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Models for the Eremenko–Lyubich class

Christopher J. Bishop

Abstract

If f is in the Eremenko–Lyubich class B (transcendental entire functions with bounded singular
set), then Ω = {z : |f(z)| > R} and f |Ω must satisfy certain simple topological conditions when
R is sufficiently large. A model (Ω, F ) is an open set Ω and a holomorphic function F on Ω that
satisfy these same conditions. We show that any model can be approximated by an Eremenko–
Lyubich function in a precise sense. In many cases, this allows the construction of functions in
B with a desired property to be reduced to the construction of a model with that property, and
this is often much easier to do.

1. Introduction

The singular set of a entire function f is the closure of its critical values and finite asymptotic
values and is denoted by S(f). The Eremenko–Lyubich class B consists of functions such that
S(f) is a bounded set (such functions are also called bounded type). The Speiser class S ⊂ B
(also called finite type) is those functions for which S(f) is a finite set.

In [9], Eremenko and Lyubich showed that if S(f) ⊂ DR = {z : |z| < R}, then Ω =
{z : |f(z)| > R} is a disjoint union of analytic, unbounded, Jordan domains, and that f acts as
a covering map f : Ωj → {x : |z| > R} on each component Ωj of Ω. Building examples where Ω
has a certain geometry is important for applications to dynamics. We would like to start with
a model, that is, a choice of Ω and a covering map f : Ω → {|z| > 1} and ask whether f can be
approximated by an entire function F in B or S. In this paper, we deal with approximation by
functions in B. It turns out that if Ω satisfies some obviously necessary topological conditions,
then the approximation by Eremenko–Lyubich functions is always possible in a sense strong
enough to imply that the functions f and F have the same dynamical behavior on their Julia
sets. This allows us to build entire functions in B with certain behaviors by simply exhibiting
a model with that behavior (this is often much easier to do). In [4], we deal with the analogous
question for the Speiser class; again the approximation is always possible, but in a slightly
weaker sense (dynamically, given any model we can build a function in the Speiser class that
has the model’s dynamics on some subset of its Julia set). In the next few paragraphs, we
introduce some notation to make these remarks more precise.

Suppose that Ω =
⋃

j Ωj is a disjoint union of unbounded simply connected domains
satisfying the following conditions.

(1) Sequences of components of Ω accumulate only at infinity.
(2) The set ∂Ωj is connected for each j (as a subset of C).

Such an Ω will be called a model domain. If Ω ∩ {|z| � 1} = ∅, then we say that the model
domain is of disjoint type. The connected components {Ωj} of Ω are called tracts. Given a model
domain, suppose that τ : Ω → Hr = {x+ iy : x > 0} is holomorphic and that the following
conditions hold.
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Figure 1. A model consists of an open set Ω which may have a number of connected components
called tracts. Each tract is mapped conformazlly by τ to the right half-plane and then by the
exponential function to the exterior of the unit disk. The composition of these two maps is the
model function F . In this paper, we are interested in knowing whether a holomorphic model
function on Ω can be approximated by holomorphic function on the entire plane.

(1) The restriction of τ to each Ωj is a conformal map τj : Ωj → Hr.
(2) If {zn} ⊂ Ω and τ(zn) → ∞, then zn → ∞.

Given such a τ : Ω → Hr, we call F (z) = exp(τ(z)) a model function.
The second condition on τ is a careful way of saying that the conformal map on each

component sends ∞ to ∞. Even after making this condition, we still have a (real) two-
dimensional family of conformal maps from each component of Ω to Hr determined by choosing
where one base point in each component will map in Hr. A choice of both a model domain Ω
and a model function F on Ω will be called a model (Figure 1).

Given a model (Ω, F ), we let

Ω(ρ) = {z ∈ Ω : |F (z)| > eρ} = τ−1({x+ iy : x > ρ})
and

Ω(δ, ρ) = {z ∈ Ω : eδ < |F (z)| < eρ} = τ−1({x+ iy : δ < x < ρ}).
If Ω has connected components {Ωj}, then we let Ωj(ρ) = Ω(ρ) ∩ Ωj and similarly for Ωj(δ, ρ).

Moreover, a model has dynamics: we can iterate F as long as the iterates keep landing in Ω,
and we define the Julia set of a model

J (F ) =
⋂
n�0

{z ∈ Ω : Fn(z) ∈ Ω}.

Each function f in the Eremenko–Lyubich class that satisfies S(f) ⊂ D gives rise to a model
by taking Ω = {z : |f(z)| > 1} and τ(z) = log f(z). The log is well defined since each component
of Ω is simply connected and f is non-vanishing on Ω. Eremenko and Lyubich proved in [9]
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204 CHRISTOPHER J. BISHOP

that τ defined in this way is a conformal map from each component of Ω to Hr. We call a
model arising in this way an Eremenko–Lyubich model. If f is in the Speiser class, then we
call it a Speiser model.

An entire function f is called hyperbolic if f ∈ B and if there is a compact set K so that
f(K) ⊂ int(K) and f : f−1(C \K) → C \K is a covering map. This is equivalent to saying
that the singular set is bounded and every point of S(f) iterates to an attracting periodic
cycle in the Fatou set. If we can take K to be connected, then f is called disjoint type. This
implies that the Fatou set of f (that is, the set where the iterates of f form a normal family)
is connected (for example, see [16]). The assumption that S(f) ⊂ D and Ω = {z : |f(z)| > 1}
implies that f is disjoint type. In this case, the usual Julia set of f (defined as the complement
of the Fatou set) is the same set as the Julia set of the corresponding model

J (f) =
⋂
n�0

{z : |fn(z)| � 1}.

Thus we can refer to J (f) where we think of f as either an entire function in B or as a
model function on Ω = {x : |f(z)| > 1} without ambiguity. Basic facts about hyperbolic and
disjoint-type functions are discussed in [2].

The question now arises of whether or not the Eremenko–Lyubich models are only a very
special subclass of general models. There are at least two ways to make such a comparison:
geometric and dynamical. We start with our geometric result.

A homeomorphism of the plane is called quasiconformal if it is absolutely continuous on
almost all vertical and horizontal lines and the partial derivatives fz = fx − ify and fz =
fx + ify almost everywhere satisfy

|fz| � k|fz|,

where 0 � k < 1. Geometrically, the derivative of f exists almost everywhere and sends
circles to ellipses of eccentricity at most K = (1 + k)/(1 − k). This number K is called the
quasiconstant of f . The ratio μ = fz/fz is called the complex dilatation of f . The measurable
Riemann mapping theorem (see, for example, [1, 14]) says that given any measurable μ with
|μ| < k < 1, there is a quasiconformal homeomorphism ϕ of the plane so that the complex
dilatation of ϕ equal μ almost everywhere. We shall actually use the following consequence
of this: if ψ : Ω → Ω′ is a quasiconformal map between planar domains, then there is a
quasiconformal map ϕ : C → C so that ψ ◦ ϕ is conformal on ϕ−1(Ω).

We can now state our main result.

Theorem 1.1 (All models occur). Suppose that (Ω, F ) is a model and 0 < ρ � 1. Then
there is f ∈ B and a quasiconformal ϕ : C → C so that F = f ◦ ϕ on Ω(2ρ). In addition, the
following conditions hold.

(1) We have |f ◦ ϕ| � e2ρ off Ω(2ρ) and |f ◦ ϕ| � eρ off Ω(ρ). Thus the components of
{z : |f(z)| > eρ} are in 1-to-1 correspondence to the components of Ω via ϕ.

(2) S(f) ⊂ D(0, eρ).
(3) The quasiconstant of ϕ is O(ρ−2) with a constant independent of F and Ω.
(4) The map ϕ−1 is conformal except on the set Ω(ρ/2, 2ρ).

Another useful way to state the result (for those familiar with the language), is that for any
model F and any ρ > 0, F restricted to Ω(ρ) can be extended to a quasiregular function on C

that is bounded off Ω(ρ) and has a quasiconstant bounded depending only on ρ. The extension
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is holomorphic off Ω(ρ/2). The precise definition and basic properties of quasiregular functions
can be found in, for example, [13, 14, 18, 20].

We say that two continuous maps f : X → X and g : Y → Y are conjugate if there is a
homeomorphism h : X → Y so that

g = h ◦ f ◦ h−1.

It is easy to see that if this holds, then

gn = h ◦ fn ◦ h−1,

for all n � 0, so that the orbits of f correspond via h to the orbits of g. For our purposes, this
means that the dynamics of f and g are ‘the same’.

Rempe-Gillen has pointed out that Theorem 1.1 implies the following result.

Theorem 1.2. If F is any disjoint-type model, then there is a disjoint-type Eremenko–
Lyubich function f so that f and F are quasiconformally conjugate on a neighborhood of their
Julia sets. More precisely, there is a quasiconformal ϕ : C → C so that

f ◦ ϕ = ϕ ◦ F,
on an open set that contains both J (f) and J (F ).

This means that any property of J (F ) that is preserved by quasiconformal maps also holds
for J (f); for example, every component of J (f) is path connected or the Julia set has positive
area. Since it is generally easier to build a model with a desired property than to build a
entire function directly, this result is useful in constructing Eremenko–Lyubich functions with
pathological behavior. For example, Rempe-Gillen uses this result in [17] to show that there
are functions in B so that the components of the Julia sets are pseudo-arcs, by building models
that have this property.

Theorems 1.1 and 1.2 are inspired by results of Rempe-Gillen [16] that draw the same
conclusions from a stronger hypothesis: he assumes that F = eτ is defined on a model domain
Ω with a single tract and restricts it to a slightly smaller domain than Ω(ρ); roughly, he
omits a strip whose width grows logarithmically, that is, τ−1({x+ iy : x > max(1, log |y|)}). His
version of Theorem 1.1 is proved by using a Cauchy integral construction to first approximate F
uniformly and then show that uniform approximation implies quasiconformal approximation in
the sense of Theorem 1.1. Rempe-Gillen then shows how to deduce Theorem 1.2 from Theorem
1.1 using an iterative construction. With his permission, we sketch his argument in Section 9
for the convenience of the reader (our application does not require the much more powerful
results he also proved in [15]).

We sketch the proof of Theorem 1.1 quickly here to give the basic idea. Let W = C \ Ω(ρ).
It is simply connected, non-empty and not the whole plane, so there is a conformal map
Ψ : W → D. Since Ψ maps ∂W to the unit circle, if we knew that F = f |Ω for some entire
function f , then B = e−ρ · F ◦ Ψ−1 would be an inner function on D (that is, a holomorphic
function on D so that |B| = 1 almost everywhere on the boundary).

The proof of Theorem 1.1 reverses this observation. Given the model and the corresponding
domain W and conformal map Ψ, we construct a Blaschke product B (a special type of
inner function) on the disk so that G = B ◦ Ψ approximates F = eτ on ∂Ω(ρ) (the precise
nature of the approximation will be described later). This step is fairly straightforward using
standard estimates of the Poisson kernel on the disk. We then ‘glue’ G to F across ∂W to get
a quasiregular function g that agrees with F on Ω(2ρ) and agrees with G on W . This takes
several (individually easy) steps to accomplish. We then use the measurable Riemann mapping
theorem to define a quasiconformal mapping φ : C → C so that f = g ◦ φ is holomorphic on
the whole plane. The only critical points of g correspond to critical points of B, and critical
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206 CHRISTOPHER J. BISHOP

points introduced into Ω(ρ, 2ρ) by the gluing process. We will show that both types of critical
values have absolute value at most eρ. A different argument shows that any finite asymptotic
value of f must correspond to a limit of B along a curve in D, so all finite asymptotic values
of f are also bounded by eρ. Thus f ∈ B. Since g is only non-holomorphic in Ω(ρ, 2ρ), we will
also get that φ−1 is conformal everywhere except in Ω(ρ, 2ρ).

Given Theorem 1.1 for the Eremenko–Lyubich class B, it is natural to ask the analogous
question for the more restrictive Speiser class: can every model be approximated by a Speiser
model? This question is addressed in [4], where an analog of Theorem 1.1 is proved for the
Speiser class. In that paper we show that given a model (Ω, F ) and any ρ > 0, there is an
f ∈ S and a quasiconformal map φ : C → C so that f ◦ φ = eτ on Ω(2ρ). We may take φ to
be conformal on Ω(ρ), and f may be taken with the two critical values ±eρ and no finite
asymptotic values.

Note that this result omits the conclusion ‘f ◦ φ is bounded off Ω(2ρ)’. In fact, the Speiser
functions constructed in [4] will usually be unbounded off Ω; f can have ‘extra’ tracts that
do not correspond to tracts of the original model function F . It is shown in [4] that f has
at most twice as many tracts as F and sometimes this many are needed. The Speiser version
of Theorem 1.2 says that if (Ω, F ) is any model, then there is a Speiser class function f , a
closed set A ⊂ J (f), an open neighborhood U of A and a quasiconformal map ϕ : C → C that
conjugates f to F on U . Thus the dynamics of any model can be found ‘inside’ the Julia set
of a Speiser class function. See [4] for the precise statement.

Finally, the construction in this paper uses a construction called ‘simple folding’. A more
complicated version of this is used in [5] to construct functions in the Speiser class with
prescribed geometry. The paper [4] on Speiser models uses the main result of [5] to prove the
results described in the preceding paragraphs. Thus this paper can be thought of as a gentle
introduction to [5], whereas [4] is a sequel to [5]. The results of both this paper and [4] originally
appeared in a single preprint titled ‘The geometry of bounded type entire functions’, but I have
split this into two papers in an attempt to improve the exposition and to separate the simpler,
self-contained arguments for the Eremenko–Lyubich class B from the more intricate arguments
relying on [5] needed for the Speiser class S.

Using quasiconformal methods to construct holomorphic functions with desired geometry
has a long history and has been a crucial tool in several areas such as value distribution theory
and, more recently, holomorphic dynamics. See [8, 12] for surveys of applications to the first
area and [6] for a recent survey of the second.

2. Reduction of Theorem 1.1 to the case ρ = 1

We start the proof of Theorem 1.1 with the observation that it suffices to prove the result for
ρ = 1.

To do this, we define two quasiconformal maps, ψρ and ϕρ. Define

L(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x, 0 < x < ρ/2,(

2 − ρ

ρ

)
(x− ρ/2) + ρ/2, ρ/2 � x � ρ,

x/ρ, ρ � x � 2ρ.

This is a piecewise linear map that sends [ρ/2, ρ] to [ρ/2, 1] and sends [ρ, 2ρ] to [1, 2]. The slope
on both intervals is less than 2/ρ. For z = x+ iy ∈ Hr, define

σρ(z) =

{
L(x) + iy, 0 < x � 2ρ,
z + 2 − 2ρ, x > 2ρ.
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MODELS FOR THE EREMENKO–LYUBICH CLASS 207

This is quasiconformal Hr → Hr with quasiconstant K � 2/ρ. Then set

ψρ(z) =

{
z, z 	∈ Ω,
τ−1
j ◦ σρ ◦ τj(z), z ∈ Ωj .

Note that ψρ is the identity near ∂Ω, so ψρ is quasiconformal on the whole plane by the Royden
gluing lemma, for example, [3, Lemma 2], [7, Lemma I.2, p. 303] or [19]. (Actually, since ψρ

is the identity off Ω(ρ/2) which has a smooth boundary, one can use a weaker version of the
gluing lemma.)

Next, define

ϕρ(z) =

{
z, |z| < eρ/2,

exp(σρ(log(z))), |z| � eρ/2.

Note that even though log(z) is multi-valued, the function σρ does not change the imaginary
part of its argument, so the exponential of σρ(log(z)) is well defined. This is clearly a
quasiconformal map of the plane with quasiconstant 2/ρ. Note also that these functions were
chosen so that if F = exp ◦τ is the model function associated to Ω and τ , then on Ωj ,

F ◦ ψρ = exp ◦ τj ◦ τ−1
j ◦ σρ ◦ τj

= exp ◦σρ ◦ log ◦ exp ◦τj
= ϕρ ◦ F. (2.1)

Now apply Theorem 1.1 to the model (Ω, F ) with ρ = 1 to get an f ∈ B and a quasiconformal
map Φ : C → C so that f ◦ Φ = F on Ω(2) and S(f) ⊂ D(0, e1). Let gρ = ϕ−1

ρ ◦ f ◦ Φ ◦ ψρ.
This is an entire function pre- and post-composed with quasiconformal maps of the plane, so
it is quasiregular. By the measurable Riemann mapping theorem, there is a quasiconformal
Φρ : C → C so that fρ = gρ ◦ Φ−1

ρ is entire and clearly

S(fρ) = S(gρ) ⊂ ϕ−1
ρ (S(f)) ⊂ ϕ−1

ρ (D(0, e)) = D(0, eρ).

For z ∈ Ω(2ρ), ψρ(z) ∈ Ω(2), so using this and (2.1),

fρ ◦ Φρ(z) = gρ(z)

= ϕ−1
ρ (f(Φ(ψρ(z))))

= ϕ−1
ρ (F (ψρ(z)))

= F (z).

Similarly, |fρ ◦ Φρ| = |gρ| is bounded by e2ρ off Ω(2ρ). The quasiconstant of Φρ is, at worst, the
product of the constants for Φ, ψρ and ϕρ, which is K1 · 4ρ−2, where K1 is the upper bound
for the quasiconstant in Theorem 1.1 in the case ρ = 1.

Finally, our construction in the next section will show that Φ is conformal except on Ω(1, 2)
and that F has a quasiregular extension to the plane that is holomorphic except on Ω(1, 2)
and is bounded by e off Ω(1) and by e2 off Ω(2). This implies that gρ is holomorphic except on
Ω(ρ/2, 2ρ) (since ψρ is holomorphic off Ω(ρ/2, 2ρ) and ϕ−1

ρ is holomorphic off {eρ/2 < |z| < e2}).
This, in turn, implies that Φρ is conformal except on Ω(ρ/2, 2ρ), as desired. Thus fρ satisfies
Theorem 1.1 for the model (Ω, F ) and the given ρ > 0.

3. The proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1 for ρ = 1, stating certain facts as lemmas to
be proved in later sections.
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Figure 2. The domain W is the complement of Ω(1); it is simply connected and bounded by
smooth curves. We are given the holomorphic function F = eτ on Ω(2) and we will define a
holomorphic function on W using the Riemann map Ψ of W to the unit disk, and a specially chosen
infinite Blaschke product B on the disk. We will then interpolate these functions in Ω(2) \ Ω(1)
by a quasiregular function. Each component of this set is mapped to a vertical strip by τ, and it
is in these strips that we construct the interpolating functions. Note that the integer partition on
the boundary of the half-plane pulls back under τ to a partition of each component of ∂Ω(1), and
that Ψ maps these to a partition of the unit circle (minus the singular set of Ψ). The Blaschke
product B will be constructed so that B−1(1) approximates this partition of the circle.

Let W = C \ Ω(1). This is an open, connected, simply connected domain that is bounded
by analytic arcs {γj} that are each unbounded in both directions. See Figure 2. The same
comments hold for the larger domain W2 = C \ Ω(2).

Let L1 = {x+ iy : x = 1} and L2 = {x+ iy : x = 2}. The vertical strip between these two
lines will be denoted by S. Note that L1 is partitioned into intervals of length 2π by the points
1 + 2πiZ. This partition of L1 will be denoted by J . Note that τj(γj) = L1, so each curve γj

is partitioned by the image of J under τ−1
j . We denote this partition of γj by Jj . Because

elements of Jj are all images of a fixed interval J ∈ L1 ⊂ Hr under some conformal map of
Hr, the distortion theorem (for example, [11, Theorem I.4.5]) implies that they all lie in a
compact family of smooth arcs and that adjacent elements of Jj have comparable lengths with
a uniform constant, independent of j, Ω and F .

Let Ψ : W → D be a conformal map given by the Riemann mapping theorem. We claim
that Ψ can be analytically continued from W to W2 across γj . Let R1 denote reflection across
L1 and for z ∈ Ωj ∩W = τ−1

j ({x+ iy : 0 < x < 1}) let T = τ−1
j ◦R1 ◦ τj ; this defines an anti-

holomorphic 1-to-1 map from Ωj(0, 1) to Ωj(1, 2) that fixes each point of γj . We can then
extend Ψ by the formula

Ψ(T (z)) = 1/Ψ(z)

(where the right-hand side denotes reflection of Ψ(z) across the unit circle). The Schwarz
reflection principle says that this is an analytic continuation of Ψ to W2.

Thus Ψ is a smooth map of each γj onto an arc Ij of the unit circle T = ∂D = {|z| = 1}. The
complement of these arcs is a closed set E ⊂ T. It is a standard fact of conformal mappings
that since E is the set where a conformal map fails to have a finite limit, it has zero Lebesgue,
indeed, zero logarithmic capacity. We will not need this fact, although we will use the easier
fact that E cannot contain an interval (that is, a conformal map cannot have infinite limits on
an interval).

The partition Jj of γj transfers via Ψ to a partition of Ij ⊂ T into infinitely many intervals
{Jj

k}, k ∈ Z. We will let K =
⋃

j,k J
j
k denote the collection of all intervals that occur this way.

Thus T = E ∪⋃K∈KK.

 14697750, 2015, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s/jdv021 by Suny Stony B

rook U
niversity, W

iley O
nline L

ibrary on [31/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



MODELS FOR THE EREMENKO–LYUBICH CLASS 209

Because Ψ conformally extends from W to W2, |Ψ′| has comparable minimum and maximum
on each partition element of γj (with uniform constants). Thus the corresponding intervals
{Jj

k} have the property that adjacent intervals have comparable lengths (again with a uniform
bound).

The hyperbolic distance between two points z1, z2 ∈ D is defined as

ρ(z1, z2) = inf
γ

∫
γ

|dz|
1 − |z|2 .

See [11, Chapter 1] for the basic properties of the hyperbolic metric. Here we will mostly need
the facts that it is invariant under Möbius self-maps of the disk, that hyperbolic geodesics are
circular arcs in D that are perpendicular to T, and that points hyperbolic distance r from 0
are Euclidean distance

2
exp(2r) + 1

= O(exp(−r))
from the unit circle.

For any proper subinterval I ⊂ T, let γI be the hyperbolic geodesic with the same endpoints
as I and let aI be the point on γi that is closest to the origin (closest in either the Euclidean
or hyperbolic metrics; it is the same point).

Since K are disjoint intervals on the circle,∑
K∈K

(1 − |aK |) <∞,

and so

B(z) =
∏
K

|aK |
aK

aK − z

1 − aKz

defines a convergent Blaschke product (see [10, Theorem II.2.2]). Thus B is a bounded, non-
constant, holomorphic function on D that vanishes exactly on the set {an}. Also, |B| has radial
limits 1 almost everywhere. Moreover, B extends meromorphically to C \ E, where E is the
accumulation set of its zeros on T; this is the same set E as defined above using the map Ψ
(the zeros accumulate at both endpoints of every component of T \ E, and since these points
are dense in E, the accumulation set of the zeros is the whole singular set E). The poles of the
extension are precisely the points in the exterior of the unit disk that are the reflections across
T of the zeros.

Any subset M of K also defines a convergent Blaschke product. Fix such a subset. The
corresponding Blaschke product BM induces a partition of each Ij with endpoints given by
the set {eiθ : BM(eiθ) = 1} and this induces a partition Hj of each γj via the map Ψ. This, in
turn, induces a partition Lj of L1 via τj .

We would like to say that the partitions Lj and J are ‘almost the same’. The first step to
making this precise is a lemma that we will prove in Section 4.

Lemma 3.1. There is a subset M ⊂ K so that if B is the Blaschke product corresponding
to M and Lj is the partition of L1 corresponding to B via τj ◦ Ψ−1, then each element of
J hits at least two elements of Lj and at most M elements of Lj , where M is uniform. In
particular, no element of J can hit both endpoints of any element of Lj (elements of each
partition are considered as closed intervals).

In Section 5, we will prove the following lemma.

Lemma 3.2. Suppose K = [1 + ia, 1 + ib] ∈ Lj and define

α(1 + iy) =
1
2π

arg(B ◦ Ψ ◦ τ−1
j (1 + iy)),
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210 CHRISTOPHER J. BISHOP

where we choose a branch of α so α(1 + ia) = 0 (recall that B(Ψ(τ−1
j (1 + ia))) = 1 ∈ R). Set

ψ1(z) = 1 + i(a(1 − α(z)) + bα(z)) = 1 + i(a+ (b− a)α(z)).

Then ψ1 is a homeomorphism from K to itself so that α ◦ ψ−1
1 : K → [0, 1] is linear and ψ1 can

be extended to a quasiconformal homeomorphism of R = K × [1, 2] to itself that is the identity
map on the ∂R \K (that is, it fixes points on the top, bottom and right side of R).

The main point of the proof is to show that arg(B ◦ Ψ ◦ τ−1
j ) : K → [0, 2π] is bi-Lipschitz

with uniform bounds.
Roughly, Lemma 3.1 says that there are more elements of J than there are of Lj . This is

made a little more precise by the following lemma.

Lemma 3.3. There is a 1-to-1, order-preserving map of Lj into (but not necessarily onto) J
so that each interval K ∈ Lj is sent to an interval J with dist(K,J) � 2π. Moreover, adjacent
elements of Lj map to elements of J that are either adjacent or are separated by an even
number of elements of J .

This will be proved in Section 6. Again, the proof is quite elementary.
Partition J = J j

1 ∪ J j
2 according to whether the interval is associated to some element of

Lj by Lemma 3.3 (that is, J j
1 is the image of Lj under the map in the lemma). The maximal

chains of adjacent elements of J j
2 will be called blocks. By the lemma, each block has an even

number of elements. We will say that the block associated to an element J ∈ J j
1 is the block

immediately above J .
Thus each interval K in Lj is associated to an interval J ′ that consists of the corresponding J

given by Lemma 3.3 and its associated block. The intervals K and J ′ have comparable lengths
and are close to each other, so the orientation-preserving linear map from J ′ to K defines
a piecewise linear map ψ̃2 : R → R that is bi-Lipschitz with a uniform constant. Using linear
interpolation, we can extend this to a bi-Lipschitz map ψ2 of the strip S = {x+ iy : 1 < x < 2}
to itself that equals ψ̃2 on L1 (the left boundary) and is the identity on L2 (the right side).

Each element J ∈ J j
2 is paired with a distinct element J∗ ∈ J j

2 that belongs to the same
block. The two outermost elements of the block are paired, as are the pair adjacent to these,
and so on. Similarly, each point z is paired with the other point z∗ in the block that has the
same distance to the boundary (the center of the block is an endpoint of J and is paired with
itself).

For each K ∈ Lj , let JK be the corresponding element of J j
1 and let IK be the union of

JK and its corresponding block. Let RK = [1, 2] × IK . Let UK = RK \XK , where XK is the
closed segment connecting the upper left corner of RK to the center of RK . See Figure 3.

Lemma 3.4 (Simple folding). There is a quasiconformal map ψ3 : UK → RK so that the
following conditions hold (ψ3 depends on j and on K, but we drop these parameters from the
notation).

(1) The map ψ3 is the identity on ∂RK \ L1 (that is, it is the identity on the top, bottom
and right side of RK).

(2) The map ψ−1
3 extends continuously to the boundary and is linear on each element of J

lying in IK .
(3) The map ψ3 maps IK (linearly) to JK .
(4) For each z ∈ IK , ψ

−1
3 (z) = ψ−1

3 (z∗) ∈ Xk (that is, ψ3 maps opposite sides of Xk to
paired points in Ik).
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MODELS FOR THE EREMENKO–LYUBICH CLASS 211

Figure 3. Definition of UK .

(5) The quasiconstant of ψ3 depends only on |IK |/|JK |, that is, on the number of elements
in the block associated to K. It is independent of the original model and of the choice of j and
K.

We call this a ‘simple folding’ because it is a simple analog of a more complicated folding
procedure given in [5]. In the lemma above, the image domain is a rectangle with a slit removed
and the quasiconstant of ψ3 is allowed to grow with n, the number of block elements. This
growth is not important in this paper because here we apply the folding construction only in
cases where this number n is uniformly bounded (this will occur in our application because
of Lemma 3.1). In [5], the corresponding values may be arbitrarily large but the folding
construction there must give a map with uniformly bounded quasiconstant regardless. The
construction in [5] removes a collection of finite trees from Rk and does so in a way that keeps
the quasiconstant of ψ3 bounded independent of n (there are also complications involving how
the constructions on adjacent rectangles are merged).

We want to treat the boundary intervals in J1 and J2 slightly differently. The precise
mechanism for doing this is the following lemma.

Lemma 3.5 (exp–cosh interpolation). There is a quasiregular map σj : S → D(0, e2) so
that

σj(z) =

⎧⎪⎨
⎪⎩

exp(z), z ∈ J ∈ J j
1 ,

e · cosh(z − 1), z ∈ J ∈ J j
2 ,

exp(z), z ∈ Hr + 2.

The quasiconstant of φj is uniformly bounded, independent of all our choices.

This lemma will be proved in Section 8 and is completely elementary.
We now have all the individual pieces needed to construct the interpolation gj between ez

on L2 and B ◦ Ψ ◦ τ−1
j on L1. Let Uj be S minus all the segments XK where K ∈ Lj as in

Lemma 3.4. Define a quasiconformal map ψ : Uj → S by

ψ = ψ1 ◦ ψ2 ◦ ψ3,

and let gj = σj ◦ ψ map Uj into D(0, e2). By definition, each ψi, i = 1, 2, 3 is the identity on
L2, so gj(z) = ez on L2. For any K ∈ Lj , the map ψ sends the boundary segments of ∂UK

that lie on some XK linearly onto elements of J j
2 , so boundary points on opposite sides of XK
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212 CHRISTOPHER J. BISHOP

get mapped to points that are equidistant from 2πiZ and cosh agrees at any two such points.
Thus gj extends continuously across each slit XK . Finally, the map ψ was designed so that gj

is continuous on S and agrees with B ◦ Ψ ◦ τ−1
j on L1. Thus gj ◦ τj continuously interpolates

between B ◦ Ψ on W and F on Ω(2) and so defines a quasiregular g on the whole plane with
a uniformly bounded constant. Thus by the measurable Riemann mapping theorem there is a
quasiconformal ϕ : C → C so that f = g ◦ ϕ is entire.

The singular values of f are the same as for g. On Ω(2), g = F = eτ , so g has no critical
points in this region. In Uj , g = gj is locally 1-to-1, so has no critical points there either. Thus
the only critical points of g in Ω(1) are on the slits XK , then these are mapped by g onto the
circle of radius e around the origin. Thus every critical value of g (and hence f) must lie in
D(0, e).

If g has a finite asymptotic value outside D(0, e), then it must be the limit of g along some
curve Γ contained in a single component of Ω. Then ez has a finite limit along τ(Γ) ⊂ Hr; this
is impossible, so f has no finite asymptotic values outside D(0, e). Thus S(f) ⊂ D(0, e), and
so f ∈ B.

This proves Theorem 1.1 except for the proof of the lemmas.

4. Blaschke partitions

In this section, we prove Lemma 3.1. We start by recalling some basic properties of the Poisson
kernel and harmonic measure in the unit disk D.

The Poisson kernel on the unit circle with respect to the point a ∈ D is given by the formula

Pa(θ) =
1 − |a|2
|eiθ − a2| =

1 − |a|2
1 − 2|a| cos(θ − φ) + |a|2 ,

where a = |a|eiφ. This is the same as |σ′| where σ is any Möbius transformation of the disk to
itself that sends a to 0. If E ⊂ T, then we write

ω(E, a,D) =
1
2π

∫
E

Pa(eiθ) dθ,

and call this the harmonic measure of E with respect to a. This is the same as the (normalized)
Lebesgue measure of σ(E) ⊂ T where σ : D → D is any Möbius transformation sending a to
0. It is also the same as the first hitting distribution on T of a Brownian motion started at a
(although we will not use this characterization).

Suppose that I ⊂ T is any proper arc, and, as before, let γI be the hyperbolic geodesic in D

with the same endpoints as I; then γI is a circular arc in D that is perpendicular to T at its
endpoints. Let aI denote the point of γI that is closest to the origin.

Lemma 4.1. ω(I, aI ,D) = 1
2 .

Proof. Apply a Möbius transformation of D that sends aI to the origin. Then γI must map
to a diameter of the disk and I maps to a semicircle.

Given two disjoint arcs I, J in T, let γI , γJ be the two corresponding hyperbolic geodesics
and let aJ

I be the point on γI that is closest to J and let aI
J be the point on γJ that is closest

to I.

Lemma 4.2. ω(I, aI
J ,D) = ω(J, aJ

I ,D).

Proof. Everything is invariant under Möbius maps of the unit disk to itself, so use such a
map to send I, J to antipodal arcs. Then the conclusion is obvious.
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MODELS FOR THE EREMENKO–LYUBICH CLASS 213

aJ
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J
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J
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g
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I
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S

Figure 4. If the intervals I and J are ε-separated, then a shortest path between γI and γJ must
hit each geodesic near the ‘top’ points. A perpendicular geodesic that starts too ‘low’ on γJ will
hit the unit circle without hitting γI .

Lemma 4.3. If z, w ∈ D and I ⊂ T, then

ω(I, z,D)
ω(I, w,D)

� C,

where the constant C depends only on the hyperbolic distance between z and w.

Proof. Suppose that σ(z) = (z − w)/(1 − wz) maps w to 0. Then u(z) = ω(I, σ(z),D) is a
positive harmonic function on D, so the lemma is just Harnack’s inequality applied to u.

Suppose that I, J,⊂ T are disjoint closed arcs and dist(I, J) � εmax(|I|, |J |). Then we call
I and J ε-separated. This implies that the hyperbolic geodesics γI , γJ are separated in the
hyperbolic metric (with a lower bound depending only on ε), but the converse is not true.

Lemma 4.4. If I, J ⊂ T are ε-separated, then the hyperbolic distance between aI and aJ
I

is bounded, depending only on ε.

Proof. Assume that I is the longer arc and consider the hyperbolic geodesic S that connects
aJ

I and aI
J . Then S is perpendicular to γI at aJ

I , so if 1 − |aJ
I | � 1 − |aI |, then S will hit the

unit circle without hitting γj . See Figure 4.

Lemma 4.5. Suppose that I, J are ε-separated. Then

ω(I, aJ ,D) � ω(J, aI ,D),

where the constant depends only on ε.

Proof. This follows immediately from our earlier results.

Lemma 4.6. Suppose that I and J are ε-separated and that aJ , aI are at least distance R
apart in the hyperbolic metric. Then

ω(J, aI ,D) � C(ε)e−R.

Proof. Since the intervals are ε-separated, the hyperbolic distance between aI and aJ is
the same as the distance between aJ

I and aI
J , up to a bounded additive factor. Thus if we

apply a Möbius transformation of D so that aJ = 0, then aI is mapped to a point w with
1 − |w| = O(e−R), which implies ω(I, aJ ,D) = O(e−R). Since the intervals are ε-separated, the
reverse inequality also holds by Lemma 4.5.
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214 CHRISTOPHER J. BISHOP

Fix M <∞ and suppose that K is a collection of disjoint (except possibly for endpoints)
closed intervals on T so that any two adjacent intervals have length ratio at most M . We say
that two intervals I, J are S steps apart if there is a chain of S + 1 adjacent intervals J0, . . . , JS

so that I = J0 and J = JS .
Note that if I, J ∈ K are adjacent, then aI , aJ are at bounded hyperbolic distance T apart

(and T depends only on M). Also, if I, J ∈ K are not adjacent, then they are ε-separated for
some ε > 0 that depends only on M .

Lemma 4.7. For any R > 0, there is a collection N ⊂ K so that the following conditions
hold.

(1) For any I ∈ K, there is a J ∈ N with ρ(aJ , aI) � R.
(2) For any I, J ∈ N , ρ(aJ , aI) � R.

Proof. Just let N correspond to a maximal collection of the points {aK} with the property
that any two of them are hyperbolic distance at least R apart.

Fix a positive integer S. For each J ∈ N , choose the shortest element of K that is at most
S steps away from J . Let M ⊂ K be the corresponding collection of intervals.

Lemma 4.8. Suppose that R, S, T are as above and R � 4ST . If K and M are as above,
then for all K ∈ K,

ε �
∑

J∈M
ω(K, aJ ,D) � μ,

where ε > 0 depends only on R and μ→ 1/2 as S → ∞.

Proof. The left-hand inequality is easier and we do it first. Fix K ∈ K. There is an I ∈ N
with ρ(aI , aK) � R, and since adjacent elements of K have points that are only T apart in the
hyperbolic metric, there is an element J ∈ M with ρ(aK , aJ ) � R+ ST � 5

4R. This implies
|J | � |K| � dist(J,K) and this implies ω(K, aJ ,D) � ε with ε depending only on ρ. Thus every
element of K has harmonic measure bounded below with respect to some point corresponding
to a single element of M and hence the sum of harmonic measures over all elements of M is
also bounded away from 0 uniformly.

Now we prove the right-hand inequality. By our choice of R, points aJ corresponding to
distinct intervals in M are at least distance R/2 apart. Fix K ∈ K. There is at most one point
within hyperbolic distance R/4 of aK and the harmonic measure it assigns K is at most 1/2
since the point lies on or outside the geodesic γK .

All other points associated to elements of M are Euclidean distance at least exp(R/8)|K|
away from K or are within this distance of K, and are within Euclidean distance exp(−R/8)|K|
of the unit circle (this is because of the Euclidean geometry of hyperbolic balls in the half-space).
We call these two disjoint sets M1 and M2, respectively.

Using Lemma 4.5, we see that

∑
J∈M1

ω(K, aJ ,D) = O

( ∑
J∈M1

ω(J, aK ,D)

)
= O(exp(−R/8)).

To bound the sum over M2, we note that each interval in M2 is the endpoint of a chain of
S adjacent intervals that are each at least as long as J . Since

|J | � exp(−R/8)|K|
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MODELS FOR THE EREMENKO–LYUBICH CLASS 215

and
dist(J,K) � |K|,

we can deduce

ω(J, aK ,D) � O

(
1
S

)
ω(aK , J,D),

and since the intervals J ∈ M2 are all pairwise disjoint, we get

∑
J∈M2

ω(K, aJ ,D) = O

(
1
S

∑
J∈M2

ω(J, aK ,D)

)
= O

(
1
S

)
.

Choosing first S large, and then R large (depending on S and the separation constant of K),
both sums are as small as we wish, which proves the lemma.

Corollary 4.9. Suppose that B is as above and K ∈ K. Then

ε � 1
|K|

∂B

∂θ
� C.

Proof. If I, J are ε-separated, then it is easy to verify that

sup
z∈J

PaI
(z), inf

z∈J
PaI

(z)

are comparable up to a bounded multiplicative factor that depends only on ε. The corollary
then follows from our earlier estimates.

We have now essentially proved Lemma 3.1; it just remains to reinterpret the terminology a
little. For the reader’s convenience, we restate the lemma.

Lemma (Lemma 3.1; the Blaschke partition). There is a subset M ⊂ K so that if B is the
Blaschke product corresponding to M and Lj is the partition of L1 corresponding to B via
τj ◦ Ψ−1, then each element of J hits at least two elements of Lj and at most M elements of
Lj , where M is uniform. In particular, no element of J can hit both endpoints of any element
of Lj (elements of each partition are considered as closed intervals).

Proof. A computation shows that for the Blaschke product

B(z) =
∏
n

|an|
an

z − an

1 − ānz
,

the derivative satisfies ∣∣∣∣∂B∂θ (eiθ)
∣∣∣∣ =∑

n

Pan
(eiθ),

and the convergence is absolute and uniform on any compact set K disjoint from the singular
set E of B (since B is a product of Möbius transformations, and the derivative of a Möbius
transformation is a Poisson kernel, this formula is simply the limit of the n-term product
formula for derivatives).

Lemma 4.8 now says that we can choose M so that

2πε �
∫
J

∣∣∣∣ ∂∂θB
∣∣∣∣ dθ � 3

4
· 2π =

3π
2
.

Since the integral over an element of L has integral exactly 2π, the lower bound means that an
element of L can contain at most 1/ε elements of J and hence can intersect at most 2 + 1/ε
elements of J . The upper bound says that each element K of L must hit at least two elements
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216 CHRISTOPHER J. BISHOP

of J . Hence it is not contained in any single element of J , and so no single element of J can
hit both endpoints of K.

5. Straightening a bi-Lipschitz map

Lemma 5.1. Suppose K = [1 + ia, 1 + ib] ∈ Lj and define

α(1 + iy) =
1
2π

arg(B ◦ Ψ ◦ τ−1
j (1 + iy)),

where we choose a branch of α so α(1 + ia) = 0 (recall that B(Ψ(τ−1
j (1 + ia))) = 1 ∈ R). Set

ψ1(z) = 1 + i(a(1 − α(z)) + bα(z)) = 1 + i(a+ (b− a)α(z)).

Then ψ1 is a homeomorphism from K to itself so that α ◦ ψ−1
1 : K → [0, 1] is linear and ψ1 can

be extended to a quasiconformal homeomorphism of R = K × [1, 2] to itself that is the identity
on ∂R \K (that is, it fixes points on the top, bottom and right side of R).

Proof. The linearizing property of ψ1 is clear from its definition, so we need to verify only
the quasiconformal extensions property.

Corollary 4.9 implies that α′ is bounded above and below by absolute constants. Let R =
K × [1, 2] and define an extension of ψ1 by

ψ1(x+ iy) = u(x, y) + iv(x, y) = x+ i[(2 − x)ψ1(1 + iy) + (x− 1)y)],

that is, take the linear interpolation between ψ1 on L1 and the identity on L2. We can easily
compute (

ux uy

vx vy

)
=
(

1 0
y − ψ(y) (2 − x)(b− a)α′(y) + (x− 1)

)
.

Note that |y − h(y)| � |K| is absolutely bounded. Also, since |b− a||α′| is bounded above
and away from 0, so is vy. Thus the derivative matrix lies in a compact subset of the
invertible 2 × 2 matrices and hence ψ1 is quasiconformal (with only a little more work we could
compute an explicit bound for the quasiconstant, and even prove that the extension is actually
bi-Lipschitz).

6. Aligning partitions

Now we prove Lemma 3.3, which we restate for convenience.

Lemma (Lemma 3.3). There is a 1-to-1, order-preserving map of Lj into (but not
necessarily onto) J so that each interval K ∈ Lj is sent to an interval J with dist(K,J) � 2π.
Moreover, adjacent elements of Lj map to elements of J that are either adjacent or are
separated by an even number of elements of J .

Proof. For each K ∈ K, choose J ∈ J so that J contains the lower endpoint of K (if two
such intervals contain the endpoint, then choose the upper one). No interval J is chosen twice,
since Lemma 3.1 says that no J can hit both endpoints of any element of L.

Fix an order-preserving labeling of the chosen J by Z and denote it by {Jn}. By the gap
between Jn and Jn+1, we mean the number of unselected elements of J that separate these
two intervals. The position of J0 is fixed. If the gap between J0 and J1 is even (including no
gap), then we leave J1 where it is. If the gap is odd, then there is a least one separating interval
and we replace J1 by the adjacent interval in J that is closer to J0. If the gap between (the
new) J1 and J2 is even, then we leave J2 alone; otherwise, we move it one interval closer to J0.
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MODELS FOR THE EREMENKO–LYUBICH CLASS 217

Continuing in this way, we can guarantee that for all n � 0, gaps are even and each Jn is either
in its original position or adjacent to its original position. Thus its distance to the associated
element of K is at most 2π. The argument for negative indices is identical.

7. Foldings

Now we prove Lemma 3.4. This is the step that makes the gluing procedure a little different
from a standard quasiconformal surgery.

Lemma 7.1 (Simple folding). There is a quasiconformal map ψ3 : UK → RK so that the
following conditions hold (ψ3 depends on j and on K, but we drop these parameters from the
notation).

(1) The map ψ3 is the identity on ∂RK \ L1 (that is, it is the identity on the top, bottom
and right side of RK).

(2) The map ψ−1
3 extends continuously to the boundary and is linear on each element of J

lying in IK .
(3) The map ψ3 maps IK (linearly) to JK .
(4) For each z ∈ IK , ψ

−1
3 (z) = ψ−1

3 (z∗) ∈ Xk (that is, ψ3 maps opposite sides of Xk to
paired points in Ik).

(5) The quasiconstant of ψ3 depends only on |IK |/|JK |, that is, on the number of elements
in the block associated to K. It is independent of the original model and of the choice of j
and K.

Proof. The proof is a picture, namely Figure 5. The map is defined by giving compatible
finite triangulations of Rk and Uk (compatible means that there is 1-to-1 map between vertices
of the triangulations that preserves adjacencies along edges). Such a map defines linear maps
between corresponding triangles that are continuous across edges. Since each such map is non-
degenerate, it is quasiconformal and hence the piecewise linear map defined between Uk and
RK is quasiconformal (with quasiconstant given by the worst quasiconstant of the finitely many
triangles). The other properties are evident.

8. Interpolating between exp and cosh

Lemma 8.1 (exp–cosh interpolation). There is a quasiregular map σj : S → D(0, e2) so
that

σj(z) =

⎧⎪⎨
⎪⎩

exp(z), z ∈ J ∈ J j
1 ,

e · cosh(z − 1), z ∈ J ∈ J j
2 ,

exp(z), z ∈ Hr + 2.

The quasiconstant of σj is uniformly bounded, independent of all our choices.

Proof. As with the previous lemma, the proof is basically a picture; see Figure 6. Suppose
J ∈ J and let R = [1, 2] × J . The exponential map sends R to the annulus A = {e < |z| < e2},
with the left side of R mapping to the inner circle and the top and bottom edges of R mapping
to the real segment [e, e2].

Now define a quasiconformal map φ : A→ D(0, e2) that is the identity on {|z| = e2} and on
[e, e2], but that maps {|z| = e} onto [−e, e] by z → 1

2 (z + e2/z) (this is just a rescaled version
of the Joukowsky map 1

2 (z + 1/z) that maps the unit circle to [−1, 1], identifying complex
conjugate points).
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218 CHRISTOPHER J. BISHOP

Figure 5. The pictorial proof of Lemma 7.1 for n = 5.

Figure 6. The exponential function maps the rectangle [1, 2] × J conformally to the slit annulus
{e < |z| < e2} \ [e, e2]. The map φ is chosen to map the annulus A = {e < |z| < e2} to the
slit disk {|z| < e2} \ [−e, e] so that it equals the identity on {|z| = e2} and equals 1

2
(z + e2/z)

on {|z| = e}.

In Hr + 2 and in rectangles of the form [1, 2] × J for J ∈ J1 we set σj(z) = exp(z). In the
rectangles corresponding to elements of J2, we let σj(z) = φ(exp(z)). This clearly has the
desired properties.

Actually, the cosh function in the lemma can be replaced by any function h : J → [−1, 1]
that has the property that h(z) depends only on the distance from z to the endpoint of J . This
will ensure that after applying a folding map, points that started on opposite sides of some slit
Xk will end up being identified by h, which is all we need.

This completes the proof of Theorem 1.1.
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9. Proof of Theorem 1.2

Theorem 9.1 (Rigidity for disjoint type). Suppose that (Ω, f) and (Ω′, g) are disjoint-
type models, ϕ : C → C is quasiconformal with ϕ(Ω) = Ω′ and f = g ◦ ϕ on Ω. Then there is
a quasiconformal map Φ of the plane so that

Φ ◦ f = g ◦ Φ

on Ω. In particular, J (g) = Φ(J (f)).

Proof. The statement and proof are due to Rempe [15], but we recreate it here for the
convenience of the reader.

Let W = C \ Ω and W ′ = C \ Ω′. We can write W as a union of nested open sets U1 ⊂
U2 ⊂ . . . that have smooth boundaries. Then W ′ is the union of the nested open sets ϕ(U1) ⊂
ϕ(U2) ⊂ . . . . Since W and W ′ each contains the closed unit disk (since we assume both models
are disjoint type), there is a n so that Un andϕ(Un) both contain the closed unit disk. Choose
such a n and set U = Un. Then by a standard argument we can define a quasiconformal map
φ : C → C that equals ϕ outside U and equals the identity map inside the unit disk.

Now inductively define a sequence of quasiconformal maps {Φn} on C by setting Φ0 to be
the identity and, in general,

Φn+1 =

{
g−1 ◦ Φn ◦ f, z ∈ Ω,
φ, z 	∈ Ω.

Note that since f : Ω → {|z| > 1} and g : Ω′ → {|z| > 1} are covering maps, the definition of
Φn+1 makes sense as long as Φn is a homeomorphism of {|z| > 1} to itself. We shall verify this
below.

Set U0 = U ∩ {|z| > 1} and let Un =
⋃n

k=1{z ∈ Ω : fk(z) ∈ U}. Then
⋃

n Un is the set of all
points in Ω that eventually iterate out of Ω. This is the complement of J (f) in Ω and hence
is an open dense set in Ω by [15, Lemma 2.3]. Let Vn =

⋃n
k=1 Uk.

We make the following claims.

(1) For n � 0, Φn maps {|z| > 1} to itself.
(2) For n � 0, Φn is quasiconformal with the same quasiconstant as φ.
(3) For n � 1, Φn = Φn+1 on Vn.

We prove these by induction. The case n = 0 for (1) and (2) is trivial since Φ0 is the identity.
For n = 1, (3) holds because if z ∈ U1, then f(z) ∈ U0,

Φ2(z) = g−1(Φ1(f(z))) = g−1(Φ0(f(z))) = Φ1(z).

Similarly, for general n, (3) holds because if z ∈ Vn, then z ∈ Uk for some 1 � k � n, so f(z) ∈
Uk for some 0 � k � n− 1. By the induction hypothesis, f(z) ∈ f−n−1(U), so

Φn+1(z) = g−1(Φn(f(z))) = g−1(Φn−1(f(z))) = Φn(z).

Claim (1) follows from (3) for every n since (3) implies that Φn is the identity on U0, which
contains the unit circle. Since Φn is a homeomorphism of the plane, that means that Φn is a
homeomorphism of {|z| > 1} to itself.

Since f : Ω → {|z| > 1} and g : Ω′ → {|z| > 1} are holomorphic covering maps, (1) for n
implies that the first part of the definition of Φn+1 gives a quasiconformal homeomorphism
from Ω to Ω′ with the same quasiconstant as Φn. By induction, this constant is bounded by the
quasiconstant for φ. Outside Ω, Φn+1 agrees with φ, so again is quasiconformal with constant
bounded by that of φ. By the Royden gluing lemma (for example, [3, Lemma 2], [7, Lemma
I.2, p. 303], [19]), this implies that Φn+1 is K-quasiconformal on the whole plane. (In many
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220 CHRISTOPHER J. BISHOP

cases of interest, ∂Ω will be piecewise smooth, hence removable for quasiconformal mappings,
and then the gluing lemma is not needed.) Thus all the claims have been established.

Since the sequence {Φn(z)} is eventually constant for every z in the dense set
⋃

n Vn ⊂ Ω0,
and since K-quasiconformal maps form a compact family, we deduce that Φ(z) = limn Φn

defines a K-quasiconformal map of the plane. Moreover,

Φn+1 = g−1 ◦ Φn ◦ f, z ∈ Ω

becomes
Φ = g−1 ◦ Φ ◦ f, z ∈ Ω

in the limit.
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