
Annals of Mathematics, 166 (2007), 613–656

Conformal welding and Koebe’s theorem

By Christopher J. Bishop*

Abstract
It is well known that not every orientation-preserving homeomorphism of

the circle to itself is a conformal welding, but in this paper we prove several
results which state that every homeomorphism is “almost” a welding in a
precise way. The proofs are based on Koebe’s circle domain theorem. We
also give a new proof of the well known fact that quasisymmetric maps are
conformal weldings.

1. Introduction

Let D ⊂ R
2 be the open unit disk, let D

∗ = S2\D and let T = ∂D = ∂D
∗ be

the unit circle. Given a closed Jordan curve Γ, let f : D → Ω and g : D
∗ → Ω∗

be conformal maps onto the bounded and unbounded complementary compo-
nents of Γ respectively. Then h = g−1 ◦ f : T → T is a homeomorphism.
Moreover, any homeomorphism arising in this way is called a conformal weld-
ing. The map Γ → h from closed curves to circle homeomorphisms is well
known to be neither onto nor 1-to-1 (see Remarks 1 and 2), but in this paper
we will show it is “almost onto” (every h is close to a conformal welding) and
“far from 1-to-1” (there are h’s which correspond to a dense set of Γ’s).

We say that h is a generalized conformal welding on the set E ⊂ T if
there are conformal maps f : D → Ω, g : D

∗ → Ω∗ onto disjoint domains such
that f has radial limits on E, g has radial limits on h(E) and these limits
satisfy f = g ◦ h on E. Generalized conformal welding was invented by David
Hamilton in [19] (see his papers [20] and [21] for applications to Kleinian groups
and Julia sets). For E ⊂ T, let |E| denote its Lebesgue measure (normalized
so that |T| = 1) and cap(E) its logarithmic capacity (see §2).

Theorem 1. Given any orientation-preserving homeomorphism h : T →
T and any ε > 0, there are a set E ⊂ T with |E|+ |h(E)| < ε and a conformal
welding homeomorphism H : T → T such that h(x) = H(x) for all x ∈ T \ E.

*The author is partially supported by NSF Grant DMS 0705455.
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In particular, every such h is a generalized conformal welding on a set E with
Lebesgue measure as close to 1 as we wish.

The proof of Theorem 1 has two main steps. The first is the following.

Theorem 2. Any orientation-preserving homeomorphism h : T → T is a
generalized conformal welding on T \ F , where F = F1 ∪ F2 and both F1 and
h(F2) have logarithmic capacity zero.

Theorem 2 gives no information if h is “log-singular”, i.e., T = F1 ∪
F2 with both F1 and h(F2) of zero capacity. However, a different method
shows that such a map is indeed a conformal welding, although in a radically
nonunique way. We will say that a closed Jordan curve γ is flexible if two
conditions hold. First, given any closed Jordan curve γ′ and any ε > 0, there
is a homeomorphism H of the sphere, conformal off γ, which maps γ to within
ε of γ′ in the Hausdorff metric. Second, given points z1, z2 in each component
of S2 \ γ, and points w1, w2 in each component of S2 \ γ′, we can choose H

above so that H(z1) = w1 and H(z2) = w2. Examples of such curves were
constructed in [7] (although the second condition was not explicitly stated
there, it does follow from the construction). Since γ and H(γ) give the same
conformal welding homeomorphism, we see that if h is the conformal welding
associated to a flexible curve, then it is also associated to a set of curves which
is dense in all closed curves.

Theorem 3. Suppose h is an orientation-preserving homeomorphism of
the circle. Then h is the conformal welding of a flexible curve if and only if it
is log-singular, i.e., if and only if there is a Borel set E such that both E and
h(T \ E) have zero logarithmic capacity.

Theorem 3 is proven by an explicit geometric construction. We can start
with any two conformal maps f0, g0 onto smooth Jordan domains with disjoint
closures. We then replace f0 by a quasiconformal map f1 which approximates
f0 except near the set E of zero capacity where we “push” the values closer to
g0 ◦h . Similarly we replace g0 by a map g1 which approximates it except near
the zero capacity set h(T \E) where we push the values closer to f0. Thus for
every point x ∈ T, f1(x) is closer to g1(h(x)) than f0(x) was to g0(h(x)). Con-
tinuing by induction we obtain sequences {fn}, {gn} which converge uniformly
to the desired maps f , g. By combining Theorems 3 and 2 we will obtain the
proof of Theorem 1 in Section 8.

Note that Theorem 3 gives a condition for a homeomorphism h to be a
welding in terms of h being sufficiently ‘wild’. Previously known criteria say h

is a welding if it is sufficiently ‘nice’ (e.g., h is quasisymmetric [30], [31], [36], or
some weakening of quasisymmetric [15], [29]). As an illustration of our meth-
ods, in Section 4 we will give an elementary proof that quasisymmetric maps
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are conformal weldings (in [22] D. Hamilton refers to this as the “fundamental
theorem of conformal welding”).

Our approach to Theorem 2 is based on the following picture for conformal
welding. Think of the homeomorphism h as mapping the unit circle T to 2T,
the concentric circle of radius two. Now foliate the annulus A = {z : 1 <

|z| < 2} by curves which connect x ∈ T to h(x) ∈ 2T (for example, take the
hyperbolic geodesic in A connecting these points). Now take the quotient space
of the plane which collapses each of these curves to a point. By a theorem of
R. L. Moore (see Remark 3) the result is the plane again, with the annulus A

mapping to a closed curve Γ. Moreover, D and 2D
∗ map to the complementary

components of Γ with the boundary points x and h(x) being identified. If
these maps were also conformal we would be done, i.e., we would have a Γ
corresponding to h. Although we know we can’t always do this, our idea is to
try to collapse as many of the curves in the foliation as possible, while keeping
the maps on D and 2D

∗ conformal. Our method for doing this is Koebe’s circle
domain theorem.

We start with n equidistance points {xk}n
1 ⊂ T and disjoint smooth curves

{γn} which connect these points to the points 2h(xk) ∈ {|z| = 2} in the
annulus A = {1 < |z| < 2}. Let Ω = Ωn,ε be the union of D, 2D

∗ and
an ε-neighborhood of each γn, where ε is assumed to be so small that these
neighborhoods are pairwise disjoint. By Koebe’s circle domain theorem, any
finitely connected plane domain can be conformally mapped to one bounded
by circles and points. Thus our domain can be mapped to a domain whose
complementary components are all disks. By taking ε → 0 we obtain a closed
chain of tangent circles, which divides the plane into two domains, Ωn and
Ω∗

n. See Figure 1. Assume that there is an R < ∞ so that the circle chain

Figure 1: Using Koebe’s theorem to build a welding

is contained in {z : 1 ≤ |z| ≤ R} independent of n. Given this, it is easy to
see that as n → ∞ “most” of the disks collapse to points (at most (R/ε)2 can
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remain larger than size ε), which implies that |fn(x) − gn(h(x))| → 0 except
at countably many points. In order to show there is an R with this property,
we need to make an extra assumption about h. The precise statement we will
prove is:

Theorem 4. Suppose h : T → T is an orientation-preserving homeomor-
phism which is not log-singular (i.e., we assume that for any set E ⊂ T of zero
logarithmic capacity, h(T\E) has positive capacity). Then there are sequences
of conformal maps {fn} on D and {gn} on D

∗ such that

(1) fn(0) = 0, gn(∞) = ∞.

(2) Ωn = fn(D) and Ω∗
n = gn(D∗) are disjoint Jordan domains.

(3) There is an R < ∞ so that S2\(Ωn∪Ω∗
n) ⊂ {z : 1 ≤ |z| ≤ R} independent

of n.

(4) There is a countable set E ⊂ T such that limn→∞ |fn(x) − gn(h(x))| = 0
for all x ∈ T \ E.

Note that our hypothesis on h is exactly complementary to the condition
in Theorem 3. Thus these two results together imply

Theorem 5. Given any orientation-preserving homeomorphism h : T →
T there are nondegenerate sequences of conformal maps fn : D → Ωn, gn :
D
∗ → Ω∗

n onto disjoint Jordan domains with fn(0) = 0, gn(∞) = ∞ and such
that |fn(x) − gn(h(x))| → 0 for all x ∈ T \ E, where E is a countable set.

By “nondegenerate” sequence in Theorem 5 we mean that f ′
n(0) and

g′n(∞) are bounded away from zero uniformly. Equivalently, there is an R < ∞
such that S2 \ (Ωn ∪Ω∗

n) ⊂ {z : R−1 ≤ |z| ≤ R}, independent of n. From The-
orem 5 we might expect that every homeomorphism is a generalized conformal
welding except on a countable set. However, passage to the limit causes dif-
ficulties and we “lose control” on a set of zero logarithmic capacity, giving
Theorem 2 instead. See Section 9 for some conjectures related to this.

Once we have Theorem 4 we will prove Theorem 2 using extremal length
estimates. The idea is to pass to a subsequence such that fn → f and gn → g

uniformly on compact sets. Since |fn − gn ◦ h| → 0 everywhere on T except
for a countable set, the only way that f(x) 	= g ◦ h(x) off this set is for f(x) 	=
limn fn(x) or g(x) 	= limn gn(x) (or for the limits not to exist). For a general
sequence of maps this might happen on positive capacity (see Remark 5), but
because all our map pairs are related by the same homeomorphism h, we can
show this happens on at most one zero capacity set for each “side”, which gives
Theorem 2. As special cases of Theorem 2 we have
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Corollary 6. Suppose h : T → T is a orientation-preserving homeomor-
phism such that E has zero logarithmic capacity if and only if h(E) does. Then
h is a generalized conformal welding on T \ F , where F has zero logarithmic
capacity.

Corollary 7. Suppose h : T → T is an orientation-preserving home-
omorphism that is log-regular (i.e., cap(F ) = 0 ⇒ |h(F )| = |h−1(F )| = 0).
Then h is a generalized conformal welding on a set of E such that both E and
h(E) have full Lebesgue measure.

These results were conjectured by David Hamilton and Corollary 7 strength-
ens a result of his from [19]. We will refer to homeomorphisms which satisfy
the conclusion of Corollary 7 as “almost everywhere weldings”. The last step
in the proof of Theorem 1 will be to convert a generalized conformal welding
into an actual conformal welding using the following result.

Theorem 8. Suppose f : D → Ω and g : D
∗ → Ω∗ are conformal maps

onto disjoint Jordan domains and let E = f−1(∂Ω ∩ ∂Ω∗). On E define h =
g−1◦f . Then h can be extended from E to a conformal welding homeomorphism
of T to itself.

This result will be proven by an explicit geometric construction. We end
this section with some remarks.

Remark 1. Even if we take E = T, then generalized conformal welding
on E is still weaker than the usual notion of conformal welding. Let K be the
union of the graph γ of sin(1/x), x 	= 0, and the limiting vertical line segment
[−i, i]. Let ϕ map the exterior of the segment conformally to the exterior of
[−1, 1] with −i and i being identified at 0. The set K ′ = [−1, 1]∪ϕ(γ) divides
the plane into a pair of simply connected domains so that the corresponding
maps f, g each extend continuously to T except at one point where the radial
limits both exist and equal 0. Thus h = g−1 ◦ f is a generalized conformal
welding everywhere on T. However, h is not a conformal welding map. If
there were a closed Jordan curve giving the same homeomorphism, then we
could map the two sides of K to the two sides of Γ with boundary values
that match up on γ, and the image of γ would be Γ minus a point. Since
smooth curves are removable for conformal maps, we get a conformal mapping
from the complement of a line segment to the complement of a point, which is
impossible by Liouville’s theorem. Other examples of homeomorphisms which
are not conformal weldings are given in [35], [42], [43] and [44].

Remark 2. It is already well known that mapping Γ → h is not 1-to-1
(even modulo Möbius transformations). One can build curves Γ and home-
omorphisms F : S2 → S2 which are conformal off Γ but not Möbius. Such
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curves are called nonremovable for conformal homeomorphisms, and clearly
both Γ and F (Γ) map to the same h. The simplest example is a curve with
positive area; take a nonzero dilatation supported on Γ and solve the Beltrami
equation to get a quasiconformal map which is conformal off Γ but not con-
formal everywhere. Other examples based on Fourier analysis are given by
Kaufman in [25] (see also [26]) and further examples follow from the theory of
null sets of Alhfors and Beurling [1], as described by Hamilton in [19] and [22].

Although nonremovable curves can have zero area (can even have Haus-
dorff dimension 1), they are always closely related to two dimensional curves as
follows. Suppose F is conformal off Γ and fixes 0 and ∞. Then G(z) = F (z)/z

is bounded and continuous on the sphere and holomorphic of Γ. If w 	∈ G(Γ)
then G only takes this value finitely often and the argument principle implies
#{z ∈ Ω : G(z) = w} = −#{z ∈ Ω∗ : G(z) = w} = 0, i.e., G(Γ) = G(S2)
(I learned this argument from A. Browder’s book [9]). If F is not Möbius,
then G is not constant, hence an open mapping on S2 \ Γ. Thus G(Γ) covers
an open set and division by z converts F from a homeomorphism to a space
filling curve.

Remark 3. Let us recall in more detail the result of R. L. Moore quoted
earlier, starting with a few definitions. A decomposition of a compact set K is
a collection of pairwise disjoint closed sets whose union is all of K. A collection
C of closed sets in the plane is called upper semi-continuous if a collection of
elements which converge in the Hausdorff metric must converge to a subset of
another element. If K = R

2 and all elements of C are continua which do not
separate the plane we shall call C a Moore decomposition after R. L. Moore
who proved

Theorem 9 (Moore, [33]). Suppose C is a Moore decomposition of R
2.

Then the quotient space formed by identifying each set to a point is homeo-
morphic to R

2.

Also see Daverman’s book [14]. For an overview of Moore’s life and work
see [45] (reprinted in [16]) and [17]. For another application of Moore’s topo-
logical work (i.e. the Moore triod theorem) to conformal mappings, see Pom-
merenke’s paper [38].

Given a decomposition C, let Ω(C) be the interior of the set of singletons
and call C conformal if the quotient map in Moore’s theorem can be chosen to
be conformal on Ω (we call the quotient map a conformal collapsing). Not every
Moore decomposition is conformal: if C is just {|z| ≤ 1} and singletons then we
would get a conformal map from D

∗ to a punctured plane, which is impossible
by Liouville’s theorem. Which Moore decompositions are conformal? When
is the quotient map unique up to Möbius transformations? These questions
are probably too general to have neat answers, but our approach to conformal
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welding by collapsing arcs of a foliation can be viewed as a special case. If we
understood conformal collapsing in general, there would be many applications
to complex dynamics and Kleinian groups, where we know how to describe
some dynamics topologically, but would like to know there is a consistent
conformal structure (e.g., building a degenerate limit set from a Fuchsian group
G by collapsing a G-invariant foliation of the disk).

We say a Moore decomposition is a Koebe decomposition if every element
is either a closed disk or a point. Is every Moore decomposition conformally
equivalent to a Koebe decomposition? If so, then there are only countably
many sets that are not collapsed to points, and so this says that every Moore
decomposition is almost conformal. This problem is probably also difficult (it
contains the famous Koebe conjecture as a special case), but Theorem 5 might
be seen as (weak) evidence in its favor. We will discuss related problems in
Section 9.

Remark 4. We say a compact set E ⊂ T is an interpolation set for confor-
mal maps if given any homeomorphism g of D there is a conformal map f of the
disk which extends continuously to E and equals g there. An earlier verison
of the proof of Theorem 3 used a characterization of these sets as exactly the
compact sets of zero logarithmic capacity. This result now appears in [6].

Remark 5. If {fn} converges uniformly on compact subsets of D what can
we say about the convergence of boundary values in general? It is not true
that there is always a subsequence so that {fn(x)} converges for all x except
in an exceptional set of zero logarithmic capacity. However, it is true that
given any kernel function K which tends to ∞ faster than log 1

t , there is a
subsequence that converges off an exceptional set of zero K-capacity. Both
statements are proven in the 2005 Ph.D. thesis of Karyn Lundberg [32], the
second strengthening an earlier result of David Hamilton.

Remark 6. Koebe’s circle domain theorem and conformal welding had
been previously linked via the theory of circle packings. Koebe’s theorem
can be used to prove the existence of finite circle packings with prescribed
tangencies and He and Schramm [23] proved Koebe’s conjecture for domains
with countably many boundary components using circle packing techniques.
Later, Williams [47], [46] used circle packing algorithms to compute conformal
weldings, i.e., to compute h from Γ and Γ from h.

Remark 7. One cannot prove Theorem 1 by showing that any h agrees
with a quasisymmetric map on large measure. If h maps a set E of posi-
tive Lebesgue measure to a set of zero Hausdorff dimension, then it cannot
agree with any quasisymmetric map on any positive measure subset of E since
quasisymmetric maps preserve sets of dimension zero.
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Another way to look at this is to make the orientation-preserving homeo-
morphisms of the circle into a metric space by setting

d(f, g) = |{x : f(x) 	= g(x)}| + |{x : f−1(x) 	= g−1(x)}|.

Theorem 1 says conformal weldings are dense in this space, but one easily sees
that quasisymmetric and log-singular homeomorphisms are each nowhere dense
sets which are distance 1 apart. (It is standard to show this space is complete
but nonseparable but a little more amusing to show it is path connected, but
contains no nontrivial rectifiable paths.)

Remark 8. Several times in this paper we will use the well known observa-
tion that it suffices to take quasiconformal maps in the definition of conformal
welding. More precisely, if f : D → Ω and g : D

∗ → Ω∗ are K-quasiconformal
with h = g−1 ◦ f on T, then the measurable Riemann mapping theorem (e.g.,
[2]) implies there is a K-quasiconformal map Φ of the sphere so that F = Φ◦f

and G = Φ ◦ g are both conformal. Since G−1 ◦ F = g−1 ◦ f on T, we see h is
a conformal welding in the usual sense if it is a “quasiconformal welding”.

Remark 9. We know that homeomorphisms h which satisfy the log-singu-
larity condition of Theorem 3 exist because we know flexible curves exist (see
[7]). A more direct inductive construction is as follows. Start with a linear
mapping h0 on an interval I0. At the nth stage, assume we have divided I0

into a finite number of subintervals {In
j } and have a homeomorphism hn of I0

which is linear on each of these subintervals. Divide each In
j into n equal length

subintervals. If I is one of these, divide I into two subintervals: the left one of
length εn|I| and the right one of length (1 − εn)|I|. Define a homeomorphism
hn+1 which is linear on every subinterval, so that hn+1(I) = hn(I) and so that
the right- hand interval of I maps to an interval of length εn|hn(I)|. We choose
εn so small that the union of all the left intervals has logarithmic capacity less
than 2−n and the union of the hn+1 images of the right- hand intervals also has
capacity ≤ 2−n. It is easy to see that these maps converge to a homeomorphism
h. If E is the set of points which are in infinitely many of the left-hand intervals,
then clearly cap(E) = 0 = cap(h(I0 \ E)) (by subadditivity of capacity).

Remark 10. It is interesting to compare Theorem 3 with results of A.
Browder and J. Wermer for the disk algebra A(D) (holomorphic functions on D

which extend continuously to T). Given a homeomorphism of the circle h they
considered the set of functions Ah = {f ∈ A(D) : f = g◦h for some g ∈ A(D∗)}
and showed this collection was “large” if and only if h is singular, i.e., if and
only if it maps some set of full Lebesgue measure to zero Lebesgue measure
(e.g., [10], [11], [8], [5]). Large in their sense meant Ah is a Dirichlet algebra,
i.e., the reals parts of functions in Ah are uniformly dense in all continuous
real-valued functions on T. Moreover, by the Rudin-Carleson theorem the
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compact boundary interpolation sets for the disk algebra are exactly the sets
of zero Lebesgue measure, ([12], [40]), just as zero logarithmic capacity sets are
for conformal maps (see Remark 4 and [6]). Are Theorem 3 and the Browder-
Wermer theorem both special cases of a more general result?

The remaining sections of the paper are organized as follows.

Section 2. We recall the definition of logarithmic capacity and extremal length.

Section 3. We prove Theorem 4.

Section 4. We give a new, elementary proof that quasisymmetric homeomor-
phisms are conformal weldings.

Section 5. We prove Theorem 2

Section 6. We prove Theorem 8.

Section 7. We characterize flexible curves (Theorem 3).

Section 8. We prove Theorem 1.

Section 9. We state a generalization of the Koebe circle conjecture.

Part of this paper was written during a visit to the Mittag-Leffler Insti-
tute and I thank the institute for its hospitality and the use of its facilities. I
thank Bob Edwards and Mladen Bestvina for pointing out Moore’s theorem on
quotients of the plane to me. I also thank David Hamilton for reading the first
draft and generously providing numerous helpful comments: historical, math-
ematical and stylistic. I also appreciate the encouragement and comments I
received at various stages from Kari Astala, John Garnett, Juha Heinonen,
Nick Makarov, Vlad Markovic, Bruce Palka, Stefan Rohde and Michel Zins-
meister. I particularly thank Stefan Rohde and Don Marshall for comments
which clarified the definition of flexible curves and the proof of Theorem 3. I
also thank the referee for a careful and thoughtful report and various helpful
comments.

2. Logarithmic capacity and extremal length

In this section we review some basic material on logarithmic capacity and
extremal length. Experts may wish to skip it and refer back to it as needed.

Suppose μ is a positive Borel measure on R
2 and define its energy integral

by

I(μ) =
∫∫

log
2

|z − w|dμ(z)dμ(w).
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We put the “2” in the numerator so that the integrand is nonnegative when
z, w ∈ T (in this paper we will only consider the capacity of subsets of T).
If E ⊂ R

2 is Borel, let Prob(E) be the set of positive Borel measures with
μ(E) = ‖μ‖ = 1 and define its logarithmic capacity as

cap(E) =
1

inf{I(μ) : μ ∈ Prob(E)} .

For subsets of the circle, cap is nonnegative, monotone and is countably sub-
additive ([13, p. 24, Lemma]; this is where we need the “2” in the definition of
the energy integral). If cap(E) > 0, there is a unique measure which minimizes
the energy integral, which is called the equilibrium measure (it is also equal to
the harmonic measure of S2 \E with respect to infinity). An alternate version
of logarithmic capacity is

c̃ap(E) = sup{exp(−I(μ)) : μ ∈ Prob(E)}.

The exponential in the definition is a technical convenience and gives it nice
scaling; i.e., c̃ap(tE) = t · c̃ap(E). The two versions of logarithmic capacity are
related by the equations

c̃ap = exp(−1/cap), cap = (log c̃ap−1)−1.

Note that if E ⊂ T then c̃ap(E) = 0 if and only if cap(E) = 0. Thus we may
speak of sets of positive or zero capacity without specifying which definition
we mean and we will use both versions throughout the paper.

Logarithmic capacity is closely related to the usual Robin constant γE

defined by

γE = inf{I(μ) − log 2 : μ ∈ Prob(E)} =
1

cap(E)
− log 2.

The log 2 enters because we put a “2” in our energy integral, whereas the usual
definition does not.

If f : D → Ω is conformal and E ⊂ ∂Ω then we will call cap(f−1(E)) the
capacity of E with respect to Ω (the value depends on the choice of f , but
whether or not it is zero is independent of f).

In this paper, we shall only use a few well known facts about logarithmic
capacity. The proof of the following is easy and left to the reader.

Lemma 10. Suppose h : T → T is a bi-Hölder homeomorphism, i.e., there
are a C < ∞ and α > 0 such that

1
C
|x − y|1/α ≤ |h(x) − h(y)| ≤ C|x − y|α.

Then cap(E) = 0 if and only if cap(h(E)) = 0.
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We will need the fact that all Borel sets are capacitable, i.e., if E is Borel,
then

cap(E) = inf{cap(U) : E ⊂ U, U open }.
The exact form we will use is contained in:

Lemma 11. Suppose h : T → T is a homeomorphism. Then the following
are equivalent.

(1) For any ε > 0 there is a finite union of closed intervals E ⊂ T such that
both cap(E) and cap(h(T \ E)) are ≤ ε.

(2) For any n there is a compact set En ⊂ T such that both cap(En) and
cap(h(T \ En)) are ≤ 1/n.

(3) There is a Borel set E such that both E and h(T\E) have zero logarithmic
capacity.

Proof. Trivially, (1) ⇒ (2). To prove (2) ⇒ (3), let E = ∩n ∪k>n

E2k . Clearly E has zero capacity (since cap is countably subadditive). Its
complement is contained in ∩n ∪k>n (T \ E2k) whose h image also has zero
capacity and we are done.

Finally, to prove (3) ⇒ (1) we use Theorem 7 on page 24 of Carleson’s
book [13] which says that for any Borel E and any ε > 0 there is an open set U

containing E such that cap(U) ≤ cap(E) + ε. Applying this to the sets E and
h(T \ E) in condition (3) we obtain open sets U1 and U2 so that T ⊂ U1 ∪ U2

and both U1 and h(U2) have capacity ≤ ε. Since T\U2 is compact and covered
by the components of U1 there is a finite collection of these components which
also covers. Let the closure of the union of these components be F , which
clearly has capacity ≤ ε. The complement of F is contained in U2 and hence
the capacity of h(T \ F ) is also less than ε.

It is convenient to estimate logarithmic capacity in terms of extremal
length, so we start by recalling the definition. Suppose P is a family of recti-
fiable paths in a domain Ω and suppose ρ is a nonnegative function on Ω such
that

∫
γ ρds ≥ 1 for every γ ∈ P. We define the modulus of the family to be

mod (P) = inf
ρ

∫∫
Ω

ρ2dxdy,

and the extremal length

λ(P) =
1

mod (P)
.

See Ahlfors’ book [2]. It is easy to see that modulus and extremal length are
conformal invariants. An important example is the path family connecting the
two boundary components of an annulus {z : a < |z| < b}. Standard arguments
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show the extremal length of this family is 2π log(b/a). The connection to
logarithmic capacity is given by the following result, Pfluger’s Theorem, e.g.,
Theorem 9.17 of [39],

Lemma 12. Suppose E ⊂ T is compact, K ⊂ D is compact and con-
nected and P is the path family in D connecting K to E. Then c̃ap(E) �
exp(−πλ(P)), with constants that depend only on K.

One particular consequence we will use is the following.

Corollary 13. If f is a conformal map on D and takes the boundary
value 0 at every point of E ⊂ T, then cap(E) = 0

Proof. Suppose K ⊂ D is compact and choose r so small that D(0, r) ∩
f(K) = ∅. Then the extremal length of the path family connecting K to E

in D is greater than for the family crossing the annulus {z : ε < |z| < r} in
Ω. Taking ε → 0 and using the estimate for annuli discussed above proves the
result.

Using Lemma 18, which we will prove later, one can show that it suffices
to assume f has radial limit 0 on E in Lemma 13.

Suppose ∂Ω is bounded in R
2 and f : D → Ω is conformal. For 0 < r < 1,

let
af (r) = area(Ω \ f(D(0, r))).

Since ∂Ω is compact it is easy to see that this tends to zero as r → 1.

Lemma 14. There is a C < ∞ so that the following holds. Suppose f :
D → Ω and 1

2 ≤ r < 1. Let E = {x ∈ T : |f(sx) − f(rx)| ≥ δ for some r <

s < 1}. Then the extremal length of the path family P connecting D(0, r) to E

is bounded below by δ2/Ca(r).

Proof. Suppose z, w ∈ Ω, suppose γ is the hyperbolic geodesic connecting
z and w and suppose γ̃ is any path in Ω connecting these points. By the
Gehring-Hayman inequality [18], there is a universal C < ∞ such that �(γ) ≤
C�(γ̃) (here �(γ) denotes the length of γ). In other words, up to a constant,
the hyperbolic geodesic has the shortest Euclidean length amongst all curves
in Ω connecting the two points.

Now suppose we apply this with z = f(sx) and w ∈ f(D(0, r)). Then
the length of any curve from w to z is at least 1/C times the length of the
hyperbolic geodesic γ between them. But this geodesic has a segment γ0 that
lies within a uniformly bounded distance of the geodesic γ1 from f(rx) to z. By
the Koebe distortion theorem γ0 and γ1 have comparable Euclidean lengths,
and clearly the length of γ1 is at least δ. Thus the length of any path from
f(D(0, r)) to f(sx) is at least δ/C. Now let ρ = C/δ in Ω \ f(D(0, r)) and
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equal 0 elsewhere. Then ρ is admissible for f(P) and
∫∫

ρ2dxdy is bounded by
C2a(r)/δ2. Thus λ(P) ≥ δ2

C2a(r) .

If f has radial limits on E ⊂ T then the previous lemma is still valid for
s = 1. For subsets of the circle it is known that

c̃ap(E) ≥ |E|/C,(2.1)

(e.g., XI.2.E in [41]). Combining this with Lemmas and 12 and 14 gives

Corollary 15. If f : D → Ω is a conformal map onto a bounded domain
then for any δ > 0,

|{x ∈ T : |f(x) − f(rx)| ≥ δ}| → 0,

as r → 1.

Lemma 16. Suppose E1, . . . , En is a finite collection of compact sets and
let Ck be the path family connecting D(0, r) to Ek, k = 1, . . . , n. Suppose each
of these families has extremal length ≥ c > 0. Then the path family connecting
E = ∪Ek to D(0, r) has extremal length ≥ c/n2.

Proof. If {ρi} are admissible metrics for {Ck} respectively then ρ =∑
k ρk is admissible for C and by Cauchy-Schwarz

∫
ρ2 ≤ n

∫ ∑
ρ2

k. Taking the
infimum over admissible metrics gives the result.

Lemma 17. Suppose f : D → Ω is conformal and for R ≥ 1,

E = {x ∈ T : |f(x)| ≥ R dist(f(0), ∂Ω)}.

Then cap(E) ≤ CR−1/2 (with C independent of Ω).

Proof. Assume f(0) = 0 and dist(0, ∂Ω) = 1 and let ρ(z) = |z|−1/ log R

for z ∈ Ω∩{1 < |z| < R}. Then ρ is admissible for the path family connecting
D(0, 1/2) to ∂Ω\D(0, R) and

∫∫
ρ2dxdy ≤ 2π/ log R. By the Koebe distortion

theorem f−1(D(0, 1/2)) is contained in a compact subset of D, independent of
Ω. The result follows by Lemma 12.

Lemma 17 also follows from a stronger result of Balogh and Bonk in [3].
Given a compact set E ⊂ T we will now define the associated “sawtooth”

region WE and a 2-quasiconformal map between WE and D which keeps E

fixed pointwise. Suppose {In} are the connected components of T \ E and for
each n let γn(θ) be the circular arc in D with the same endpoints as In makes
angle θ with In (so γn(0) = In and γn(π/2) is the hyperbolic geodesic with the
same endpoints as In). Let Cn(θ) be the region bounded by In and γn(θ), and
let WE(θ) = D \ ∪nCn(θ). See Figure 2.
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Figure 2: The sawtooth domain WE

For the rest of the paper we will let WE = WE(π/8) (and let W ∗
E ⊂ D

∗

be its reflection across T). We can map D to WE by a 2-quasiconformal
map f as follows. First let f be the identity on WE(π/2). Then map Un =
Cn(π/2)\Cn(π/4) (which is a crescent of angle π/4) to Vn = Cn(π/2)\Cn(3π/8)
(which is a crescent of angle π/8) as follows: map Un to the cone
{z : 0 < arg(z) < π/4} by a Möbius transformation, then to {z : 0 < arg(z)
< π/8} by halving the angle and then to Vn by another Möbius transformation.
Finally, map Cn(π/4) to Cn(3π/8) \Cn(π/8) by a Möbius transformation. See
Figure 3. It is easy to check that these maps can be chosen to match up along
the common boundaries and hence define a 2-quasiconformal map.

Figure 3: Mapping the disk to WE

If f : D → Ω and 0 < r < 1, then define

df (r) = sup{|f(z) − f(w)| : |z| = |w| = r and |z − w| ≤ 1 − r}.

If ∂Ω is bounded in the plane, then it is easy to see that this goes to zero as
r ↗ 1, since otherwise any neighborhood of ∂Ω would contain infinitely many
disjoint disks of a fixed, positive size.

Lemma 18. Suppose f : D → Ω ⊂ S2 is conformal. Then for any ε > 0
there is a compact set E ⊂ T with cap(T \E) < ε such that f is continuous on
WE.
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Proof. By applying a square root and a Möbius transformation, we may
assume that ∂Ω is bounded in the plane. Given r < 1 let

E(ε, r) = {x ∈ T : |f(sx) − f(tx)| > ε for some r < s < t < 1}

and note that by Lemmas 12 and 14

c̃ap(E(ε, r)) ≤ exp(−πε2/Ca(r)).

Moreover, this set is open since f is continuous at the points sx and tx. So
if we take εn = 2−n, and use the relationship between cap and c̃ap we can
choose rn so close to 1 that cap(En) ≡ cap(E(εn, rn)) ≤ ε2−n. If we define
E = T\∪n>1En, then E is closed and T\E has capacity ≤ ε by subadditivity.

To show that f is continuous at every x ∈ WE , we want to show that
|x − y| small implies |f(x) − f(y)| is small. We only have to consider points
x ∈ ∂WE ∩ T. First suppose y ∈ ∂WE ∩ T. Choose the maximal n so that
s = |x − y| ≤ 1 − rn. Then x, y /∈ En, and so

|f(x) − f(y)| ≤ |f(x) − f(sx)| + |f(sx) − f(sy)| + |f(sy) − f(y)|.

The first and last terms on the right are ≤ εn−1 by the definition of E. The
middle term is at most df (1−s) (which tends to 0 as s → 0). Thus |f(x)−f(y)|
is small if |x − y| is.

Now suppose x ∈ ∂WE ∩T, y ∈ ∂WE \T. From the definition of WE it is
easy to see there is a point w ∈ ∂WE∩T such that |w−y| ≤ 2(1−|y|) ≤ 2|x−y|.
For the point w we know by the argument above that |f(x) − f(w)| is small.
On the other hand, if t = 1 − |y|, then

|f(y) − f(w)| ≤ |f(y) − f(tw)| + |f(tw) − f(w)|.

The first term is bounded by Cdf (1− t) and the second is small since w 	∈ En.
Thus |f(x) − f(y)| is small depending only on |x − y|. Hence f is continuous
on WE .

3. Welding via Koebe’s theorem: proof of Theorem 4

We define a circle chain C to be a finite union of closed disks {Dk}n
1 in R

2

which have pairwise disjoint interiors and such that Dk is tangent to Dk+1 for
k = 1, . . . , n−1, Dn is tangent to D1 and there are no other tangencies. We also
assume the disks are numbered in counterclockwise order. The complement,
X = S2 \ ∪kDk, of a circle chain consists of two disjoint Jordan domains.
We shall denote the bounded component by Ω and the unbounded component
by Ω∗. Let f : D → Ω and g : D

∗ → Ω∗ be Riemann maps. We shall call
(f, g) a normalized circle chain pair if f(0) = 0, g(∞) = ∞ and dist(0, ∂Ω)
= 1. Clearly, given a circle chain, we can always obtain a normalized pair by
composing with a Möbius transformation.
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Lemma 19. Suppose h : T → T is an orientation-preserving homeomor-
phism and suppose {xk}n

1 ⊂ T is a finite collection of distinct points listed in
counterclockwise order. Let Ik = (xk, xk+1), k = 1, . . . , n (modulo n). Then
there is a normalized circle chain pair so that for each k,

f(Ik) = ∂Dk ∩ ∂Ω,

g(h(Ik)) = ∂Dk ∩ ∂Ω∗.

We will say that any circle chain that satisfies this conclusion corresponds
to h. Another way of stating the lemma is that given any finite positive
sequences {ak} and {bk} such that

∑n
k=1 ak =

∑n
k=1 bn = 1 we can find a

circle chain so that the harmonic measure of each disk in the chain satisfies

ω(Dk, 0,Ω) = ak, k = 1, . . . n,

ω(Dk,∞,Ω∗) = bk, k = 1, . . . n.

It is a fact that this circle chain is unique up to Möbius transformations,
but we will not need this here. One can prove uniqueness by considering two
chains corresponding to the same data. By taking conformal maps between the
complements of two such chains and repeatedly extending them by reflection,
we can show these maps extend to a homeomorphism of the sphere which is
conformal except on a Jordan curve which is the limit set of the Kleinian group
generated by reflections in the elements of our circle chain. It is known such
a curve is a quasicircle (see Section 4) and hence is removable for conformal
maps. Thus the maps extend to be conformal on the whole sphere, i.e., Möbius.

Proof of Lemma 19. The Koebe circle domain theorem ([27], [28]; also
see [23] and its references) states that given any finitely connected domain Ω
there is a conformal map f : Ω → Ω̃ onto a domain bounded by circles and
points. We shall apply this to a domain Ω = Ωε constructed as follows. Given
n points {xk} on the unit circle T, let yk = 2h(xk) ∈ 2T = {z : |z| = 2}.
Let γn be disjoint smooth Jordan arcs which connect xk to yk in the annulus
A = {z : 1 ≤ |z| ≤ 2}, e.g., the hyperbolic geodesics in A connecting these
points. Let {Ik} ⊂ T be the arcs bounded by the points {xk} and let {Jk}
be the corresponding arcs on 2T. Thus Jk has harmonic measure |h(Ik)| with
respect to ∞. Let δ = infk |h(Ik)| be the smallest of these harmonic measures.

Our domain Ω is the union of D, 2D
∗ = {z : |z| > 2} and an ε-neighborhood

of each γn, where ε is assumed to be so small that these neighborhoods are
pairwise disjoint and ∂Ω has n components.

Let fε : Ωε → Ω∗
ε be the map given by Koebe’s theorem. Normaliz-

ing by Möbius transformation we may assume f(0) = 0, f(∞) = ∞ and
dist(0, ∂Ωε) = 1.

We claim that the n circles in the complement of Ω∗
ε, are all contained in

some disk D(0, R) with R independent of ε (but R may depend on h and n). To
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see this, suppose the union of closed disks satisfies ∪kDk ⊂ {1 ≤ |z| ≤ R} and
that it hits both boundary components. Let Ω1 be the connected component
of fε(Ωε ∩ D(0, 3/2)) containing 0. Then for ε small enough, each interval Ik

has harmonic measure ≥ 1/2n in Ω1 and hence has capacity in Ω1 which is
bounded away from zero depending only on n. Thus by Lemma 17, every disk
must hit {|z| ≤ M1}, for some M1 depending only on n. Similarly for Ω2 (the
connected component of fε(Ω ∩ {|z| > 3/2}) containing ∞); i.e., there is an
M2 depending only on δ such that every disk must hit {|z| = R/M2}. If R is
so large that R/M2 > 2M1, then every disk in our chain hits both {|z| = M1}
and {|z| = 2M1}. For large n this contradicts the following simple fact:

Lemma 20. At most six disjoint disks can hit both {|z| = 1} and {|z| = 2}.

Proof. Each such disk has a subdisk of diameter 1 contained in the
annulus {1 ≤ |z| ≤ 2}. Each of these intersects the circle {|z| =

√
3/2} in an

arc of angle measure π/3, and hence there can be at most six of them.

Now we can pass to the limit as ε → 0, passing to a subsequence where
each disk converges, and we are done.

Now that we have the finite approximations, we want to show they stay
bounded as n → ∞. The argument is similar to what we have just done. We
will say a circle chain has ε-links if every disk has harmonic measure ≤ ε with
respect to both 0 and ∞.

Lemma 21. Suppose h : T → T is an orientation-preserving homeomor-
phism such that for every set E of zero logarithmic capacity, h(T \ E) has
positive logarithmic capacity. Then there is an R < ∞ and an ε > 0 (each
depending only on h) so that for any normalized circle chain corresponding to
h with ε-links,

X = S2 \ (Ω ∪ Ω∗) ⊂ {z : 1 ≤ |z| ≤ R}.

Proof. Fix R > 1 and consider a normalized circle chain such that
X = S2 \ (Ω ∪ Ω∗) ⊂ A(1, R) and X intersects both boundary components of
this annulus. Divide the (closed) disks in the circle chain into three collections:
C1 are the disks which lie inside D(0,

√
R), C2 are the disks that lie outside

D(0, 1
2

√
R) and C3 are all the rest. By Lemma 20 there are at most six elements

in C3. For i = 1, 2, 3, let Ei = f−1(∪D∈Ci
∂Ω1 ∩ D). Then E2 has small

logarithmic capacity depending only on R by Lemma 17, and E3 has small
capacity since it is a union of at most six intervals each of length ≤ ε. Similarly,
h(E1) has small capacity depending only on R.

By choosing ε small enough and R large enough we could find such sets
where E1 ∪ E2 ∪ E3 = T and cap(E2 ∪ E3) + cap(h(E1)) is as small as we
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wish. But by Lemma 11, this contradicts our assumption on h, and so R must
remain bounded as ε → 0. Thus Lemma 21 is true.

Proof of Theorem 4. Choose a collection of n equally spaced points on
T and use Lemma 19 to construct a sequence of normalized circle chain pairs
fn : D → Ωn, gn : D → Ω∗

n. By Lemma 21 there is an R so that the circle chains
all remain inside D(0, R), for large enough n (since h is uniformly continuous
and harmonic measure = 1/n on Ω, the harmonic measures → 0 in Ω∗). Fix an
ε > 0 and let {Dn

j } be an enumeration of the at most (R/ε)2 disks in the nth
chain which have radius ≥ ε. By passing to a subsequence we may assume the
number is the same for every n, say N ≤ (R/ε)2. Let En

j = f−1
n (∂Dn

j ), n =
1, . . . , N . By passing to another subsequence we may assume that for a fixed
j = 1, . . . , N , the intervals En

j converge to a point xj . For x 	∈ Fε = ∪N
j=1{xj},

x is eventually disjoint from every En
j and hence

lim sup
n→∞

|fn(x) − gn(h(x))| ≤ 2ε,

since fn(x) and gn(h(x)) belong to the boundary of the same disk of radius
≤ ε. Taking a sequence εn → 0 and diagonalizing prove the theorem.

4. Quasisymmetric maps are conformal weldings

In this section we will use Koebe’s circle domain theorem to show that if
h : T → T is the boundary extension of a K-quasiconformal map of the disk
to itself, then h is a conformal welding corresponding to a K-quasicircle, i.e.,
a curve Γ which is the image of T under a K-quasiconformal map of the plane.
The only fact about quasiconformal maps we shall need is that normalized K-
quasiconformal maps form a compact family. (This section is not used later,
so can be skipped by readers interested only in Theorems 1-8.)

By a famous result of Beurling and Ahlfors [4], h is the boundary extension
of a quasiconformal map if and only if it is quasisymmetric, i.e., there is an
M < ∞ such that

M−1 ≤ |h(I)|/|h(J)| ≤ M,

whenever I, J ⊂ T are adjacent arcs of equal length. Thus every quasisymmet-
ric map is a conformal welding. This well known fact was proved by Pfluger
[36] using the measurable Riemann mapping theorem, and a different proof
was given by Lehto and Virtanen [30], [31]. Our proof seems new, is fairly
elementary and very geometric, so perhaps it will be of interest.

Given a homeomorphism h and n equidistributed points {xk}n
1 ⊂ T, let

yk = h(xk) for k = 1, . . . n and consider the corresponding circle chain Cn as
given by Lemma 19. As before, let Ωn, Ω∗

n denote the bounded and unbounded
complementary domains. By reflecting through each circle we obtain a new
chain with n(n − 1) circles. Continuing in this way we obtain, in the limit,
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a Jordan curve Γn, with complementary components Dn (bounded) and D∗
n

(unbounded). See Figure 4 which shows the original chain and the domain Ωn

on the left, three iterations of the reflections in the center and the corresponding
domain Dn on the right.

Ω n

Figure 4: Reflections in a circle chain give a curve

Similarly, given a circle chain Dn of n circles of equal size, with tangent
points along the unit circle, we can reflect through the circles, getting a nested
sequence of circle chains which limit on the unit circle, as in Figure 5. We
claim that if h is the boundary extension of a K-quasiconformal selfmap of the
disk, then there is a K-quasiconformal map of the plane sending the circles
in Figure 5 to those in Figure 4. We will prove this by constructing the map
separately inside and outside the unit circle.

Figure 5: A symmetric circle chain with limit T

Let Wn = S2 \{x1, . . . , xn}. We may assume n ≥ 3, so there is a universal
covering map Π : D → Wn. Let Un be the component of Π−1(D) containing
the origin, and note that by symmetry Un may be chosen to be bounded
by hyperbolic geodesics with endpoints at the xk’s (the arcs T \ ∪{xk} are
hyperbolic geodesics in Wn; this is even clearer if we map T to R by a Möbius
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transformation). Reflecting these arcs across T gives the circle chain Dn in
Figure 5 with {xk}n

1 as the points of tangency. The conformal map fn ◦ Π :
Un → Ωn can be extended by repeated Schwarz reflection to a conformal map
Fn : D → Dn. See Figure 6.

F

f
Π

n

n

Figure 6: Lifting and extending the Koebe map

Similarly, Koebe’s theorem gives a conformal map gn : D
∗ → Ω∗

n. Let
W ∗

n = S2 \ {y1, . . . , yn} and consider Π : D
∗ → W ∗

n as the universal cover
of W ∗

n . As above, we can lift gn to map of Π−1(D∗) → Ω∗
n and use Schwarz

reflection to extend it to a map Gn from D
∗ → D∗

n. See Figure 7.
By assumption h is the boundary extension of a K-quasiconformal map of

the disk to itself. By reflection we can extend this as a K-quasiconformal map
H of S2 to itself. Then H maps Wn to W ∗

n and lifts to a K-quasiconformal
map of the universal covers. We can represent these by D

∗ so that we get a
K-quasiconformal map Hn : D

∗ → D
∗ which conjugates the covering groups.

See Figure 7.
Thus Gn◦Hn is a K-quasiconformal map of D

∗ to D∗ whose boundary val-
ues agree with Fn on T, and hence these maps together define a
K-quasiconformal map of S2 (easy to check using the analytic definition of
quasiconformal in [2]). This map takes T to Γn and the circle chain Dn to the
chain Cn. Taking n → ∞, using the uniform continuity of K-quasiconformal
mappings and passing to a subsequence if necessary, we see that our circle
chains converge uniformly to a K-quasicircle and that h is the corresponding
conformal welding, as desired.
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H

H

Π Π

G

g

n

n

n

Figure 7: Lifting the maps H and gn.

5. Passing to the limit: proof of Theorem 2

In this section we will prove Theorem 2. The idea is to take a sequence
of map pairs {fn, gn} as given by Theorem 4 and pass to a subsequence which
converges uniformly on compact subsets of D ∪ D

∗ to maps f, g. We will then
show these maps satisfy Theorem 2. As noted in Remark 5, general results
are not enough to give convergence of boundary values off a set of zero log-
capacity, so we will need to use special properties of our maps. The proof of
Theorem 2 uses two lemmas. The first is a criterion for dividing a set E into
subsets of zero capacity.

Lemma 22. Suppose E ⊂ T is compact, 0 < A < 1 and h : T → T is
a homeomorphism. Suppose that for every r < 1 there are Borel sets E1 and
E2 with E = E1 ∪ E2 and such that the two path families connecting D(0, r)
to E1 and to h(E2) respectively, both have extremal length ≥ A. Then there
are Borel sets F1 and F2 with E = F1 ∪ F2 such that both F1 and h(F2) have
logarithmic capacity zero.

Proof. We claim we can choose sets Ek ⊂ E and numbers {rk} ↗ 1
for k = 1, 2, . . . such that the extremal length of the path families Ck and
Dk connecting Dk = D(0, rk) to Ek and Dk to h(E \ Ek) are both greater
than A/2. We also assume that we have chosen metrics ρk and σk which are
admissible for these path families. i.e.,∫

γ
ρkds ≥ 1, γ ∈ Ck and

∫
γ
σkds ≥ 1, γ ∈ Dk
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which almost maximize, i.e.,∫∫
ρ2

kdxdy ≤ 2/A,

∫∫
σ2

kdxdy ≤ 2/A.

Moreover, we claim we can choose metrics so that∫∫
(

k∑
j=1

ρj)2dxdy <
4k

A
,(5.1)

and the same inequality for the σ’s.
For k = 1, we take r1 = 1/2 and take E1 as given by the hypothesis. We

can then take ρ1 and σ1 by the definition of extremal length and (5.1) is trivial
since there is only one term in the sum.

In general, suppose we have satisfied the induction hypothesis up to n−1.
For any rn > rn−1 we can clearly choose a set En and metrics ρn and σn so
that all the conditions are satisfied, except possibly for (5.1). However, since
ρn is supported in An = {z : rn < |z| < 1},∫∫

D

(
n∑

k=1

ρk)2dxdy ≤
∫∫

D

(ρn +
n−1∑
k=1

ρk)2dxdy

≤
∫∫

D

ρ2
ndxdy + 2

∫∫
D

ρn(
n−1∑
k=1

ρk)dxdy +
∫∫

D

(
n−1∑
k=1

ρk)2dxdy

<
2
A

+ 2(
∫∫

An

ρ2
ndxdy)1/2(

∫∫
An

(
n−1∑
k=1

ρk)2dxdy)1/2 +
4(n − 1)

A
.

In the middle term of the last line we know∫∫
An

(
n−1∑
k=1

ρk)2dxdy → 0,

as rn ↗ 1, since we are integrating a fixed L1 function over sets of smaller and
smaller area. Thus for rn close enough to 1 this term will be strictly less than
1/4. Using this, the fact A < 1, and the induction hypothesis, we see that the
sum above is less than

2
A

+ 2(
2
A

)1/2(
1
4
)1/2 +

4(n − 1)
A

≤ 2
A

+
2
A

+
4(n − 1)

A
=

4n

A
,

as desired. Taking rn even closer to 1, if necessary, gives the same inequality
for σn. This determines rn and completes the inductive proof of our claims.

Now fix some integer N and consider the set FN of points x ∈ E which
are in at least N of the sets E1, . . . E2N chosen above. Then points of E \ FN

are in at least N of the sets E \ En, n = 1, . . . , 2N . Consider the metric

ρ =
1
N

2N∑
k=1

ρk.
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This is clearly admissible for the family of paths connecting D(0, 1/2) to FN

and by (5.1), ∫∫
ρ2dxdy ≤ 1

N2

2N∑
k=1

∫∫
ρ2

kdxdy ≤ 8
NA

.

Thus the extremal length of this path family is ≥ 1
8NA which is large (since

A is fixed and N is as large as we please), similarly for the extremal length
associated to h(E \ FN ). Lemma 22 now follows from Lemmas 11 and 12.

The next step is to show that the set where our limit functions f, g fail to
equal each other satisfies the hypotheses of the previous lemma.

Lemma 23. Given any δ > 0 and R < ∞, there is a c > 0 so that the
following holds. Suppose fn : D → Ωn and gn : D

∗ → Ω∗ is a normalized circle
chain pair with ∂Ω∗

n ⊂ D(0, R) and assume fn → f and and gn → g uniformly
on compact sets and that the number of disks in the nth chain with diameter
≥ ε is at most N(ε) (independent of n) for any ε > 0. Suppose E ⊂ T is such
that f has radial limits on E, g has radial limits on h(E) and for every x ∈ E,
|f(x)− g(x)| ≥ δ > 0. Then for any 0 < r < 1 sufficiently close to 1 there is a
decomposition E = F1 ∪ F2 such that the two path families connecting D(0, r)
to F1 and to h(F2) each have extremal length ≥ c.

Proof. Suppose 0 < r < 1. First consider the subsets E1, E2 ⊂ E such
that

E1 = {x ∈ E : |f(rx) − f(x)| ≥ δ/8},
E2 = {x ∈ E : |g(rh(x)) − g(h(x))| ≥ δ/8}.

By Lemma 14, the path families C1, C2 which connect these sets to D(0, r)
have extremal length bounded below by δ2/Cã(r), where

ã(r) = max(area(Ω \ f(D(0, r))), area(Ω∗ \ g(D(0, r)))).

As r → 1, ã(r) → 0, so these extremal lengths are as large as we wish, say
≥ 100.

Now consider F = E \ (E1∪E2). By the uniform convergence on compact
sets we can choose an integer n1 (depending on r) so large that n ≥ n1 implies

|fn(rx) − f(rx)| ≤ δ/8,

|gn(rh(x)) − g(rh(x))| ≤ δ/8,

for all x ∈ F .
By our assumption on the chains, we can choose n2 > n1 so that n ≥ n2

implies |fn(x) − gn(h(x))| ≤ δ/8 for all x ∈ F \ E3, where E3 is a finite union
of intervals (number depending only on δ) which are as short as we wish if n2

is chosen large enough. In particular we can arrange for the extremal length
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of the path family C3 connecting D(0, r) to E3 to be as large as we wish, say
≥ 100.

Finally, for x ∈ F \ E3 we must have

|fn(rx) − fn(x)| + |gn(rh(x)) − gn(h(x))|
≥ |f(x) − g(h(x))| − |f(x) − f(rx)| − |f(rx) − fn(rx)|
−|g(h(x)) − g(rh(x))| − |gn(rh(x)) − g(rh(x))| − |fn(x) − gn(h(x))|.

See Figure 8. Since the first term on the right is ≥ δ and the five other terms

n

n

n

n

f (rx)

(f rx)
f(x)

)(x

)(x )g(rh

g (r(h(x))g(h(x))

f

g (h(x))

Figure 8: Estimating |fn(x) − gn(x)|

are all ≤ δ/8, we deduce that for every x ∈ F \ E3 either

|fn(rx) − fn(x)| ≥ δ/8,

or
|gn(rh(x)) − gn(h(x))| ≥ δ/8.

Let E4 and E5 be the subsets of E where each of these inequalities occurs
respectively and note that by Lemma 14 the corresponding path families C4,
C5 connecting E4 and h(E5) to D(0, r) have extremal length ≥ δ2/Cãn(r),
where

ãn(r) = max(area(Ωn \ fn(D(0, r))), area(Ω∗
n \ gn(D(0, r)))).

Unfortunately, we don’t know that ãn(r) → 0 uniformly as r ↗ 1, but at
least ãn(r) is uniformly bounded above for large n (since Ω∗

n converges to Ω∗,
it contains a uniform neighborhood of ∞ for large n). Thus these extremal
lengths can be bounded below uniformly for large n (depending on r).

Thus we can write E = F1 ∪ F2 = (E1 ∪ E3 ∪ E4) ∪ (E2 ∪ E5) where the
path family for each set has the right estimate. By Lemma 16 we are done.
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Proof of Theorem 2. Suppose {fn} and {gn} are the normalized circle
pairs given by Theorem 4 and replace them (if necessary) by a subsequence
converging uniformly on compact sets to conformal maps f and g. By a re-
sult of Beurling (also a consequence of Lemma 18) f and g each have radial
boundary values except on a set of zero logarithmic capacity. Suppose E is a
set where all the radial limits exist but f 	= g ◦ h on E. Let Eδ ⊂ E be the
subset such that |f(x) − g(h(x))| ≥ δ. By Lemmas 22 and 23, we see that we
can always find F ⊂ Eδ so that F and h(Eδ \ F ) have zero logarithmic ca-
pacity. Since a countable union of zero capacity sets has zero capacity, taking
δ = δn → 0 shows that E itself has the desired decomposition. This completes
the proof.

6. Extending partial weldings: Proof of Theorem 8

Suppose f : D → Ω and g : D
∗ → Ω∗ are maps onto disjoint domains, each

with a closed Jordan curve as boundary (and assume ∞ ∈ Ω∗). Assume that
X = ∂Ω∩∂Ω∗ 	= ∅ and let E = f−1(X). Then on E we can define h = g−1 ◦f .
We wish to prove that h can be extended to a conformal welding on all of T.

We claim it suffices to find Jordan domains Ω1 and Ω∗
1, with common

boundary curve Γ, which contain Ω and Ω∗ respectively and quasiconformal
maps ψ : Ω → Ω1 and ψ∗ : Ω∗ → Ω∗

1 which are the identity on X. By solving
the Beltrami equation in the usual way we can find a quasiconformal map Ψ
of the whole plane so that Ψ ◦ ψ and Ψ ◦ ψ∗ are conformal. Then

F1 = (Ψ ◦ ψ ◦ f), F2 = (Ψ ◦ ψ∗ ◦ g)

are conformal maps of D and D
∗ onto two sides of the Jordan curve Ψ(Γ) and

H = (F2)−1 ◦ F1 is a conformal welding which restricted to E gives

H = (F2)−1 ◦ F1 = (g)−1 ◦ f = h,

as desired.
The first step is to note that each component of ∂Ω\X and ∂Ω∗ \X, may

be assumed to be an analytic arc. This is because we can replace Ω by f(WE)
and Ω∗ by g(Wh(E)), where WE denotes the sawtooth domain corresponding
to E (see Section 2). Since WE is a 2-quasiconformal image of D, f(WE) is a
2-quasiconformal image of Ω, similarly for Ω∗. Thus if we can do the extension
assuming analytic arcs, we can do it in general with just a larger constant; so
we assume this is the case.

Now suppose U is the collection of components of S2 \Ω ∪ Ω∗. Then each
U ∈ U is a Jordan domain and its boundary is the union of two analytic arcs
with common endpoints a, b ∈ X. Map U conformally to the horizontal strip
S = {(x+iy : −1 < y < 1,−∞ < x < ∞} with the points a, b mapping to ±∞.
Because U is bounded by analytic arcs, the inverse mapping can be extended
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analytically to some domain V of the form V = {x + iy : −∞ < x < ∞, |y| <

1 + η(x)}, for some positive, continuous function η on R. Let ϕ denote this
conformal map on V . If we choose η small enough then we may assume the
sets of the form ϕ(V ) ∩ Ω are all disjoint (e.g. lie in different components of
D \ WE) as we range over different components in U , similarly for ϕ(V ) ∩ Ω∗.

Now divide R into disjoint (except for endpoints) intervals {In}∞−∞, such
that

|In| ≤
1
10

inf
x∈2In

η(x).

Form an oscillating curve γ in S by taking the union of horizontal and vertical
line segments (see Figure 9)

Vn = {x + iy : −1 ≤ y ≤ 1, x an endpoint of some In},
Hn = {x + iy : y = −1, x ∈ In, n even },
Hn = {x + iy : y = 1, x ∈ In, n odd }.

For each n let cn denote the center of Hn and consider the rectangle

Rn = {x + iy : −1 ≤ y ≤ 1, x ∈ In},
and the semicircles

Sn = {x + iy : |z − cn| ≤ |In|/2, y > 1},
if n is even and

Sn = {x + iy : |z − cn| ≤ |In|/2, y < −1},
if n is odd. See Figure 9.

Figure 9: An oscillating curve which “fills” the strip

There is a simple lemma that states there is a uniform C such that Rn∪Sn

is a C-quasiconformal image of Sn by a map which equals the identity on the
circular arc in ∂Sn.

Given the component U we can define new domains Ω1 = Ω∪∪n evenϕ(Rn),
and Ω∗

1 = Ω∗ ∪ ∪n oddϕ(Rn). Do this for every component in U . Then clearly
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the resulting domains are the two complementary components of a Jordan
curve and are C-quasiconformal images of Ω and Ω∗ by maps that are the
identity on E. This completes the proof of Theorem 8.

7. Characterization of flexible curves: proof of Theorem 3

We start with a few comments on the definition of flexible curves. Suppose
γ and γ′ are closed Jordan curves, ε > 0, F is a homeomorphism of the sphere
which is conformal off γ, z1, z2 are points in each of the two complementary
components of γ and w1, w2 are points in each of the two complementary
components of γ′. Then three possible definitions of γ being flexible are

(1) For any ε > 0 there is an F so that F (γ) approximates γ′ to within ε in
the Hausdorff metric.

(2) Assume (1) holds and in addition, there are fixed points z1, z2 so that for
any w1, w2, we can choose F so that F (z1) = w1 and F (z2) = w2.

(3) Assume (1) holds and in addition, for any points z1, z2 and any w1, w2,
we can choose F so that F (z1) = w1 and F (z2) = w2.

The third definition is the one we gave in the introduction. However, the proof
of Lemma 24 below shows that the second definition implies h is log-singular,
while Theorem 25 below shows that log-singularity implies the third defini-
tion. Thus these two are equivalent. The first definition above was used in [7]
(although the construction of examples given there yields the stronger defini-
tions), but is not equivalent. One can show that if h is a conformal welding
which is log-singular on some nondegenerate interval, then the corresponding
curve satisfies the first definition above (one can map the corresponding arc
of γ to approximate most of γ′ and map the rest of γ into a small ball near
γ′). I thank Steffan Rohde and Don Marshall for pointing out an error in an
earlier version of this paper concerning the definition of flexible curves and for
suggesting the correct alternative.

Now we proceed with the proof of Theorem 3. We start with the “easy”
direction:

Lemma 24. Suppose h is a conformal welding homeomorphism associated
to a flexible curve. Then there is a set E ⊂ T such that both E and h(T \ E)
have zero logarithmic capacity.

Proof. Suppose n is large and let Γn = ∂W where W = [−1, n2]× [−1, 1].
Since h corresponds to a flexible curve, there is a curve corresponding to h

which lies within Hausdorff distance 1/4 of Γ. Let f : D → Ω be a conformal
map onto the bounded complementary component of Γ with f(0) = 0. Let
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E = f−1({x + iy ∈ Γ : x < n}). Then both E and h(T \ E) have small
logarithmic capacity by Lemma 17, depending only on n. Taking n → ∞ and
applying Lemma 11, we are done.

Next we prove the opposite direction. Although stated slightly differently,
the following implies the rest of Theorem 3.

Theorem 25. Suppose h is an orientation-preserving homeomorphism
and that there is a Borel set E such that both E and h(T \ E) have zero
logarithmic capacity. Suppose there are two conformal maps F : D → Ω and
G : D

∗ → Ω∗ onto disjoint domains such that ∞ ∈ G(D∗). Then for any r < 1
and any η > 0, there are conformal maps f and g of D and D

∗ onto the two
complementary components of a Jordan curve Γ such that h = g−1 ◦ f on T,
|f(z) − F (z)| ≤ η for all |z| ≤ r and |g(z) − G(z)| ≤ η for all |z| ≥ 1/r.

Before giving the proof, we first describe in more detail how this implies
Theorem 3. Suppose h is log singular. We have to show h is the conformal
welding of some curve γ and that given a closed Jordan curve γ′ there is a
homeomorphism of the sphere conformal off γ which maps γ to within ε of γ′

and which also maps any two prescribed points (one on either side of γ) to any
given points on either side of γ′.

Theorem 25 applied to any two suitable maps F and G (say the identity
maps) gives that h is a conformal welding corresponding to some curve γ.
Suppose f1 and g1 are conformal maps onto the two sides of γ which give
h = g−1

1 ◦ f1. Suppose z1 and z2 are the given points on either side of γ, and
w1, w2 are the two points on either side of γ′. Fix some ε > 0.

We will apply Theorem 25 when F and G are conformal maps of D and D
∗

onto the two sides of γ′ which map x1 = f−1
1 (z1) to w1 and x2 = g−1

1 (z2) to w2.
Since F and G map onto Jordan domains we can choose r < 1 close enough
to 1 so that F (D(0, 1)) \F (D(0, r)) is contained in an ε/4 neighborhood of γ′,
similarly for G. Also assume r is so close to 1 that |x1| < r and |x2| > 1/r.

Then from Theorem 25 we get maps f and g which map onto two sides of
a Jordan curve γ′′ and so that f and g approximate F and G to within ε/C

for |z| < r and |z| > 1/r respectively, where we choose

C = max(4, 8(diam(γ′) + 1)|w1 − w2|−1).

Since f and g approximate F and G to within ε/4 for |z| < r and |z| > 1/r

respectively, γ′′ must lie in an ε/2 neighborhood of γ′ (otherwise either f maps
a point of |z| = r outside this neighborhood or g maps a point of |z| = 1/r

outside it; in either case this contradicts our assumptions).
Moreover, f and g map the special points x1 and x2 to within ε|w1 −

w2|/(8 + 8diam(γ′) of the desired image points w1 and w2. Thus there is a
Euclidean similarity which maps f(x1) and g(x2) to w1 and w2 respectively,



CONFORMAL WELDING AND KOEBE’S THEOREM 641

while moving points on the curve γ′′ by less than ε/2. Thus by composing f

and g with this similarity, we may assume f ◦f−1
1 and g ◦ g−1

1 define conformal
maps from the two sides of γ to the two sides of a curve γ′′′ and they extend to
a homeomorphism of the sphere since the maps agree on γ (since both γ and
γ′′′ correspond to h). Furthermore, γ′′′ approximates γ′ to within ε and the
given points z1, z2 map to the given points w1, w2. Thus γ is a flexible curve.
This proves the remaining half of Theorem 3.

Proof of Theorem 25. It actually suffices to construct f and g which
are quasiconformal with constant arbitrarily close to 1; we can then solve the
Beltrami equation to obtain conformal maps which give the same welding and
which are uniformly close to the quasiconformal maps (depending only on the
size of the QC constant).

We will build f and g by an inductive construction: at the nth step we
will have Kn-quasiconformal maps fn : D → Ωn and g : D → Ω∗

n onto smooth
Jordan domains with disjoint closures. Given any ε0 > 0 we can choose the
quasi-constants to satisfy K0 = 1 and |Kn+1−Kn| ≤ ε02−n, which means that
the limiting maps will be (1 + Cε0)-quasiconformal.

The topological annulus An = S2 \(Ωn∪Ω∗
n) is foliated by a family hyper-

bolic geodesics Cn so that for each x ∈ T there is exactly one element γn(x) ∈ Cn

which connects the points fn(x) ∈ ∂Ωn and gn(h(x)) ∈ Ω∗
n. Moreover, we will

show the length � of γn will satisfy

�(γn(x)) ≤ 2
3
�(γn−1(x)).

Since obviously
|fn(x) − gn(h(x))| ≤ �(γn(x)),

this implies

|fn(x) − gn(h(x))| ≤ (
2
3
)nL,(7.1)

where L is the maximum length of any curve in C0. We will also show that for
all x

|fn(x) − fn−1(x)| ≤ (
2
3
)nL,(7.2)

|gn(x) − gn−1(x)| ≤ (
2
3
)nL.(7.3)

Moreover, for any sequence δ0 > δ1 > δ2 > · · · → 0, we can choose our initial
maps so that

|F (x) − f0(x)| ≤ δ0, |z| ≤ 1 − δ0,(7.4)

|G(x) − g0(x)| ≤ δ0, |z| ≥ 1 + δ0.(7.5)
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|fn−1(x) − fn(x)| ≤ δn, |z| ≤ 1 − δn, n = 1, 2, . . . ,(7.6)

|gn−1(x) − gn(x)| ≤ δn, |z| ≥ 1 + δn, n = 1, 2, . . . .(7.7)

First suppose we can construct sequences with these estimates. Then by
the Weierstrass M -test, (7.2) and (7.3) imply fn and gn converge on D and
D∗ respectively to continuous functions f and g which map D and D

∗ onto
disjoint domains with locally connected boundaries. Equation (7.1) implies
f(x) = g ◦ h(x) for all x ∈ T, which implies f and g are both one-to-one on T

and hence these are maps onto two sides of a Jordan curve. Finally, equations
(7.4) to (7.7) imply that f and g can be taken to approximate F and G as
closely as we want on compact sets, as desired. Thus it suffices to build the
sequences as described.

To begin the induction, suppose t < 1 and let f0(z) = F (tz) and g0(z) =
G(z/t). Choose t so close to 1 that equations (7.4) and (7.5) are satisfied. We
let Ω0 = f0(D), Ω∗

0 = g0(D∗) and A0 = S2 \ (Ω0 ∪Ω∗
0). Let C0 be the collection

of hyperbolic geodesics connecting points f0(x) ∈ ∂Ω0 to g0(h(x)) ∈ ∂Ω∗
0 in

A0. Since A0 has analytic boundary, these curves have length bounded by
some L < ∞. This completes the initial step of the induction.

Now suppose we have verified the induction hypotheses up to step n. We
describe the construction of fn+1. We will not give the details for gn+1, but
the construction is similar, with only typographical changes (i.e., replace fn

by gn, Ω by Ω∗, E by F = h(T \ E), . . . ).
We are going to build fn+1 as a composition of two maps, Φ and Ψ. The

first map Φ will be a conformal map from D to a simply connected domain W

which roughly looks like a disk with large radius R with finitely many radial
slits, many of which connect the boundary of the disk to the circle of radius
1. See Figure 10. Moreover, we may choose Φ so that on compact subsets of
the disk it is as close to the identity as we wish and so that Φ maps a given
set E of zero capacity close to the circle of radius R. The second map, Ψ,
is a quasiconformal extension (with constant close to 1) of fn from D to a
domain V containing W (in fact, V will equal W with some of its radial slits
added back in). The image D = Ψ(V ) is a domain containing Ωn = fn(D)
and contained in a larger smooth domain Ω̃n and consists of Ω̃n minus a finite
number of smooth slits (which are all subarcs of arcs from our collection γn).
Then fn+1 = Ψ ◦ Φ is quasiconformal with a small constant, is close to fn on
compact subsets of the disk, and is closer to g ◦ h on the set E. See Figure 10.

Construction of Φ. The mapping Φ will be of the form exp(U + iŨ)
where U(z) = G(z) + G(1/z̄) and G is the potential of a measure supported
on some set E ⊂ T. The map is similar to the one in Proposition 9.15 of
Pommerenke’s book [39], where the measure is taken to be equilibrium measure
for E. However, for technical reasons it will be easier for us to take a slightly
different measure here, namely a sum of equilibrium measures for pieces of E.
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f Ψ

Φ

n

fn+1

Figure 10: The maps Φ and Ψ

Suppose N is a large integer (to be chosen later) and divide T into N

equilength intervals {Ik}. Given any small ε1 > 0 we can, by hypothesis,
choose a set E ⊂ T which is a finite union of intervals, so that cap(Ek) =
cap(Ik ∩ E) < ε1 and cap(Fk) = cap(h(Ik \ E)) < ε1. By taking ε1 small
enough we can make the Robin constant of Ek as large as we wish, say ≥ A

(A will be chosen later with A � N). By enlarging Ek in each Ik, if necessary,
we can make the Robin constant of Ek equal to A. Similarly we may assume
the Robin constant of Fk is A.

Put the equilibrium measure μk of mass 1/N on each Ek and let μ =∑
k μk. Now consider the potential

G(z) =
∫

log
1

|x − z|dμ(x) =
∑

k

Gk(x) =
∑

k

∫
log

1
|x − z|dμk(x).(7.8)

By standard potential theory NGk(z) − A is the Green’s function for Ωk =
S2 \Ek with pole at ∞ (and hence is zero on Ek). Thus Gk(x) = A/N on Ek.

Lemma 26. G is continuous on R
2 and harmonic on R

2 \ E and

(1) G(z) → log |z|−1 for |z| > 1 and G(z) → 0 for |z| < 1 as N → ∞.

(2) For any δ > 0 and any interval I, |{x ∈ I : |G(x)| > δ}|/|I| → 0 as
N → ∞.

The rate of convergence is independent of A, if A is large enough.

Proof. That G is continuous and harmonic off E are standard results.
Condition (1) holds since μ clearly converges weakly to normalized Lebesgue
measure on T and

∫
log |z − x|−1dx = 0 if |z| ≤ 1 and = log |z|−1 if |z| > 1.
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To prove (2), fix x ∈ T and assume the N intervals in the definition of
μ are relabeled so that x ∈ I0, so that I1, I2 are adjacent to I0 and so that
dist(Ik, x) � k/N for k = 3, . . . , N − 1. Let I = I0 ∪ I1 ∪ I2. Then

G(x) =
∫

I
log

1
|z − x|dμ(z) +

∑
k>2

∫
Ik

log
1

|z − x|dμ(z)

= H1(x) + H2(x).

Note that H1 > 0 on I if N ≥ 12. If we integrate H1 over I and apply Fubini’s
theorem, then ∫

I
H1dx≤

∫
I
log

1
|z − x|dμ(z)|dx|

≤μ(I) max
z∈I

∫
I
log

1
|z − x| |dx|

≤C
log N

N2
.

Thus by Tchebyshev’s inequality

|{x ∈ I : H1(x) ≥ λ

2
log N

N
}| ≤ C

|I|
λ

= C
1

Nλ
.

To estimate H2, note that for k > 2, the variation of log |z − x|−1 over Ik

is at most C/k. Thus

|H2(x)| ≤ |
∑
k>2

∫
Ik

log
1

|z − x|(dμ(z) − |dz|
2π

)| + |
∑
k>2

∫
Ik

log
1

|z − x|
|dz|
2π

|

≤
∑
k>2

2
k

N
+

∫
I
log

1
|z − x|

|dz|
2π

≤ C
log N

N
,

where we have also used the fact that
∫

T
log |z − x|−1|dz| = 0 for x ∈ T. Thus

for λ = 2δN/ log N ,

|{x ∈ I0 : G(x) ≥ δ}| ≤ C|I| log N

δN
,

which implies the second conclusion.

Also note that these estimates also prove that for x ∈ E,

G(x) ≥ A

N
− O(

log N

N
).(7.9)

Now symmetrize G by setting U(z) = G(z) + G(z/|z|2). Then U is har-
monic on Ω, equal to 2G(x) on E and has negative logarithmic poles at 0 and
∞. Since U is symmetric with respect to T it has normal derivative zero on
T \ E.
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Lemma 27. We can choose a (multi-valued) harmonic conjugate Ũ of
U on D so that exp(iŨ(x)) → x uniformly as N → ∞ (with an estimate
independent of A).

Proof. Since U is symmetric with respect to T, it has normal derivative
zero on T \ E, and hence Ũ is constant on each component of T \ E. On each
component I of E, we have∫

I

dŨ

dθ
dθ =

∫
I

dU

dn
dθ =

1
2

∫
I
ΔUdθ =

∫
I
ΔGdθ = 2πμ(I).

Because of our choice of μ, we see that we can choose Ũ so that exp(iŨ(x)) = x

at N equidistributed points around the circle. Since Ũ is monotonic, this
implies the desired result.

Note that ϕ(z) = exp(U(z) + iŨ(z)), is a conformal map of the disk
onto a region W which is a Jordan region W̃ with a finite number of radial
slits removed. By (7.9) W̃ contains the disk D(0, exp((2A/N) − 1)) if N is
large enough and W contains the disk D(0, 1 − C log N/N) for some C <

∞. On the other hand, every interval of length 1/N must contain a point x

where U(x) < C log N/N and hence every such interval contains a point where
|ϕ(x)| ≤ 1 + C(log N)/N . (If we had taken μ to be the equilibrium measure
for all of E then the domain W would be a disk with radial slits. On the
other hand, Lemmas 26 and 27 would have been harder to prove. This is the
technical reason mentioned above for choosing μ as we did.)

Now suppose M is a large integer and δ > 0 is a small real number. If A

and N are large enough we can choose a collection of M critical points {xk}
of G on T so that

|xk − exp(2πi/M)| ≤ δ,

and such that
1 − δ ≤ ϕ(xk) ≤ 1 + δ,

for all k = 1, . . . , M . Finally let Φ = ϕ/(1 + δ).

Construction of Ψ. Let Wk be the interior of the closure of the part
of W = Φ(D) separated from 0 by the arc of the circle T between the angles
corresponding to xk and xk+1. Then Wk can be conformally mapped to the
1 by Rk rectangle {x + iy : 0 < y < 1, 0 < x < Rk} with xk and xk+1 going
to the vertices 0 and i respectively and the radial sides of Wk corresponding
to xk and xk+1 going to the horizontal sides of the rectangle. Moreover, given
any large enough R, by (7.9) we can take Rk ≥ R for all k if δ is small enough
and A, N are large enough.

Next recall that the annulus An = S2 \ (Ωn ∪Ω∗
n) is foliated by a family of

hyperbolic geodesics Cn. For each curve γ ∈ Cn let x denote the midpoint (with
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respect to arclength measure). Since Cn is a smooth foliation, the set of such
points is a smooth curve Γn which separates the two boundary components
of An. Given a pair of points x1, x2 ∈ T, we form a topological quadrilateral
Q(x1, x2) whose four sides are:

(1) the arc on ∂Ωn from fn(x1) to fn(x2),

(2) the subarc of γn(x2) joining fn(x2) to a point y2 ∈ Γn,

(4) the arc of Γn from y2 to y1 (the intersection of Γn and γ(x1)),

(3) the arc of γn(x1) joining y1 to fn(x1).

See Figure 11.

f 

y2

y1
Q

x    1( )
f x  2( )

Figure 11: Defining the quadrilateral Q(x1, x2)

We will assume x1 and x2 are so close together that several conditions
hold. First, near ∂Ωn, the quadrilateral is a 1 + 2−nε0 quasiconformal image
of a rectangle (this uses the fact that our arcs are geodesics and hence are
smooth and perpendicular to the boundary). Second, given a fixed η, we can
assume x1 and x2 are so close together that the side of Q(x1, x2) along Γn has
length ≤ η. Moreover, Q(x1, x2) can be conformally mapped to a rectangle
{x + iy : 0 < x < T, 0 < y < 1} with corners going to corners. The value
T = T (x1, x2) depends continuously on the choice of x1, x2 and tends to ∞ as
|x1−x2| → 0. We can define a similar function T ∗(x1, x2) but for quadrilaterials
with vertices g(x1), g(x2) ∈ ∂Ω∗ and y1, y2 ∈ Γn. For each δ > 0 we let

T (δ) = max{T (x1, x2) + T ∗(h(x1), h(x2)) : |x1 − x2| ≥ δ}.(7.10)

Make A compared to N that Rk > T (1/2M) for every k, where T is as given
in (7.10).

Since Rk ≥ Tk = T (xk, xk+1), we can map our 1 × Rk rectangle into our
1 × Tk rectangle with the “left” side mapping bijectively to the left side and
the “right” side mapping into (but not necessarily onto) the right side. Now
map it to the quadrilateral Qk by a conformal map. This gives us a conformal
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map of our kth “radial sector” Dk to our kth quadrilateral Qk. By making
the map quasiconformal with constant 1 + 2−nε0 we can glue it to the map
f : D → Ωn so that every point of E is mapped into the curve Γn; indeed, it is
mapped to within η of the point where γ(x) crosses Γn. This defines the map
Ψ.

Now, repeating the whole argument for Ω∗ and we get a (1+2−nε0)-quasi-
conformal map gn+1 on the unit disk which maps each point of h(T \ E) to
within η of the point where γ(x) crosses Γn. Thus for every x ∈ T, fn+1(x)
and gn+1(x) can now be joined by a curve of length ≤ �(γn(x))/2 + Cε in
S2 \ (fn+1(D) ∪ gn+1(D)). This is still true if we replace fn+1 and gn+1 by
fn+1(tz) and gn+1(z/t) with t < 1 close enough to 1, and then our maps are
onto smooth, disjoint Jordan domains. We let Ωn+1 = fn+1(tD) and Ω∗

n+1 =
gn+1(D∗/t). Finally, join fn+1(tx) to gn+1(h(x)/t) by the hyperbolic geodesic
in An+1 = S2 \ (Ωn+1 ∪ Ω∗

n+1). To see that this geodesic also has length
≤ �(γn(x))/2 + Cε, we apply the following lemma.

Lemma 28. Suppose Γ is a smooth closed Jordan curve and Ω, Ω∗ are
simply connected domains obtained from the complementary components of Γ
by removing a finite number of smooth, disjoint arcs {γk} each disjoint from
Γ except for one endpoint on Γ. Let f : D → Ω and g : D

∗ → Ω∗ be conformal
maps and let At = S2 \ (f(tD) ∪ g(1

t D
∗). Then for any ε > 0 there is a t < 1

so that the hyperbolic geodesic in At connecting the boundary points f(tx) and
g(y/t) has length at most L(x, y)+ε, where L(x, y) is the length of the shortest
path connecting f(x) and g(y) in X = ∂Ω ∪ ∂Ω∗.

Proof. If t is close enough to 1, then locally At looks like a strip, except at
the finitely many tips of the arcs γk and at the finitely many points where they
intersect Γ. See Figure 12. Suppose there are M such tips and intersection
points and cover each by an ε/(2M) disk. If γ is a geodesic in At, then inside
these disks we can estimate its length by the Gehring-Hayman inequality (see
proof of Lemma 14) to be less than Cε/M . Away from these points, At locally
looks like a strip and normal families imply the Euclidean length of γ is close
to the corresponding length on X.

Also note that the argument above shows that as t → 1, the geodesic from
f(x) to g(h(x)) in At converges (in the Hausdorff metric) to the path in X

between these points. This observation will be used in the proof of the next
lemma.

This completes the proof of the induction step and hence completes the
proof of Theorem 25 (and hence Theorem 3).

In the next section we will need a slightly stronger version of Theorem 25,
which follows from the proof we have already given. It says that if F and G
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Figure 12: Γ and At in Lemma 28

map onto smooth Jordan domains then the maps f and g are in some sense
uniform approximations to F and G, if we quotient out by the arcs γ(x).

Lemma 29. Suppose that F and G in Theorem 25 map onto smooth do-
mains Ω, Ω∗ with disjoint closures and that γ(x) is the hyperbolic geodesic in
S2 \ Ω ∪ Ω∗ which connects F (x) to G(h(x)). Then for any η > 0, choose the
map f in Theorem 25 so that for z ∈ D, and x = z/|z| ∈ T,

dist(f(z), F (z) ∪ γ(x)) ≤ η.(7.11)

Also, choose g so that for z ∈ D∗, and x = z/|z| ∈ T

dist(g(z)), G(z) ∪ γ(h−1(x)) ≤ η.

Proof. Given the function F , we will show that the first approximation
f1 = Ψ ◦ Φ, constructed in the proof of Theorem 25, satisfies the desired
estimates. We will then iterate the argument to obtained the desired result.
The argument for g is similar, so we will not give it here.

By compactness, given η > 0 we can find 0 < ρ < η so that if γ(y) contains
a point within ρ of γ(x) then γ(y) is itself contained in an (η/4)-neighborhood
of γ(x).

Given the map F and ρ > 0, we can choose s > 0 so small that |z −
w| < s implies |F (z) − F (w)| < ρ/4 for all z, w ∈ D. By taking s smaller, if
necessary, we can also assume that x, y ∈ T, |x − y| ≤ s implies γ(y) lies in a
ρ-neighborhood of γ(x). Thus if the points {xk} in the definition of Φ are
chosen to be less than s/4 apart, then any of our regions Wk which intersect the
interval of length s/2 centered at x must map under Ψ into a ρ-neighborhood
of γ(x).

By Lemmas 26 and 27, given any s > 0, we can choose Φ as close to
the identity on D(0, 1 − s) as we wish. In particular, we may assume that
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|z| ≤ 1 − s/2 implies |Φ(z) − z| ≤ s/4. Thus |f1(z) − z| ≤ ρ/4 < η for such
points.

This choice also implies that |Φ(z)| > 1 − s for |z| > 1 − s/2. By Lemma
27, we can choose Φ so that arg(z) and arg(Φ(z)) are as close as we wish.
Thus if |z| > 1 − s/2, then z is either mapped to within s of itself, or is
mapped into one of the domains Wk whose boundary comes within s/4 of x.
In either case, Ψ◦Φ maps z to within ρ of γ(x). Thus we can take the function
f1 = Ψ ◦ Φ in the first step of our iteration to satisfy (7.11) with any ρ > 0
we wish. Thus, by our choice of ρ, f1(x) and g1(x) can be joined by a path
in S2 \ (Ω ∪Ω∗) consisting of arcs of our foliation and an arc of Γ1 which stay
within an (η/4)-neighborhood of γ(x).

As noted following the previous lemma, this implies that the geodesic
γ1(x) between f(tx) and g(h(x)/t) in At also lies in an η/2-neighborhood of
γ(x) if t is close enough to 1.

At the next step, we approximate f1 by a function f2 so that for every z

either |f1(z)−f2(z)| ≤ η/4 or f2(z) lies within an η/4-neighborhood of geodesic
γ2(x), x = z/|z|. Thus f2(z) is either within η/2 + η/4 of F (z) or is inside
an η/2 + η/4 neighborhood of the curve γ(x). Continuing by induction, we
see that the nth step approximation fn can be taken to satisfy (7.11) with
constant (η/2)(1 + · · · + 2−n) < η. Thus the limiting function satisfies (7.11)
with constant η, as desired.

8. Every homeomorphism is almost a welding: Proof of Theorem 1

Suppose h is an orientation-preserving homeomorphism of the circle and
ε > 0. In this section we will prove that there is a set E with |E|+ |h(E)| < ε

and a conformal welding homeomorphism H so that h(x) = H(x) for all x ∈
T \ E.

If h satisfies the hypothesis of Theorem 3, then h is a conformal welding
and there is nothing to do. So assume otherwise and apply Theorem 2 to
get conformal maps F : D → Ω and G : D

∗ → Ω∗ such that F = G ◦ h on
T \ (Ẽ1 ∪ Ẽ2) where cap(Ẽ1) = cap(h(Ẽ2)) = 0.

Choose a set E1 of zero logarithmic capacity so that

|h(E1)| = sup{|h(E)| : cap(E) = 0}.

We can do this since we can take E to a countable union of zero capacity sets
such that |h(E)| approaches the supremum. Since Ẽ1 has zero capacity we
may add it to E1 and hence assume E1 contains Ẽ1. Similarly, we can choose
a set E2, containing Ẽ2, so that cap(h(E2)) = 0 and

|E2| = sup{|E| : cap(h(E)) = 0}.

Next we need a simple lemma.
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Lemma 30. Suppose h : T → T is a homeomorphism and that K ⊂ T has
the property that E ⊂ K, cap(E) = 0 implies |h(E)| = 0. Then for any ε > 0
there is a δ > 0 so that E ⊂ K and cap(E) < δ implies |h(E)| < ε.

Proof. If this did not hold, then one could takes sets En such that
cap(En) ≤ 2−n, but so that |h(En)| ≥ ε. But then F = ∩n ∪k>n Ek would be
a set of zero capacity, such that |h(F )| ≥ ε. This is a contradiction, proving
the lemma.

Fix an ε > 0. Let F, G and E1, E2 be as above. Apply the previous
lemma to the set T\E1 and the map h to choose a δ so small that E ∩E1 = ∅,
cap(E) < δ implies |h(E)| < ε/32. Applying the lemma to the map h−1 on
the set T \h(E2), we may also assume that E ∩h(E2) = ∅, cap(E) < δ implies
|h−1(E)| < ε/32. By Lemma 18, we can choose open sets U1 and U2 with
capacity ≤ δ so that F is continuous on WT\U1

and G is continuous on W ∗
T\U2

.
By Lemma 30 and choosing δ small enough we may assume

|U1| + |U2| + |h(U1 \ E1)| + |h−1(U2 \ E2)| ≤ ε/32.

Now choose a compact set K ⊂ T \ (E1 ∪ E2 ∪ U1 ∪ h−1(U2)), so that

|K| ≥ 1 − |E2| − ε/16,

|h(K)| ≥ 1 − |h(E1)| − ε/16.

By definition F extends continuously to WK , G extends continuously to W ∗
h(K)

and they satisfy F = G ◦ h on K. On WK and W ∗
h(K) we will leave F and G

alone. On the complementary components we will replace them by approxi-
mations which satisfy the welding relation on a large subset of E1 ∪ E2.

Choose a compact set F1 ⊂ E1 so that |h(F1)| ≥ |h(E1)| − ε/32, and a
compact set F2 ⊂ E2 so that |F2| ≥ |E2| − ε/32. Let F3 = F1 ∪ F2. Thus

|K ∪ F3| ≥ 1 − ε/4, |h(K ∪ F3)| ≥ 1 − ε/4.(8.1)

Let ϕ1 : D → WK and ϕ2 : D
∗ → W ∗

h(K) be the 2-quasiconformal maps
described in Section 2. Assume we have replaced F and G by the maps F ◦ϕ1

and G by G ◦ ϕ2. Then F and G map onto disjoint Jordan domains Ω and
Ω∗, such that K = F−1(∂Ω ∩ ∂Ω∗) is nonempty. Suppose U is a component
of S2 \Ω ∪ Ω∗. Then, as in Section 6, U is bounded by two analytic arcs with
common endpoints a, b. Let I = F−1(∂U) and choose two disjoint, closed,
subintervals I1, I2 ⊂ I, each containing one endpoint of I so that

|I1| + |I2| + |h(I1)| + |h(I2)| ≤ |I|ε/4.

Let J = I \ (I1 ∪ I2). Let CI ⊂ D be the region bounded by I and the circular
arc with the same endpoints as I which makes angle π/4 with I. Let CJ be
the corresponding region for J . Let

S = (CI \ CJ) ∩ D(t),
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Figure 13: The regions above I

where D(t) = {z : 1 − |z| ≥ t}, and t = min(|I1|, |I2|). See Figure 13.
We claim that we can find a log-singular homeomorphism h̃ of T such that

h̃ = h on F3. To prove this, note that h is log-singular on F3 and then apply
Remark 9 to each of the complementary intervals of F3, and make it agree with
h at the endpoints. Let f and g be approximations to F and G which satisfy
f = g ◦ h̃. If we take f close enough to F on the compact set S, then we can
find a 2-quasiconformal map of S which agrees with F on ∂S ∩ ∂CI and which
agrees with f on ∂S ∩ ∂CJ .

Next we claim that we can choose f so that f(CJ) ⊂ V = int(F (CI)∪U).
To prove this, note that

Y = F (CI) ∪ ∪x∈Jγ(x),

is a compact subset of V and hence is at a positive distance η from ∂V . By
Lemma 29 we can take f(CJ) to lie within η/2 of the set Y . Hence, f(CJ) is
a subset of V as desired. The same argument shows that we can choose g so
that g(C∗(h(J))) is in G(C∗

h(I) ∪ U . Moreover, if

S∗ = (C∗
h(I) \ C∗

h(J)) ∩ D∗(t),

where D(t) = {z : |z|−1 ≥ t}, and t = min(|h(I1)|, |h(I2)|), then we can choose
a 2-quasiconformal map of S∗ which agrees with G on ∂S ∩ ∂C∗

h(I) and agrees
with g on ∂S ∩ ∂C∗

h(J).
We now carry out the construction above for every component of

S2 \ Ω ∪ Ω∗. Let {Un} be an enumeration of these components, {In} the cor-
responding intervals on T and {Jn} the corresponding subintervals. Let W be
the interior of Wk ∪∪n(Sn∪CJn

). Clearly W can be mapped quasiconformally
(with a uniformly bounded constant) to the disk by a map which is the identity
on ∂W ∩ T. Similarly for the corresponding region W ∗ ⊂ D

∗. Moreover,

|T \ ∂W | =
∑

n

|In \ Jn| ≤ ε/4, |h(T \ ∂W )| ≤ ε/4.(8.2)

The construction above gives 2-quasiconformal maps f on W and g on
W ∗ onto disjoint Jordan domains so that g−1 ◦ f = h on K1 = K ∪ (F3 ∩∂W ).
By (8.1) and (8.2), K1 has Lebesgue measure ≥ 1− ε, as does its h image. By
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composing with the inverses of the uniformly quasiconformal maps described
in the previous paragraph, we get uniformly quasiconformal maps f on D and
g on D

∗ onto disjoint Jordan domains so that f = g◦h holds on K1. By solving
a Beltrami equation in the usual way we may assume f and g are conformal.
Now apply Theorem 8 and we have completed the proof of Theorem 1.

9. A generalized Koebe circle conjecture

Based on Theorem 5 it seems reasonable to state

Conjecture 1. Suppose h : T → T is any orientation-preserving home-
omorphism. Then h is a generalized conformal welding on T \E where E is a
countable set.

Given sequences {fn} and {gn} from Theorem 5, we want to pass to con-
vergent subsequences and show that the limiting functions f and g satisfy
f = g ◦ h except on a countable set. One problem is that conformal maps in
general can fail to have radial boundary values on a set of zero logarithmic
capacity; thus we must show that we can choose our sequences so that the lim-
iting maps have radial limits except on at most a countable set. Furthermore,
even if the limiting maps do have this property, we then have to improve the
argument in Section 5 to show f = g ◦h except on a countable set, rather than
a set of zero capacity.

Each of these steps will require some special choices of the sequences.
Given a log-singular h we can choose corresponding maps {fn}, {gn} which
converge uniformly on compacta to any conformal maps we want (as long as
the images are disjoint). In particular, the limits could fail to have radial limits
on an uncountable set. Similarly, we can choose the sequences to converge to
the identity, and then the desired equality fails on an uncountable set (even
though the limit maps have radial limits everywhere, indeed are continuous).
Of course, we already know such an h is a conformal welding everywhere (The-
orem 3), but these examples indicate some care needs to be taken in the general
case.

Another way to attack Conjecture 1 is to replace our use of Koebe’s the-
orem by a much stronger result. Koebe’s conjecture (also known as the Kreis-
normierungsproblem) states that any planar domain is conformally equivalent
to a circle domain, i.e., a domain whose complementary components are all
either points or disks. Also, recall from Remark 3 the theorem of R. L. Moore
which states that if we quotient R

2 by a upper semi-continuous decomposition
whose elements do not separate the plane, the resulting space is R

2 again. The
following can be considered a generalization of both Koebe’s conjecture and
Moore’s theorem (see Remark 3).

Conjecture 2 (Generalized Koebe conjecture). Every Moore decompo-
sition of R

2 is conformally equivalent to a Koebe decomposition.
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This contains Koebe’s Kreisnormierungsproblem as a special case, because
if Ω is connected then the decomposition of E = S2 \Ω into its connected com-
ponents is an upper semi-continuous decomposition (Theorem 24 of Moore’s
paper [33]).

To see how Conjecture 2 implies Conjecture 1, let A = {z : 1 ≤ |z| ≤ 2}.
Make a closed, upper semi-continuous decomposition of A whose elements are
curves connecting x and 2h(x). Extend this to a decomposition of S2 by taking
singletons off A. Applying the generalized Koebe conjecture, we see that all
but countably many of the curves in our decomposition are collapsed to points
(since there can only be countably many disjoint disks in the plane). Thus, f

restricted to the two complementary components of A gives the desired maps.
This is just the idea discussed in the introduction made more precise.

Conformal welding may also offer an approach to the usual version of the
Koebe conjecture. First suppose h is a generalized conformal welding on a
dense subset E of T and that f : D → Ω and g : D

∗ → Ω∗ are maps that
realize this welding. For any x ∈ T choose a sequence of intervals In = (an, bn)
containing x and such that the endpoints are in the set E. Let γI be the
hyperbolic geodesic with the same endpoints as I and let Wn be the Jordan
domain bounded by f(γIn

) ∪ g(γh(In)). Finally, define I(x) = ∩nWn. It is
easy to see this a compact, connected set which does not separate the plane
and does not depend on the particular choice of sequences. Moreover, for
x 	= y, I(x) ∩ I(y) = ∅. In fact, these sets form an upper semi-continuous
decomposition C of K = S2 \ (Ω ∪ Ω∗). Moreover, by modifying the proof
of Moore’s triod theorem [34], [37], one should be able to show that I(x) is
a singleton for all but countably many points of E. In particular, if h is a
generalized conformal welding on the circle minus a countable set, then I(x)
is a point except for countably many x’s.

Now suppose Ω is any domain containing infinity and let E denote its
complement. Then by removing a countable number of smooth arcs {γn} from
Ω we can divide it into two subdomains Ω1 and Ω2 so that the Riemann map-
pings f1, f2 onto these domains define a map h = f−1

2 ◦ f1 almost everywhere
on T which can be extended to a homeomorphism (also denoted by h). Then if
Conjecture 1 is true, we can write h = g−1 ◦f except on a countable set. Then
g ◦ f−1

2 and f ◦ f−1
1 are conformal maps on Ω1 and Ω2 which agree along the

smooth arcs {γn} and hence extend to a conformal map on all of Ω. Moreover,
the connected components of E must map into elements of our decomposi-
tion C from above and only countably many of these are not singletons. Thus
Conjecture 1 should imply

Conjecture 3. Any planar domain is conformally equivalent to one whose
complement has only countably many components which are not points.

Conjecture 3 is an obvious consequence of Koebe’s conjecture, and if true
would reduce Koebe’s conjecture to
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Conjecture 4. Suppose Ω = S2 \ E is a domain and at most countably
many components of E are not points. Then Ω is conformally equivalent to a
circle domain.

There is some hope that this special case can be proved since it looks
similar to the theorem of He and Schramm [23], that the desired conclusion
holds if E has at most countably many components (including points). In a
later paper [24] they also proved this is true if the accumulation set of the
nontrivial components is at most countable.
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