
Invent. math. 87, 477-483 (1987) InventJones 
mathematicae 
�9 Springer-Verlag 1987 

On the Hausdorff dimension of harmonic measure 
in higher dimension 

J. Bourgain 

Institut des Hautes Etudes Scientifiques, 35, Route de Chartres 
F-91440 Bures-sur-Yvette, France 

Summary. For  a given dimension d>2, there exists p<d such that if ~o is 
the harmonic measure of a domain in I~ d, then there is a set S satisfying 
~0(S)= 1 and hp(S)=0. This improves the result of B. Oksendal, according to 
which ~ is always singular with respect to d-dimensional Lebesgue measure 
(see [O]). 

1. Introduction 

Let t~ be a compactly supported positive measure. We say that the support 
S(~o) of ~ has dimension at most ct if for every fl>~, and every ~>0,  we can 
find balls D~ of radii r v so that 

~ r ~ < e  and og(P,a\UDv)<e. 

Assume A=I~n\E a domain in F, n, where E is a compact set. Denote 
o~(A,A,x) the harmonic measure for A of A, evaluated at x ~ R  d. According to 
0ksendal 's  theorem [O], o E=  o(A, . ,x)  is singular with respect to d-dimension- 
al Lebesgue measure. For  d > 2  and general domains, this result seemed to be 
so far the only known localization property. Recently for d=2 ,  it has been 
shown by P. Jones and T. Wolff [J-W] that S(o9~) has dimension at most 1. 
This result completes previous work due to N.G. Makarov and L. Carleson (see 
I-M] and [C2]). Let g be the Green's function of A ~ r  with pole at some 
point of C * = r  {o9}. In both the Carleson and Jones-Wolff arguments, the 
integral 

~g ,  ~g 
~nn log ~nn as 

boundary 

plays an essential role. The evaluations involved for the latter integral rely on 
specific 2-dimensional phenomena which do not  seem to be conclusive in 
higher dimension. Our purpose is to prove the following fact: 
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Theorem. I f  A = R a \ E  is a domain in R e, then S(oJ~) has dimension at most d 
- r (d) ,  where r (d)>0 is some positive number only dependent on d. 

There seems to be some evidence that for d > 2, one cannot take r(d)= 1 as 
in the 2-dimensional case [W]. The proof of the theorem is elementary and 
easy to visualize. In particular, the Green's function of the domain will not be 
used. In the argument, the dimension d plays essentially no role, besides when 
writing explicitly potentials down. To fix ideas, let d=3 ,  E c [ 0 , 1 ]  3 and e)(.) 
the harmonic measure for A evaluated at 0. Adaptation of the argument given 
below to other situations is straightforward. 

Let us next recall some simple facts which will be exploited in the proof 
given below. We think about harmonic measure in terms of hitting probability 
of Brownian motion. 

Let A ~  S, A c  ~. By the strong Markov property of Brownian motion (cf. 
[K-W]) 

o ( ~  3\S, A, x) = S (D(~x3\S, A, y) (D(~3 \ (S  t..) ~,~), My, x). 
Hence a 

og(~3\S,A,x)<co(~3\(Sw,2t),7t, x) sup_oo(R3\S,A,y)<~o(P,3\(Sw~I),A,x) (*) 
yeOA 

co(~3\S, A, x) > o9(I/3\(S u A), A, x) inf  co(R 3 \S ,  A, y) (**) 
y~OA 

We will make repeated use of this principle. 
If I is an interval in •3, denote III its Lebesgue measure. Let ho(A ) 

=inf{~ll~l~ I~ cube, A c  UI~}. We also need the next lemma. 

Lemma 1. Let Q be a cube in ~ 3 and Q, the cube with same center as Q and of 
T~d-size. Then one of the following alternatives holds 

co(Q\E, Qc~E,a)>6 if asQ,  (1) 

ho(Ec~Q,)<C(p)fho(Q) for p > l .  (2) 

Proof Fix p > l .  By the result in Carleson's book [C1] (p. 7, Th. 1), there is a 
positive measure # supported by E c~ Q,  such that 

#(I) < ho(I ) for any cube I (3) 
and 

u(E n Q,) > cho(E c~ Q,) (4) 

Define now the harmonic function 

u(x) = ~ Ix - yl- 1 #(dy). 
By (3), we have 

p--1 
u<C(p_l)-XlQ,i 3 (5) 

u(a)>[Q,l-al3#(Ec~Q,) for a~Q, (6) 

u(a)<T~alQ,I-il3#(Ec~Q,) if asOQ (7) 
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Define 
1 

= o..--7~ (u - sup u(a)) < 1 ~ u p u  a~0Q 

Since ~ < 0  on ~?Q and 17< 1, it follows from the maximum principle for x~Q 

if(x) < og(Q\(E n Q,), E n O,, x) <= co(Q\E, E n Q, x) 

In particular, for aeQ,,  by (5), (6), (7) above and by (4) 

I.-- 0 

m(Q\E,Q~E,a)>~(a)>c(p-1) lQ,[  ~ IQ,I-1/3,u(Ec~Q,) 

> c(p - 1)lQ,l- ~ h p(E c~ Q,) 

from where the alternative follows. 
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2. Proof of the Theorem 

Let thus E c [ 0 ,  1] 3 be a compact set and co(.) the harmonic measure for A 
=~-~3\E corresponding to the point 0. Use the letter c for various constants. 
Let l be a fixed integer to be defined later. Partition [ 0 , 1 ]  3 incubes by 
successive l-adic refinements. Let gj be the j~h generation of cubes, thus of size 

l - j .  Let g =  ~) gj. 
j ~ l  

It will be useful to define the following additional Hausdorff measures 

ho(A,e)=inf{~ll,  l"/3, I, is a cube of size II, I x/3 <e, and A c  U I,} 

and 

mo(A, e)=inf{~lI~lO/3; I~ is an g-cube of size II~l 1/3 <e  and A c  U I,}. 
a 

The proof is based on the following 

Lemma 2. 7here is p < 3  such that for each Isg j  one of the following properties 
hold 

(D) mp(Ec~l,l-J-1)<lll p/3 

(L) ~ oJ(J)1/zlJI1/2<log(I)l/21111/2 
JeSj+t,Jcl  

(D) = loca l  estimate of the Hausdorff measure of E 
(L) = localization of harmonic measure. 

Proof. Let Q e ~ +  1 be a subcube of I. Denote Q,  the cube with same center as 
Q and 7~6-size. According to lemma 1, we thus have the following alternative 

(1) co(Q\E, E c~Q,a)> 3 if aeQ,  

(2) ho(EnQ,)<fi'ho(Q). 
Actually p will be taken < 3 but close to 3, according to certain needs that will 
appear in what follows 
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First alternative. There is a subcube Q~r  of I satisfying (2). Notice that  
replacing a general cube by a union of C-cubes (bounded in number) and 
letting p < 3 be close enough to 3 (depending on l), (2) yields also 

mp(Ec~Q,, l - j -  1) < 2cS'lQI p/3. 

Hence, for p close enough to 3 

mp(E c~ I, l - i -  1) < mp(l \Q,  l - J -  1) + mp(Q\Q, ,  l -~- 1) + mp(E c3 Q, ,  l -~- 1) 

=< (l 3 --  1)1-O+ 1)v + (1 -- c)l -(j+ 1)p + 26,1-t j+ 1)v 

<<_l-jp +(l  3 _ l  p) l-jp _ ~  l-(i+ 1)p for 6' small enough 

< l  - j p  =[11 p/3 

Second alternative. Any ( j+  1)-cube Q ~  I satisfies (1). 

The point is that for 1 large enough (depending on fi), the Q's which lie 
deeper inside I almost don't  catch any harmonic measure. This can be for- 
malized by defining suitable stopping times on the Brownian paths penetrating 
I and using the strong Markov property (see Introduction). Define 

I 1 = / \ o u t e r  Q's in I 

I2=  I I \ o u t e r  Q's in 11 

17 
for 1=[10-613 say. 

Thus by (*) 

c0(I7)<09(1(3\(EwI~), 17, 0)<09(R3\(EuI1) ,  11, 0). sup co(~3\(Ewl~), I~, a) (3) 
ae~ll 

By (**) and (1), clearly 

co(I) = co(l~3 \ E ,  E c~ I, 0) > co(l~,3\(E w I1), 11, 0). inf co(~3\E,  E c~ I, y) 

09(1) --> c ~ 09(R3\(E w I1), 11,0) 

considering the outer Q's in I only. 
Estimate second factor in (3), again by the strong Markov property, as 

Sup co(Px3\(E L) 12), I2, a) sup 09(~x3\(E L3 I3) , I3, a)... sup 09(Px3\(E L3 I~), I7, a) (4) 
ae~ll ae6~12 a6~I7-1 

Now 6 0 ( F x 3 \ ( E  L) 12), I2 ,  a) < 1 - 09(~:~x3\(E U I2) ,  E, a) < 1 - c6 as a consequence of 
(1) and the same holds for the next factors in (4). Hence 

(4)<(1 -c f i )~=exp(-c61) .  

If I is sufficiently large, we get 

co(6 ) < C' 1/3 exp( - c61) o9(1) < 10- 6 09(1). 
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Writing 

~o(J)~/21Jl~/2= ~ + ~ <09(I~)J/21I~l~/2+ClO-31II~/2t~(l)1/2 
d ~ + ]  Jcl~  Jd~ll 

(L) is obtained. This proves Lemma 2. 
Remark that 6 ' ~ & ~ / ~ p  < 3 in above considerations. 
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Construction of tree 

If IeCj  is an (L)-cube, we associate to I its l 3 subcubes in gj+ 1. 
If I is a (D)-cube, we associate a family {I=} ~ d  ~ of cubes satisfying 

(.) 1~==1 
(..) E c ~ l c U l ,  

(...) ~llJp/3 <llI 0/3 

Starting with Io=[0, 1] 3, the previous procedure yields a tree 3-  which ele- 
ments we label by complexes c = ( k l , k  2 .. . .  ,ks). If c is of type (L), then c has 
exactly 13 successors. The cubes on level s of this tree belong to V ~ and 
hence are of size < l - t  J-->~ 

Fix a number 3. We stop : -  when the cube is of size <3.  Thus each branch in 
9- is at most log 1/3 long. Let ~--* stand for the maximal elements of ~-'. 

Given a (maximal) branch cEY*,  we enumerate the consecutive L-cubes on 
c by stopping times 

"['1 ~ 'C2  ~ . , ,  

(which we let take the value ~ on the c e Y *  where corresponding z is not 
defined naturally). Thus given ce~--* and denoting ctk the restriction of c to 
the k first digits 

is the sequence of L-type cubes appearing on c. By construction 

E c ~ I~ (disjoint union) 
cEg* 

and 
Size I~<~ for cff~-*. 

Choose an integer ~ ~ c l o g  1/b to be specified later. Let 

~ =  {ce:*l~(c)= oo}; ~ : = : * \ ~  
and further 

~1  = {Id~,(r cerg2} . . . . .  -L'~ = (Id~{o; ce~2) '  

Thus U / ~  (s = 1,2 . . . .  ) decreases and 

~ U 1,u U 1. (5) 
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These cubes are of size 6 ~. We estimate 

II~1 ~ for some p ' < 3  (fixed) 
c~gl 

and will further reduce ~e~ to a subclass ~ .  

Estimates. If c~J -  is of type (D), then 

If cE~-- of type (L), then 

and for p close enough to 3 

I I p / 3 <  T p/3  
~c, kl = ac �9 

k= 1,2,...,(c,k)c~Y- 

13 

I c =  U Ic ,k  
k = l  

Thus 

from where 

I io/3 < 2  I 0/3 
c,kl ~ I cl " 

( c , k )E J  

1Iol 0/3 5 Z {1I+,(c)1 ~ c~% } 
>= 1/2 ~ {ll~lq(~)+ 11p/3; c ~ , }  

> 1 /2~  {lI~l~=(c)lp/3 ; cE~l} 

> 1/4 ~ {1I,-I,~(~,+ x 1~ ce~ l  } 

>2 -~  Z II~1 '~ 

3+p  3--p 

E IIc I 6 <2~6 6 <1 for suitable g ~ l o g l / 6 .  
c6~1 

It remains to consider ~) (I c c~ E). We reduce &a to a family &o satisfying 
CE.L~% 

(6) 

and 

Ilc[p'/3 < 1 (p' < 3) (7) 

(7) 

where x > 0 will be a small number. 
Intersect E with 

tJ Ic 
c e "B 1 ~ .-~" 

to obtain E 1 such that o ( E \ E 1 ) <  x and hp,(E1,6c)< 1. 

(8) 
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To prove the existence of s we make the following computation 

l 3 

Z 1Ic11/2~~ '/2= Z ~ Y, II~['/z~ '/2 
c E . ~  c ' ~ . . ~  I k =  1 c ~ . ~  

c>(c',k) 

13 

<__ ~ ~ I~, k ~/2 co(Ic, k) ~/2 (H61der) 
c 'e-gP~ t k = t 

< ~ ~ II~,)t/2 0~(I c) 1;2 (c' is(L)-cube) 
r ~'.L~ g 1 

etc . . . .  

-<10 s<6~ 
Define 

Since 

We have 

Also by (9) 

co(lc)<=lI~t 1-~ if c 6 ~  

Z II~1'-~- -< ~ ~~ < l -  
c~ , .~  c~. .~  

(9) 

~o(I~)< ~ 6-c/211c11/2~o(Ic)1/~<6c/2 <~ 
c~,L-~ ~ - ~  c~ .~  s 

for ~ small enough. Hence (7) holds. 
We satisfy (8). Indeed co(E\E1)<~ holds as consequence of (5) and (7). Also 

for appropriate numerical p ' < 3  and c>0 ,  we have hp,(El,~C)<l as a con- 
sequence of (6), (7) and the fact that the cubes involved are of size <~c  
Consider p ' < p " < 3 .  Taking 6 > 0  small enough, it is clear from the preceding 
that for any g>0  there is a subset E~ of E fulfilling the conditions 

hp,,(E~)<e and ~o(E\E~)<e. 

Since p" is a fixed constant < 3, the theorem is proved. 
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