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Abstract. We prove that Collet-Eckmann condition for rational functions,
which requires exponential expansion only along the critical orbits, yields
the HoÈ lder regularity of Fatou components. This implies geometric regu-
larity of Julia sets with non-hyperbolic and critically-recurrent dynamics. In
particular, polynomial Collet-Eckmann Julia sets are locally connected if
connected, and their Hausdor� dimension is strictly less than 2. The same is
true for rational Collet-Eckmann Julia sets with at least one non-empty fully
invariant Fatou component.

1. Introduction

We are interested in the dynamical characterization of geometric regularity
of the Fatou components and the persistence of hyperbolic subsets in Julia
sets. This direction of studies was originated by L. Carleson, P. Jones, and
J.-C. Yoccoz in their work ``Julia and John'' on the dynamical classi®cation
of Fatou components which are John domains. They proved that the
property of Fatou components being John domains is equivalent to the
Misiurewicz condition (semi-hyperbolicity) for a polynomial. HoÈ lder
property is more general: every John domain is HoÈ lder but not conversely
(see [22], 5.2).
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De®nition 1. A simply connected domain X is called a HoÈlder domain (with
exponent a 2 �0; 1�) if the Riemann mapping u : D! X can be extended to a
HoÈlder continuous (with exponent a) mapping on the closed unit disk.

It is a well known theorem of G.H. Hardy and J.E. Littlewood (see [7], p. 74)
that this de®nition is equivalent to

u0�z�j j � C
1

1ÿ jzj
� �1ÿa

;

where z 2 D and C > 0 is a constant. Generally, HoÈ lder domains can be
de®ned in terms of quasihyperbolic distance (see De®nition 8 in the Sect. 5
and [26]).

We prove that the Collet-Eckmann condition which requires exponential
expansion only along the critical orbits (see De®nition 2 below) yields the
HoÈ lder regularity of Fatou components. The immediate consequence of our
main result is:

Corollary 1. Suppose that the boundary of some Fatou component of a C-E
rational function is connected, then it is locally connected. In particular,
connected Julia set of a C-E polynomial (or any C-E rational function with at
least one non-empty fully invariant Fatou component) is locally connected.

Julia sets of rational C-E maps need not be locally connected. A well-
known example of a hyperbolic Julia set which is not locally connected (and
is topologically a Cantor set of circles) can be found in Sect. 11.8 in the
book [3]. In the Corollaries 1 and 2 we use that if a rational Julia set has a
fully invariant Fatou component (for polynomials the basin of attraction to
in®nity is fully invariant), then the whole Julia set coincides with its boun-
dary. Consult the books [3, 4] for this and other basic facts from holo-
morphic dynamics.

The recent work of P. Jones and N. Makarov [13] gives an upper esti-
mate of the Hausdor� (and even Minkowski) dimension of the boundary of
any simply connected HoÈ lder domain in terms of the HoÈ lder exponent a
only:

HD�X� � 2ÿ ca ;

where c is an absolute constant. In papers of W. Smith and D.A. Stegenga
[26], and P. Koskela and S. Rohde [14], the similar result is proved for any
HoÈ lder domain. See also [18] for the discussion of various related classes of
domains and their metric properties.

Therefore, we arrive at the following

Corollary 2. The boundary of Fatou component of a C-E rational function has
Hausdor� dimension less than 2. In particular, the Hausdor� dimension of the
Julia set for a C-E polynomial (or any C-E rational function with at least one
fully invariant Fatou component) is less than 2.
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The ®rst results on the dynamics of C-E rational maps were obtained by
F. Przytycki in [23] and [24]. In these papers he studies ergodic properties of
conformal measures, the existence of invariant measures in the class of
conformal measures with minimal exponent and the relation between vari-
ous dimensions of the Julia sets. His main result states that for C-E rational
maps the Hausdor�, Minkowski, and Hyperbolic dimensions of the Julia
sets coincide. Another important consequence of his approach is the exis-
tence of a polynomial with a recurrent critical point whose Julia set has the
Hausdor� dimension strictly less than 2. In fact, F. Przytycki proves that
HD�J� < 2 holds for the real C-E maps which satisfy Tsuji condition (see
[24]). F. Przytycki introduced in [23] a new technique of estimating distor-
tion for holomorphic Collet-Eckmann dynamics. His method plays an im-
portant role in our estimates and hence is presented fully in Section 2.

It would be very interesting to characterize rational functions with Julia
sets of Hausdor� dimension less than 2. Our result shows that polynomial
C-E maps fall into this category. Further progress in this direction was
obtained in the papers [25, 9].

Recently, C. McMullen [16] proved that a quadratic Julia set with Siegel
disk has Hausdor� dimension less than 2 provided its rotation number is of
bounded type. In this situation, M. Herman and G. SÂ wiaË tek theory (see [11]
and [28]) together with E. Ghys construction ([8]) imply that the boundary
of a Siegel disk is a quasicircle and the dynamics on the Julia set is quasi-
conformally equivalent to the dynamics of a corresponding Blaschke
product. To the best of our knowledge there are no known examples of
Siegel disks with HoÈ lder or John property other than quasidisks. We are
particularly interested in the case where a critical point lies on the boundary
of the Siegel disk.

The S-unimodal C-E maps on the interval were studied more intensively.
T. Nowicki and F. Przytycki proved in [20] that any non-renormalizable S-
unimodal C-E map is HoÈ lder conjugate with tent map, and conjectured the
HoÈ lder regularity of Fatou components for Collet-Eckmann quadratics. For
a polynomial with connected Julia set, by a proper choice of a Riemann
mapping u to the domain of attraction to in®nity, we may assume that it
conjugates F on JF with dynamics T : z! zd on the unit circle. Hence, in
this context, our theorem is a direct analogue of their result. The tent maps
are piecewise linear maps which serve as prototype models in the study of
the dynamics of unimodal maps.

W. de Melo and S. van Strien's book [17] is an excellent reference of the
activity in this area. An important feature of smooth unimodal C-E maps is
that they have always probabilistic absolutely continuous invariant mea-
sure. By the works of M. Jakobson [12], M. Benedicks and L. Carleson [1,
2] non-hyperbolic maps in the quadratic family fax�1ÿ x�; a 2 �0; 4�g, which
satisfy C-E condition have a positive Lebesgue measure in the parameter
space. In the complex quadratic case the class of C-E maps is strictly larger
than that of semi-hyperbolic (non-recurrent). The natural questions arise
about possible critical orbit combinatorics of C-E quadratics, and the
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harmonic measure of C-E parameters on the boundary of the Mandelbrot
set.

Problem 1. Do C-E parameters have full (or at least positive) harmonic
measure on the boundary of the Mandelbrot set (viewed from outside)?

The de®nition of holomorphic C-E maps is adopted from the dynamics
of S-unimodal maps (see [6, 17, 23]), with a small change: we allow critical
points to be attracted to (super) attractive cycles. For example, the real map
x 7! x2 is not C-E in the real sense (compare [17]) but according to De®ni-
tion 2 its complex counterpart, z 7! z2, is a rational C-E map. As usual, we
will call zeroes of the derivative of F critical points, and their images ±
critical values.

De®nition 2. We say that a rational function F satis®es the ®rst Collet-
Eckmann condition CE with constants C1 > 0; k1 > 1 if for any critical point c
whose forward orbit does not contain any other critical point and belongs to or
accumulates on the Julia set, the following condition holds

F n� �0�Fc��� �� > C1k
n
1 :

Such rational functions we will simply call Collet-Eckmann (or C-E ).

We will also study the relation between the ®rst and the second Collet-
Eckmann conditions. T. Nowicki proved in [19] that the ®rst C-E condition
implies the second for S-unimodal maps. To our best knowledge the
reversed implication was unknown even in the case of real quadratic poly-
nomials.

De®nition 3. We say that a rational function F satis®es the second Collet-
Eckmann condition CE2�z� for a point z with constants C2 > 0; k2 > 1 if for
any preimage y 2 F ÿnz

F n� �0�y��� �� > C2k
n
2 :

De®nition 4. We call a periodic Fatou component F Collet-Eckmann if for
any (some ± by the Koebe distortion theorem the statements are equivalent)
point z 2F away from the critical orbits

F n� �0�y��� �� > Ckn ;

for any preimage y 2 F ÿnz \F with constants C > 0; k > 1.

By the multiplicity l�c� of a critical point c we mean the order of c as a zero
of F �z� ÿ F �c�. For simplicity we assume that no critical point belongs to
another critical orbit. Otherwise a ``block'' of critical points

F : c1 7! . . . 7! c2 7! . . . . . . 7! ck ;
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of multiplicities l1; l2; . . . ; lk enters our statements as if it is a single critical
point of multiplicity

Q
lj. If in our construction we come to the point ck,

then the process continues from the point c1 (note, that c1 is a critical point
of multiplicity

Q
lj for the iterate F n mapping c1 to Fck).

The main result of the paper relates dynamical condition with the ana-
lytical and geometric properties of the Julia sets and Fatou components.

Theorem 1. Rational C-E maps can have neither Siegel disks, Herman rings,
nor parabolic or Cremer points. Fatou components of a rational C-E map of
the Riemann sphere are HoÈlder domains. Additionally, we have the following
relations between analytical and dynamical properties:

(i) The ®rst Collet-Eckmann condition implies the second CE2�c� for the
critical points c of the maximal multiplicity lmax (calculated as above), whose
backward orbits do not contain any other critical points.

(ii) The ®rst Collet-Eckmann condition implies the second for all points z
away from critical orbits, namely

�F n�0�F ÿn�z���� ��JD1ÿ 1
lmaxkn ;

where D is the distance of z to the forward orbit of all critical points.
(iii) Attracting or superattracting Fatou componentF is HoÈlder if and only

if it is Collet-Eckmann.

By the implication (ii) of Theorem 1, Collet-Eckmann rational maps can
have neither parabolic nor elliptic Fatou components. Hence, for Collet-
Eckmann rational maps HoÈ lder property of Fatou components and the
second Collet-Eckmann condition for points outside of the Julia sets are
equivalent.

The distances and derivatives are calculated in the spherical metric. If the
Fatou set is non-empty, one can work with the Euclidean metric on the
plane, changing coordinates by a MoÈ bius transformation so that in®nity
belongs to a periodic Fatou component.

In the ``complex unimodal case'' Theorem 1 can be restated in the fol-
lowing way.

Theorem 2. For a unimodal polynomial F �z� � z` � a with connected Julia set
JF satisfying R-expansion property (see De®nition 10 in Appendix) the
following two conditions are equivalent:

(i) CE,
(ii) CE2�0�,

and imply the following equivalent conditions:
(iii) CE2�z� for some (any) z 2 A1,
(iv) Domain of attraction to in®nity A1 is HoÈlder.

The R-expansion property is needed only for the implication �ii� ) �i�.
We do not know whether it is necessary and what class of rational maps
satis®es it. According to the recent work of S. van Strien and G. Levin [15]

Collet, Eckmann and HoÈ lder 73



non-renormalizable real unimodal polynomials have R-expansion property.
We prove this property for C-E dynamics in Appendix. F. Przytycki proved
in [23] that rational maps satisfying the so called summability condition
(weaker than Collet-Eckmann) enjoy this property also.

Finally, we are aware that that C-E complex unimodal maps cannot be
in®nitely renormalizable. This problem as well as many others related to
measure theoretic properties, holomorphic removability and topology of
Julia sets satisfying the summability condition is discussed in our recent
paper [9].

Organization of the paper. We introduce distortion techniques based on the
idea of shrinking neighborhoods (see [24]) in Sect. 2. In Sect. 3 we study the
local behaviour of dynamics, which we later use to formulate a global
induction procedure in Sect. 4. There we also prove the implication
CE) CE2�c� for critical points of maximal multiplicity and the second
Collet-Eckmann condition for points away from the critical orbits. The
relation between CE2�z�, z 62 J and the HoÈ lder continuity of Fatou com-
ponents is explained in Section 5.

Validity of the implication CE2�c� ) CE does not belong to the main
line of our current work. However, possible applications to the study of
S-unimodal dynamics on the interval motivate our short discussion of the
problem in Appendix.

Notation. Critical points of F are denoted by c, c0, cj, etc., and their mul-
tiplicities by l�c�, etc..

The relations aKb; aJb, where a and b are real positive numbers, mean
appropriately that there exists an absolute universal constant K so that
a � Kb and b � Ka. By the de®nition, a � b i� both aKb and bKa.

Acknowledgement. Both authors would like to thank Jacques Carette, Irina Popovici and
Duncan Sands for reading the very ®rst version of the paper and pointing out some mistakes.
Discussions with Ilia Binder, Nikolai Makarov, Feliks Przytycki and Sasha Volberg were very
much appreciated. We are also grateful to the referee for valuable suggestions.

2. Distortion versus expansion

2.1. Shrinking neighborhoods

The method of shrinking neighborhoods was introduced by Przytycki in
[23]. It enables to control distortion in small vicinities of expanding orbits.

We ®x a decreasing sequence of positive numbers fdng withQ
n 1ÿ dn� � > 1

2. Set Dn :�Qk�n 1ÿ dk� �. Let Br be a ball of radius r with
center z and fF ÿnzg be a sequence of preimages of z (here and below by a
sequence of preimages of z we will mean a sequence of points fzn � Fÿnzg
such that Fzn � znÿ1 and z0 � z). We de®ne Un and U 0n respectively as the
connected components of F ÿnBrDn and F ÿnBrDn�1 which contain F ÿnz.
Clearly,
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FUn�1 � U 0n � Un :

If Uk, for 1 � k � n, do not contain critical points then the distortion (i.e.
how map di�ers from its linear approximation) of the map F n : U 0n ! BrDn�1
is bounded by a power of 1

dn�1
multiplied by an absolute constant, as for-

mulated in the following lemma.

Lemma 1. Assume that
1) The shrinking neighborhoods Uk for Br�z�, 1 � k � nÿ 1 evade critical

points,
2) c 2 @Un.

For y :� F ÿnz, let r0 be the maximal radius such that Br0 �y� � F ÿn�Br=2�z��.
Then

dist Fy; Fc� � � 2

dn

�� F nÿ1ÿ �0
Fc� ���ÿ1r :

Moreover, if y is so close to c, that F 0�y�j j � 1
M dist y; c� �l�c�ÿ1 with M > 0,

then

�F n�0�y��� ��lmax � dn

8lmaxM

�� F nÿ1ÿ �0
Fc� ���dist y; c� �l�c�ÿ1 r

r0
� �lmaxÿ1

:

Proof. By the Koebe distortion theorem (see Theorem 1.3 in [22]) applied to
F ÿ�nÿ1� : BrDnÿ1�z� ! Unÿ1 we obtain that

��ÿF ÿ�nÿ1��0 F nc� ��� � dn

2ÿ dn� �3
��ÿF ÿ�nÿ1��0 z� ��� ;

and therefore

�F n�0�y��� �� � ��F 0�y������F nÿ1�0�Fy��� � dn

8M

�� F nÿ1ÿ �0�Fc���dist y; c� �l�c�ÿ1 :

By the Koebe 1
4-lemma (see Corollary 1.4 in [22]), the image of the map

F ÿn : Br=2�z� ! Un contains a ball of radius
1
8 rj F n� �0�y�jÿ1 and the center y.

Hence,

F n� �0�y��� �� � r
8r0

:

Fig. 1. Shrinking neighborhoods
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Combining the above estimate raised to the power �lmax ÿ 1�, with the
previous one, we obtain the second desired inequality.

Similarly, another application of the same Koebe distortion theorem (in
invariant form, which can be obtained composing with a MoÈ bius trans-
formation) yields

dist Fy; Fc� � � �1ÿ dn��2ÿ dn�
dn

Dnÿ1r
��ÿF nÿ1�0�Fc���ÿ1

<
2r
dn

��ÿF nÿ1�0�Fc���ÿ1 ;
and hence the ®rst inequality. (

3. Local analysis

In this section we will assume that CE condition is satis®ed (with constants
C1 > 0 and k1 > 1). Our main concern is local analysis. We assume that we
have pieces of the backward orbit of a point. Each piece will be of a speci®ed
type. Estimates will be carried out independently for every piece. Hyperbolic
structures of the backward orbits of some dynamically important points will
be obtained as a result of a ``global'' induction (see the next section).

Scale. The scale around the critical points is given in terms of ®xed numbers
R0 � R� 1. We will refer to objects which stay away from critical points
and are comparable with R0 as objects of the large scale. The proper choice
of R's is one of the most important elements in the local analysis of ex-
pansion.

We start with de®ning a suitable size of the shrinking neighborhoods. Fix
a positive e � 0. We choose a sequence dn :� 1ÿq� �

2 qn with q < 1 so that
�k1�e � q > 1. We require R and R0 to satisfy the following conditions:

Speci®cation of R

(i) Any two critical points are at least 100R apart and R is so small that
F 0�y�j j �M dist y; c� �l�c�ÿ1, given that y is close to a critical point c with either
dist Fy; Fc� � < R or dist y; c� � < 4R.

(ii) The ®rst return time of the critical points to
S

F ÿ1BR�Fci� is greater
than a constant s, such that

kse
1

1

8lmaxM2
C1

1ÿ q� �
2

> 2lmaxÿ1 :

(iii) R0 is so small, that

4
1ÿ q
2

� �ÿ1
�C1�ÿ1R0 < R :
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3.1. First type

Preimages of the ®rst type form a model to study expansion along pieces of
the backward orbit which ``join'' conformally some two critical points of F .
The word ``join'' means here that we are able to ®nd a ball in a vicinity of the
®rst critical point and pull it back conformally until its boundary hits the
second critical point.

Our formulation of Lemma 2 has to encompass the possibility of critical
points with di�erent multiplicities and hence it does not guarantee imme-
diate expansion.

De®nition 5. A sequence z; F ÿ1�z�; � � � ; F ÿn�z� of preimages of z is of the ®rst
type with respect to the critical points c1 and c2 if

1) Shrinking neighborhoods Uk for Br�z�, 1 � k � n, avoid critical points
for some r < 2R0,

2) The critical point c2 2 @Un,
3) The critical value Fc1 is close to z with Fc1 2 BR�Fz�.
To simplify notation set li :� l�ci�, d2 :� dist F ÿnz; c2� �, and

d1 :� dist z; c1� �. Let r02 be the maximal radius so that Br0
2
�F ÿnz�

� F ÿn�Br=2�z��. For consistency, put r1 :� r.

Fig. 2. Preimages of the ®rst type

Fig. 3. Preimages of the second type

Fig. 4. Preimages of the third type
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Lemma 2. There exist Q1t > 1 such that for any sequence F ÿ1�z�; � � � ; F ÿn�z�
of preimages of the ®rst type we have that

F n� �0�y��� ��lmax> 2lmax�Q1t�n �d2�
l2ÿ1

�r02�lmaxÿ1
�r1�lmaxÿ1
�r1 � d1�l1ÿ1

:

Also

dist Fy; Fc2� � < R :

It is clear from the proof that by choosing R small enough we can make
Q1t arbitrary close to k1.

Proof. First note that by the ®rst implication of Lemma 1

dist Fy; Fc2� � �2 �dn�ÿ1
��ÿF nÿ1�0�Fc2�

��ÿ1r1
�2qÿnkÿn

1 � 2
1ÿ q
2

� �ÿ1
�C1�ÿ12R0 ;

the last term is less than R by our choice of R0, thus proving the second
inequality.

To prove the ®rst observe that condition 2 of De®nition 5 implies
F nc2 2 @BrDn . Hence,

dist F nc2; c1� � � dist F nc2; z� � � dist z; c1� � � r1 � d1 < 4R :

Since dist F nc2; c1� � is small, F 0�F nc2�j j �M dist F nc2; c1� �l1ÿ1.
Therefore,��ÿF nÿ1�0 Fc2� ��� � 1

M
F n� �0 Fc2� ��� �� 1

dist F nc2; c1� �l1ÿ1

� 1

M
C1k

n
1

1

�r1 � d1�l1ÿ1
:

All the hypotheses of Lemma 1 are satis®ed, hence

F n� �0�y��� ��lmax � 1

8lmaxM
dn
��ÿF nÿ1�0 Fc2� ��� �d2�l2ÿ1�r02�lmaxÿ1

�r1�lmaxÿ1

� 1

8lmaxM2
dnC1k

n
1

�d2�l2ÿ1
�r02�lmaxÿ1

�r1�lmaxÿ1
�r1 � d1�l1ÿ1

:

The ®rst inequality is proved with Q1t � k1ÿ2e1 . (
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3.2. Second type

The second type of preimages corresponds to a piece of the backward orbit
which stays away from the critical points, i.e. there exists a neighborhood of
size comparable with R0 which can be pulled back along the backward orbit.
The length of pieces of the second type will be always equal to L and the
expansion will be deduced from the compactness and the ``eventually onto''
property of the Julia sets.

De®nition 6. A sequence of the preimages of z is of the second type if the ball
BR0 �z� can be pulled back by F univalently along this sequence. Additionally,
we assume that dist z; JF� � < R0=2.

Lemma 3. Let z; F ÿ1�z�; . . . ; F ÿn�z� be a sequence of the preimages of the
second type. For every C2t > 1 there exists L2t > 0 so that j�F n�0�F ÿn�z��j >
C2t provided n � L2t.

In order to ensure expansion in our next Lemma 4 we choose C2t so that

1

8lmaxM
1ÿ q
2

kÿ11 �R=4�lmaxÿ1 C2t > 1 :

Remark 1. Set Q2t :� �C2t�1=L2t > 1, then for n � L2t the inequality above can
be rewritten as j�F n�0�F ÿnz�j > �Q2t�n.

Proof. Suppose that it is not so. Then, there is an in®nite collection of
sequences of the second type

zi; F ÿ1zi; . . . ; F ÿni�zi�

such that ni !1 and j�F ni�0�F ÿni�zi�j � C2t. Consider the preimages
F ÿni�BR0=2�z0i��, where z0i is the closest to zi point in JF . Without loss of
generality we can assume that R0 � diam JF . By the Koebe

1
4-lemma, any of

these preimages contains a ball around F ÿni�z0i� of the radius larger than
g :� R0=�8C2t�. Let y be an accumulation point of the sequence F ÿni�z0i� 2 JF .
By the construction, there is an increasing subsequence fkjg of the sequence
fnjg such that images of Bg=2�y� under F kj are contained in BR0 �z� 6� JF and
we arrived at a contradiction, since y 2 JF and the Julia set has the ``even-
tually onto'' property. (

The next fact is an immediate consequence of De®nition 6.

Fact 3.1. There exists a positive constant K3:1 such that for every sequence of
the preimages z; F ÿ1�z�; . . . ; F ÿn�z� of the second type

j�F n�0�F ÿn�z��j > K3:1 :
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Proof. Denote the set of critical points by Crit. By the Koebe 1
4-lemma,

1J dist F ÿnz;Crit� � > 1

4
R0 F ÿn� �0�z��� �� : (

3.3. Third type

The third type of preimages corresponds to pieces of the backward orbit
which connect the large scale to the critical points. The third type preimages
are always endowed with the hyperbolic structure.

De®nition 7. Let z0 � z; z1 � F ÿ1�z�; . . . ; zn�L � F ÿnÿL�z� be a sequence of the
preimages of z of the second type. The number L � L2t is de®ned in Lemma 3.
The sequence z1; . . . ; zn�L is of the third type if the following conditions are
satis®ed:

1) Shrinking neighborhoods Uk for Br�zL�, 1 � k � n, avoid critical points
for some r < 2R0,

2) Some critical point c 2 @Un.

For simplicity denote d :� dist�zn�L; c�, l :� l�c� and L :� L2t. Let r0 be
the maximal radius so that Br0 �F ÿ�n�L�z� � F ÿn�Br=2�F ÿLz��.

Lemma 4. There exists a constant Q3t > 1 such that for every sequence of the
preimages of the third type the following estimate holds:

��ÿF n�L
�0�zn�L�

�� > �Q3t�n�L dlÿ1

�r0�lmaxÿ1 :

Also

dist Fzn�L; Fc� � < R :

Proof. To prove the second inequality we proceed as in the proof of the
second inequality of Lemma 2. Indeed, by Lemma 1

dist Fzn�L; Fc� � � 2�dn�ÿ1
��ÿF nÿ1�0 Fc� ���ÿ1r

� qÿnkÿn
1 � 2

1ÿ q
2

� �ÿ1
Cÿ11 2R0 < R :

It remains to prove the ®rst inequality. By the Koebe 1
4-lemma, F ÿLBR�z�

contains a ball of radius 1
4 Rj�F L�0�zL�jÿ1 and the center zL. By the de®nition

of the second type, the ball does not contain F n�c�. Clearly, F n�c� 2 Br�zL�.
Hence,

r >
1

4
R �F L�0�zL�
�� ��ÿ1 :
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We apply Lemma 1 to y � zn�L � F ÿn�zL� and then substitute the value of
dn � 1ÿq

2 qn, qk�1 > 1, into the resulting inequality:

F n� �0�y��� ��lmax � 1

8lmaxM
dn
��ÿF nÿ1�0 Fc

�ÿ �� dlÿ1

�r0�lmaxÿ1 rlmaxÿ1

� 1

8lmaxM
1ÿ q
2

qnC1k
�nÿ1�
1 � dlÿ1

�r0�lmaxÿ1
1

4
R �F L�0�zL�
�� ��ÿ1� �lmaxÿ1

� 1

8lmaxM
kn�1ÿe�
1

dlÿ1

�r0�lmaxÿ1 �
1ÿ q
2

kÿ11 R=4� �lmaxÿ1j�F L�0�zL�
��lmaxÿ1 :

By Lemma 3, j�F L�0�zL�j > C2t. Therefore,��ÿF n�L
�0�zn�L�

��lmax � F n� �0�zn�L�
�� ��lmax ��ÿF L�0�zL�

��lmax
� kn�1ÿe�

1

dlÿ1

�r0�lmaxÿ1
1

8lmaxM
� 1ÿ q

2
kÿ11 R=4� �lmaxÿ1��ÿF L�0�zL�

��
� kn�1ÿe�

1

dlÿ1

�r0�lmaxÿ1
1

8lmaxM
� 1ÿ q

2
kÿ11 R=4� �lmaxÿ1C2t

� �Q3t�n�L dlÿ1

�r0�lmaxÿ1 :

The constant

Q3t :� min k1ÿe
1 ;

1

8lmaxM

1ÿ q
2

kÿ11 �R=4�lmaxÿ1C2t

� �1=L
 !

;

is larger than 1 by the choice of C2t in Lemma 3. (

4. Global induction

4.1. Preimages of critical points

Proposition 1. The ®rst Collet-Eckmann condition implies the second for the
critical points of the maximal multiplicity.

Proof. Suppose that c is a critical point of maximal multiplicity lmax. Fix N
and consider a sequence of the preimages F ÿ1c; . . . ; F ÿN c. We will de®ne by
induction a sequence fnjg, such that n0 � 0, nmÿ1 > N ÿ L, nm � N . For the
sake of simplicity, set zj :� F ÿnj�c� and dj :� dist�zj; cj�, where cj is the
closest to zj critical point. Here are the conditions imposed on nj:
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I) For every 1 � j < m, the sequence F ÿnjÿ1c; . . . ; F ÿnj c is of the ®rst, the
second of length L, or the third type. The sequence F ÿnmÿ1c; . . . ; F ÿnm c is of
the second type.

II) Either the shrinking neighborhoods Ul for B2R0 �zj� and l � N ÿ nj

omit critical points (case IIa)), or some critical point cj is close to zj with
F �cj� 2 BR�Fzj� (case IIb)).

Basic inductive procedure. As a base for the induction we take z0 � c, d0 � 0.
Suppose we have already constructed zj.

Case IIa. If nj > N ÿ L we put

m :� j� 1; nm :� N ; zm :� F ÿN �0� � F ÿnj�1�zj� ;
and the construction terminates. Suppose nj < N ÿ L. Set y :� zj,
yÿL :� F ÿLzj. Observe that yÿL is the second type preimage of y. We enlarge
the ball Br�yÿL� continuously increasing the radius r from 0 until one of the
following conditions occurs:

1) for some k the shrinking neighborhood Uk for Br�yÿL� hits some
critical point c0, c0 2 @Uk,

2) radius r reaches the value of 2R0.

In the case 1) we put nj�1 :� nj � k � L. The condition I) is satis®ed: zj�1
is the third type preimage of zj. The condition IIb) is satis®ed by Lemma 4
with cj�1 � c0.

In the case 2) set nj�1 :� nj � L. Then zj�1 2 JF is the second type pre-
image of zj of the length L. Clearly, the shrinking neighborhoods for
B2R0 �zj�1� satisfy the condition IIa).

Case IIb. Suppose that we have IIb), but not IIa). Set r � 0. The shrinking
neighborhoods Ul for Br�zj�, l � N ÿ nj, do not contain critical points. We
increase r continuously until some domain Uk hits some critical point c0,
c0 2 @Uk. This must occur for some r < 2R0, since IIa) is not satis®ed for zj.

Let nj�1 :� nj � k. Then the condition I) is satis®ed: zj�1 is the ®rst type
preimage of zj. Lemma 2 implies the condition IIb).

Growth of the derivative. In the inductive procedure we decompose the
backward orbit of the point c into pieces of the three types of preimages
naturally encoded by a sequence of 1; 2; 3. Not all combinations of 1; 2; 3 are
admissible. The restriction is that after type 2 we cannot construct the type 1.
For example we could have a sequence of the form

. . . . . . 111113322221111313221111 ;

here F acts from left to right and our inductive procedure has started from
the right end. The expansion over the chains of preimages of type 2 and type
3 is guaranteed by Lemma 3 and Lemma 4 (r0 � d < 1). A sequence of the
®rst type preimages might not yield exponential expansion because of the
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di�erent multiplicities of the critical points and distortion constants in-
volved. To overcome this di�culty we will study expansion along sequences
of the form 1 . . . 13.

Suppose that a given sequence 1 . . . 13 has the length k and the consec-
utive pieces of the preimages have the lengths ki, i � 1 . . . j. Denote the
multiplicities of the corresponding critical points by li. Set
Q :� min�Q1t;Q2t;Q3t�.

By Lemma 2 and Lemma 4, we have that

��ÿF k�0�y���lmax >Yj

i�2
2lmaxÿ1�Q1t�ki

dli�1ÿ1
i�1

�r0i�1�lmaxÿ1
rlmaxÿ1

i

�ri � di�liÿ1 � �Q3t�k1 dl2ÿ1
2

�r02�lmaxÿ1

> Qk
d

lj�1ÿ1
j�1

�r0j�1�lmaxÿ1
Yj

i�2
2lmaxÿ1 dliÿ1

i

�r0i�lmaxÿ1
rlmaxÿ1

i

�ri � di�liÿ1

> Qk :

Since we have r0i < min�ri; di� and li � lmax, any term in the expansion of

�r0i�lmaxÿ1�ri � di�liÿ1 is dominated by dliÿ1
i rlmaxÿ1

i and hence,

2lmaxÿ1 dliÿ1
i

�r0i�lmaxÿ1
rlmaxÿ1

i

�ri � di�liÿ1 > 1 :

Clearly also r0j�1 < 1 and

d
lj�1ÿ1
j�1

�r0j�1�lmaxÿ1
> 1 :

A block of 1's which is not preceded by 3 might happen only at the
beginning of the sequence. Assume that the block has length k and every
corresponding piece of preimages has length ki, k � k1 � � � � � kj. In this case
d1 � 0. By Lemma 2 we have that

��ÿF k�0�y���lmax >Yj

i�1
2lmaxÿ1�Q1t�ki

dli�1ÿ1
i�1

�r0i�1�lmaxÿ1
rlmaxÿ1

i

�ri � di�liÿ1

> Qk
d

lj�1ÿ1
j�1

�r0j�1�lmaxÿ1
�
Yj

i�2
2lmaxÿ1 dliÿ1

i

�r0i�lmaxÿ1
rlmaxÿ1

i

�ri � di�liÿ1 �
rlmaxÿ1
1

�r1 � d1�l1ÿ1

> Qk rlmaxÿ1
1

�r1 � d1�l1ÿ1
> Qk ;

since lmax � l1 and d1 � 0. Combining the above estimates with these of
Lemma 3 and Lemma 4 for blocks of 2's and 3's we obtain that
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��ÿF N�0�y��� �Ym
j�1

F njÿnjÿ1� �0�zj�
�� ��

> K3:1

Ymÿ1
j�1

Qnjÿnjÿ1 � K3:1Qnmÿ1 � constQN : (

4.2. Hyperbolicity away from the critical orbits

Proposition 2. The ®rst Collet-Eckmann condition implies the second for every
point z which is away from the forward orbits of the critical points:

�F n�0�z��� �� > C2�k2�n ;

with C2 � �D�1ÿ
1

lmax where D is the spherical distance from z to the orbits of the
critical points.

The reasoning for the preimages of a point which stays away from the
forward orbits of the critical points is very much the same as for the pre-
images of the critical point with maximal multiplicity. Indeed, once started,
the basic inductive procedure can be carried out for any point. The ex-
pansion along the sequences of the ®rst and the third type was formulated in
the abstract setting and does not depend on whether a point belongs to the
Julia set or not.

For preimages of the second type, we need to control their distance from
the Julia set. The assumptions of Lemma 3 will be satis®ed for points from
the R0=2-neighborhood VR0=2 of the Julia set, and by the following Lemma
for the preimages of points from the �-neighborhood:

Lemma 5. There exists � > 0 such that the backward orbit of
z 2 V� :� [z2JF B��z� stays in VR0=2 and it does not intersect critical orbits not
belonging to the Julia set.

Proof. The proof is a combination of the Sullivan's classi®cation of Fatou
components (see [27]) with the compactness argument. We work in con-
formal coordinates on the Riemann sphere so that 1 is contained in a
Fatou component. Since F is a C-E map, periodic Fatou components of F
cannot be parabolic. Thus they are either Siegel disks, Herman rings or
sinks. Suppose that there is a sequence zi, dist�zi; JF � ! 0 and negative in-
tegers ki such that F ki�zi� 62 VR0=2. Without loss of generality we may assume
that all zi belong to the same periodic Fatou component, since only ®nitely
many Fatou components contain a disk of the diameter larger than R0=2.
This situation cannot occur for zi in a Siegel disk or a Herman ring due to
the existence of linear coordinates. In sinks all points are attracted to a
stable periodic point, and the sequence zi cannot exist by the compactness
argument. (
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Let z be a point in the �-neighborhood of the Julia set. Denote by D the
distance from z to the critical orbits. We ®x N and a sequence of the pre-
images F ÿ1�z�; . . . ; F ÿN �z�. Similarly, as before, we will de®ne by induction a
sequence fnjg such that n0 � 0, nmÿ1 > N ÿ L, nm � N , and

I¢) For every 1 < j < m, the sequence F ÿnjÿ1z; . . . F ÿnj z is of the ®rst, the
second of length L, or the third type. The sequence F ÿnmÿ1z; . . . F ÿnm z is of the
second type. Additionally,

F n1� �0 F ÿn1�z�� ��� �� > constD1ÿ 1
lmax Qn1 �d1�l1ÿ1

�r1�lmaxÿ1
 !1=lmax

;

II¢¢) For j > 0 either the shrinking neighborhoods Ul for B2R0 �zj� and
l � N ÿ nj omit critical points (case IIa)), or some critical point cj is close to
zj with F �cj� 2 BR�Fzj� (case IIb)).

Inductive procedure. We will construct a sequence zj :� F ÿnj�z� using the
basic inductive procedure from Sect. 4.1. The only di�erence will be in the
®rst step.

Base of induction

If the shrinking neighborhoods for B2R0 �z0� do not contain critical points,
the condition IIa) is satis®ed. We start from j � 0 and continue the inductive
procedure as in the Section 4.1. By lemma 5, dist�zj; J� < R0=2, and hence
sequences of the second type will yield exponential expansion.

Otherwise we take r :� D. By the de®nition of D, the shrinking neigh-
borhoods for BD�z� omit the critical points. We increase r continuously until
certain shrinking neighborhood Uk hits some critical point c, i.e. c 2 @Uk. It
must happen for some D < r0 < 2R0. Set n1 :� k. The condition IIb) for z1 is
satis®ed by the reasoning of Lemma 4.

By Lemma 1

F n1� �0�z1�
�� ��lmax � 1

8lmaxM
dn�d1�l1ÿ1

��ÿF n1ÿ1�0 Fc� ��� r0
r01

� �lmaxÿ1

� constDlmaxÿ1Qn1 �d1�l1ÿ1
�r01�lmaxÿ1

;

where d1 :� dist�z1; c�, l1 :� l�c�, and const :� 1
8lmaxM

1ÿq
2 .

Induction and expansion

The point z1 satis®es I0) and IIb). Take z1 as a base of the induction. We use
the basic inductive procedure to pick points z2; . . . ; zm and decompose the
backward orbit into pieces of preimages of type 1, 2 and 3. The expansion
along the blocks of 2's, 3's, and 1 . . . 13 is exponential. The ®rst block of 1's
yields exponential expansion up to the power of D. Combining all these
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estimates together we obtain the claim of Proposition 2 for the points z in
the �-neighborhood of the Julia set which stay away from the critical orbits.
If there are non-empty Fatou components then the distortion argument
implies the claim of Proposition 2 for all z outside the Julia set and away
from the critical orbits.

5. Collet-Eckmann condition and HoÈ lder domains

First we will consider the case of a polynomial with simply-connected do-
main of attraction to 1, where we have clear and nice relation between
HoÈ lder and expansion exponents.

Let F be a polynomial of degree d with the Julia set JF . Denote by
A1 :� fz : F nz!1g the basin of attraction to in®nity. If JF is connected
there exists a conformal map

u : D � f zj j < 1g ! A1; u�0� � 1 :

Without loss of generality u conjugates F with dynamics T : z 7! zd on D:

F � u � u � T :

Lemma 6. The following conditions are equivalent:
(i) Domain A1 is HoÈlder with exponent a,
(ii) For some constant C1

u0�f�j j < C1 1ÿ fj j� �aÿ1; f 2 D ;

(iii) For some (any) point z 2 A1 and constant C2 � C2�z�

F n� �0�y��� �� > C2dna; y 2 F ÿnz; n 2 Z� :

Proof. Properties (i) and (ii) are equivalent for any domain, the proof is in
[7], p. 74. Hence, it is su�cient to prove the equivalence of (ii) and (iii).

We di�erentiate the identity F n � u � u � T n. As a result we obtain

F 0n � u � u0 � u0 � T n � T n0 :

We apply the above equality to the preimages of f 2 Tÿnn. If a point n is
inside an annulus A :� rd � nj j � r

� 	
for ®xed r < 1 then the right-hand

side is approximately � dn.
We obtain up to a constant that

dÿn u0 f� �j j � F 0n y� ��� ��ÿ1 ;
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where y � u�f� is a corresponding preimage of z � u�n� under F n.
Since any point f close to @D after a number of iterations gets into A and

�1ÿ jfj� � dÿn, we obtain that (ii) is equivalent to the uniform CE2�z� for all
z 2 u�A� and hence (by the distortion argument) to (iii). (

De®nition 8. We will call ( possibly non-simply-connected ) domain F HoÈlder
if it satis®es a quasihyperbolic boundary condition:

distqh z; z0� � � 1

e
log

1

dist z; @F� � � C ;

for a ®xed z0 2F and any z 2F.

Above the quasihyperbolic distance distqh�y; z� between points y; z 2F
is de®ned as the in®mum of Z

c

dfj j
dist f; @F� � ;

over all recti®able curves c joining y; z in F.
For simply connected domains quasihyperbolic and hyperbolic metrics

are comparable and this de®nition of HoÈ lder domains is equivalent to one
given in Introduction.

Proposition 3. Attracting or super-attracting periodic Fatou component F is
HoÈlder if and only if it is Collet-Eckmann.

Without loss of generality we may assume that F ®xes a Fatou com-
ponentF. Throughout the rest of this section we will always mean by F ÿn a
branch mapping F to itself.

Take a subdomain X��F with a nice boundary containing all critical
points from F such that F X��X. De®ne

X0 :�Fn�X ;

Xn :� F ÿnX0 ;

X0n :� XnnXn�1 ;
sn :� @Xn :

Any point z eventually gets to X under some iterate of F , meaning that for
z 2 X0 there is a unique index n � n�z� such that z 2 X0n. Also ®x some
z0 2 X00.

Lemma 7. Suppose that z 2 X0 and n � n�z�. Then

dist z; @F� � � F n� �0�z��� ��ÿ1 ;
distqh z; z0� � � n ;
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up to some constant depending on F and our choice of X only.

Proof. First note that it is su�cient to prove ®rst relation for z su�ciently
close to the boundary. Let R be so small that R-neighborhood of @F is
contained in X0. Take a ®nite cover of @F by balls Br from Technical
lemma 8. Denoting by V their union, we note that for any y 2 V and pos-
itive integer k

dist F ÿky; @F
ÿ �

F kÿ �0�F ÿky�
��� ��� � dist y; @F� � ;

by the Technical lemma 8 applied to an appropriate ball Br. Let m be the
minimal integer such that Xm � V . Thus for arbitrary z 2 Xm with
n :� n�z� > m we have F nÿmz 2 X0m � V and

dist z; @F� � � ��ÿF nÿM�0�z���ÿ1dist F nÿmz; @F� � � F n� �0�z��� ��ÿ1 ;
which proves the ®rst relation.

To prove the second relation, ®rst prove distqh�z; z0t�Jn. In fact, we can
join z and z0 with a quasihyperbolic geodesic c. Set ck :� c \ X0k. Then

lengthqh�ck� �
Z
ck

dfj j
dist f; @F� �

�
Z
ck

dF k�f��� ��
�F k�0�f��� ��dist f; @F� � �

Z
F kck

dnj jJ1 ;

since F kck must join s1 with s0. Hence lengthqh�c� �
Pnÿ1

k�0 lengthqh�ck�Jn.
It remains to prove that distqh�z; z0�Kn. To do so, it su�ces to construct

for any y 2 X0k a point y0 2 sk such that distqh�y; y0�K1. In fact, consider
w :� F ky 2 X00, we can join it with some point w0 2 s0 by a curve c � X00 of
length K1. Pulling c back by a branch of F ÿk sending w to y, we obtain for
y 0 :� F ÿkw0 2 sk:

distqh y; y0� � �
Z

Fÿkc

dfj j
dist f; @F� �

�
Z

Fÿkc

dF k�f��� ��
�F k�0�f��� ��dist f; @F� � �

Z
c

dnj jK1 :

Now for z 2 X0n we can construct by induction a sequence: zk 2 sk,
n � k � 1, z � zn�1, with distqh�zk; zk�1�K1. Therefore,
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distqh z; z0� � � distqh z0; z1� � �
Xn

k�1
distqh zk; zk�1� �K1�

Xn

k�1
1Kn : (

Technical Lemma 8. For any domain F, point z 2 @F, and positive R, there
exists positive r � R such that for any point y 2F \ Br�z� and conformal
mapping / : F0 :�F \ BR�z� ! C we have

/0�y�j jdist y; @F� � � dist /�y�; @/�F0�� �
� dist /�y�; @/�F0� \ /�F0 \ BR=2�z��

� �
up to a constant depending on F, z, and R.

Proof. First note that the ®rst relation is true by the Koebe distortion
theorem.

Suppose that the second is not, i.e.

q :� dist /�y�; @/�F0� \ /�F0 \ BR=2�z��
� �

� dist /�y�; @/�F0�� � �: P :

Consider the family C of curves joining @Bq�/�y�� with @BP�/�y�� in /�F0�,
its extremal length will be large: > log�P=q�=2p� 1.

On the contrary, the family /ÿ1C contains a subfamily of curves joining
two opposite sides of some strip, separating y and z in BR�z�. Since y and z

Fig. 5. Curve families C and /ÿ1C from Technical Lemma
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are close, the extremal length of /ÿ1C should be small (namely
K�1� log�R=r��ÿ1 � 1), and we arrive at a contradiction.

On Figure 5 the families C and /ÿ1C are plotted as extra bold curves
joining bold and bold dotted (@BP�/�y�� \ /�F0� and @Bq correspondingly,
and their preimages under /) lines. (

Proof (of the Proposition). Take z close to the boundary of F. Then by
Lemma 7 we have

distqh z; z0� � � n�z�and dist z; @F� � � ��ÿF n�z��0�z���ÿ1 ;
hence the quasihyperbolic boundary condition for the point z is equivalent
to the inequality

log
��ÿF n�z��0�z���J n�z� ;

which by the distortion theorem is equivalent to the analogous inequality for
the corresponding preimage of z0 under F ÿn�z�. Therefore the quasihyper-
bolic boundary condition holds for all points if and only if the second
Collet-Eckmann condition for preimages of z0 in F does, i.e. the Fatou
component F is Collet-Eckmann. (

Lemma 9. If Fatou component F is HoÈlder then so are its preimages.

Proof. By Koebe distortion theorem, the distance to the boundary and hence
the quasihyperbolic distance are changed under the conformal mapping at
most by a multiplier of 4. Therefore preimage of a HoÈ lder domain under
conformal mapping is also HoÈ lder.

It remains to consider the case when F : F0 !F has some critical
points in F0. But then we can ®nd a ®nite open cover of F0 such that F
maps conformally each element into F (sending @F0 to @F), and since
HoÈ lder property is local, HoÈ lder regularity of F will imply the same for
F0. (

Now it remains to notice that Collet-Eckmann rational maps cannot
have parabolic points, and the second Collet-Eckmann condition excludes
Siegel disks and Herman rings since they have local coordinates. Thus all
Fatou components are preimages of periodic attractive or superattractive
ones and hence are HoÈ lder domains.

To exclude the possibility of Cremer points we will prove much stronger
statement that all periodic points are uniformly expanding, i.e. there is a
constant Q > 1, such that for every periodic point x 2 JF , F mx � x, the in-
equality j�F m�0�x�j > Qm holds. In one-dimensional real dynamics the above
condition is called uniform hyperbolic structure (on cycles).

Lemma 10. C-E rational maps have uniform hyperbolic structure.
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Proof. First we rule out the existence of neutral periodic points F mx � x in
the Julia set. We repeat the inductive procedure for a periodic point x and
the inverse branch of F ÿkm which ®xes x. If we choose R smaller than the
distance of the cycle fx; . . . ; F m�x�g to the critical points then the shrinking
neighborhoods de®ned in the inductive procedure cannot hit the critical
points. Hence, only blocks of the second type are admissible in the proce-
dure and j�F m�0�x�j > Qm

2t > 1.
If x is a repelling periodic point, F mx � x, then there exists a neighbor-

hood U of x so that the inverse branch of F m ®xing x is bi-holomorhically
equivalent to the multiplication by 1=�F m�0�x�. Let c be any critical point of
the maximal multiplicity. Since the backward orbit of c is dense in J , we can
®nd a positive number k and the branch F ÿk so that F ÿk�c� 2 U . By the ®rst
claim of Theorem 1 and the bounded distortion of F ÿrm on U , there exists a
constant Q > 1 so that the following estimate holds

j�F m�0�x�j � lim
r!1 j�F

rm�0�F ÿrmx�j1=r � lim inf
r!1 j�F

rm�0�F ÿkÿrmc�j1=r

� lim inf
r!1 j�F

rm�k�0�F ÿkÿrmc�j1=r � lim inf
r!1 Qk�rm=r � Qm : (

A natural question arises:

Problem 2. Is uniform hyperbolic structure on cycles equivalent to the CE
condition for rational maps of the Riemann sphere?

Note also that, if the Fatou set is non-empty, Cremer points cannot exist
since then the Julia set would contain non-accessible points (see [21]).
However (as was pointed to us by the referee) the reasoning above is nec-
essary, since M. Herman has constructed examples of transitive (hence with
empty Fatou set) rational maps with Cremer points ± see [10].

Summing it up, we arrive at the following

Corollary 3. All Fatou components of a rational C-E map are HoÈlder domains.
Rational C-E maps can have neither Siegel disks, Herman rings, nor parabolic
or Cremer points.

6. Appendix

In the Appendix we assume that F is a polynomial with connected Julia set
which satis®es the second Collet-Eckmann condition for the preimages of
the critical points. Our studies here are motivated by the results about
S-unimodal maps on the real line.
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Two types of preimages. We will decompose the forward orbit of a critical
point into parts. The ®rst will consists of blocks of the reversed ®rst type
which is a modi®cation of the ®rst type de®ned in the Sect. 3. The second
part of the orbit will stay at a certain distance from the critical points.

Parameters and scales

We put dn :� 1ÿq
2 qn with q � �k2�ÿe for small positive e. Large scale will be

considered with parameter R� 1, which satisfy the following conditions:
(i) Any two critical points are at least 100R apart and R is so small that

jF 0�y�jM� dist�y; c�l�c�ÿ1 and dist�Fy; Fc�M� dist�y; c�l�c� given that dist�y; c�
< R for a critical point c.

(ii) The ®rst return time of the critical points to
S

BR�ci� is greater then a
certain constant s, such that

2M2 1ÿ q
2

� �ÿ1
�k2�s�eÿ1� < 1=2 ;

1

8M
1ÿ q
2

C2�k2�se > 1 :

Reversed ®rst type

De®nition 9. A sequence of preimages of z: z; F ÿ1�z�; . . . ; F ÿn�z�, is of the
reversed ®rst type with respect to two critical points c1 and c2 if

1) Shrinking neighborhoods Uk for Br�F ÿ1z�, 1 � k � nÿ 1 avoid critical
points,

2) dist�F ÿ1z; c1� � r=2 < R,
3) c2 2 Un .
To simplify notation set y :� F ÿnz and d2 :� dist�F ÿ1y; c2�. For consis-

tency let d1 :� r=2 � dist�F ÿ1z; c1�.

Lemma 11. There exists a constant Q1 > 1 such that for a sequence of
preimages of the ®rst reversed type we have that

F n� �0�y��� �� > �Q1�n �d1�
l1ÿlmax

�d2�l2ÿlmax :

Also

Fig. 6. Preimages of the reversed ®rst type
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dist F ÿ1y; c2
ÿ �

< R :

Proof. Set u :� F ÿn�c1�. By the Koebe distortion theorem (see Theorem 1.3
in [22]) applied to F ÿ�nÿ1� : BrDnÿ1�F ÿ1� ! Unÿ1 we obtain that

diam�Un�� �l2 � M diam�U 0nÿ1�

� M
�1ÿ dn��2ÿ dn�

dn
r
��ÿF nÿ1�0 Fu� ���ÿ1

� 2M2�dn�ÿ1r dist u; c2� �l2ÿ1 F n� �0 u� ��� ��ÿ1
� 2M2�dn�ÿ1 diam�Un�� �l2ÿ1 C2k

n
2

ÿ �ÿ1
;

hence by the choice of R (since n � s)

d2 � diam�Un� � 2M2�dn�ÿ1�k2�ÿnr � r=2 � d1 ;

which implies the second desired inequality.
To prove the ®rst, write (using the Koebe distortion theorem again)

F n� �0�y��� �� � 1

M

��ÿF nÿ1�0 y� ���dist F ÿ1z; c1
ÿ �l1ÿ1

� 1

M
dn

2ÿ dn� �3
��ÿF nÿ1�0 Fu� ����d1�l1ÿ1

� 1

8M
dn F n� �0 u� ��� ��
� dist u; c2� �ÿ�l2ÿ1��d1�lmaxÿ1�d1�l1ÿlmax

� 1

8M
dnC2�k2�n

� �
� diam�Un�ÿ�l2ÿ1�diam�Un�lmaxÿ1�d1�l1ÿlmax

� 1

8M
1ÿ q
2

C2�k2�ne
� �

�k2�n�1ÿ2e�

� diam�Un�lmaxÿl2�d1�l1ÿlmax

� �Q1�n�d2�lmaxÿl2�d1�l1ÿlmax ;

for Q1 :� k1ÿ2e by the choice of R. (

Expansion away from the critical points

Let us de®ne an important property of Julia sets which we call R-expansion.

De®nition 10.We say that a Julia set is R-expansive if for any positive R there
exist parameters n�R� and K�R� > 1 such that every forward orbit of length
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greater than n�R� which stays away from the critical points at the distance at
least R has the derivative greater than K�R�.
Up till now there are known only few examples of R-expansive Julia sets.
Among these we have non-renormalizable quadratic polynomials and non-
renormalizable real unimodal polynomials zl � c (see [15]).

It is easy to see that if the orbit z, Fz . . . ; F kz is R away from the critical
points, then R-expansion implies

�F k�0�z��� �� > const �Q2�k ;

for Q2 :� K�R�1=n�R� > 1.

Proposition 4. The Julia set of a rational C-E map is R-expansive.

Proof.We proceed as in the proof of Lemma 10. Let x 2 J be a point whose
forward orbit stays away from the critical points at the distance at least D.
We choose R, which is a parameter in the inductive procedure de®ned in
Sect. 4.1, to be smaller than D. We repeat the inductive procedure for points
F n�x�, 1� n, and the inverse branches Fÿn which map F n�x� to x. By our
choice of R, only second type preimages are admissible. Thus by Lemma 3,
there exists n�R� > 0 such that j�F n�0�x�j > 2 for every n > n�R�. (

Proposition 5. If the Julia set of a rational map F is R-expansive then the
second Collet-Eckmann condition for the preimages of critical points implies
the ®rst for the critical points of maximal multiplicity.

Proof. Let c be a critical point of maximal multiplicity: l�c� � lmax. Fix N
and consider a sequence of the images

z :� F N �F �c��; F ÿ1�z� � F Nÿ1�F �c��; . . . ; F ÿN �z� � F �c�; F ÿ�N�1��z� � c :

Let n0 be the smallest positive integer such that F ÿ�n0�1��z� is in the
R-neighborhood of some critical point. We will de®ne by induction a
sequence fnjg such that nm � N . For simplicity, set zj :� F ÿnj�z�. Here are
the conditions imposed on nj:

I) The sequence F ÿnjÿ1z; . . . ; F ÿnj z is of the ®rst reversed type;
II) Some critical point cj 2 BR�Fÿ1zj�.
As a base for the induction we take z0 � F ÿn0�z�. Suppose we have

already constructed zj. Let k be the ®rst time shrinking neighborhoods Uk

for Br�F ÿ1zj� with r � dj :� dist�F ÿ1zj; cj� < R hit some critical point cj�1:
cj�1 2 Uk, clearly k � N ÿ nj. Set nj�1 :� nj � k, condition I) is satis®ed
since zj�1 is a reversed ®rst type preimage of zj. Condition II) follows from
Lemma 11. The construction naturally terminates when for some j we get
nj � N .
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Expansion

We estimate j�F N �0�Fc�j in the usual way. Put lj :� l�cj�, then

F Nÿ �0�Fc�
��� ��� � �F n0�0�z0�

�� ��Ym
j�1
�F njÿnjÿ1�0�zj�
�� ��

� const �Q2�n0
Ym
j�1
�Q1�njÿnjÿ1

� �dm�lmaxÿlm=�d0�lmaxÿl0

� constQn0Qnmÿn0�d0�l0ÿlmax > constQN ;

for Q :� minfQ1;Q2g > 1. Here we used that lm � l�c� � lmax, l0 � lmax,
and d0 < 1. (
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