the Hausdorff, Minkowski, and Hyperbolic dimensions of the Julia
sets coincide. Another important consequence of his approach is the exis-
tence of a polynomial with a recurrent critical point whose Julia set has the
Hausdorff dimension strictly less than 2. In fact, F. Przytycki proves that
HD(J) < 2 holds for the real C-E maps which satisfy Tsuji condition (see
[24]). F. Przytycki introduced in [23] a new technique of estimating distor-
tion for holomorphic Collet-Eckmann dynamics. His method plays an im-
portant role in our estimates and hence is presented fully in Section 2.

It would be very interesting to characterize rational functions with Julia
sets of Hausdorff dimension less than 2. Our result shows that polynomial
C-E maps fall into this category. Further progress in this direction was
obtained in the papers [25, 9].

Recently, C. McMullen [16] proved that a quadratic Julia set with Siegel
disk has Hausdorff dimension less than 2 provided its rotation number is of
bounded type. In this situation, M. Herman and G. Swiatek theory (see [11]
and [28]) together with E. Ghys construction ([8]) imply that the boundary
of a Siegel disk is a quasicircle and the dynamics on the Julia set is quasi-
conformally equivalent to the dynamics of a corresponding Blaschke
product. To the best of our knowledge there are no known examples of
Siegel disks with Holder or John property other than quasidisks. We are
particularly interested in the case where a critical point lies on the boundary
of the Siegel disk.

The S-unimodal C-E maps on the interval were studied more intensively.
T. Nowicki and F. Przytycki proved in [20] that any non-renormalizable S-
unimodal C-E map is Holder conjugate with tent map, and conjectured the
Holder regularity of Fatou components for Collet-Eckmann quadratics. For
a polynomial with connected Julia set, by a proper choice of a Riemann
mapping ¢ to the domain of attraction to infinity, we may assume that it
conjugates F on Jr with dynamics 7 : z — z¢ on the unit circle. Hence, in
this context, our theorem is a direct analogue of their result. The tent maps
are piecewise linear maps which serve as prototype models in the study of
the dynamics of unimodal maps.

W. de Melo and S. van Strien’s book [17] is an excellent reference of the
activity in this area. An important feature of smooth unimodal C-E maps is
that they have always probabilistic absolutely continuous invariant mea-
sure. By the works of M. Jakobson [12], M. Benedicks and L. Carleson [1,
2] non-hyperbolic maps in the quadratic family {ax(1 — x),a € [0,4]}, which
satisfy C-E condition have a positive Lebesgue measure in the parameter
space. In the complex quadratic case the class of C-E maps is strictly larger
than that of semi-hyperbolic (non-recurrent). The natural questions arise
about possible critical orbit combinatorics of C-E quadratics, and the
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harmonic measure of C-E parameters on the boundary of the Mandelbrot
set.

Problem 1. Do C-E parameters have full (or at least positive) harmonic
measure on the boundary of the Mandelbrot set (viewed from outside)?

The definition of holomorphic C-E maps is adopted from the dynamics
of S-unimodal maps (see [6, 17, 23]), with a small change: we allow critical
points to be attracted to (super) attractive cycles. For example, the real map
x+—x? is not C-E in the real sense (compare [17]) but according to Defini-
tion 2 its complex counterpart, z+ 2, is a rational C-E map. As usual, we
will call zeroes of the derivative of F critical points, and their images —
critical values.

Definition 2. We say that a rational function F satisfies the first Collet-
Eckmann condition €& with constants C, > 0, 41 > 1 if for any critical point ¢
whose forward orbit does not contain any other critical point and belongs to or
accumulates on the Julia set, the following condition holds

(") (Fe)| > €1

Such rational functions we will simply call Collet-Eckmann (or C-E).

We will also study the relation between the first and the second Collet-
Eckmann conditions. T. Nowicki proved in [19] that the first C-E condition
implies the second for S-unimodal maps. To our best knowledge the
reversed implication was unknown even in the case of real quadratic poly-
nomials.

Definition 3. We say that a rational function F satisfies the second Collet-
Eckmann condition €&,(z) for a point z with constants C, > 0,1, > 1 if for
any preimage y € F "z

[(F") ()] > G/
Definition 4. We call a periodic Fatou component & Collet-Eckmann if for

any (some — by the Koebe distortion theorem the statements are equivalent)
point z € F away from the critical orbits

(") )] > car

for any preimage y € F~"zN % with constants C > 0, 1 > 1.

By the multiplicity p(c) of a critical point ¢ we mean the order of ¢ as a zero
of F(z) — F(c). For simplicity we assume that no critical point belongs to
another critical orbit. Otherwise a ““block™ of critical points

F:ci—...—c—... ... —cr o,
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of multiplicities y, 1y, . . ., i enters our statements as if it is a single critical
point of multiplicity [ u;. If in our construction we come to the point ¢,
then the process continues from the point ¢; (note, that ¢ is a critical point
of multiplicity [ u; for the iterate F” mapping c; to Fey).

The main result of the paper relates dynamical condition with the ana-
lytical and geometric properties of the Julia sets and Fatou components.

Theorem 1. Rational C-E maps can have neither Siegel disks, Herman rings,
nor parabolic or Cremer points. Fatou components of a rational C-E map of
the Riemann sphere are Holder domains. Additionally, we have the following
relations between analytical and dynamical properties:

(i) The first Collet-Eckmann condition implies the second €&(c) for the
critical points ¢ of the maximal multiplicity ., (calculated as above), whose
backward orbits do not contain any other critical points.

(i1) The first Collet-Eckmann condition implies the second for all points z
away from critical orbits, namely

|(F"Y (F(2)| 2 A s

where A is the distance of z to the forward orbit of all critical points.
(iii) Attracting or superattracting Fatou component & is Holder if and only
if it is Collet-Eckmann.

By the implication (ii) of Theorem 1, Collet-Eckmann rational maps can
have neither parabolic nor elliptic Fatou components. Hence, for Collet-
Eckmann rational maps Holder property of Fatou components and the
second Collet-Eckmann condition for points outside of the Julia sets are
equivalent.

The distances and derivatives are calculated in the spherical metric. If the
Fatou set is non-empty, one can work with the Euclidean metric on the
plane, changing coordinates by a Md&bius transformation so that infinity
belongs to a periodic Fatou component.

In the “complex unimodal case” Theorem 1 can be restated in the fol-
lowing way.

Theorem 2. For a unimodal polynomial F(z) = z* + a with connected Julia set
Jr satisfying R-expansion property (see Definition 10 in Appendix) the
following two conditions are equivalent:

(i) €6,

(il) €65(0),
and imply the following equivalent conditions:

(i) €62 (z) for some (any) z € An,

(iv) Domain of attraction to infinity A, is Holder.

The R-expansion property is needed only for the implication (i) = (7).
We do not know whether it is necessary and what class of rational maps
satisfies it. According to the recent work of S. van Strien and G. Levin [15]
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non-renormalizable real unimodal polynomials have R-expansion property.
We prove this property for C-E dynamics in Appendix. F. Przytycki proved
in [23] that rational maps satisfying the so called summability condition
(weaker than Collet-Eckmann) enjoy this property also.

Finally, we are aware that that C-E complex unimodal maps cannot be
infinitely renormalizable. This problem as well as many others related to
measure theoretic properties, holomorphic removability and topology of
Julia sets satisfying the summability condition is discussed in our recent

paper [9].

Organization of the paper. We introduce distortion techniques based on the
idea of shrinking neighborhoods (see [24]) in Sect. 2. In Sect. 3 we study the
local behaviour of dynamics, which we later use to formulate a global
induction procedure in Sect. 4. There we also prove the implication
€& = €&5(c) for critical points of maximal multiplicity and the second
Collet-Eckmann condition for points away from the critical orbits. The
relation between 4&5(z), z ¢ J and the Holder continuity of Fatou com-
ponents is explained in Section 5.

Validity of the implication &> (c) = ¢& does not belong to the main
line of our current work. However, possible applications to the study of
S-unimodal dynamics on the interval motivate our short discussion of the
problem in Appendix.

Notation. Critical points of F are denoted by ¢, ¢, ¢;, etc., and their mul-
tiplicities by u(c), etc..

The relations a <b,a =2 b, where a and b are real positive numbers, mean
appropriately that there exists an absolute universal constant K so that
a < Kb and b < Ka. By the definition, a < b iff both a <b and b <a.

Acknowledgement. Both authors would like to thank Jacques Carette, Irina Popovici and
Duncan Sands for reading the very first version of the paper and pointing out some mistakes.
Discussions with Ilia Binder, Nikolai Makarov, Feliks Przytycki and Sasha Volberg were very
much appreciated. We are also grateful to the referee for valuable suggestions.

2. Distortion versus expansion
2.1. Shrinking neighborhoods

The method of shrinking neighborhoods was introduced by Przytycki in
[23]. It enables to control distortion in small vicinities of expanding orbits.

We fix a decreasing sequence of positive numbers {J,} with
[T,(1=6,) >4 Set A, :=[];,(1 — &). Let B, be a ball of radius » with
center z and {F "z} be a sequence of preimages of z (here and below by a
sequence of preimages of z we will mean a sequence of points {z, = F "z}
such that Fz, =z, and zp =z). We define U, and U, respectively as the
connected components of F~"B.,, and F~"B,,, which contain F™"z.
Clearly,
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FUn—H = Uyll C Un

If Uy, for 1 < k < n, do not contain critical points then the distortion (i.e.
how map differs from its linear approximation) of the map F” : U, — B, .,
is bounded by a power of ;— multiplied by an absolute constant, as for-

mulated in the following lemfna.

Lemma 1. Assume that
1) The shrinking neighborhoods Uy for B,(z), | <k < n— 1 evade critical
points,
2) c € U,.
For y:=F™"z, let ¥ be the maximal radius such that B.(y) C F™"(B,:(z)).
Then
2 1

dist(Fy, Fc) < KI(F”’I)/(FC)F r.

Moreover, if y is so close to c, that |F'(y)| > dist(y,c)" MO~ \pith M > 0,
then

s R ) (it ()

EY )= 2 z

Proof. By the Koebe distortion theorem (see Theorem 1.3 in [22]) applied to
F~0=1): B, (z) — U,_; we obtain that

> |y )

v Suicu, B vicuyy, 5 ujcB,

Fig. 1. Shrinking neighborhoods

and therefore

|(FY )] = [F O E )] 2 g | ) (F)dist(y, e

By the Koebe Z-lemma (see Corollary 1.4 1n [22]), the 1mage of the map
F™": B,5(z) — U, contains a ball of radius }r|(F")’ ()| " and the center y.
Hence,

((F") ()| = i
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Combining the above estimate raised to the power (u,, — 1), with the
previous one, we obtain the second desired inequality.

Similarly, another application of the same Koebe distortion theorem (in
invariant form, which can be obtained composing with a Mdbius trans-
formation) yields

(1 - 5n)(2 - 5n)

On
<?|(F”*l)’(Fc)|*l :

n

dist(Fy, Fe) < Apoir| (F"’l)/(Fc)‘_l

and hence the first inequality. O

3. Local analysis

In this section we will assume that ¥¢ condition is satisfied (with constants
C; > 0 and Z; > 1). Our main concern is local analysis. We assume that we
have pieces of the backward orbit of a point. Each piece will be of a specified
type. Estimates will be carried out independently for every piece. Hyperbolic
structures of the backward orbits of some dynamically important points will
be obtained as a result of a “global” induction (see the next section).

Scale. The scale around the critical points is given in terms of fixed numbers
R’ < R < 1. We will refer to objects which stay away from critical points
and are comparable with R’ as objects of the large scale. The proper choice
of R’s is one of the most important elements in the local analysis of ex-
pansion.

We start with defining a suitable size of the shrinking neighborhoods. Fix
a positive ¢ ~ 0. We choose a sequence 9, ::@q" with ¢ < 1 so that
(A1)° - g > 1. We require R and R’ to satisfy the following conditions:

Specification of R

(i) Any two critical points are at least 100R apart and R is so small that
IF'(y)| = dist(y, ¢)*“~", given that y is close to a critical point ¢ with either
dist(Fy, Fc) < R or dist(y, ¢) < 4R.

(ii) The first return time of the critical points to | JF~!Bg(Fc;) is greater
than a constant 7, such that

> 2 Hmax -1 A

1 (1-q)
TE
Vg2 12

(iii) R’ is so small, that
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Fig. 2. Preimages of the first type

Fig. 4. Preimages of the third type

3.1. First type

Preimages of the first type form a model to study expansion along pieces of
the backward orbit which “‘join” conformally some two critical points of .
The word “‘join’” means here that we are able to find a ball in a vicinity of the
first critical point and pull it back conformally until its boundary hits the
second critical point.

Our formulation of Lemma 2 has to encompass the possibility of critical
points with different multiplicities and hence it does not guarantee imme-
diate expansion.

Definition 5. A sequence z, F~'(z),---,F~"(z) of preimages of z is of the first
type with respect to the critical points ¢\ and c; if

1) Shrinking neighborhoods Uy, for B,(z), 1 < k < n, avoid critical points
for some r < 2R/,

2) The critical point ¢; € OU,,,

3) The critical value Fe is close to z with Fc) € Br(Fz).

To simplify notation set p; := p(c;), dp:=dist(F "z,¢;), and
di :=dist(z,c). Let 7, be the maximal radius so that B, (F™"z)
C F7"(B,)»(2)). For consistency, put ry := r.
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Lemma 2. There exist Qy, > 1 such that for any sequence F~'(z),- -+, F™"(z)
of preimages of the first type we have that

(dz)”rl (rl)umarl
(rlz)iumax_l (7’1 _|_d1)ul—1

[(F") )| > 2t (01,)"

Also
dist(Fy, Fe;) < R .

It is clear from the proof that by choosing R small enough we can make
0, arbitrary close to 4;.

Proof. First note that by the first implication of Lemma 1
dist(Fy, Fcp) <2 (5,,)71’(F"_])/(Fcz)’_lrl

1 _ —1
<qi2(H50) @

the last term is less than R by our choice of R’, thus proving the second
inequality.
To prove the first observe that condition 2 of Definition 5 implies
F"cy € 0B,4,. Hence,
diSt(FnCZ,Cl) < diSt(FnC27Z) + diSt(Z701) <ri+d <4R .

. . . Mo _
Since dist(F"cy,¢;) is small, [F/(F"c,)| = dist(Fcs,c1)" "

Therefore,
() Fen)| 2 S|P (Fe)|
M diSt(F"CLCl)u'i
1 1
> —CA}—————
M 1 1(71+d1)‘t171

All the hypotheses of Lemma 1 are satisfied, hence

Fn ! Hmax > 1 5 F}’l—l / F (dz)ﬂz_l l’llﬂL\X71
[(F") ()] = Qo M | ( ) ( 02)|Wo’1)
1 dr )t Hinax—1
Z 8# MzénC]i’il (,zl)l — (rl) 'uil
‘max (,,-2) max (l,.1 + dl) 1

The first inequality is proved with O, = }L%*zs. O
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3.2. Second type

The second type of preimages corresponds to a piece of the backward orbit
which stays away from the critical points, i.e. there exists a neighborhood of
size comparable with R’ which can be pulled back along the backward orbit.
The length of pieces of the second type will be always equal to L and the
expansion will be deduced from the compactness and the ““eventually onto”
property of the Julia sets.

Definition 6. A sequence of the preimages of z is of the second type if the ball
Bpr(z) can be pulled back by F univalently along this sequence. Additionally,
we assume that dist(z,Jp) < R'/2.

Lemma 3. Let z,F~!(z),...,F™"(z) be a sequence of the preimages of the
second type. For every Cy > 1 there exists Ly > 0 so that |(F") (F~"(z))| >
Cy; provided n > Ly,.

In order to ensure expansion in our next Lemma 4 we choose Cy, so that

1 1—g¢
Sttmax M 2

i (R4 T Oy >

Remark 1.Set Oy, := (Cz,)l/Lz’ > 1, then for n = Ly, the inequality above can
be rewritten as |(F") (F~"z)| > (Qx)".

Proof. Suppose that it is not so. Then, there is an infinite collection of
sequences of the second type

Ziy Fﬁlzia s 7F7ni(zi)

such that n; — oo and |(F")(F~"(z)| < Cy. Consider the preimages
F7"(Br»(z)), where z} is the closest to z; point in Jr. Without loss of
generality we can assume that R’ < diamJr. By the Koebe i-lemma, any of
these preimages contains a ball around F " (z}) of the radius larger than
1 :=R'/(8Cy). Let y be an accumulation point of the sequence F~"i(z}) € Jr.
By the construction, there is an increasing subsequence {k;} of the sequence
{n;} such that images of B, >(y) under F% are contained in B (z) 2 Jr and
we arrived at a contradiction, since y € Jr and the Julia set has the “‘even-
tually onto” property. O

The next fact is an immediate consequence of Definition 6.

Fact 3.1. There exists a positive constant K31 such that for every sequence of
the preimages z,F~'(z),...,F™"(z) of the second type

((F") (F~"(2)| > Kz -
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Proof. Denote the set of critical points by Crit. By the Koebe }T-lemma,

1 dist(F "z, Crit) > %R" (F" ()] . O

3.3. Third type

The third type of preimages corresponds to pieces of the backward orbit
which connect the large scale to the critical points. The third type preimages
are always endowed with the hyperbolic structure.

Definition 7. Let zg = z,z; = F~'(2),...,z,.1 = F7"7%(z) be a sequence of the
preimages of z of the second type. The number L = Ly, is defined in Lemma 3.
The sequence zy,...,z,y is of the third type if the following conditions are
satisfied.:

1) Shrinking neighborhoods Uy for B.(zp), 1 < k < n, avoid critical points
for some r < 2R/,
2) Some critical point ¢ € U,

For simplicity denote d := dist(z,11,¢), 1 := p(c) and L := Ly,. Let ¥/ be
the maximal radius so that B, (F~""t)z) C F~"(B,,(F‘z)).

Lemma 4. There exists a constant Qs > 1 such that for every sequence of the
preimages of the third type the following estimate holds:
ar!

(r/)ﬂmarl

|(Fn+L)’(Zn+L)| > (Q3t)n+L

Also
dist(Fzy41, Fe) < R .

Proof. To prove the second inequality we proceed as in the proof of the
second inequality of Lemma 2. Indeed, by Lemma 1

dist(Fz sz, Fe) < 2(3,) 7| (F"! (F)y Y

.
<qg " 2(2‘1) Ci'2R <R .

It remains to prove the first 1nequahty By the Koebe -lemma, F~tBg(z)
contains a ball of radius { R|(F*)’ (zz)|"" and the center zL By the definition
of the second type, the ball does not contain F"(c). Clearly, F"(c) € B.(z1).
Hence,

r >%R](FL)’(ZL)1*1
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We apply Lemma 1 to y = z,,, = F~"(z;) and then substitute the value of
Op = %q”, g2y > 1, into the resulting inequality:

1 d*!

(EY O™ = gzl () ()| ™
11— oy d (] )
> g 7O e (el

1 n(1—¢) ! 1

_q -1 mz\xf1 Hmax—1
2l Gy 3 RATIE

By Lemma 3, |(F%)'(z;)| > Ca. Therefore,

Hmax

’ (FH+L>/(ZI1+L)

Hmax — |(Fn)’(ZH+L)|:“max (FL)’(ZL)
11—
(r/ ) Hmax—1 8/’4muxM 2
dar! 1 1 -
( ,,/)#max—l Stmax M 2
!
Z <Q3t)n+L —

( 1% ) Hmax —

>3 Lt R/ (F) (e

AL D)7V (R)4) 1 Oy,

The constant

P I 1 1-¢g. Jro— WL
O3 :=min| A;°, YT AN (R4 el Oy, ’

is larger than 1 by the choice of Cy, in Lemma 3. O

4. Global induction
4.1. Preimages of critical points

Proposition 1. The first Collet-Eckmann condition implies the second for the
critical points of the maximal multiplicity.

Proof. Suppose that c is a critical point of maximal multiplicity p,,,. Fix N
and consider a sequence of the preimages F~'c, ..., FVc. We will define by
induction a sequence {n;}, such that ny =0, n,,_; > N — L, n,, = N. For the
sake of simplicity, set z; :== F"(c) and d; := dist(z;,¢;), where ¢; is the
closest to z; critical point. Here are the conditions imposed on #;:
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I) For every 1 < j < m, the sequence F~"'c,...,F"c is of the first, the
second of length L, or the third type. The sequence F~"'c,...,F "¢ is of
the second type.

IT) Either the shrinking neighborhoods U; for Byg(z;) and I <N —n;
omit critical points (case Ila)), or some critical point ¢; is close to z; with
F(c;) € Br(Fz;) (case 1Ib)).

Basic inductive procedure. As a base for the induction we take zy = ¢, dy = 0.
Suppose we have already constructed z;.

Case Ila. If n; > N — L we put
m:=j+1,n, =N, z,:=FN0)=F"(z) ,

and the construction terminates. Suppose n; <N —L. Set y:=z,
y_1 = F~tz;. Observe that y_; is the second type preimage of y. We enlarge
the ball B,(y_;) continuously increasing the radius » from 0 until one of the
following conditions occurs:

1) for some k the shrinking neighborhood U; for B,(y_r) hits some
critical point ¢/, ¢’ € U,

2) radius r reaches the value of 2R’.

In the case 1) we put n;y| := n; + k + L. The condition I) is satisfied: z;
is the third type preimage of z;. The condition IIb) is satisfied by Lemma 4
with ¢4 =¢'.

In the case 2) set nj.y :=n; + L. Then z;1| € Jr is the second type pre-
image of z; of the length L. Clearly, the shrinking neighborhoods for
B (zj41) satisfy the condition ITa).

Case I1b. Suppose that we have 1Ib), but not IIa). Set » = 0. The shrinking
neighborhoods U; for B,(z;), I < N — n;, do not contain critical points. We
increase r continuously until some domain U, hits some critical point ¢/,
¢’ € OUy. This must occur for some » < 2R’, since IIa) is not satisfied for z;.

Let nj| := n; 4+ k. Then the condition I) is satisfied: z;, is the first type
preimage of z;. Lemma 2 implies the condition IIb).

Growth of the derivative. In the inductive procedure we decompose the
backward orbit of the point ¢ into pieces of the three types of preimages
naturally encoded by a sequence of 1,2, 3. Not all combinations of 1,2, 3 are
admissible. The restriction is that after type 2 we cannot construct the type 1.
For example we could have a sequence of the form

...... 111113322221111313221111

here F acts from left to right and our inductive procedure has started from
the right end. The expansion over the chains of preimages of type 2 and type
3 is guaranteed by Lemma 3 and Lemma 4 (#¥ < d < 1). A sequence of the
first type preimages might not yield exponential expansion because of the
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different multiplicities of the critical points and distortion constants in-
volved. To overcome this difficulty we will study expansion along sequences
of the form 1...13.

Suppose that a given sequence 1...13 has the length £ and the consec-
utive pieces of the preimages have the lengths k;, i = 1...;. Denote the
multiplicities of the corresponding critical points by p;. Set

0= min(QIM O, Q3z)-

By Lemma 2 and Lemma 4, we have that

My —1 ax— 1 -1
’( ‘um.x > qum.x (01)" iy e (03" L
(rl(+l)lllnix— (Vieri)#' (rz)#nm 1
M1~ 1 Jj =1 Miax—1

umdx (ri_;'_di)“/‘71

>Q".

Since we have 7 < min(r;,d;) and p; < pi.,, any term in the expansion of
()"~ (r; + d;)* " is dominated by @"~'#"»~" and hence,

;1 max — |
DHmax—1 diﬂ r;lnd > 1
(r;):umux_l (Vi + di)ui—l

Clearly also 7, < 1 and

s =1
dj+1

(r}H)#mdx—l

>1.

A block of 1’s which is not preceded by 3 might happen only at the
beginning of the sequence. Assume that the block has length & and every
corresponding piece of preimages has length k;, k = k; 4 - - - 4 k;. In this case
d) = 0. By Lemma 2 we have that

d“wl 1 rl‘max -1

Nm\x 2,um|x i i+1 i
’( ‘ >H Ql’ (},l/+l)llmax_ (rl_erl_)#i—l

M1 = 1 1 me\x71 ma\x_l
S Qk djq,Ll qumx dl# r;“ ' rllt
/. )~ /) Fomax (ri_i_di)uﬁl <r1_~_d1)u171
Hinax — 1
7
>0 —1 >0
(r+ dl)“‘fl ’

since Y. = 4; and d; = 0. Combining the above estimates with these of
Lemma 3 and Lemma 4 for blocks of 2’s and 3’s we obtain that
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, m
[(FY) )] = TTIE ) @)
j=1

m—1
>Ksy [J Q"™ > K300™ " > const OV . O
=1

4.2. Hyperbolicity away from the critical orbits

Proposition 2. The first Collet- Eckmann condition implies the second for every
point z which is away from the forward orbits of the critical points:

(") (2)] > Ca(2)"

i . . . .
with Cy < (A)1 max where A is the spherical distance from z to the orbits of the
critical points.

The reasoning for the preimages of a point which stays away from the
forward orbits of the critical points is very much the same as for the pre-
images of the critical point with maximal multiplicity. Indeed, once started,
the basic inductive procedure can be carried out for any point. The ex-
pansion along the sequences of the first and the third type was formulated in
the abstract setting and does not depend on whether a point belongs to the
Julia set or not.

For preimages of the second type, we need to control their distance from
the Julia set. The assumptions of Lemma 3 will be satisfied for points from
the R'/2-neighborhood Vg, of the Julia set, and by the following Lemma
for the preimages of points from the e-neighborhood:

Lemma 5. There exists e¢>0 such that the backward orbit of
z € Ve := U,y Be(z) stays in Vg, and it does not intersect critical orbits not
belonging to the Julia set.

Proof. The proof is a combination of the Sullivan’s classification of Fatou
components (see [27]) with the compactness argument. We work in con-
formal coordinates on the Riemann sphere so that oo is contained in a
Fatou component. Since F' is a C-E map, periodic Fatou components of F
cannot be parabolic. Thus they are either Siegel disks, Herman rings or
sinks. Suppose that there is a sequence z;, dist(z;,Jr) — 0 and negative in-
tegers k; such that F%(z;) & Vs /2. Without loss of generality we may assume
that all z; belong to the same periodic Fatou component, since only finitely
many Fatou components contain a disk of the diameter larger than R'/2.
This situation cannot occur for z; in a Siegel disk or a Herman ring due to
the existence of linear coordinates. In sinks all points are attracted to a
stable periodic point, and the sequence z; cannot exist by the compactness
argument. O
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Let z be a point in the e-neighborhood of the Julia set. Denote by 4 the
distance from z to the critical orbits. We fix N and a sequence of the pre-
images F~!(z),...,F " (z). Similarly, as before, we will define by induction a
sequence {n;} such that ny =0, n,_1 >N — L, n,, = N, and

I’) For every 1 < j < m, the sequence F~"-'z,...F "z is of the first, the
second of length L, or the third type. The sequence F~"»-'z, ... F "z is of the
second type. Additionally,

) . . (dl)#]_] l/.umax
|(F™) (F(2))] > const A 0" | A2 :

(7”1 )l“max -

II”) For j > 0 either the shrinking neighborhoods U; for Big/(z;) and
[ < N — n; omit critical points (case I1a)), or some critical point ¢; is close to
z; with F(c;) € Bg(Fz;) (case 1Ib)).

Inductive procedure. We will construct a sequence z; := F~"(z) using the
basic inductive procedure from Sect. 4.1. The only difference will be in the
first step.

Base of induction

If the shrinking neighborhoods for Br/(zp) do not contain critical points,
the condition IIa) is satisfied. We start from j = 0 and continue the inductive
procedure as in the Section 4.1. By lemma 5, dist(z;,J) < R’/2, and hence
sequences of the second type will yield exponential expansion.

Otherwise we take r := A. By the definition of A, the shrinking neigh-
borhoods for Bx(z) omit the critical points. We increase r continuously until
certain shrinking neighborhood Uj hits some critical point ¢, i.e. ¢ € QUy. It
must happen for some A < ry < 2R’. Set ny := k. The condition IIb) for z; is
satisfied by the reasoning of Lemma 4.

By Lemma 1

ny/ Hrmax 1 ~1 1N 70 Himax —1
el 2 gt Y ) ()

-1
> const Atm ! g ()"
a (r/ )Aumax_l )
1
where d := dist(z1, ¢), u; := pu(c), and const := Su.n}.le%q.

Induction and expansion

The point z; satisfies I') and 1Ib). Take z; as a base of the induction. We use
the basic inductive procedure to pick points z,...,z, and decompose the
backward orbit into pieces of preimages of type 1, 2 and 3. The expansion
along the blocks of 2’s, 3’s, and 1...13 is exponential. The first block of 1’s
yields exponential expansion up to the power of A. Combining all these
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estimates together we obtain the claim of Proposition 2 for the points z in
the e-neighborhood of the Julia set which stay away from the critical orbits.
If there are non-empty Fatou components then the distortion argument
implies the claim of Proposition 2 for all z outside the Julia set and away
from the critical orbits.

5. Collet-Eckmann condition and Holder domains

First we will consider the case of a polynomial with simply-connected do-
main of attraction to oo, where we have clear and nice relation between
Holder and expansion exponents.

Let F be a polynomial of degree d with the Julia set Jr. Denote by
A :={z: F"z — oo} the basin of attraction to infinity. If Jr is connected
there exists a conformal map

¢:D={]z] <1} -4y, ¢0)=00 .
Without loss of generality ¢ conjugates F with dynamics 7 : z+— z¢ on ID:
Fop=¢oT .

Lemma 6. The following conditions are equivalent:
(1) Domain A is Holder with exponent o,
(i1) For some constant C,

(Ol <Ci(1—[)*, (eD,
iii) For some (an oint z € Ay, and constant C, = Cy(z
y) P
|(F") ()| > Cd™, yeF ™"z, n€Z, .
Proof. Properties (i) and (ii) are equivalent for any domain, the proof is in

[7], p. 74. Hence, it is sufficient to prove the equivalence of (ii) and (iii).
We differentiate the identity F”" o ¢ = ¢ o T". As a result we obtain

Flop-¢=¢ ol -T".
We apply the above equality to the preimages of { € T7"¢. If a point & is
inside an annulus 4 := {r < |&| < r} for fixed < 1 then the right-hand

side is approximately =< d”".
We obtain up to a constant that

d"e' () = R0,
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where y = ¢({) is a corresponding preimage of z = ¢(¢) under F".

Since any point { close to 0ID after a number of iterations gets into 4 and
(I = |¢]) <xd ", we obtain that (ii) is equivalent to the uniform €&, (z) for all
z € ¢(A4) and hence (by the distortion argument) to (iii). O

Definition 8. We will call ( possibly non-simply-connected) domain # Hdlder
if it satisfies a quasihyperbolic boundary condition:

|

_IOgdlst( a7 T ¢

distqn(z,z9) <

for a fixed zy € F and any z € F

Above the quasihyperbolic distance distqn(y,z) between points y,z € F
is defined as the infimum of

gL
dist({,07)

over all rectifiable curves y joining y,z in Z.

For simply connected domains quasihyperbolic and hyperbolic metrics
are comparable and this definition of Holder domains is equivalent to one
given in Introduction.

Proposition 3. Attracting or super-attracting periodic Fatou component F is
Holder if and only if it is Collet-Eckmann.

Without loss of generality we may assume that F fixes a Fatou com-
ponent % . Throughout the rest of this section we will always mean by F~" a
branch mapping # to itself.

Take a subdomain Qc.# with a nice boundary containing all critical
points from % such that FQ cQ. Define

Q= 7\Q ,
Q,:=F7"Q ,
Q; = Qn\Qn+1 )
T, := 0Q,

Any point z eventually gets to Q under some iterate of F, meaning that for
z € Qp there is a unique index n = n(z) such that z € Q. Also fix some
Zp € 96

Lemma 7. Suppose that z € Qy and n = n(z). Then

dist(z,07) = |(F") (z)| "

diStqh(Z,Zo) =n ,
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up to some constant depending on F and our choice of Q only.

Proof. First note that it is sufficient to prove first relation for z sufficiently
close to the boundary. Let R be so small that R-neighborhood of 0% is
contained in Q. Take a finite cover of J% by balls B, from Technical
lemma 8. Denoting by ¥ their union, we note that for any y € V" and pos-
itive integer k

dist(F 4y, 07 ) |(F*) (F )| = dist(r,07)
by the Technical lemma 8 applied to an appropriate ball B,. Let m be the
minimal integer such that Q, C V. Thus for arbitrary z € Q, with
n:=n(z) >m we have F" "z € Q) C V and
dist(z, 07) =< | (F")'(z)| " dist(F" "z, 07) = |(F")'(z)| "
which proves the first relation.
To prove the second relation, first prove distqn(z, zot) 2 n. In fact, we can

join z and z with a quasihyperbolic geodesic 7. Set 7, := y N Q;. Then

d¢
lengthgy, () = /W
Yk

_/ |dFk / dé|=1
AT |dlst ez T
Yk

Fhyy

since F*y, must join 7; with 7o. Hence lengthgy,(y) > >3- 1 o lengthyy (7;) 2.
It remains to prove that distys(z,2z0) <n. To do so, it sufﬁces to construct
for any y € Q) a point )/ € 74 such that distqh(y,y/)s 1. In fact, consider
w = Fky € Qf, we can join it with some point W' € 7q by a curve y C € of
length <1. Pulling y back by a branch of F~* sending w to y, we obtain for
/e kg .
v =F"*W e

dg
distan(r:y / dlSt| |

= ]dFk
- [ |(FF) (C)|dlst /|df|<1

b

Now for z€ Q) we can construct by induction a sequence: zj € T4,
n>k>1,z=z,, with distq,(zx, z&+1) < 1. Therefore,
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distqn(z, 20) < distgn(z0,21) + »_ distqn(z,z01) S1+ D _1$n . O
k=1 k=1

Technical Lemma 8. For any domain  , point z € 0F , and positive R, there
exists positive r < R such that for any point y € # N B,(z) and conformal
mapping ¢ : F' := F N Br(z) — C we have

90 dist(,07) = dist($(»), 09(F")
= dist (¢ (), 09(#") N $(F (B (2)))

up to a constant depending on F , z, and R.

Proof. First note that the first relation is true by the Koebe distortion
theorem.
Suppose that the second is not, i.e.

p i=dist(9(), 06(F') N $(F N Byp(2)) ) < dist(¢(), Dp(F')) = P .

Consider the family I" of curves joining 9B,(¢(y)) with Bp(p(y)) in ¢p(F'),
its extremal length will be large: > log(P/p)/2n > 1.

On the contrary, the family ¢~ 'T contains a subfamily of curves joining
two opposite sides of some strip, separating y and z in Bg(z). Since y and z

Fig. 5. Curve families I' and ¢~'T" from Technical Lemma
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are close, the extremal length of ¢ 'I' should be small (namely
<S(1+ log(R/r))f1 < 1), and we arrive at a contradiction.

On Figure 5 the families I and ¢ 'T" are plotted as extra bold curves
joining bold and bold dotted (0Bp(¢(y)) N ¢(F') and OB, correspondingly,
and their preimages under ¢) lines. O

Proof (of the Proposition). Take z close to the boundary of %#. Then by
Lemma 7 we have

distgn(z,20) = n(z)and dist(z, 07 ) = | (F"®)' )|,

hence the quasihyperbolic boundary condition for the point z is equivalent
to the inequality

log | (F¥)'(2)| 2 n(z) .

which by the distortion theorem is equivalent to the analogous inequality for
the corresponding preimage of zy under ). Therefore the quasihyper-
bolic boundary condition holds for all points if and only if the second
Collet-Eckmann condition for preimages of zy in % does, i.e. the Fatou
component Z is Collet-Eckmann. O

Lemma 9. If Fatou component F is Holder then so are its preimages.

Proof. By Koebe distortion theorem, the distance to the boundary and hence
the quasihyperbolic distance are changed under the conformal mapping at
most by a multiplier of 4. Therefore preimage of a Hélder domain under
conformal mapping is also Holder.

It remains to consider the case when F: %' — % has some critical
points in #'. But then we can find a finite open cover of #' such that F
maps conformally each element into & (sending 0%’ to 0%), and since
Holder property is local, Holder regularity of & will imply the same for
7. O

Now it remains to notice that Collet-Eckmann rational maps cannot
have parabolic points, and the second Collet-Eckmann condition excludes
Siegel disks and Herman rings since they have local coordinates. Thus all
Fatou components are preimages of periodic attractive or superattractive
ones and hence are Holder domains.

To exclude the possibility of Cremer points we will prove much stronger
statement that all periodic points are uniformly expanding, i.c. there is a
constant Q > 1, such that for every periodic point x € Jp, F"x = x, the in-
equality |(F™)'(x)| > Q" holds. In one-dimensional real dynamics the above
condition is called uniform hyperbolic structure (on cycles).

Lemma 10. C-E rational maps have uniform hyperbolic structure.
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Proof. First we rule out the existence of neutral periodic points F”x = x in
the Julia set. We repeat the inductive procedure for a periodic point x and
the inverse branch of F~*¥ which fixes x. If we choose R smaller than the
distance of the cycle {x,...,F™(x)} to the critical points then the shrinking
neighborhoods defined in the inductive procedure cannot hit the critical
points. Hence, only blocks of the second type are admissible in the proce-
dure and |(F™)'(x)| > 0% > 1.

If x is a repelling periodic point, Fx = x, then there exists a neighbor-
hood U of x so that the inverse branch of F” fixing x is bi-holomorhically
equivalent to the multiplication by 1/(F™)'(x). Let ¢ be any critical point of
the maximal multiplicity. Since the backward orbit of ¢ is dense in J, we can
find a positive number k and the branch F~* so that F~*(c) € U. By the first
claim of Theorem 1 and the bounded distortion of =" on U, there exists a
constant Q > | so that the following estimate holds

|(Fm)/(x)| _ }Lfglo ‘(Frm)/(Ffrmx)‘l/r > lirrgglfKFrM)/(kafrmc)‘l/r

= liminf | (F™ ™) (F %)V > liminf ™" = 0" . O

r—00
A natural question arises:

Problem 2. Is uniform hyperbolic structure on cycles equivalent to the &
condition for rational maps of the Riemann sphere?

Note also that, if the Fatou set is non-empty, Cremer points cannot exist
since then the Julia set would contain non-accessible points (see [21]).
However (as was pointed to us by the referee) the reasoning above is nec-
essary, since M. Herman has constructed examples of transitive (hence with
empty Fatou set) rational maps with Cremer points — see [10].

Summing it up, we arrive at the following

Corollary 3. All Fatou components of a rational C-E map are Holder domains.
Rational C-E maps can have neither Siegel disks, Herman rings, nor parabolic
or Cremer points.

6. Appendix

In the Appendix we assume that F' is a polynomial with connected Julia set
which satisfies the second Collet-Eckmann condition for the preimages of
the critical points. Our studies here are motivated by the results about
S-unimodal maps on the real line.
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Two types of preimages. We will decompose the forward orbit of a critical
point into parts. The first will consists of blocks of the reversed first type
which is a modification of the first type defined in the Sect. 3. The second
part of the orbit will stay at a certain distance from the critical points.

Parameters and scales

We put o, := lz;qq” with ¢ = (42)"° for small positive &. Large scale will be
considered with parameter R < 1, which satisfy the following conditions:
(i) Any two critical points are at least 100R apart and R is so small that
IF'(»)| Mdist(y, )" and dist(Fy, Fe) Mdist(y, )" given that dist(y, c)
< R for a critical point c.
(ii) The first return time of the critical points to | J Br(c;) is greater then a
certain constant 7, such that

2
1 1—¢
M 2

-1
2M? (ﬂ) () <172,

Cz()uz)m > 1 .

Reversed first type

Definition 9. A4 sequence of preimages of z: z,F~'(z),...,F~"(2), is of the
reversed first type with respect to two critical points c| and c; if

1) Shrinking neighborhoods Uy, for B.(F~'z), 1 <k <n — 1 avoid critical
points,

2) dist(F~'z,¢) =7/2 <R,

3) celU,.

To simplify notation set y := F~"z and d, := dist(F~'y, c,). For consis-
tency let dy :=r/2 = dist(F~'z,¢}).

Lemma 11. There exists a constant Q\ > 1 such that for a sequence of

preimages of the first reversed type we have that

" (dl )NI ~ Himax

|(F") ()| > (01) ()T

Also

Fig. 6. Preimages of the reversed first type
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dist(F'y,e2) <R .

93

Proof. Set u := F~"(c;). By the Koebe distortion theorem (see Theorem 1.3

in [22]) applied to F~"=V : B, (F~') — U,_, we obtain that

(diam(U,))"> < M diam(U]_,)
(1-38,)(2—5,)
On
< 2M*(5,) " rdist(u, e2) | (F") (w)] !

< 2M3(5,) " (diam(U,)) (o)

!

r|(F"_l) (Fu)‘_l

hence by the choice of R (since n > 1)
dy < diam(U,) < 2M>(8,) " (Jo) "r <r/2=d, ,

which implies the second desired inequality.
To prove the first, write (using the Koebe distortion theorem again)
|(F"_l)/(y)}dist(F_lz,cl)”ﬁ1
On
2-46,)°
1 7
wén’(F ) (”)|

. dlSt(u, 02)7<N2*1) (dl )l“muxfl (dl ),Ul*llmax

(i 5nC2(/12)")

. diam(Un)f(”rl)diam(Un)“mux*1(dl)ﬂrumax
11— 1 \ne n(1-2¢

& <8M 7 Col) )(m (1=
- diam(U,,)!ma"F2 (g )11~ Hmax

> (01 (o) g

|(F") (y)| =

v
Nt

|(Fn71)/(Fu)‘(d1)'u]_1

v

Y

for Q; := 4! by the choice of R.

Expansion away from the critical points

Let us define an important property of Julia sets which we call R-expansion.

Definition 10. We say that a Julia set is R-expansive if for any positive R there
exist parameters n(R) and K(R) > 1 such that every forward orbit of length
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greater than n(R) which stays away from the critical points at the distance at
least R has the derivative greater than K(R).

Up till now there are known only few examples of R-expansive Julia sets.
Among these we have non-renormalizable quadratic polynomials and non-
renormalizable real unimodal polynomials z' + ¢ (see [15]).

It is easy to see that if the orbit z, Fz...,F*z is R away from the critical
points, then R-expansion implies

|(F*)'(2)] > const (02)"
for 0y := K(R)"/"® > 1.
Proposition 4. The Julia set of a rational C-E map is R-expansive.

Proof. We proceed as in the proof of Lemma 10. Let x € J be a point whose
forward orbit stays away from the critical points at the distance at least A.
We choose R, which is a parameter in the inductive procedure defined in
Sect. 4.1, to be smaller than 4. We repeat the inductive procedure for points
F"(x), 1 < n, and the inverse branches F~" which map F”"(x) to x. By our
choice of R, only second type preimages are admissible. Thus by Lemma 3,
there exists n(R) > 0 such that |[(F")(x)| > 2 for every n > n(R). ]

Proposition 5. If the Julia set of a rational map F is R-expansive then the
second Collet-Eckmann condition for the preimages of critical points implies
the first for the critical points of maximal multiplicity.

Proof. Let ¢ be a critical point of maximal multiplicity: p(c) = pp«- Fix N
and consider a sequence of the images

z:=FN(F(c)), F ' (z2) = F""Y(F(¢)),...,F N (z) = F(c), F™(z) = ¢ .

Let ny be the smallest positive integer such that F~(*1)(z) is in the
R-neighborhood of some critical point. We will define by induction a
sequence {n;} such that n, = N. For simplicity, set z; := F~"(z). Here are
the conditions imposed on #;:

I) The sequence F~"-'z,...,F "z is of the first reversed type;

1) Some critical point ¢; € Bg(F~'z;).

As a base for the induction we take zyp = F~"™(z). Suppose we have
already constructed z;. Let k be the first time shrinking neighborhoods Uj
for B,(F~'z;) with r = d; := dist(F~'z;,¢;) < R hit some critical point c;;1:
¢jr1 € Uy, clearly k <N —n;. Set njyy :=n;+k, condition I) is satisfied
since z;; is a reversed first type preimage of z;. Condition II) follows from
Lemma 11. The construction naturally terminates when for some j we get
I’lj = N.
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Expansion

We estimate [(F")'(Fc)| in the usual way. Put y; := pu(c;), then

‘ (FN)/(FC) ‘ = |(Fno)/(zo) | H| (F”/*”/—l )I(Zj){
=1
> const (Qz)no - (Ql)nj—n,q
j=1
(dm)'“"‘ufl“m/(do)ﬂmafuo

= const Q" Q""" (dp) o mx > const QN

for O := min{Qy, 0>} > 1. Here we used that w, = 1(¢) = ta> Mo < Hmaxo

and dy < 1. O
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