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Preface

The goal of this book is to introduce readers to various types of fractal sets that

rise naturally in dynamical and probabilistic settings that involve conformal

maps or conformal invariance. Such sets usually have some sort of approximate

self-similarity, but are not “self-similar” sets in the usual strict interpretation.

Instead, small pieces of the set can be blown up to unit size by maps that

are not similarities, but that are conformal or have bounded distortion is some

quantified sense. Although several well known examples date back well over

a century, there has been explosive growth in the study of such sets in recent

years.

Among the topics that we include in the “conformal fractal” category are

harmonic measure, analytic capacity, limit sets of Kleinian groups, Julia sets,

diffusion limited aggregation, percolation clusters and Schramm-Loewner evo-

lutions (SLE). In each case, we seek to give some basic definitions and results,

illustrated by examples, but avoid technicalities as far as possible. Each of these

topics could be (indeed, many have been) the sole subject of a lenghty book;

our goal is to provide an introduction to these topics, describe some of the re-

cent progress on them, and point the reader to more specialized treatments of

their favorite topics.

We have made an effort to keep the book self-contained. It is not a continu-

ation of our earlier book “Fractals in Probabilty and Analysis” and we do not

assume familarity with that text, although we will use it as a reference (among

others) to avoid repeating material covered there. The only prerequisite for

reading this book is measure theory and probability at the level acquired in a

first graduate course.
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Conformal maps and conformal invariants

This is a book about fractals that all have some sort of invariance under con-

formal maps. A fundamental tool for understanding such sets are conformal

invariants, i.e., numerical values that can be associated to a certain geometric

configurations and that remain unchanged (or at least change in predictable

ways) under the application of conformal or holomorphic maps. There are

three conformal invariants that will be particularly important through the book:

extremal length, harmonic measure and hyperbolic distance. Of these, extremal

length is the most important because it can be defined in many situations and

estimated by direct geometric arguments. The other two are defined on the disk

and then transferred to other domains by a conformal map. In this chapter, we

introduce extremal length, hyperboli distance and harmonic measure, and de-

rive a famous estimate for the latter, due to Arne Beurling, using the former. As

a reward for our efforts we will deduce a growth bound, due to Harry Kesten,

for diffusion limited aggregation (DLA), one of the most appealing, and most

challenging, conformal fractals.

1.1 Extremal length

Our first conformal invariant is extremal length. Consider a positive function

ρ on a domain Ω. We think of ρ as analogous to | f ′| where f is a conformal

map on Ω. Just as the image area of a set E can be computed by integrating∫
E | f ′|2dxdy, we can use ρ to define areas by

∫
E ρ2dxdy. Similarly, just as

we can define ℓ( f (γ)) =
∫

γ | f ′(z)|ds, we can define the ρ-length of a curve γ

by
∫

γ ρds. For this to make sense, we need γ to be locally rectifiable (so the

arclength measure ds is defined) and it is convenient to assume that ρ is Borel

(so that its restriction to any curve γ is also Borel and hence measurable for

length measure on γ).

1



2 Conformal maps and conformal invariants

Suppose Γ is a family of locally rectifiable paths in a planar domain Ω and

ρ is a non-negative Borel function on Ω. We say ρ is admissible for Γ if

ℓ(Γ) = ℓρ(Γ) = inf
γ∈Γ

∫

γ
ρds ≥ 1.

In this case we write ρ ∈ A (Γ). We define the modulus of the path family Γ

as

Mod(Γ) = inf
ρ

∫

M
ρ2dxdy,

where the infimum is over all admissible ρ for Γ. The extremal length of Γ is

defined as

λ (Γ) = 1/M(Γ).

Note that if the path family Γ is contained in a domain Ω, then we need

only consider metrics ρ are zero outside Ω. Otherwise, we can define a new

(smaller) metric by setting ρ = 0 outside Ω; the new metric is still admissible,

and a smaller integral than before. Therefore M(Γ) can be computed as the

infimum over metrics which are only nonzero inside Ω.

Modulus and extremal length satisfy several useful properties that we list as

a series of lemmas.

Lemma 1.1.1 (Conformal invariance) If Γ is a family of curves in a domain

Ω and f is a one-to-one holomorphic mapping from Ω to Ω′ then M(Γ) =

M( f (Γ)).

Proof This is just the change of variables formulas
∫

γ
ρ ◦ f | f ′|ds =

∫

f (γ)
ρds,

∫

Ω
(ρ ◦ f )2| f ′|2dxdy =

∫

f (Ω)
ρdxdy.

These imply that if ρ ∈ A ( f (Γ)) then | f ′| · ρ ◦ f ∈ A ( f (Γ)), and thus by

taking the infimum over such metrics we get M( f (Γ))≤ M(Γ) Note that there

might be admissible metrics for f (Γ) that are not of this form, possibly giving

a strictly small modulus. However, by switching the roles of Ω and Ω′ and

replacing f by f−1 we see equality does indeed hold.

Lemma 1.1.2 (Monotonicity) If Γ0 and Γ1 are path families such that every

γ ∈ Γ0 contains some curve in Γ1 then M(Γ0)≤ M(Γ1) and λ (Γ0)≥ λ (Γ1).

Proof The proof is immediate since A (Γ0)⊃ A (Γ1).
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Figure 1.1.1 The Monotone rule: each curve of the first family contains a curve

of the second family.

Lemma 1.1.3 (Grötsch Principle) If Γ0 and Γ1 are families of curves in dis-

joint domains then M(Γ0 ∪Γ1) = M(Γ0)+M(Γ1).

Proof Suppose ρ0 and ρ1 are admissible for Γ0 and Γ1. Take ρ = ρ0 and ρ =

ρ1 in their respective domains. Then it is easy to check that ρ is admissible for

Γ0 ∪Γ1 and, since the domains are disjoint,
∫

ρ2 =
∫

ρ2
1 +

∫
ρ2

2 . Thus M(Γ0 ∪
Γ1)≤ M(Γ0)+M(Γ1). By restricting an admissible metric ρ to each domain,

a similar argument proves the other direction.

The Grötsch principle and the monotonicity combine to give

Corollary 1.1.4 (Parallel Rule) Suppose Γ0 and Γ1 are path families in dis-

joint domains Ω0,Ω1 ⊂ Ω that connect disjoint sets E,F in ∂Ω. If Γ is the path

family connecting E and F in Ω, then

M(Γ)≥ M(Γ0)+M(Γ1).

Ω2

E

F

ΩΩ1

Figure 1.1.2 The Parallel Rule: curves connecting two boundary sets in the whole

domain and in two disjoint subdomains.
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Lemma 1.1.5 (Series Rule) If Γ0 and Γ1 are families of curves in disjoint

domains and every curve of F contains both a curve from both Γ0 and Γ1,

then λ (Γ)≥ λ (Γ0)+λ (Γ1).

Proof If ρ j ∈ A (Γ j) for j = 0,1, then ρt = (1− t)ρ0 + tρ1 is admissible for

Γ. Since the domains are disjoint we may assume ρ0ρ1 = 0. Integrating ρ2 then

shows

M(Γ)≤ (1− t)2M(Γ0)+ t2M(Γ1),

for each t. To find the optimal t set a = M(Γ1), b = M(Γ0), differentiate the

right hand side above, and set it equal to zero

2at −2b(1− t) = 0.

Solving gives t = b/(a+b) and plugging this in above gives

M(F )≤ t2a+(1− t2)b =
b2aa2b

(a+b)2

=
ab(a+b)

(a+b)2
=

ab

a+b
=

1
1
a
+ 1

b

or
1

M(Γ)
≥ 1

M(Γ0)
+

1

M(Γ1)
,

which, by definition, is the same as

λ (Γ)≥ λ (Γ0)+λ (Γ1).

Next we actually compute the modulus of some path families. The funda-

mental example is to compute the modulus of the path family connecting op-

posite sides of a a×b rectangle; this serves as the model of almost all modulus

estimates. So suppose R = [0,b]× [0,a] is a b wide and a high rectangle and Γ

consists of all rectifiable curves in R with one endpoint on each of the sides of

length a.

Lemma 1.1.6 Mod(Γ) = a/b.

Proof Then each such curve has length at least b, so if we let ρ be the constant

1/b function on R we have
∫

γ
ρds ≥ 1,

for all γ ∈ Γ. Thus this metric is admissible and so

Mod(Γ)≤
∫∫

T
ρ2dxdy =

1

b2
ab =

a

b
.



1.1 Extremal length 5

To prove a lower bound, we use the well known Cauchy-Schwarz inequality:

(
∫

f gdx)2 ≤ (
∫

f 2dx)(
∫

g2dx).

To apply this, suppose ρ is an admissible metric on R for γ . Every horizon-

tal segment in R connecting the two sides of length a is in Γ, so since γ is

admissible,
∫ b

0
ρ(x,y)dx ≥ 1,

and so by Cauchy-Schwarz

1 ≤
∫ b

0
(1 ·ρ(x,y))dx ≤

∫ b

0
12dx ·

∫ b

0
ρ2(x,y)dx.

Now integrate with respect to y to get

a =
∫ a

0
1dy ≤ b

∫ a

0

∫ b

0
ρ2(x,y)dxdy,

or
a

b
≤

∫∫

R
ρ2dxdy,

which implies Mod(Γ)≥ b
a
. Thus Mod(Γ) = b

a
.

Another useful computation is the modulus of the family of path connecting

the inner and out boundaries of the annulus A = {z : r < |z|< R}.

Lemma 1.1.7 If A = {z : r < |z| < R} then the modulus of the path family

connecting the two boundary components is 2π/ log R
r
. More generally, if Γ is

the family of paths connecting rT to a set E ⊂ RT, then M(Γ)≥ |E|/ log R
r
.

Proof By conformal invariance, we can rescale and assume r = 1. Suppose ρ

is admissible for Γ. Then for each z ∈ E ⊂ T,

1 ≤ (
∫ R

1
ρds)2 ≤ (

∫ R

1

ds

s
)(
∫ R

1
ρ2sds) = logR

∫ R

1
ρ2sds

and hence we get

∫ 2π

0

∫ R

1
ρ2sdsdθ ≥

∫

E

∫ R

1
ρ2sdsdθ ≥ |E|

∫ R

1
ρ2sds ≥ |E|

logR
.

When E = T we prove the other direction by taking ρ = (s logR)−1. This is

an admissible metric and

Mod(Γ)≤
∫ 2π

0

∫ R

1
ρ2sdsdθ =

2π

(logR)2

∫ R

1

1

s
ds =

2π

logR
.
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Given a Jordan domain Ω and two disjoint closed sets E,F ⊂ ∂Ω, the ex-

tremal distance between E and F (in Ω) is the extremal length of the path

family in Ω connecting E to F (paths in Ω that have one endpoint in E and

one endpoint in F). The series rule is a sort of “reverse triangle inequality” for

extremal distance. See Figure 1.1.3.

Ω1 Ω 2X Y Z

Figure 1.1.3 The series rule says that the extremal distance from X to Z in the

rectangle is greater than the sum the extremal distance from X to Y in Ω1 plus

the extremal distance from Y to Z in Ω2. The bottom figure show a more extreme

case where the extremal distance between opposite sides of the rectangle is much

larger than either of the other two terms.

Extremal distance can be particularly useful when both E and F are con-

nected. In this case, their complement in ∂Ω also consists of two arcs, and the

extremal distance between these is the reciprocal of the extremal distance be-

tween E and F . This holds because of conformal invariance, the fact that it is

true for rectangles and an applications of the Riemann mapping theorem (we

can always map Ω to a rectangle, so that E and F go to opposite sides (See

Exercise 1.1).

Obtaining an upper bound for the modulus of a path family usually involves

choosing a metric; every metric gives an upper bound. Giving a lower bound

usually involves a Cauchy-Schwarz type argument, which can be harder to

do in general cases. However, in the special case of extremal distance between

arcs E,F ⊂ ∂Ω, a lower bound for the modulus can also be computed by giving

a upper bound for the reciprocal separating family. Thus estimates of both

types can be given by producing metrics (for different families) and this is

often the easiest thing to do.



1.1 Extremal length 7

If γ is a path in the plane let γ̄ be its reflection across the real line and let

γu = γ ∩Hu, γℓ = γ ∩Hl , γ+ = γu ∪ γℓ,

where Hu = {x+ iy : y > 0}, Hl = {x+ iy : y < 0} denote the upper and lower

half-planes. For a path family Γ, define Γ = {γ̄ : γ ∈ Γ} and Γ+ = {γ+ : γ ∈ Γ}.

γ
γ+

Figure 1.1.4 The curves γ and γ+

Lemma 1.1.8 (Symmetry Rule) If Γ = Γ then M(Γ) = 2M(Γ+).

Proof We start by proving M(Γ)≤ 2M(Γ+). Given a metric ρ admissible for

γ+, define σ(z) = max(ρ(z),ρ(z̄)). Then for any γ ∈ Γ,

∫

γ
σds =

∫

γu

σ(z)ds+
∫

γℓ

σ(z)ds

≥
∫

γu

ρ(z)ds+
∫

γℓ

ρ(z̄)ds

=
∫

γu

ρ(z)ds+
∫

γℓ

ρ(z)ds

≥
∫

γ+
ρds

≥ inf
γ∈Γ

∫

γ
ρds.

Thus if ρ admissible for Γ+, then σ is admissible for Γ. Since max(a,b)2 ≤
a2 +b2, integrating gives

M(Γ)≤
∫

σ2dxdy ≤
∫

ρ2(z)dxdy+
∫

ρ2(z̄)dxdy ≤ 2

∫
ρ2(z)dxdy.
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Taking the infimum over admissible ρ’s for Γ+ makes the right hand side equal

to 2M(Γ+), proving Mod(Γ)≤ 2Mod(Γ+).

For the other direction, given ρ define σ(z) = ρ(z)+ ρ(z̄) for z ∈ Hu and

σ = 0 if z ∈Hl . Then
∫

γ+
σds =

∫

γ+
ρ(z)+ρ(z̄)ds

=
∫

γu

ρ(z)ds+
∫

γu

ρ(z̄)ds+
∫

γell
ρ(z)+

∫

γℓ

ρ(z̄)ds

=

∫

γ
ρ(z)ds+

∫

γ
ρ(z̄)ds

= 2inf
ρ

∫

γ
ρds.

Thus if ρ is admissible for Γ, 1
2
σ is admissible for Γ+. Since (a+b)2 ≤ 2(a2+

b2), we get

M(Γ+)≤
∫
(

1

2
σ)2dxdy

=
1

4

∫

Hu

(ρ(z)+ρ(z̄))2dxdy

≤ 1

2

∫

Hu

ρ2(z)dxdy+
∫

Hu

ρ2(z̄)dxdy

=
1

2

∫
ρ2dxdy.

Taking the infimum over all admissible ρ’s for Γ gives 1
2
M(Γ) on the right

hand side, proving the lemma.

Lemma 1.1.9 Let D∗ = {z : |z| > 1} and Ω0 = D
∗ \ [R,∞) for some R > 1.

Let Ω = D
∗ \K, where K is a closed, unbounded, connected set in D

∗ which

contains the point {R}. Let Γ0,Γ denote the path families in these domains

with separate the two boundary components. Then M(Γ0)≤ M(Γ).

Proof We use the symmetry principle we just proved. The family Γ0 is clearly

symmetric (i.e., Γ = Γ, so M(Γ+
0 ) =

1
2
M(Γ0). The family Γ may not be sym-

metric, but we can replace it by a larger family that is. Let ΓR be the collection

of rectifiable curves in D
∗ \{R} which have zero winding number around {R},

but non-zero winding number around 0. Clearly Γ⊂ΓR and ΓR is symmetric so

M(Γ)≥ M(ΓR) = 2M(Γ+
R ). Thus all we have to do is show M(Γ+

R ) = M(Γ+
0 ).

We will actually show Γ+
R = Γ+

0 . Since Γ0 ⊂ ΓR is obvious, we need only show

Γ+
R ⊂ Γ+

0 .

Suppose γ ∈ ΓR. Since γ has non-zero winding around 0 it must cross both
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Figure 1.1.5 The topological annulus on top has smaller modulus than any other

annulus formed by connecting R to ∞.

the negative and positive real axes. If it never crossed (0,R) then the winding

around 0 and R would be the same, which false, so γ must cross(0,R) as well.

Choose points z− ∈ γ ∩ (−∞,0) and z+ ∈ γ ∩ (0,R). These points divide γ into

two subarcs γ1 and γ2. Then γ+ = (γ1)+ ∪ (γ2)+. But if we reflect (γ2)+ into

the lower half-plane and join it to (γ1)+ it forms a closed curve γ0 that is in Γ0

and (γ0)+ = γ+. Thus γ+ ∈ (Γ0)+, as desired.

Let Ωε ,R = {z : |z| > ε} \ [R,∞). Note that Ω1,R is the domain considered

in the previous lemma (e.g., see the top of Figure 1.1.5). We can estimate the

moduli of these domains using the Koebe map

k(z) =
z

(1+ z)2
= z−2z2 +3z3 −4z4 +5z5 − . . . ,

which conformal maps the unit disk to R
2 \ [ 1

4
,∞) and satisfies k(0) = 0,

k′(0) = 1. Then k−1( 1
4R

z) maps Ωε ,R conformally to an annular domain in

the disk whose outer boundary is the unit circle and whose inner boundary is

trapped between the circle of radius ε
4R
(1±O( ε

R
)). Thus the modulus of Ωε ,R

is

2π log
4R

ε
+O(

ε

R
). (1.1.1)

Next we prove the Koebe 1
4
-theorem for conformal maps. The standard proof

of Koebe’s 1
4
-theorem uses Green’s theorem to estimate the power series coef-

ficients of conformal map (proving the Bieberbach conjecture for the second

coefficient). However here we will present a proof, due to Mateljevic [13], that

uses the symmetry property of extremal length.
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Theorem 1.1.10 (The Koebe 1
4

Theorem) Suppose f is holomorphic, 1-1 on

D and f (0) = 0, f ′(0) = 1. Then D(0, 1
4
)⊂ f (D).

Proof Recall that the modulus of a doubly connected domain is the mod-

ulus of the path family that separates the two boundary components (and is

equal to the extremal distance between the boundary components). Let R =

dist(0,∂ f (D)). Let Aε ,r = {z : ε < |z|< r} and note that by conformal invari-

ance

2π log
1

ε
= M(Aε ,1) = M( f (Aε ,1)).

Let δ = min|z|=ε | f (z)|. Since f ′(0) = 1, we have δ = ε +O(ε2). Note that

f (Aε ,1)⊂ f (D)\D(0,δ ), so

M( f (Aε ,1))≤ M( f (D)\D(0,δ )).

By Lemma 1.1.9 and Equation (1.1.1),

M( f (D)\D(0,δ ))≤ M(Ωδ ,R) = 2π log
4R

δ
+O(

δ

R
).

Putting these together gives

2π log
4R

δ
+O(

δ

R
)≥ 2π log

1

ε
,

or

log4R− log(ε +O(ε2))+O(
ε

R
)≥− logε ,

and hence

log4R ≥−O(
ε

R
)+ log(1+O(ε)).

Taking ε → 0 shows log4R ≥ 0, or R ≥ 1
4
.

1.2 Logarithmic capacity

Logarithmic capacity associates a non-negative number to each Borel subset of

the unit circle. Applying a Möbius transformation can change this value, so it

is not a conformal invariant, but it will act as an intermediate between extremal

and harmonic measure (a conformal invariant that will be defined later).

Suppose µ is a positive, finite Borel measure on C and define its potential

function as

Uµ(z) =

∫
log

2

|z−w|dµ(w),z ∈ C.
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and its energy integral by

I(µ) =
∫∫

log
2

|z−w|dµ(z)dµ(w) =
∫

Uµ(z)dµ(z).

We put the “2” in the numerator so that the integrand is non-negative when

z,w ∈ T, however, this is a non-standard usage.

Lemma 1.2.1 Uµ is lower semi-continuous, i.e.,

liminf
z→z0

Uµ(z)≥Uµ(z0).

Proof Fatou’s lemma.

Recall that µn → µ weak-* if
∫

f dµn →
∫

f dµ for every continuous function

f of compact support.

Lemma 1.2.2 If {µn} are positive measures and µn → µ weak*, then liminfn Uµn(z)≥
Uµ(z).

Proof If we replace ϕ = log 2
|z−w| by the continuous kernel ϕr = max(r,ϕ) in

the definition of U to get U r, then weak convergence implies

lim
n

U r
µn
(z)րU r

µ(z).

Moreover, the convergence is increasing since the measures positive. So for

any ε > 0 we can choose N so that n > N implies

U r
µn
(z)≥U r

µ(z)− ε .

As r → ∞ U r → U (by the monotone convergence theorem), so for r large

enough and n > N we have

Uµn(z)≥U r
µn
(z)≥Uµ(z)−2ε .

which proves the result.

Lemma 1.2.3 If µn → µ weak*, then liminfn I(µn)≥ I(µ).

Proof The proof is almost the same as for the previous lemma, except that we

have to know that if {µn} converges weak*, then so does the product measure

µn×µn. However, weak convergence of {µn} implies convergence of integrals

of the form ∫∫
f (x)g(y)dµn(x)dµn(y).

and Stone-Weierstrass theorem implies that the finite sums of such product

functions are dense in all continuous function on the product space. Since

weak-* convergent sequences are bounded, the product measures µn ×µn also
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have uniformly bounded masses, and hence convergence on a dense set of con-

tinuous functions of compact support implies convergence on all continuous

functions of compact support. This, together with the fact that weak* conver-

gent sequences are bounded ([? ]), implies that µn ×µn converges weak*.

Suppose E is Borel and µ is a positive measure that has its closed support

inside E. We say µ is admissible for E if Uµ ≤ 1 on E and we define the

logarithmic capacity of E as

cap(E) = sup{‖µ‖ : µ is admissible for E}

and we write µ ∈ A (E). We define the outer capacity (or exterior capacity)

as

cap∗(E) = inf{cap(V ) : E ⊂V,V open}.

We say that a set E is capacitable if cap(E) = cap∗(E).
The logarithmic kernel can be replaced by other functions, e.g., |z−w|−α ,

and there is a different capacity associated to each one. To be precise, we

should denote logarithmic capacity as caplog or logcap, but to simplify no-

tation we simply use “cap” and will often refer to logarithmic capacity as just

“capacity”. Since we do not use any other capacities in these notes, this abuse

should not cause confusion.

WARNING: The logarithmic capacity that we have defined is NOT the

same as is used in other texts such as Garnett and Marshall’s book [7], but

is related to what they call the Robin’s constant of E, denoted γ(E). The ex-

act relationship is γ(E) = 1
cap(E) − log2. Garnett and Marshall [7] define the

logarithmic capacity of E as exp(−γ(E)). The reason for doing this is that

the logarithmic kernel log 1
|z−w| takes both positive and negative values in the

plane, so the potential functions for general measures and the Robin’s constant

for general sets need not be non-negative. Exponentiating takes care of this.

Since we are only interested in computing the capacity of subsets of the circle,

taking the extra “2” in the logarithm gave us a non-negative kernel on the unit

circle, and we defined a corresponding capacity in the usual way. Since the

kernel is the logarithm, we feel justified in calling the corresponding capacity

the logarithmic capacity, despite the divergence with usual usage.

POSSIBLE ALTERNATES : Robin’s capacity, conformal capacity, circu-

lar capacity.

Lemma 1.2.4 Compact sets are capacitable.

Proof Since cap(E)≤ cap∗(E) is obvious, we only have to prove the opposite

direction. Set Un = {z : dist(z,E) < 1/n} and choose a measure µn supported
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in Un with ‖µn‖ ≥ cap(Un)−1/n. Let µ be a weak accumulation point of {µn}
and note

Uµ(z) =

∫
log

2

|z−w|dµ(w)≤
∫

log
2

|z−w|dµn(w)≤ 1

so µ is admissible in the definition of cap(E). Thus

cap(E)≥ limsup‖µn‖= limcap(Un) = limcap(Un) = cap∗(E).

It is also true that all Borel sets are capacitable. Indeed, this holds for all an-

alytic sets (i.e., continuous images of complete separable topological spaces).

See Appendix B of [2].

It is clear from the definitions that logarithmic capacity is monotone

E ⊂ F ⇒ cap(E)≤ cap(F). (1.2.1)

and satisfies the regularity condition

cap(E) = sup{cap(K) : K ⊂ E,Kcompact}. (1.2.2)

Lemma 1.2.5 (Sub-additive) For any sets {En},

cap(∪En)≤ ∑cap(En). (1.2.3)

Proof We can write any µ = ∑ µn as a sum of mutually singular measures so

that µn gives full mass to En. We can then restrict each µn to a compact subset

Kn of En so that µn(Kn)≥ (1− ε)µ(En). These restrictions are admissible for

each En and hence

∑cap(En)≥ ∑µn(Kn)≥ (1− ε)∑µn(En) = (1− ε)‖µ‖.

Taking ε → 0 proves the result.

Corollary 1.2.6 A countable union of zero capacity sets has zero capacity.

Corollary 1.2.7 Outer capacity is also sub-additive.

Proof Given sets {En} choose open sets Vn ⊃En so that cap(Vn)≤ cap∗(En)+

ε2−n. By the sub-additivity of capacity

cap∗(∪En)≤ cap(∪Vn)≤ ∑cap(Vn)≤ ε +∑cap∗(En).

Taking ε → proves the result.

Although capacity informally “measures” the size of a set, it is not additive,

and hence not a measure. See Exercise 1.4.
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Lemma 1.2.8 If E is compact, there exists an admissible µ that attains the

maximum mass in the definition of capacity and Uµ(z) = 1 everywhere on E,

except possible a set of capacity zero.

Proof Let µn be a sequence of measures on E so that ‖µn‖ → cap(E) and

Un =Uµn is bounded above by 1 on E (such a sequence exists by the definition

of logarithmic capacity). By Lemma 1.2.2, Uµ is also bounded above by 1.

Also, by a standard property of weak* convergence ‖µ‖ ≤ liminfn ‖µn‖ =

cap(E) ([? ]), and by Lemma 1.2.3,

I(µ)≤ liminf
n

I(µn)≤ liminf
n

‖µn‖= cap(E),

so we must have I(µ) = cap(E).

First we claim that Uµ ≥ 1 except possibly on a set of zero capacity. Other-

wise let T ⊂ E be a set of positive capacity on which Uµ < 1− ε and let σ be

a non-zero, positive measure on T which potential bounded by 1. Define

µt = (1− t)µ + tσ .

This is a measure on E so that

I(µt)≤
∫

log
1

|z−w| ((1− t)dµ + tdσ)((1− t)dµ + tdσ)

≤ (1− t)2I(µ)+2t

∫
Uµ dσ + t2I(σ)

≤ I(µ)−2tI(µ)+2t

∫
Uµ dσ +O(t2)

≤ I(µ)−2tI(µ)+2t(1− ε)‖σ‖+O(t2)

< I(µ),

if t > 0 is small enough. This contradicts minimality of µ .

Next we show that Uµ ≤ 1 everywhere on the closed support of µ . By the

previous step we know Uµ ≥ 1 except on capacity zero, hence except on a set

of µ-measure zero. If there is a point z in the support of µ such that Uµ(z)> 1,

then by lower semi-continuity of potentials, Uµ is > 1+ ε on some neigh-

borhood of z and this neighborhood has positive µ measure (since z is in the

support of µ) and thus I(µ) =
∫

Uµ dµ > ‖µ‖, a contradiction.

The following makes a connection between logarithmic capacity and ex-

tremal length. Eventually, this will become a connection between extremal

length and harmonic measure.

If K ⊂ D is a compact connected set with smooth boundary with 0 in the

interior of K. Let K∗ be the reflection of K across T. For any E ⊂ T that is a

finite union of closed intervals, let Ω be the connected component of C\ (E ∪
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K ∪K∗) that has E on its boundary. Let h(z) be the harmonic function in Ω

with boundary values 0 on K and K∗ and boundary value 1 on E. By the usual

theory of the Dirichlet problem (e.g. [? ]), all boundary points are regular (since

all boundary components are non-degenerate continua) and hence h extends

continuously to the boundary with the correct boundary values. Moreover, h is

symmetric with respect to T, and this implies its normal derivative on T\E is

0. Let D(h) =
∫
D\K |∇h|2dxdy.

Lemma 1.2.9 With notation as above, M(ΓE) = D(h).

Proof Clearly |∇h| is an admissible metric for ΓE , so

M(ΓE)≤ D(h)≡
∫

D\K
|∇h|2dxdy.

Thus we need only show the other direction.

Green’s theorem states that

∫∫

Ω
u∆v− v∆udxdy =

∫

∂Ω
u

∂v

∂n
− v

∂u

∂n
ds. (1.2.4)

Using this and the fact that h = 1 on E, we have

∫

∂K

∂h

∂n
ds =−

∫

T

∂h

∂n
ds =−

∫

E

∂h

∂n
ds =−

∫

E
h

∂h

∂n
ds.

and

∫

∂K

∂h

∂n
ds =−1

2

∫

E

∂ (h2)

∂n
ds

=
1

2

∫

T\E

∂ (h2)

∂n
ds+

1

2

∫

∂K

∂ (h2)

∂n
ds+

1

2

∫

D\K
∆(h2)dxdy.

The first term is zero because h has normal derivative zero on T\E, and hence

the same is true for h2. The second term is zero because h is zero on K and so
∂ (h2)

∂n
h2 = 2h ∂h

∂n
= 0. To evaluate the third term, we use the identity

∆(h2) = 2hx ·hx +2h ·hxx +2hy ·hy +2h ·hyy

= 2h∆h+2∇h ·∇h

= 2h ·0+2|∇h|2

= 2|∇h|2,

to deduce

1

2

∫

D\K
∆(h2)dxdy =

∫

D\K
∆(h2)dxdy.
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Therefore,
∫

∂K

∂h

∂n
ds =

∫

D\K
∆(h2)dxdy.

Thus the tangential derivative of h’s harmonic conjugate has integral D(h)

around ∂K and therefore 2πh/D(h) is the real part of a holomorphic function

g on D\K. Then f = exp(g) maps D\K into the annulus

A = {z : 1 < |z|< exp(2π/D(h))}

with the components of E mapping to arcs of the outer circle and the compo-

nents of T \E mapping to radial slits. The path family ΓE maps to the path

family connecting the inner and outer circles without hitting the radial slits,

and our earlier computations show the modulus of this family is D(h).

Theorem 1.2.10 (Pfluger’s theorem) If K ⊂ D is a compact connected set

with smooth boundary with 0 in the interior of K. Then there are constants

C1,C2 so that following holds. For any E ⊂ T that is a finite union of closed

intervals,

1

cap(E)
+C1 ≤ πλ (ΓE))≤

1

cap(E)
+C2,

where ΓE is the path family connecting K to E. The constants C1,C2 can be

chosen to depend only on 0 < r < R < 1 if ∂K ⊂ {r ≤ |z| ≤ R}.

Proof Using Lemma 1.2.9, we only have to relate D(h) to the logarithmic

capacity of E. Let µ be the equilibrium probability measure for E. We know in

general that Uµ = γ where γ = 1/cap(E) almost everywhere on E (since sets

of zero capacity have zero measure) and is continuous off E, but since Uµ is

harmonic in D and equals the Poisson integral of its boundary values, we can

deduce Uµ = γ everywhere on E. Let v(z) = 1
2
(Uµ(z)+Uµ(1/z). Then since

∂K has positive distance from 0, there are constants C1,C2 so that

v+C1 ≤ 0, v+C2 ≥ 0,

on ∂K. Note that C1 ≥ −γ by the maximum principle and C2 ≥ 0 trivially.

Moreover, since µ is a probability measure supported on the unit circle, given

0 < r < R < 1, Uµ is uniformly bounded on both the annulus {r ≤ |z| ≤ R} and

its reflection across the unit circle, since these both have bounded, but positive

distance from the unit circle. This proves that C1,C2 can be chosen to depend

on only these numbers, as claimed in the final statement of the theorem.

The following inequalities are easy to check on K, K∗ and E,

v(z)+C1

γ +C1
≤ h(z)≤ v(z)+C2

γ +C2
.
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and hence hold on Ω by the maximum principle. Since we have equality on E,

we also get

∂

∂n
(

v(z)+C1

γ +C1
)≤ ∂h

∂n
≤ ∂

∂n
(

v(z)+C2

γ +C2
)

for z ∈ E. When we integrate over E, the middle term is −D(h) (we computed

this above) and by Green’s theorem

−
∫

E

∂

∂n

v(z)+C1

γ +C1
ds =

1

γ +C1

∫

D

∆(v)dxdy

=
π

γ +C1

because v is harmonic except for a 1
2

log 1
|z| pole at the origin. A similar com-

putation holds for the other term and hence

π

γ +C1
≤ D(h) = M(ΓE)≤

π

γ +C2
,

since D(h) =
∫

E
∂h
∂n

ds. Hence

γ +C1 ≤ πλ (ΓE)≤ γ +C2.

This completes the proof of Pfluger’s theorem for finite unions of intervals.

Next we prove Pfluger’s theorem for all compact subsets of T. First we need

a continuity property of extremal length. Recall that an extended real-valued

function is lower semi-continuous if all sets of the form { f > α} are open.

Lemma 1.2.11 Suppose E ∩T is compact, K ⊂D is compact, connected and

contains the origin, and ΓE is the path family connecting K and E in D \K.

Fix an admissible metric ρ for ΓE and for each z ∈ T, define f (z) = inf
∫

γ ρds

where the infimum is over all paths in ΓE that connect K to z. Then f is lower

semi-continuous.

Proof Suppose z0 ∈ T and use Cauchy-Schwarz to get

∫ 2−n

2−n−1

(∫

|z−z0|=r
ρds

)2

dr ≤
∫ 2−n

2−n−1

(∫

|z−z0|=r
ρ2ds

)
dr

(∫

|z−z0|=r
1ds

)
dr

≤
∫ 2−n

2−n−1
r

∫ 2π

0
ρ2rdθdr

≤ π2−n

∫

2−n−1<|z−z0|<2−n
ρ2dxdy

= o(2−n).

Therefore we can choose circular cross-cuts {γn} ⊂ {z : 2−n−1 < |z− z0| <
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2−n} of D centered at z0 and with ρ-length εn tending to 0. By taking s subse-

quence we may assume ∑εn < ∞. Now choose zn → z0 with

f (zn)→ α ≡ liminf
z→z0

f (z).

We want to show that there is a path connecting K to z0 whose ρ-length is as

close to α as we wish. Passing to a subsequence we may assume zn is separated

from K by δn. Let cn be the infimum of ρ-lengths of paths connecting γn and

γn+1. By considering a path connecting K to zn, we see that ∑n
1 ck ≤ f (zn), for

all n and hence ∑∞
1 cn ≤ α .

Next choose ε > 0 and choose n so that we can connect K to zn (and hence

to γn) by a path of ρ-length less than α + ε . We can then connect γn to z0 by a

infinite concatenation of arcs of γk, k > n and paths connecting γk to γk+1 that

have total length ∑∞
n (εn +cn) = o(1). Thus K can be connected to z0 by a path

of ρ-length as close to α as we wish.

Corollary 1.2.12 Suppose E ⊂ T is compact and ε > 0. Then there is a finite

collection of closed intervals F so that E ⊂ F and

λ (ΓE)≤ λ (ΓF)+ ε ,

where the path families are defined as above.

Proof Choose an admissible ρ so that
∫

ρ2dxdy ≤ M(ΓE)+ ε . Set

r = (
M(ΓE)+ ε

M(ΓE)+2ε
)1/2

By Lemma 1.2.11 V = {z ∈T : f (z)> r} is open, and therefore we can choose

a set F of the desired form inside V . Then ρ/r is admissible for ΓF , so

M(ΓF)≤
∫
(

ρ

r
)2dxdy =

M(ΓE)+2ε

M(ΓE)+ ε

∫
ρ2dxdy ≤ M(ΓE)+2ε .

Thus an inequality in the opposite direction holds for extremal length.

Corollary 1.2.13 Pfluger’s theorem holds for all compact sets in T.

Proof Suppose E is compact. Using Corollary 1.2.12 and Lemma 1.2.4 we

can choose nested sets En ց E that are finite unions of closed intervals and

satisfy

λ (FEn)→ λ (FE),

and

cap(En)→ cap(E).

Thus the inequalities in Pfluger’s theorem extend to E.
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1.3 Hyperbolic distance

We start on the disk, and then extend to simply connected domains via the Rie-

mann mapping theorem and to general planar domains via the uniformization

theorem.

The hyperbolic metric on D is given by dρ(z) = |dz|/(1−|z|2). This means

that the hyperbolic length of a rectifiable curve γ in D is defined as

ℓρ(γ) =

∫

γ

|dz|
1−|z|2 , (1.3.1)

and the hyperbolic distance between two points z,w ∈ D is the infimum of

the lengths of paths connecting them (we shall see shortly that there is an

explicit formula for this distance in terms of z and w). In many sources, there

is a “2” in the numerator of (1.3.1), but we follow [7], where the definition

is as given in (1.3.1). For most applications this makes no difference, but the

reader is warned that some of our formulas may differ by a factor of 2 from the

analogous formulas in some papers and books.

We define the hyperbolic gradient of a holomorphic function f : D→D as

DH
H f (z) = | f ′(z)| 1−|z|2

1−| f (z)|2 .

More generally, given a map f between metric spaces (X ,d) and (Y,ρ) we

define the gradient at a point z as

D
ρ
d f (z) = limsup

x→z

ρ( f (z), f (x))

d(x,z)
.

The use of the word “gradient” is not quite correct; a gradient is usually a

vector indicating both the direction and magnitude of the greatest change in a

function. We use the term in a sense more like the term “upper gradient” that

occurs in metric measure theory to denote a function ρ ≥ 0 that satisfies

| f (b)− f (a)| ≤
∫

γ
ρds,

for any curve γ connecting a and b. I hope that the slight abuse of the term will

not be confusing.

In these notes, the most common metrics we will use are the usual Euclidean

metric on C, the spherical metric

ds

1+ |z|2 ,

on the Riemann Sphere, S2 and the hyperbolic metric on the disk or on some

other hyperbolic planar domain. To simplify notation, we use E, S and H to



20 Conformal maps and conformal invariants

denote whether we are taking a gradient with respect to Euclidean, spherical

or hyperbolic metrics. For example if f : U →V , the symbol DH
H f means that

we are taking a gradient from the hyperbolic metric on U to the hyperbolic

metric on V (assuming the domains are clear from context; otherwise we write

DV
U or D

ρv
ρU

if we need to be very precise.)

In this notation, the spherical derivative of a function, usually denoted

f #(z) =
| f ′(z)|

1+ | f (z)|2 ,

is written DS
E f (z) since it is a limit of quotients where the numerator is mea-

sured in the spherical metric and the denominator is measured in the Euclidean

metric. Similarly DS
H denotes a gradient measuring expansion from a hyper-

bolic to the spherical metric. This particular gradient is important in the theory

of normal families (e.g., see Montel’s theorem in [? ]). Another variation we

will use is DE
D

f . If this is bounded on the disk, then f is a Lipschitz function

from the hyperbolic metric on the disk to the Euclidean metric on the plane.

Such functions are called Bloch functions.

A linear fractional transformation is a map of the form

z → a+bx

c+dz
,

where a,b,c,d ∈ C. These exactly the 1-to-1, holomorphic maps of the Rie-

mann sphere to itself. Such maps are also called Möbius transformations.

Lemma 1.3.1 Möbius transformations of D to itself are isometries of the

hyperbolic metric.

Proof When f is a Möbius transformation of the disk we have

f (z) =
z−a

1− āz
, f ′(z) =

1−|a|2
(1− āz)2

.

Thus

DH
H f (z) =

1−|a|2
(1− āz)2

1−|z|2
1−| f (z)|2 =

1−|a|2
(1− āz)2

1−|z|2
1−| z−a

1−āz
|2

=
(1−|a|2)(1−|z|2)
|1− āz|2 −|z−a|2 =

(1−|a|2)(1−|z|2)
(1− āz)(1−az̄)− (z−a)(z̄− ā)

=
(1−|a|2)(1−|z|2)

(1− āz−az̄+ |az|2)− (|z|2 −az̄− zā+ |a|2)

=
(1−|a|2)(1−|z|2)

(1+ |az|2 −|z|2 −|a|2) = 1.
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Note that

ℓρ( f (γ))≤
∫

γ
DH

H f (z)
|dz|

1−|z|2 .

Thus Möbius transformations multiply hyperbolic length by at most one. Since

the inverse also has this property, we see that Möbius transformation preserve

hyperbolic length.

The segment (−1,1) is clearly a geodesic for the hyperbolic metric and since

isometries take geodesics to geodesics, we see that geodesics for the hyperbolic

metric are circles orthogonal to the boundary.

On the disk it is convenient to define the pseudo-hyperbolic metric

T (z,w) = | z−w

1− w̄z
|.

The hyperbolic metric between two points can then be expressed as

ρ(w,z) =
1

2
log

1+T (w,z)

1−T (w,z)
. (1.3.2)

On the upper half-plane the corresponding function is

T (z,w) = | z−w

w− z̄
|,

and ρ is related as before.

Lemma 1.3.2 (Schwarz’s Lemma) If f : D→D is holomorphic and f (0) = 0

then | f ′(0)| ≤ 1 with equality iff f is a rotation. Moreover, | f (z)| ≤ |z| for all

|z|< 1, with equality for z 6= 0 iff f is a rotation.

Proof Define g(z) = f (z)/z for z 6= 0 and g(0) = f ′(0). This is a holomor-

phic function since if f (z) = ∑anzn then a0 = 0 and so g(z) = ∑anzn−1 has a

convergent power series expansion. Since max|z|=r |g(z)| ≤ 1
r

max|z|=r | f | ≤ 1
r
.

By the maximum principle |g| ≤ 1
r

on {|z|< r}. Taking r ր 1 shows |g| ≤ 1 on

D and equality anywhere implies g is constant. Thus | f (z)| ≤ |z| and | f ′(0)|=
|g(0)| ≤ 1 and equality implies f is a rotation.

In terms of the hyperbolic metric this says that

ρ( f (0), f (z)) = ρ(0, f (z))≤Hr(0,z),

which shows the hyperbolic distance from 0 to any point is non-increasing. For

an arbitrary holomorphic self-map of the disk f and any point w ∈ D we can

always choose Möbius transformations τ ,σ so that τ(0) =w and σ( f (w)) = 0,

so that σ ◦ f ◦ τ(0) = 0. Since Möbius transformations are hyperbolic isome-

tries, this shows
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Corollary 1.3.3 If f : D→D is a holomorphic then ρ( f (w), f (z))≤ ρ(w,z).

Lemma 1.3.4 If { fn} are holomorphic functions on a domain Ω that con-

verge uniformly on compact sets to f and if zn → z ∈ Ω, then fn(zn)→ f (z).

Proof We may assume {zn} are contained in some disk D ⊂ Ω around z. Let

E = {zn}∞
1 ∪ {z}. This is a compact set so it has a positive distance d from

∂Ω. The points within distance d/2 of E form a compact set F on which the

functions { fn} are uniformly bounded on E, say by M. By the Cauchy estimate

the derivatives are bounded by a constant M′ on E (e.g., see [? ]). Thus

| f (z)− fn(zn)≤ | f (z)− fn(z)|+ | fn(z)− fn(zn)| ≤ | f (z)− fn(z)|+M′|z− zn|,

and both terms on the right tend to zero by hypothesis.

A planar domain Ω is called hyperbolic if C\Ω has at least two points.

Theorem 1.3.5 Every hyperbolic plane domain Ω is holomorphically cov-

ered by D (i.e., there is a locally 1-to-1, holomorphic covering map from D to

Ω).

We will prove this in three steps: bounded domains, simply connected do-

mains and finally the general case.

Uniformization for bounded domains If Ω is bounded, then by a translation

and rescaling, we may assume Ω ⊂ D and 0 ∈ Ω. We will define a sequence

of domains {Ωn} with Ω0 = Ω and covering maps pn : Ωn → Ωn−1 such that

p(0) = 0. We will show that Ωn contains hyperbolic disks centered at 0 of

arbitrarily large radius and that the covering map qn = p1 ◦ · · · ◦ pn : Ωn →
Ω0 = Ω converges uniformly on compacta to a covering map q : D→ Ω.

If Ω0 = D we are done, since the identity map will work. In general assume

that we have qn : Ωn → Ω0 and that there is a point w ∈D\Ωn. Let τ and σ be

Möbius transformations of the disk to itself so that τ(w) = 0, choose a square

root α of τ(0) and choose σ so σ(α) = 0. Then pn+1(z) = σ(
√

τ(z)) and let

Ωn+1 be the component of U = p−1
n+1(Ωn) that contains the origin (the set U

will have one or two components; two if w is in a connected component of

D\Ωn that is compact in D, and one otherwise). Since σ and τ are hyperbolic

isometries and
√

z expands the hyperbolic metric, we see that Ωn+1 contains a

larger hyperbolic ball around 0 than Ωn did.

More precisely, suppose dist(∂Ωn,0)< r < 1 for all n. Since f (z) = z2 maps

the disk to itself, it strictly contracts the hyperbolic metric; a more explicit

computation shows

DH
H f (z) = |2z|1−|z|2

1−|z|4 =
2|z|

1+ |z|2 < 1.



1.3 Hyperbolic distance 23

Thus g(z) =
√

z is locally an expansion of the hyperbolic metric, at least on a

subdomain W ⊂ D where it has a well defined branch. For z 6= 0,

DH
Hg(z) = | 1

2
√

z
|1−|z|2

1−|z| ≥ 1+ |z|
2
√

z
. (1.3.3)

Then (1.3.3) says that

DH
H pn(0) = DH

H

√
z(τ(0))>

1+ r

2
√

r
> 1,

since |τ(0)| = |w| < r. Hence DH
Hqn(0) increases by this much at every step.

But DH
Hqn(0)≤ 1, which is a contradiction. Thus dn → 1.

Thus {qn} is a sequence of uniformly bounded holomorphic functions on

the disk. By Montel’s theorem, there a subsequence that converges uniformly

on compact subsets of D to a holomorphic map q : D→ Ω. It is non-constant

since it has non-zero gradient at the origin; moreover, by Hurwitz’s theorem

(see [? ]), q′ never vanishes on D since it is the locally uniform limit of the

sequence {q′n}, and these functions never vanish since they are all derivatives

of locally univalent covering maps. Next we show that q is a covering map

D→ Ω.

Fix a ∈ Ω and let d = dist(a,∂Ω). Since Ω is bounded, this is finite. Let

D = D(a,d) ⊂ Ω. Since qn is a covering map, every branch of q−1
n is 1-to-1

holomorphic map of D into D and hence each qn is a contraction from the

hyperbolic metric on D to the hyperbolic metric on D. Thus every preimage of
1
2
D has uniformly bounded hyperbolic diameter.

Now fix a point b ∈ q−1(a). Since qn(b)→ q(b) = a, qn(b) ∈ 1
2
D for n large

enough, so there is branch of q−1
n that contains b. Since these branches are

uniformly bounded holomorphic functions, by Montel’s theorem we can pass

to a subsequence so that they converge to a holomorphic function g from 1
2
D

into D. Moreover,

q(g(z)) = lim
n

qn(q
−1
n (z)) = z,

by Lemma 1.3.4.

This proves the existence of a covering map for bounded domains Ω. If Ω

is bounded and simply connected, then we have proved the Riemann mapping

theorem for Ω. For unbounded simply connected domains we use the following

argument.

Riemann mapping theorem It suffices to show any simply connected planar

domain, except for the plane itself, can be conformally mapped to a bounded

domain. If the domain Ω is bounded, there is nothing to do. If Ω. omits a disk
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D(x,r) then the map z → 1/(z− x) conformal maps Ω to a bounded domain.

Otherwise, translate the domain so that 0 is on the boundary and consider a

continuous branch of
√

z. The image is a 1-1, holomorphic image of Ω, but

does not contain both a point and its negative. Since the image contains some

open ball, it also omits an open ball and hence can be mapped to a bounded

domain by the previous case.

The final step is to deduce the uniformization theorem for all hyperbolic

plane domains (we have only proved it for bounded domains so far). It suf-

fices to show that any hyperbolic plane domain has a covering map from some

bounded domain W , for then we can compose the covering maps D→W and

W → Ω. We can reduce to the following special case:

Theorem 1.3.6 There is a holomorphic covering map from D to C
∗∗ = C \

{0,1}

Proof Let

Ω = {z = x+ iy : y > 0,0 < x < 1, |z− 1

2
|> 1

2
} ⊂Hu.

This is simply connected and hence can be conformally mapped to Hu with

0,1,∞ each fixed. We can then use Schwarz reflection to extend the map across

the sides of Ω. Every such reflection of Ω stays in Hu maps to either the lower

or upper half-planes. Continuing this forever gives a covering map from a sim-

ply connected subdomain U of Hu to W . Since U is simply connected and not

the whole plane (it is a subset of Hu) it is conformally equivalent to D and

hence a covering q : D→W exists. (Actually U =Hu, but we do not need this

stronger result. See Exercise 1.8.)

Uniformization of general planar domains Let q : D→ C
∗∗ = C\{0,1}. be

a covering map of the twice punctured plane. If {a,b} ∈ C \Ω then h(z) =

bq(z)+a is a covering map from U = h−1(Ω)⊂ D to Ω. Any connected com-

ponent of U shows that Ω has a covering from a bounded plane domain, fin-

ishing the proof.

We can now define a hyperbolic metric ρ on any hyperbolic domain using

the covering map p : D → Ω. The function ρ should be defined so that p is

locally an isometry, i.e.,

1 = DΩ
D p(w)

= DE
DId(w) ·DE

E p(w) ·DρΩ
E Id(p(w))

=
1

ρD(w)
· |p′(w)| ·ρΩ(z)
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and so we take

ρΩ(z) =
|p′(w)|
1−|w|2 = |p′(w)|ρD(w)

where p(w) = z. Different choices of p and w give the same value for ρΩ(z)

since they differ by an isometry of D. Thus every hyperbolic planar domain

has a hyperbolic metric.

We want to give some useful estimates for ρΩ in terms of more geometric

quantities, such as the quasi-hyperbolic metric, defined as

ρ̃Ω(z)ds =
ds

dist(z,∂Ω)
.

For simply connected domains, ρ and ρ̃ are boundedly equivalent; for more

general domains this can fail, but some useful estimates are still available.

The first observation is that if f : U → V is conformal and ρU (z)ds and

ρV (z)ds are the densities of the hyperbolic metrics on U and V then

ρV ( f (z)) = ρU (z)/| f ′(z)|.

Applying this to the map τ(z) = (z+1)/(z−1) that maps the right half-plane

Hr = {x+ iy : x > 0} to the unit disk D, we see that the hyperbolic density for

the half-plane is

ρHr
(z) = |τ ′(z)|ρD(τ(z)) =

2

|z−1|2
1

1−|τ(z)|2 =
1

2x
=

1

2dist(z,∂Hr)
.

Thus the hyperbolic density on a half-plane is approximately the same as the

quasi-hyperbolic metric. Using Koebe’s theorem (Lemma 1.1.10) we can de-

duce that that this is true for any simply connected domain.

Lemma 1.3.7 For simply connected domains, the hyperbolic and quasi-hyperbolic

metrics are bi-Lipschitz equivalent, i.e.,

dρΩ ≤ dρ̃Ω ≤ 4dρΩ. (1.3.4)

Proof Using Koebe’s theorem,

ρΩ( f (z)) =
ρD(z)

| f ′(z)| ≤ ρD(z)
1−|z|2

dist( f (z),∂Ω
=

1

dist( f (z),∂Ω
= ρ̃( f (z)),

which is one half of the result. The other half is similar:

ρΩ( f (z)) =
ρD(z)

| f ′(z)| ≥
1

4
ρD(z)

1−|z|2
dist( f (z),∂Ω)

=
1

4
ρ̃( f (z)).
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Corollary 1.3.8 If f : Ω → Ω′ is conformal, then

dist( f (z),∂Ω′)
4dist(z,∂Ω)

≤ | f ′(z)| ≤ 4dist( f (z),∂Ω′)
dist(z,∂Ω)

.

Proof Write f = g◦h−1 where g : D→ Ω′ and h : D→ Ω and use the chain

rule and Koebe’s theorem.

The following is immediate from Schwarz’s lemma.

Corollary 1.3.9 If U ⊂V are both hyperbolic, then ρU ≥ ρV .

Proof If ΠU : D→U and ΠV : D→V are the covering maps then the inclu-

sion map U →V can be lifted to conformal map D→ Π−1
V (U)⊂ D. Applying

Schwarz’s lemma to this map (and using the fact that the projections are local

isometries) gives the result.

Lemma 1.3.10 If f : D→ Ω is conformal with f ′(0) = 1, then | f ′′(0)| ≤ 200.

Proof We can assume f (0) = 0. Then ∂Ω∩D 6= /0, otherwise | f ′(0)|> 1, so

for z ∈ D∩Ω, dist(z,∂Ω)≤ 1+ |z|. Thus on Ω∩D,

ρΩ(z)≥
1

4
ρ̃Ω(z)≥

1

4(1+ r)
≥ 1

8
.

Therefore | f (z)| ≤ 1 on the ball of hyperbolic radius 1/8 around the origin,

which is the same as the Euclidean ball of radius 1
2

log 9
7
> .1. By the Cauchy

estimate | f ′′(0)| ≤ 200.

In fact, the correct bound is not 200, but 4; we have only given a quick proof

of a weaker result. See Exercise ?? for how to derive the sharp estimate.

Corollary 1.3.11 If f : D → Ω is conformal then ϕ(z) = log | f ′(z)| is Lip-

schitz from the hyperbolic metric to the Euclidean metric, with bound that is

independent of f .

Proof We want to bound DE
Hϕ uniformly on the disk, but by pre-composing

Möbius transformations, it suffices to bound |ϕ ′(0)| uniformly in f . By the

Cauchy estimate for derivatives, it suffices to show |ϕ(z)−ϕ(0)| is uniformly

bounded on a uniform neighborhood of the origin, or equivalently, that | f ′(z)/ f ′(0)|
is uniformly bounded on such a neighborhood. Let d = dist( f (z),∂Ω). Then

every point in the Euclidean ball D = D( f (z),d/2) is at most distance 3d/2

from ∂Ω, so integrating over paths from f (z) to ∂D, we see that every point

in ∂D is at least ρ̃-distance 1/3 from f (z). By Lemma 1.3.7, every boundary

point is at least hyperbolic distance 1/12 from f (z). Thus U = f−1(D) contains
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a hyperbolic disk of radius 1/12 around the origin and on this disk (applying

Corollary 1.3.8 twice),

| f ′(z)| ≤ 4
dist( f (z),∂Ω)

1−|z| ≤ 8dist( f (0),∂Ω)≤ 32| f ′(0)|,

as desired.

Again, this is not sharp; for a proof of the optimal bound, see Exericse 1.23.

The Lipschitz holomorphic functions from the disk with its hyperbolic met-

ric to the plane with its Euclidean metric is called the Bloch class and is a

Banach space with the norm

‖ϕ‖B = |ϕ(0)|+ sup
|z|<1

|ϕ ′(z)|(1−|z|2).

In a later chapter, we shall see that Lemma 1.3.11 leads to an intimate connec-

tion between conformal maps and martingales that allows various results from

probability theory about the latter to be directly to the former, e.g., Makarov’s

law of the iterated logarithm.

1.4 Boundary continuity

The boundary of a simply connected domain need not be a Jordan curve, nor

even locally connected, and such examples arise naturally in complex dynam-

ics as the Fatou components of various polynomials and entire functions. How-

ever, this makes little difference to the study of harmonic measure. In this

section we show that, from the point view of harmonic measure, it is always

enough to consider regions with locally connected boundaries.

Lemma 1.4.1 Suppose Q is a quadrilateral with opposite pairs of sides E,F

and C,D. Assume

1. E and F can be connected in Q by a curve σ of diameter ≤ ε ,

2. any curve connecting C and D in Q has diameter at least 1.

Then the modulus of the path family connecting E and F in Q is larger than

M(ε) where M(ε)→ ∞ as ε → 0.

Proof Define a metric on Q by ρ(z) = 1
2
|z−a|−1/ log(1/2ε) for ε < |z−a|<

1/2. Any curve γ connecting C and D must cross σ and since γ has diameter

≥ 1 it must leave the annulus where ρ is non-zero. This shows that the modulus

of the path family in Q separating E and F is small, hence the modulus of the

family connecting them is large.
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E

F

C

D

Figure 1.4.1 Proof of Lemma 1.4.1.

The following fundamental fact says that hyperbolic geodesics are almost

the same as Euclidean geodesics.

Theorem 1.4.2 (Gehring-Hayman inequality) There is an absolute constant

C < ∞ to that the following holds. Suppose Ω ⊂ C is hyperbolic and simply

connected. Given two points in Ω, let γ be the hyperbolic geodesic connecting

these two points and let σ be any other curve in Ω connecting them. Then

ℓ(γ)≤Cℓ(σ).

Proof Let f : D → Ω be conformal, normalized so that γ is the image of

I = [0,r] ⊂ D for some 0 < r < 1. Without loss of generality we may assume

r = rN1−2−N for some N. Let

Qn = {z ∈ D : 2−n−1 < |z−1|< 2−n},

and let

γn = {z ∈ D : |z−1|= 2−n},

zn = γn ∩ [0,1).

Let Q′
n ⊂ Qn be the sub-quadrilateral of points with |arg(1 − z)| < π/6.

Each of these has bounded hyperbolic diameter and hence by Koebe’s theorem

its image is bounded by four arcs of diameter ≃ dn and opposite sides are

≃ dn apart. In particular, this means that any curve in f (Qn) separating f (γn)

and f (γn+1) must cross f (Q′
n) and hence has diameter & dn. Since Qn has

bounded modulus, so does f (Qn) and so Lemma 1.4.1 says that the shortest

curve in f (Qn) connecting γn and γn+1 has length ℓn ≃ dn. Thus any curve γ in
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Q connecting γn and γn+1 has length at least ℓn, and so

ℓ(γ) = O(∑dn) = O(∑ℓn)≤ O(ℓ(σ)).

Figure 1.4.2 Proof of the Gehring-Hayman inequality.

If f : D→ Ω is conformal define

a(r) = area(Ω\ f (r ·D).

If Ω has finite area (e.g., if it is bounded), then clearly a(r)ց 0 as r ր 1.

Lemma 1.4.3 There is a C < ∞ so that the following holds. Suppose f : D→
Ω and 1

2
≤ r < 1. Let E(δ ,r) = {x ∈ T : | f (sx)− f (rx)| ≥ δ for some r < s <

1}. Then the extremal length of the path family P connecting D(0,r) to E is

bounded below by δ 2/Ca(r).

Proof Let z = f (sx) and suppose w ∈ f (D(0,r)). By the Gehring-Hayman

estimate, the length of any curve from w to z is at least 1/C times the length

of the hyperbolic geodesic γ between them. But this geodesic has a segment

γ0 that lies within a uniformly bounded distance of the geodesic γ1 from f (rx)

to z. By the Koebe distortion theorem γ0 and γ1 have comparable Euclidean

lengths, and clearly the length of γ1 is at least δ . Thus the length of any path

from f (D(0,r)) to f (sx) is at least δ/C. Now let ρ = C/δ in Ω \ f (D(0,r))

and 0 elsewhere. Then ρ is admissible for f (P) and
∫∫

ρ2dxdy is bounded by

C2a(r)/δ 2. Thus λ (P)≥ δ 2

C2a(r)
.

Lemma 1.4.4 Suppose f : D→ Ω is conformal, and for R ≥ 1,

ER = {x ∈ T : | f (x)− f (0)| ≥ R dist( f (0),∂Ω)}.

Then ER has capacity O(1/ logR) if R is large enough.
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Proof Assume f (0) = 0 and dist(0,∂Ω) = 1 and let ρ(z) = |z|−1/ logR for

z ∈ Ω∩{1 < |z| < R}. Then ρ is admissible for the path family Γ connecting

D(0,1/2) to ∂Ω \D(0,R) and
∫∫

ρ2dxdy ≤ 2π/ logR. By definition M(Γ) ≤
2π/ logR and λ (Γ)≥ (logR)/2π . By the Koebe distortion theorem f−1(D(0,1/2))

is contained in a compact subset of D, independent of Ω. By Pfluger’s theorem

(Theorem 1.2.10),

∩(Er)≤
2

−2C2 + logR
,

which proves the result.

Corollary 1.4.5 If f : D → Ω is conformal, then f has radial limits except

on a set of zero capacity (and hence has finite radial limits a.e. on T).

Proof Let Er,δ ⊂ T be the set of x ∈ T so that diam( f (rx,x)) > δ , and let

Eδ = ∩0<r<1Er,δ . If f does not have a radial limit at x ∈ T, then x ∈ Eδ for

some δ > 0, and this has zero capacity by Lemma 1.4.3. Taking the union

over a sequence of δ ’s tending to zero proves the result. The set where f has

a radial limit ∞ has zero capacity by Lemma 1.4.4, so we deduce f has finite

radial limits except on zero capacity.

Combining the last two results proves

Corollary 1.4.6 Given ε > 0 there is a C < ∞ so that the following holds. If

f : D→ Ω is conformal, z ∈D and I ⊂ T is an arc that satisfies |I| ≥ ε(1−|z|)
and dist(z, I)≤ 1

ε (1−|z|), then I contains a point w where f has a radial limit

and | f (w)− f (z)| ≤C dist( f (z),∂Ω).

We can now prove:
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Theorem 1.4.7 (Carathéodory) Suppose that f : D → Ω is conformal, and

that ∂Ω is compact and locally path connected (for every ε > 0 there is a

δ > 0 so that any two points of ∂Ω that are within distance δ of each other

can be connected by a path in ∂Ω of diameter at most ε). Then f extends

continuously to the boundary of D.

Proof Suppose η > 0 is small. Since ∂Ω is compact Ω\ f ({|z|< 1− 1
n
}) has

finite area that tends to zero as n ր ∞. Thus if n is sufficiently large, this region

contains no disk of radius η .

Choose {z j} to be n equally spaced points on the unit circle and using

Lemma ?? choose interlaced points {w j} so that f has a radial limit f (w j)

at w j and this limit satisfies | f (w j)− f (rw j)| ≤Cη where r = 1−1/n. Then

| f (w j)− f (w j+1)| ≤ | f (w j)− f (rw j)|
+| f (rw j)− f (rw j+1)|

+| f (rw j+1)− f (w j+1)|
≤Cδ ,

where the center term is bounded by Koebe’s theorem and the other two by

definition.

Fix ε > 0 and choose δ > 0 as in the definition of locally connected. Thus

if η is so small that Cη < δ , then the shorter arc of ∂Ω with endpoints f (w j)

and f (w j+1) can be connected in ∂Ω by a curve of diameter at most ε . Thus

the image under f of the Carleson square with base I j (the arc between w j and

w j+1) has diameter at most Cη + ε . This implies f has a continuous extension

to the boundary.

It is an inconvenient fact is that conformal maps do not have to extend con-

tinuously to the boundary. We noted above however, that radial do exist almost

everywhere. Another convenient substitute for full continuity says that every

conformal map is continuous on a subdomain of D whose boundary hits “most

of” ∂D. The precise statement requires a new definition.

Given a compact set E ⊂ T we will now define the associated “sawtooth”

region WE Suppose {In} are the connected components of T \E and for each

n let γn(θ) be the circular arc in D with the same endpoints as In and which

makes angle θ with In (so γn(0) = In and γn(π/2) is the hyperbolic geodesic

with the same endpoints as In). Let Cn(θ) be the region bounded by In and

γn(θ), and let WE(θ) = D\∪nCn(θ). Let WE =WE(π/8) (and let W ∗
E ⊂ D

c
be

its reflection across T).

If f : D→ Ω and 0 < r < 1, then define

d f (r) = sup{| f (z)− f (w)| : |z|= |w|= r and |z−w| ≤ 1− r}. (1.4.1)
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Figure 1.4.3 The sawtooth domain WE

If ∂Ω is bounded in the plane, then it is easy to see this goes to zero as r ր 1,

since otherwise any neighborhood of ∂Ω would contain infinitely many dis-

joint disks of a fixed, positive size by Koebe’s theorem (Theorem 1.1.10).

Lemma 1.4.8 Suppose f : D → Ω ⊂ S2 is conformal. Then for any ε > 0

there is a compact set X ⊂ T with cap(T\X)< ε such that f is continuous on

WX .

Proof By applying a square root and a Möbius transformation, we may as-

sume that ∂Ω is bounded in the plane. Given r < 1 let

E(δ ,r) = {x ∈ T : | f (sx)− f (tx)|> ε for some r < s < t < 1}

and note that by Pfluger’s theorem (Theorem 1.2.10) and Lemma 1.4.3

cap(E(δ ,r))≤ exp(−πε2/Ca(r)),

where a(r) = area( f (D)\ f (r ·D)), as before. Moreover, this set is open since f

is continuous at the points sx and tx. Fix ε > 0, take εn = 2−n, and choose rn so

close to 1 that cap(En)≡ cap(E(εn,rn))≤ ε2−n. If we define X = T\∪n>1En,

then X is closed and T\X has capacity ≤ ε by subadditivity.

To show f is continuous at every x ∈WX , we want to show that |x−y| small

implies | f (x)− f (y)| is small. We only have to consider points x ∈ ∂WX ∩T.

First suppose y ∈ ∂WX ∩T. Choose the maximal n so that s = |x− y| ≤ 1− rn.

Then x,y /∈ En, so

| f (x)− f (y)| ≤ | f (x)− f (sx)|+ | f (sx)− f (sy)|+ | f (sy)− f (y)|.

The first and last terms on the right are ≤ εn−1 by the definition of X . The
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middle term is at most d f (1− s) (defined in (1.4.1), which tends to 0 as s → 0.

Thus | f (x)− f (y)| is small if |x− y| is.

Now suppose x ∈ ∂WX ∩T, y ∈ ∂WX \T. From the definition of WX it is easy

to see there is a point w ∈ ∂WX ∩T such that |w− y| ≤ 2(1− |y|) ≤ 2|x− y|.
For the point w we know by the argument above that | f (x)− f (w)| is small.

On the other hand,

| f (y)− f (w)| ≤ | f (y)− f (|y|w)|+ | f (|y|w)− f (w)|.

The first term is bounded by Cd f (|y|) and the second is small since w 6∈ En.

Thus | f (x)− f (y)| is small depending only on |x− y|. Hence f is continuous

on WX .

1.5 Harmonic measure

Suppose Ω is a planar domain bounded by a Jordan curve, z ∈ Ω and E ⊂ ∂Ω

is Borel. Suppose f : DΩ is conformal and f (0) = z (by the Riemann mapping

theorem there is always such a map). By Carathéodory’s theorem, f extends

continuously (even homeomorphically) to the boundary, so f−1(E)⊂T is also

Borel. We define “the harmonic measure of the set E for the domain Ω, with

respect to the point z” as

ω(z,E,Ω) = |E|/2π,

where |E| denotes the Lebesgue 1-dimensional measure of E. This depends

on the choice of the Riemann map f , but any two maps, both sending 0 to

z, will differ only by a pre-composition with a rotation. Thus the two possi-

ble pre-images of E differ by a rotation and hence have the same Lebesgue

measure. If we fix E and Ω, then ω(z,E,Ω) is a harmonic function of z (Ex-

ercise 1.12), giving rise the name “harmonic measure”. Since we always have

0 ≤ ω(z,E,Ω) ≤ 1, we can deduce that if E has harmonic measure with re-

spect to one point z in Ω then it has zero harmonic measure with respect to all

points (Exercise 1.13). If ∂Ω is merely locally connected, then Carathéodory’s

theorem still implies that the Riemann map f has a continuous extension to the

boundary, so the same definition of harmonic measure works.

Theorem 1.4.8 allows us to define harmonic measure on a general simply

connected proper subdomain of C by

ω(z,E,Ω) = sup
n

ω(z,E ∩∂Ωn,Ωn),

where f :D→Ω is conformal with f (0)= z, Ωn = f (WFn) and {Fn} are nested,
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increasing compact sets with measure tending to |T| chosen using Lemma 1.4.8

so that f is continuous on each WFn . It is easy to verify that this definition does

not depend on any of the choice involved.

In general, we can not assume that Ωn in the previous paragraph is a Jordan

domain. For example, if Ω = D \ [0,1) is a slit disk, then any approximating

domains will have to hit both sides of the slit in nearly full harmonic measure,

and thus ∂Ω will contain self-intersections. However, if we are willing to give

up approximation of the whole boundary, and only approximate sets of positive

measure, then we can do this with Jordan subdomains. This will be discussed

in Section ??, after we have proven the Moore triod theorem and the F. and M.

Riesz Theorem.

We want estimate harmonic measure in terms of extremal length. We have

already seen how to relate extremal length to logarithmic capacity, and the

following relates the latter to harmonic measure:

Lemma 1.5.1 For any compact E ⊂ T,

cap(E)≥ 1

1+ log2+π + log 1
|E|

.

If E ⊂ T has positive Lebesgue measure, then it has positive capacity. In par-

ticular, if E ⊂ T is an arc, then

cap(E)≤ 1

log4+ log 1
|E|

.

For arcs of small measure, the two bounds are comparable.

Proof If µ is Lebesgue measure restricted to E, then clearly the correspond-

ing potential function is less than potential function of an arc I of the same

measure evaluated at the center x of that arc. Since 2
π t ≤ |x− y| ≤ t if the ar-

clength between x,y ∈ T is t, this value is at most

∫

I
log

2

|x− y|dy ≤ 2

∫ |E|/2

0
log

π

t
dt = |E| log

2

|E| +(1+π)|E|

If we normalize the measure to have mass one, then we get

Uµ ≤ log
2

|E| +1+π = log
1

|E| +1+ log2+π.

If E is an arc, then the center x of the arc is at most distance |E|/2 from any

other point of the arc, and so

Uµ(x)≥ log
2

|E|/2
= log

4

|E| = log
1

|E| + log4,
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for any probability measure supported on E. This gives the desired estimate.

The following is the fundamental estimate for harmonic measure, from which

all other estimates flow (at least, all the ones that we will use).

Theorem 1.5.2 Suppose Ω is a Jordan domain, z0 ∈ Ω with dist(z0,∂Ω)≥ 1

and E ⊂ ∂Ω. Let Γ be the family of curves in Ω which connects D(z0,1/2) to

E. Then

ω(z0,E,Ω)≤C exp(−πλ (Γ)).

If E ⊂ ∂Ω is an arc then the two sides are comparable.

Proof Let f :D→Ω be conformal. By Koebe’s 1
4
-theorem (Theorem 1.1.10),

the disk D(z, 1
2
) in Ω maps to a smooth region K in the unit disk that contains

the origin, and ∂K is uniformly bounded away from both the origin and the unit

circle. Thus by Pfluger’s theorem applied to the curve family ΓX connecting K

and the compact set X = f−1(E),

1

cap(X)
+C1(K)≤ πλ (ΓX )≤

1

cap(X)
+C2(K),

for constants C1,C2 that are bounded independent of all our choices.

By Lemma 1.5.1 the right-hand side of

1+ log4+ log
1

|X | +C1(K)≤ πλ (ΓX )≤ 1+ log2+ log
1

|X | +C2(K).

holds in general, and the left-hand side also holds if X is an interval. Multiply

by −1 and exponentiate to get

|X |
2e1+π+C2

≤ exp(−πλ (ΓX ))≤
|X |

4eC1

under the same assumptions. Now use ω(z,E,Ω) = ω(0,X ,D) = |X |/2π to

deduce the result.

One of the most famous and most useful applications of this result is

Corollary 1.5.3 (Ahlfors distortion theorem) Suppose Ω is a Jordan domain,

z0 ∈ Ω with dist(z0,∂Ω) ≥ 1 and x ∈ ∂Ω. For each 0 < t < 1 let ℓ(t) be the

length of Ω∩{|w− x|= t}. Then there is an absolute C < ∞, so that

ω(z0,D(x,r),Ω)≤C exp(−π

∫ 1

r

dt

ℓ(t)
).
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Proof Let K be the disk of radius 1/2 around z0 and let Γ be the family of

curves in Ω which connects D(x,r)∩ ∂Ω to K. Define a metric ρ by ρ(z) =

1/ℓ(t) if z ∈ Ct = {z ∈ Ω : |x− z| = t} and ℓ(t) is the length of Ct . Any curve

γ ∈ Γ has ρ-length at least

L =
∫ 1/2

r

dt

ℓ(t)
,

and

A =
∫∫

Ω
ρ2dxdy ≥

∫ 1/2

r

∫

Cr∩Ω
ℓ(z)−2rdrdθ =

∫
ℓ(z)−1dr = L.

Therefore

λ (Γ)≥ A/L2 = 1/L,

and this proves the result.

Corollary 1.5.4 (Beurling’s estimate) There is a C < ∞ so that if Ω is simply

connected, z ∈ Ω and d = dist(z,∂Ω) then for any 0 < r < 1 and any x ∈ ∂Ω,

ω(z,D(x,rd),Ω)≤Cr1/2

Proof Apply Corollary 1.5.3 at x and use θ(t)≤ 2πt to get

exp(−π

∫ d

rd

dt

θ(t)t
)≤C exp(−1

2
logr)≤C

√
r.

Corollary 1.5.5 There is an R < ∞ so that for any Ω is a Jordan domain and

any z ∈ Ω

ω(z,∂Ω\D(z,Rdist(z,∂Ω),Ω)≤ 1/2.

Proof Rescale so z = 1 and dist(z,∂Ω) = 1. Then apply w → 1/w which

fixes z and maps ∂Ω \D(z,R) into D(0,1/R− 1). Then Lemma 1.5.4 implies

the result if R ≥ 4C2 +1 (C is as in Lemma 1.5.4).

Corollary 1.5.6 For any Jordan domain and any ε > 0,

ω(z,∂Ω∩D(z,(1+ ε)dist(z,∂Ω)),Ω)>Cε ,

for some fixed C > 0.

Proof Renormalize so z = 0 and 1 is a closest point of ∂Ω to z. By Corol-

lary 1.5.5, the set E = ∂Ω∩D(0,1+ ε) has harmonic measure at least 1/2

from the point 1− ε/R. Since ω(z,E,Ω) is a positive, harmonic function on

D, Harnack’s inequality says it is larger than Cε/R at the origin.
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This is a weak version of the Beurling projection theorem which says that the

sharp lower bound is given by the slit disk D(0,1+ε)\ [1,1+ε). The harmonic

measure of the slit in this case can be computed as an explicit function of ε

because this domain can be mapped to the disk by sequence of elementary

functions.

Theorem 1.5.7 Suppose Ω is a Jordan domain and E ⊂ ∂Ω has zero 1
2
-

Hausdorff measure. Then E has zero harmonic measure in Ω.

Proof Since dilations do not change dimension or harmonic measure, we can

rescale so that Ω contains a unit disk centered at some point z. By Exercise

1.13, it suffices to show E has harmonic measure zero with respect to z.

By definition, the hypothesis means that for any ε > 0, the set E can be cov-

ered by open disks {D(x j,r j)} that satisfy ∑ j r
1/2
j ≤ ε . By Beurling’s estimate,

this implies

ω(z,E,Ω)≤ ∑
j

ω(z,D j,Ω)≤ O(∑
j

r
1/2
j ) = O(ε).

This result was not improved until Lennart Carleson [4] showed in a tour

de force that the 1
2

could be replaced by some α > 1
2

in [4]. That result was

not improved until Makarov showed it holds for all α < 1 [12]. We will prove

Makarov’s theorem in Chapter ??. Even though we have not defined harmonic

measure for multiply connected domains, it is clear that no analog is possible

in that case: if the boundary of Ω is a Cantor set of dimension α , then it must

have full harmonic measure, even if α is small.

Corollary 1.5.8 If Ω is Jordan domain, then harmonic measure is singular

to area measure.

Proof By the Lebesgue density theorem, at Lebesgue almost every point z of

a set E of positive area, all small enough disks satisfy

area(E ∩D(z,r))≥ (1− ε)area(D(z,r)),

for all r < r0. In particular we must have ℓ(t)≤ ε
t

on a set of measure at least

r/4 in [r/2,r]. Thus by the Ahlfors distortion theorem

ω(D(z,r02−n)≤C exp(−π

∫ r0

2−nr0

dt

εt
)≤C2−πn/ε .

This is much less than (2−nr0) if n is large. Thus almost every point of ∂Ω can

be covered by arbitrarily small disks so that ω(D(z j,r j)) = o(r2
j ). Use Vitali’s
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covering theorem to take a disjoint cover of a set of full harmonic measure,

and we deduce that harmonic measure gives full mass to set of zero area.

Corollary 1.5.9 There is an ε > 0 so that harmonic measure on a planar

Jordan domain always gives full measure to a set of Hausdorff dimension at

most 2− ε .

Proof Fix a large integer b and consider the b-adic squares in the plane. Take

one such square Q that intersects ∂Ω and consider its b2 children squares.

We claim that if b is large enough, then at least one of them has harmonic

measure that is less than (2b2)−1 times the harmonic measure of Q. If there is

a subsquare that misses ∂Ω, then its harmonic measure is zero, and the claim

is true. Therefore we may assume every subsquare hits ∂Ω. Suppose Q has

side length 1 and define a finite sequence of squares Sk, concentric with Q

and with side lengths 1
b
, 3

b
, 6

b
, . . . ,1. If z ∈ ∂Sk, then dist(z,∂Ω) ≤

√
2/b and

dist(z,Sk−1)> 3/b, so by Corollary ?? ,

max
z∈∂Sk

ω(z,∂Ω∩Sk−1,Ω\Sk−1)< 1−δ ,

for some uniform δ > 0 (independent of k and b). By the maximum principle

and induction,

ω(S1)≤ (1−δ )b/3,

and this is less than 1/(2b2) if b is large enough. This prove the claim, that ω

deviates from the uniform distribution on the sub-squares by a fixed amount.

The rest is standard. The deviation from uniformity implies that the entropy

h(µ) =−
b2

∑
k=1

ω(Q j) logb ω(Q j),

is strictly less than 2, the maximum that occurs when every square has equal

measure (Exercise ??). The strong law of large numbers and Billingsley’s

lemma now imply that ω has dimension strictly less than 2, with a bound that

depends on b, but not on Ω.

Jean Bourgain [3] proved this holds for general domains in higher dimen-

sions, with a δ that depends only on the dimension. We shall see later that the

bound dim(ω)≤ 1 holds in the plane.

1.6 Diffusion Limited Aggregation

Start with a unit disk centered at the origin. Imagine another unit disk, whose

center moves as a Brownian motion starting near infinity unit the it hits the first
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disk and the stops. Now send in another random disk until it hits one of the first

two. Continue in this way until n disks have accumulated to form a connected

set as illustrated in Figure 1.6.1.

-400 -300 -200 -100 0 100 200 300 400
-400

-300

-200

-100

0

100

200

300

400
DLA

Figure 1.6.1 A diffusion limited aggregates, n = 10,000.

It is conjectured that these aggregates, properly rescaled, will have contin-

uous limits that are fractals of dimension approximately 1.71 (based on large

numerical simulations), but almost nothing is known rigorously. Indeed, the

only rigorous result about DLA is the following upper bound due to Harry

Kesten (see [8], [9], [10]), although our presentation follows the one in [11].

Theorem 1.6.1 Almost surely, the diameter of DLA at the nth step is O(n2/3).

Proof The first step is to make the definition of DLA a little more precise.

A moving disk will hit a set E when the center is precisely distance 1 from

that set. In our case, the set is a union of n unit disks centered at a finite set of

points Pn = {p1, . . . , pn}. Thus the process of adding the next disk by letting
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Figure 1.6.2 A diffusion limited aggregation with 384,000 disks. The disks are

colored according to when they entered the cluster. Upper left is the full cluster.

Upper right is an enlargement of the center. The bottom two pictures are succes-

sive enlargements of tip.

it wander by Brownian motion, is precisely the same as choosing a point pn+1

on the set

En = {z : dist(z,Pn) = 2},

with respect to harmonic measure at ∞ for the domain Ωn that is the unbounded

complementary component of En.. Since En is, by definition, a connected set,

Ωn is simply connected and will be bounded by a finite number of circular arcs.

Actually, almost surely Ωn will be the entire complement of En. Otherwise,

we must have chosen a disk that made contact with two or more earlier disks.

But there are only a finite number of points on Ek where this happens, and finite

sets have harmonic measure zero (e.g., Beurling’s theorem), so the probability

of making such a choice is zero. Thus, almost surely, each disk in the cluster
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(except the one at the origin) hits exactly one previously chosen disk, although

it may be hit by several (at most four, almost surely) later ones.

Consider

rad(n) = max{|p| : p ∈ Pn},

which measures the size of the DLA cluster in terms of a disk around the origin,

and its inverse

exit(m) = max{n : rad(n)≤ m},

which measures how soon the cluster grows beyond a given radius. The theo-

rem is stated in terms of an upper bound for rad(n), but is equivalent to a lower

bound for exit(m):

liminf
m→∞

exit(m)

m3/2
≥ β , (1.6.1)

holds almost surely for some constant β > 0. More precisely, we define

Vm = {exit(m)≤ βm3/2},

and we will prove that ∑mP(Vm)< ∞. The Borel-Cantelli lemma then implies

that the probability that Vm occurs infinitely often is zero. Thus almost surely

Vm only occurs finitely often, which gives (1.6.1).

We estimate the probability of Vm by placing these events inside larger events

and estimating those. If Vm occurs, it means that the DLA cluster contains a

path of at most βm3/2 disks {D1, . . .DN} that starts at the origin and ends with

a disk that hits the circle {|z|= m}. Moreover, every D j+1, j = 1, . . .N−1 was

selected after D j in the growth process. Otherwise suppose D j+1 is the first

counterexample in the path. Then D j+1 is the unique earlier disk hit by D j, so

D j−1, which also touches D j, must have been chosen later than D j, making D j

a counterexample too.

Every unit disk contains a point in the lattice N×N, so for each path of

unit disks as above, we can choose a sequence of lattice points z = {z1, . . .zN}
such z j ∈ D j, j = 1, . . .zN and |z j −|z j+1| ≤ 4 since the union of two touching

unit disks has diameter 4. We will say that sequence of distinct lattice points

{z1, . . . ,zk} is m-admissible if

|z1| ≤ m/2, |zk| ≥ m, |z j − z j+1| ≤ 4.

Note that there are at most m280k−1 m-admissible sequences of length k; there

are m2 possible choices for z1, and each following choice is made from a 9×9

square, omitting the center. Moreover, the length of an m-admissible sequence

is at least m/8 since the first and last points are at least distance m/2 apart.

Given an m-admissible sequence z of length k, we define Wm(z) to be the set
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of clusters so that:

(1) the cluster contains at most βm3/2 disks,

(2) the cluster contains the sequence z, and

(3) the disk containing z j+1 was chosen after the disk containing z j. By our

comments above each cluster in Vm contained in the event Wm(z) for some m-

admissible sequence of length k ≤ βm3/2. Thus all of Vm is contained Wm, the

union of Wm(z) over all m-admissible sequences of length at most βm3/2.

We claim that if z has length k, then

P(Wm(z))≤ (Cβ )k. (1.6.2)

We will finish the proof of the theorem assuming this is true, and then prove

the estimate. Given (1.6.2)

P(Wm)≤ ∑
z

P(W (z))

≤ #(m− admissible z) · (Cβ )k

≤ m280k−1(Cβ )k

≤ m2(80Cβ )k

≤ m2(80Cβ )m/4,

since k ≥ m/4. Thus

∑
m

P(Vm)≤ ∑
m

P(Wm)≤ ∑
m

m2(80Cβ )m/4 < ∞,

if we choose β < 1/80C. This completes the proof of Theorem 1.6.1, except

for the proof of (1.6.2).

First we explain the general idea for proving (1.6.2). Suppose we have al-

ready grown a cluster that contains the points z1, . . . ,z j. How long do we have

to wait before the cluster contains z j+1? We must add a disk within distance 4

of the disk containing z j. Since the cluster has diameter at least m/2, by Beurl-

ing’s estimate (Lemma 1.5.4) the probability of choosing such a disk is less

that C/
√

m. Therefore the expected number of disks we add before covering

z j+1 is at least
√

m/C. This has to happen k times, so we expect that k
√

m/C

disks need to be added to the cluster before the whole sequence z is covered.

Since k ≥ m/8, we therefore expect to need about m3/2/C disks to be added.

However, clusters in the event Wm(z) only use βm3/2 disks to cover z. If β is

small compared to 1/C, this event should have small probability.

To make this idea precise, let D1, . . . be an enumeration of the disks in the

cluster, in the order they are added. Suppose z j is contained in disk Dk( j) and

let w( j) = k( j+1)− k( j); this is the time we “wait” between covering z j and
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z j+1. Then

P(w( j)> t)≥ (1− p)t ,

where p ≤ C/
√

m. Therefore w( j) is bounded below by a geometric random

variable (the same one for each j), and ∑ j w( j) will be bounded below by the

corresponding sum of geometric variables. We estimate this distribution using:

Lemma 1.6.2 Suppose X1, . . .Xn are independent geometric random vari-

ables, i.e., P(X j = s) = p(1− p)s−1 for some 0 < p < 1/2, and Y = ∑n
j=1 X j.

If a ≥ 2p, then

P(Y ≤ an/p)≤ (2e2a)n.

Proof As usual, we define the moment generating function of the random

variable Y as the expected value of exp(tY ). If X is a geometric random vari-

able, then

E(etX ) =
∞

∑
j=1

et j p(1− p) j−1 = pet
∞

∑
j=0

(et(1− p)) j =
p

1− et(1− p)
.

Since Y is a sum of independent copies of X ,

E(etY ) =
∞

∏
j=1

E(etX ) =
[ p

e

t

1− et(1− p)
]w

.

By Chebyshev’s inequality

P(Y <
lnλ

−t
) = P(e−tY > λ )≤ 1

λ
E(e−tY ).

Set λ = exp(−ant/p) to get

P(Y < an/p)≤ exp(ant/p)E(e−tY ) =
exp(ant/p)e−nt pn

(1− e−t(1− p))n
=

exp(ant/p)pn

(et − (1− p))n



44 Conformal maps and conformal invariants

Now set t = ln(a(1− p)/(a− p) and this becomes

P(Y < an/p)≤
pn

(
a(1−p)

a−p

)an/p

( (a(1−p)
a−p

− (1− p))n

≤
pn

(
a(1−p)

a−p

)an/p

(1− p)n( (a
a−p

−1)n

≤
pn

(
a(1−p)

a−p

)an/p

(1− p)n( p
a−p

)n

≤
(

a(1− p)

a− p

)an/p(
a− p

1− p

)n

.

Using p < 1/2 and a ≥ 2p, we get a ≤ 2(a− p) and 1− p > 1/2, so

P(Y < an/p)≤
(

a(1− p)

a− p

)an/p

(2a)n

≤
(

a

a− p

)an/p

(2a)n

≤
(

1+
p

a− p

)an/p

(2a)n

≤
(

1+
p

a− p

)2(a−p)n/p

(2a)n

≤ (e22a)n,

since (1+ 1
x
)x ≤ e.

To finish the proof of (1.6.2), apply Lemma 1.6.2 with a = βk/p ≥C1βm3/2

P(Wm)≤ P(
k

∑
j=1

w( j)< βm3/2)

≤ P(
k

∑
j=1

X j <C1βk/p)

≤ (2e2C1β )k = (C2β )k,

as desired. This completes the proof of (1.6.2) and hence of Theorem 1.6.1.
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1.7 Notes

Diffusion limited aggregation was introduced by Witten and Sander in 1981.

See [15], [16]. There have been numerous numerical simulations of DLA and

heuristic arguments for estimating its growth and geometry, but after thirty

years, Kesten’s bound is the only rigorously provable thing we know about

DLA.

Many variants of DLA have also been proposed and studied. See, for exam-

ple, [5], [6], [14], [1],

Our discussion of DLA assumed disks were added by moving them contin-

uously by Brownian motion until they made contact with the existing cluster.

An alternative model is to use a random walk on a lattice. In this case, the DLA

cluster is a connected collection of lattice sites. This is a common formulation

of the problem and was the version used in Kesten’s papers [10], [8], [9]. The

bound and proof are essentially the same as we have given (indeed, our proof is

modeled on the discrete proof given by Lawler in []), but one needs a discrete

version of Beurling’s harmonic measure estimate, Lemma 1.5.4. We choose

to give the continuous version of DLA in order to make use of the classical

version of Beurling’s estimate, which we will also need for other applications

in this book.

We have only considered DLA in two dimensions. It is known that in 3

dimensions, the diameter is almost surely O(n1/2(logn)1/4) and in dimensions

d ≥ 4 it is O(n2/(d+1)). See [10]. It seems unbelievable that there is no non-

trivial lower bound for the diameter. The trivial bound in the plane is of order

n1/2, since no more than O(n) disjoint unit disks can be packed into a disk of

radius
√

n region. However, so far as the authors know, there is no proof that

lim
n→∞

diam(DLA(n))√
n

= ∞.

It also seems very likely that the bound 2/3 in Kesten’s theorem can be im-

proved; the numerics indicate this and looking at the pictures quickly convinces

one that we should be able to improve the square root estimate in Beurling’s

theorem, which is only sharp for line segments (and DLA does not look like

a line segment!). Even more difficult questions include whether DLA has a

continuous scaling limit, and what the dimension of such a limit might be.

Stas Smirnov has warned that graduate students and postdocs not be allowed

to work on DLA. Apparently they are particularly susceptible to a debilitating

condition known as “diffusion limited aggravation”.
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1.8 Exercises

Exercise 1.1 If Ω is a Jordan domain and E,F ⊂ ∂Ω are disjoint closed

subarcs, then there is a conformal map of Ω to some rectangle so that E and F

map to opposite sides.

Exercise 1.2 If Ω is a topological annulus bounded by two Jordan curves,

show that it can be conformally mapped to a round annulus.

Exercise 1.3 Let E ⊂ C be a closed set and z a point not in E. Compute the

modulus of the path family connecting E to {z}.

Exercise 1.4 Let En ⊂T be defined by {z : Re(zn)> 0}. Show that Caplog(En)→
Caplog(T) as n → ∞. Since T\En clearly has the same capacity as En, this im-

plies capacity is not additive.

Exercise 1.5 Show that the linear fractional transformations that map D 1-to-

1, onto itself are exactly those of the form z → λ (z−a)/(1−az) where |a|< 1

and |λ |= 1.

Exercise 1.6 Show a hyperbolic ball in the disk is also a Euclidean ball, but

the hyperbolic and Euclidean centers are different (unless they are both the

origin). Compute the Euclidean center and radius of a hyperbolic ball of radius

r centered at z in D.

Exercise 1.7 Show that the only isometries of the hyperbolic disk are Möbius

transformations and their reflections across R.

Exercise 1.8 Show that the domain U constructed in the proof of Theorem

1.3.6 is equal to Hu.

Exercise 1.9 If { fn} are holomorphic functions on a domain Ω that converge

uniformly on compact sets to f and if zn → z ∈ Ω, then fn(zn)→ f (z).

Exercise 1.10 Suppose E is compact and supports a positive measure µ so

that µ(D(x,r))≤ ϕ(r), where

∞

∑
n=0

nϕ(2−n)< ∞,

Then E has positive capacity.

Exercise 1.11 If E ⊂ T is compact and has positive Hausdorff dimension,

then it has positive capacity.

Exercise 1.12 Suppose Ω is a planar Jordan domain and E ⊂ ∂Ω is Borel.

Prove that ω(z,E,Ω) is a harmonic function of z.
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Exercise 1.13 Suppose Ω is a planar Jordan domain and E ⊂ ∂Ω is Borel.

Show that if ω(z,E,Ω) = 0 for some z ∈ Ω, then it is zero on all of Ω.

Exercise 1.14 If {pk}n
k=1 are non-negative numbers and ∑n

k=1 pk = 1, show

that h =−∑n
k=1 pk log pk is maximized uniquely when pk = 1/n for all k.

Exercise 1.15 Suppose g(z) = 1
z
+ b0 + b1z + . . . is univalent in D. Then

∑∞
n=0 n|bn|2 ≤ 1. In particular, |b1| ≤ 1. This is the area theorem.

Exercise 1.16 Use the area theorem to prove that if ϕ(z) = z+∑∞
n=2 anzn is

univalent on the unit disk with ϕ ′(0) = 1, then |a2| ≤ 2. This is the case n = 2

of the Bieberbach conjecture (later to become deBrange’s theorem [], []).

Exercise 1.17 Use the previous exercise to give a second proof of the Koebe
1
4
-theorem.

Exercise 1.18 If f is conformal on the disk, and ϕ = log f ′, then |ϕ ′(z)| ≤
6/(1−|z|2) for all z ∈ D.

Exercise 1.19 If ϕ is conformal on D then

1−|z|
(1+ |z|)3

≤ |ϕ ′(z)| 1+ |z|
(1−|z|)3

.

This is the distortion theorem. See e.g., Theorem I.4.5 of [7].

Exercise 1.20 If ϕ is conformal on D then

|z|
(1+ |z|)2

≤ |ϕ(z)| |z|
(1−|z|)2

.

This is the growth theorem. See e.g., Theorem I.4.5 of [7].

Exercise 1.21

Exercise 1.22

Exercise 1.23

Solutions (eventually move to end of book)

Solution 1.1 First map Ω to the disk by the Riemann mapping theorem. Then

use a Möbius transformation to arrange for the images of E and F to be arcs

centered at ±1 and symmetric with respect to the real line. Then the Schwarz-

Christoffel formula gives a map to the desired rectangle.

Solution 1.2 Use uniformization theorem to get covering by disk. Then use

Riemann map to get covering by vertical strip with deck transformations being

vertical translations. Then use exponential map to send strip to annulus and

collapsing orbits to single points.



48 Conformal maps and conformal invariants

Solution 1.3 Take an annulus around the point that is disjoint from E, but

has modulus close to zero, and use monotonicity.

Solution 1.4 The logarithmic capacity of the circle is 1/ log2. Compute the

potential of Lebesgue measure restricted to En and show that it is bounded by

1/2log2+o(1) Therefore approximately twice this measure is still admissible,

which means the capacity of En is close to the capacity of the circle, if n is

large..

Solution 1.8

Solution 1.9 We may assume {zn} are contained in some disk D ⊂ Ω around

z. Let E = {zn}∪{z}. This is a compact set so it has a positive distance d from

∂Ω. The points within distance d/2 of E form a compact set F on which the

functions { fn} are uniformly bounded on E, say by M. By the Cauchy estimate

the derivatives are bounded by a constant M′ on E. Thus

| f (z)− fn(zn)≤ | f (z)− fn(z)|+ | fn(z)− fn(zn)| ≤ | f (z)− fn(z)|+M′|z− zn|,

and both terms on the right tend to zero by hypothesis.

Solution 1.10 The condition easily implies Uµ is bounded, hence supp(µ)

has positive capacity.

Solution 1.11 This follows from Frostman’s theorem (Theorem ??) since if

dim(E) > 0 then E supports a measure that satisfies µ(D(x,r)) = O(rε) for

some ε > 0 and ∑n 2−εn < ∞.

Solution 1.12 Show that ω(z,E,D) must agree with the Poisson integral of

the indicator function of E (the function that is 1 on E and 0 off E). This

holds because the derivative of a Möbius transformation of the disk to itself has

absolute value equal to the Poisson kernel when restricted to the unit circle.

Solution 1.13 By the maximum principle, a harmonic function that attains a

minimum or maximum is constant.

Solution 1.15 For 0 < r < 1 let Dr =C\g(D(0,r)). If z = g(w) and w = eiθ

then dw = iwdθ , so by (??),

area(Dr) =
∫∫

Dr

dxdy =
1

2i

∫

∂Dr

z̄dz =
−1

2i

∫

∂D(0,r)
ḡ(w)g′(w)dw.

To evaluate the right hand side note that

g(z) =
1

z
+b0 +b1z+ . . . ,

g′(z) =
1

z2
+0+b1 +2b2z+ . . . ,
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so that
∫

|w|=r
ḡ(w)g′(w)dw = i

∫
ḡ(w)g′(w)wdθ

= i

∫
(

1

w̄
+ b̄0 + b̄1w̄+ . . .)(− 1

w
+b1w+2b2w+ . . .)dθ

= 2πi(− 1

r2
+ |b1|2r2 +2|b2|r4 + . . .)

Thus,

0 ≤ area(Dr) = π(
1

r2
−

∞

∑
n=1

n|bn|2r2n).

Taking r → 1 gives the result.

Solution 1.16 Let F(z) = z
√

f (z2)/z2. Then the quantity inside the square

root is even and doesn’t vanish in D, so F is odd, univalent and

F(z) = z+
a2

2
z+ . . . .

Thus

g(z) =
1

F(z)
=

1

z
− a2

2
z+ . . . ,

is univalent and satisfies Theorem ??, so |a2| ≤ 2.

Solution 1.17 By pre-composing with a Möbius transformation and post-

composing by a linear map, we may assume z = 0, f (0) = 0 and f ′(0) = 1.

Then the right hand inequality is just Schwarz’s lemma applied to f−1. To

prove the left hand inequality, suppose f never equals w in D. Then

g(z) =
w f (z)

w− f (z)

= w(z+a2z2 + . . .)
1

w
[(1+

1

w
(z+a2z2 + . . .)+

1

w2
(z+a2z2 + . . .)2 + . . .)]

= z+(a2 +
1

w
)z2 + . . . ,

is univalent with f (0) = 0 and f ′(0) = 1. Applying Corollary 1.16 to f and g

gives

1

|w| ≤ |a2|+ |a2 +
1

w
| ≤ 2+2 = 4.

Thus the omitted point w lies outside D(0,1/4), as desired.
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Solution 1.18 Define

F(z) =
f (τ(z))− f (w)

(1−|w|2) f ′(w)
,

where

τ(z) =
z+w

1− w̄z
.

Then F is conformal, F(0)= 0 and F ′(0)= 1, so Lemma ?? says that |F ′′(0)| ≤
4. A computation shows

F ′′(0) =
f ′′(z)
f ′(z)

(1−|z|2)+(−2z),

and ϕ ′ = (log f ′)′ = f ′′/ f ′, so

|ϕ ′|(1−|z|2)≤ |F ′′(0)|+ |2z| ≤ 4+2 = 6.

Solution 1.19 Fix a point w ∈ D and write the Koebe transform of f ,

F(z) =
f (τ(z))− f (w)

(1−|w|2) f ′(w)
,

where

τ(z) =
z+w

1− w̄z
.

This is univalent, so by Corollary 1.16, |a2(w)| ≤ 2. Differentiation and setting

z = 0 shows

F ′(z) =
f ′(τ(z))τ ′(z)

(1−|w|2) f ′(w)
,

F ′′(z) =
f ′′(τ(z))τ ′(z)2 + f ′(τ(z))τ ′′(z)

(1−|w|2) f ′(w)
,

τ ′(0) = 1−|w|2,τ ′′(0) =−2(1−|w|2),

F ′′(0) =
f ′′(w)
f (w)

(1−|w|2)−2w̄.

This implies that the coefficient of z2 (as a function of w) in the power series

of F is

a2(w) =
1

2
((1−|w|2) f ′′(w)

f ′(w)
−2w̄).

Using |a2| ≤ 2 and multiplying by w/(1−|w|2), we get

|w f ′′(w)
f ′(w)

− 2|w|2
1−|w|2 | ≤

4|w|
1−|w|2 .
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Thus

2|w|2 −4|w|
1−|w|2 ≤ w f ′′(w)

f ′(w)
≤ 4|w|+2|w|2

1−|w|2 .

Now divide by |w| and use partial fractions,

−1

1−|w| +
−3

1+ |w| ≤
1

|w|
w f ′′(w)

f ′(w)
≤ 3

1−|w| +
1

1+ |w|

∂

∂ r
log | f ′(reiθ )|= ∂

∂ r
Relog f ′(z)

= Re
z

|z|
∂

∂ z
log f ′(z)

=
1

|z|Re(
z f ′′(z)
f ′(z)

)

Since w = reiθ and f ′(0) = 1, we can integrate to get

log(1− r)−3log(1+ r)≤ log | f ′(reiθ )| ≤ −3log(1− r)+ log(1+ r).

Exponentiating gives the result.
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Conformal maps and martingales

We start by showing any harmonic Bloch function on the unit disk defines a

dyadic martingale on the unit circle that appoximates it to within a bounded

additive factor. This allows us to immediately deduce Makarov’s law of the

iterated logarithm for conformal maps from the similar law for martingales, at

least for domains with “nice” boundary. We then give the slighly more involved

argument that handles arbitrary Jordan domians and even arbitrary simply con-

nected domains. We will also that the conformal map of the disk to the interior

of the von Koch snowflake is essentially sharp for Makarov’s theorem.

2.1 Bloch martigales

For g analytic on the disk we define

‖g‖B = |g(0)|+ sup
z∈D

|g′(z)|(1−|z|2),

which is called the Bloch norm of g. The collection of analytic functions with

finite Bloch norm is called the Bloch space B. Note that these are exactly the

holomorphic Lipschitz functions from the hyperbolic metric on the disk to the

Euclidean metric on the plane.

One example of a Bloch function is the lacunary series

ϕ(z) =
∞

∑
n=1

z2n

.

To prove this is Bloch, fix a point z ∈ D and choose n so that

(n−1)−1 ≥ 1−|z|> n−1.

52
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Split the sum defining ϕ at n and use the fact that (1−1/n)n < e−1 to get

|ϕ ′(z)| ≤ ∑
k:2k≤n

2k|z|2k−1 + ∑
k:2k>n

2k|z|2k−1

≤ ∑
k:2k≤n

2k + ∑
j>0

n2 j|(1− 1

n
)n−1|2 j

≤ 2n+n ∑
j>0

2 je−2 j

≤Cn

≤ C

1−|z| .

Of course, a similar computation works for ∑zbn
for any integer b ≥ 2. The

example is suggestive because {z2n} looks roughly like a sum if independent

random variables. In fact, a precise statement like this holds for all Bloch func-

tions and will be the basis of everything that follows.

If f is univalent on the disk then f ′ never vanishes, so log f ′ is an analytic

function on the disk. Lemma 1.23 stated that this function is in the Bloch with

uniformly bounded constant and Exercise 1.18 showed that an upper bound for

this constant is 6. We saw in the lacunary example that some Bloch functions

look like sums of independent random variables. In fact, we shall show that all

Bloch functions look like martingales.

Consider a Whitney decomposition of the disk, as illustrated in Figure ??.

The innermost part of the decomposition is a central disk of radius 1/4. Out-

side of the central disk, the annulus A1 = { 1
4
< |z| < 1

2
} is divided into eight

equal sectors, the annulus A2 = { 1
2
< |z|< 3

4
} into sixteen sectors, and so on, as

shown in Figure 2.1.1. These sectors are called Whitney boxes. Each Whitney

box has two radial sides and two circular arc sides concentric with the origin.

The circular arc closer to the origin is called the top of the box and the arc fur-

ther from the origin is called the bottom. Each bottom arc is divided into two

pieces by the tops of the Whitney boxes below it (“below” means between the

given box and the unit circle). We call these the left and right sides of the bot-

tom arc (left is the one further clockwise). The sides and bottoms of Whitney

boxes we will call the Whitney edges, their endpoints we call Whitney vertices.

The union of these edges and vertices forms an infinite graph in D which we

call the Whitney graph. The radial projection of a closed Whitney box B onto

the unit circle, T, is a closed arc that we denote B∗ (this is sometimes called the

“shadow” of B, thinking of a light source at the origin). The union of a closed

Whitney box B and all the closed Whitney boxes B′ so that (B′)∗ ⊂ B∗ is called

the Carleson square with base I = B∗.
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Figure 2.1.1 The Whitney decomposition of the disk.

A dyadic martingale on the unit cirlce is a sequence { fn} of functions so

that each fn is constant on the interiors of the nth level dyadic intervals and so

that value of fn on any such interval I is the sum of values of fn+1 on the two

children of I. The dyadic martingale on the circle is called a Bloch martingale

if

‖{ fn}‖B ≡ sup
n

sup
I

| fn − fn+1|< ∞.

The quantity on the left is called the Bloch norm of the martingale.

We shall use fn to denote the martingale as a function on the circle and fI to

denote the value taken by fn on I, if I is a nth generation dyadic interval. Thus

we can write

fn(x) = ∑
I

fI1I(x),

where the sum is over all nth generation dyadic intervals.

Lemma 2.1.1 For any harmonic Bloch function u on the disk, there is a Bloch
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martingale { fn} on the circle so that ‖{ fn}‖B ≤C‖u‖B and

sup
I∈Dn

|u(zI)− fn(I)| ≤C‖u‖B.

Proof Suppose u is a harmonic Bloch function. Without loss of generality we

may assume its Bloch norm is 1. Suppose I ⊂ T. We claim that the limit

uI = lim
rր1

∫

I
u(reiθ )dθ (2.1.1)

exists and satisfies

|uI −u(zI)|= O(‖u‖B). (2.1.2)

If so, then {uI} as I ranges over all dyadic subintervals of T defined the desired

martigale.

We apply Green’s theorem over the truncated Carleson box

Qr = {seiθ : r < 1− s < |I|,eiθ ∈ I},

for r ≪ |I|. Taking v = log 1
|z| , Green’s theorem says that since both u and v are

harmonic in Qr, the boundary integral

∫

Qr

u
∂v

∂n
+ v

∂u

∂n
ds = 0.

Thus the integral over the “bottom” of the truncated box is the negative of the

integral over the other three sides. The integral over the top side is

∫

I
u(|I|eiθ )dθ = u(zI)+O(1)

since u itself varies by less than O(1) over this arc. The integrand over each

radial side of Qr is bounded by

|u ∂v

∂n
|+ |v∂u

∂n
| ≤ 0+ log

1

t

1

1− t
= O(1),

which is integrable on [1− |I|,1). Hence the limits over the radial sides as

r ր 1 exists and are O(1). Thus the limit in (2.1.1) exists and satisfies (2.1.2)

as desired.

Lemma 2.1.2 If { fn} is a real-valued Bloch martingale, then

liminf
n→∞

fn(θ)< ∞,

for almost every θ .
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Proof Without loss of generality assume f0 = 0 and that the Bloch norm is

1. Define a stopping time τ by the first time that fn(θ) is either less than −2

or greater than M ≫ 0. Let X be the set where we step because we are greater

than M, and let Y be rest of the cirlce. Since the martingale has Bloch norm 1,

ftau ≥−3 on Y , so

0 =
∫

fτ dθ =
∫

X
fτ dθ +

∫

Y
fτ dθ ≥ M|X |−3|Y |,

or |X | ≤ 3/M. Thus {θ : supn fn(θ) > M} has small measure. In particular,

{ fn(θ)} cannot converge to +∞ on positive measure.

Lemma 2.1.3 If Φ : D→ Ω is a conformal map then

liminf
rր1

|Φ′(reiθ )|< ∞,

for almost every θ .

Proof Let { fn} be the dyadic martingale associated to the real-valued har-

monic Bloch funtion u = Re(logΦ′). By Lemmas ??, the martingale as finite

liminf almost everywhere, and by Lemma 2.1.1, so does u. Since |Φ′|= exp(u),

the lemma follows.

Lemma 2.1.4 If { fn} is a real-valued Bloch martingale, then for almost every

θ either

lim
n→∞

fn(θ),

exists and is finite or both

liminf
n→∞

fn(θ) =−∞, limsup
n→∞

fn(θ)< ∞

hold. In other words, for almost every θ , the sequence { fn(θ)} either con-

verges to a finite limit or oscilates between −∞ and +∞.

Proof YUVAL. I KNOW HOW TO PROVE THIS USING A MAXIMAL

THEOREM FOR MARTINGALES (USUAL PROOF: TRIVAL FOP Lin f ty,WEAK

TYPE L1, ITERPOLATE) AND L2 CONDITION FOR CONVERGENCE.

NOY TOO HARD¡ BUT IS THERE A SHORT-CUT?

2.2 Harmonic measure has dimension 1

The dimension of a measure µ is defined to be

dim(µ) = inf{dim(A) : A has full µ measure}.
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Suppose Ω ⊂ R
d is open and suppose ω is harmonic measure on ∂Ω. What

can we say about dim(ω)? Harmonic measure depends on a choice of base

point in Ω, but the different points all give mutually absolutely continuous

measures, so that this question does not depend on the base point. For d ≥ 3

there are a few results, but still many open questions. For d = 2, things are

much better understood. One of the key results is due to Makarov who proved

that if Ω ⊂ R
2 is simply connected then dim(ω) = 1.

Theorem 2.2.1 (Makarov’s upper bound) Suppose Ω is a simply connected

plane domain with a locally connected boundary. Then there exists E ⊂ ∂Ω

with full harmonic measure and σ -finite H 1 measure.

Proof Divide the unit circle into three disjoint sets E1,E2,E3 with the prop-

erties

1. f ′ has a non-tangential limit at all eiθ ∈ E1.

2. liminfz→eiθ ,z∈Γ(eiθ ) | f ′(z)|= 0 for all eiθ ∈ E2.

3. H 1(E3) = 0.

By the conformal invariance of harmonic measure, the harmonic measure for

Ω is supported on Φ(E1) and Φ(E2).

First we will show that there is a subset F ⊂Φ(E2) so that ω(F)=ω(Φ(E2))

and H 1(Φ(F)) = 0. Fix an integer k and for each z in the disk where |Φ′(z)| ≤
2−k let Iz denote the largest dyadic arc on the unit circle with containing z/|z|
and length ≤ 1−|z|. Each point of E2 is in infinitely many such arcs (with ar-

bitrarily small size) so by the Vitali covering theorem, we can choose a disjoint

subcollection of the arcs {Ik
j }∞

j=1 so that H 1(E \∪ jI
k
j ) = 0. Let {zk

j} be the

points in the disk corresponding to the chosen arcs. Also set

wk
j = Φ(zk

j), dk
j = dist(wk

j,∂Ω),

Dk
j = {|w−wk

j| ≤Ck2dk
j}, Gk = ∪ jD

k
j,

Fn = ∪k≥nGk, F = ∩nFn.

Where C is an in Beurling’s estimate, Lemma 1.5.4.

Then

ω(wk
j,D

k
j ∩∂Ω,Ω)≥ 1− 1

k
> 0,

and so

ω(zk
j,Φ

−1(Gk),D)≥ 1− 1

k
,
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which implies

|Ik
j \Gk| ≤ O(1/k).

Thus for an interval Ik
j ,

|(E ∩ Ik
j )\Gk| ≤ |Ik

j \Gk| ≤ O(|Ik
j |/k).

Thus

|E \Fn| ≤ in fk≥n|E \Gk|= 0.

Since {Fk} are nested decreasing, {E \Fk} is nested increasing and their mea-

sures converge to the measure of E \F , which therefore must be zero.

Finally, we just have to show H 1(F) = 0. By Koebe’s theorem |Dk
j| ∼

k2|Φ′(zk
j)|Ik

j |,

H
1(F)≤ inf

n
∑
k>n

∑
j

|Dk
j|

≤C inf
n

∑
k>n

∑
j

k2|Φ′(zk
j)||Ik

j |

≤C inf
n

∑
k>n

2−kk2 ∑
j

|Ik
j |

≤C inf
n

∑
k>n

2−kk2 ∑
j

2π

= 0.

Now we have to deal with E1. For each integer n ≥ 1, let En
1 be the subset

of E1, where | f ′| is radially bounded by n. The union of these sets is all of E1.

Choose a compact subset Fn
1 so that |En

1 \Fn
1 | ≤ 1/n. By definition Relog f ′

is in Bloch and so is bounde by logn+O(1) on any hyperbolic neighborhood

of a radial segment ending in Fn
1 , hence | f ′| = O(n) on the region WF . The

boundary of WF has length at most 2π2, so its image under f has length at

most O(n), and this includes the set f (Fn
1 ). Since ∪nFn

1 is a full mesure subset

of E1, this completes the proof of Makarov’s upper bound.

Next we prove a reverse inequality, that harmonic measure has dimension at

least one. To avoid technicalities we will make a regularity asumption on the

boundary of Ω; this assumption is removed in Sections ?? and ??. For a Bloch

martingale, | fn(θ)| = O(n) for every θ by definition. We need the following

slight improvement of this.

Lemma 2.2.2 If { fn} is a Bloch martingale, then for almost every θ , we have

| fn(θ)|= o(n).
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Proof Let C be the Bloch norm of { fn}. Note that { fk− fk+1} are orthogonal,

so
∫

f 2
n dθ =

n−1

∑
k=0

| fk+1 − fk|2dθ ≤C2n,

so by Chebyshev’s inequality

{ fn > λ} ≤ 1

λ
‖ fn‖1 ≤

1

λ
‖ fn‖1/2

2 ≤ C
√

n

λ
.

Taking λ = εn we get

{ fn > εn}= O(
1

ε
√

n
).

Taking n = m3, this becomes

{ fm3 > εm3}= O(
1

εm3/2
),

which is summable over m, so by Borel-Cantelli

limsup
m→∞

fm3(θ)

m3
≤ ε ,

holds almost everywhere. For m3 < n < (m+ 1)3, we have n−m3 = O(m2),

so the bounded difference condition for Bloch martingales implies, for almost

every θ ,

fn(θ)≤ fm3(θ)+O(m2) = (ε +
1

m
)O(m3) = (ε +

1√
n
)O(n).

Since ε > 0 was arbitary, this proves the lemma.

Corollary 2.2.3 If f : D→ Ω is a conformal map and ε > 0, then

liminf
r→1

| f ′(reiθ )|
(1− r)ε

≥ 1

for almost every θ .

Proof This is immediate from the martingale version (Lemma 2.2.2) and

Lemma 2.1.1

We say that a closed Jordan curve γ is a quasidisk if there is a M < ∞ so

that diam(γ(x,y))≤ M|x− y|, where γ(x,y) is the subarc of γ between x and y

of smaller diameter. Such curves are also called “bounded turning”, or said to

satisfy Ahlfors’ 3-point condition. The name “quasicircle” comes from the fact

that these curves are exactly the images of the unit circle under quasiconformal

mappings of the plane to itself. Although we will not prove this, we will use
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the word “quasicircle” since this is the most common term for this class of

curves. Similary, a bounded domain whose boundary is a quasicircle is called a

quasidisk. The definition is sufficiently general to include many fractal curves,

such as the von Koch snowflake.

Theorem 2.2.4 If Ω is a quasidisk and ω is harmonic measure for Ω, then

dim(ω) = 1.

Proof We have already see dim(ω) ≤ 1, so we only need to prove the other

direction. Fix ε > 0. Suppose X ⊂ ∂Ω has positive harmonic measure. By

Lemma 2.2.3 we can choose a compact set E ⊂ [0,2π] and 0 < s < 1 so that

Y = f (E)∩X has positive harmonic measure and

| f ′(reiθ )| ≥ (1− r)ε

for all r > s and θ ∈ E. We claim that dim(Y )≥ 1−ε . Suppose {D j} is a cover

of Y by disks. By the quasicircle assumption, we can associate to each disk an

arc γ j so that D j ∩∂Ω ⊂ γ j and diam(γ j)≃ diam(D j). Each γ j corresponds to

an arc I j ⊂ T. By assumption I j contains a point eiθ of E, and by the Koebe
1
4
-theorem,

| f ′(z j)|& |I j|ε ,

where z j = zI j
. Therefore

diam(γ j)
1−ε ≥ (|I j| · | f ′(z j)|)1−ε ≥ |I j|(1+ε)(1−ε) ≥ |I j|(1−ε2) ≥ |I j|.

Since {I j} covers the set f−1(Y ), we deduce that

∑
j

|I j| ≥ | f−1(Y )|> 0,

is bounded away from zero. Hence the (1− ε) Hausdorff content of Y is also

bounded away from zero, so dim(X) ≥ dim(Y ) ≥ 1− ε . Since ε > 0 was ar-

bitrary, we have shown dim(X) ≥ 1 for any set X of positive harmonic mea-

sure.

This result can improved in at least two ways. First, quasidisks can be re-

placed by general Jordan domains (or even general simply connected domains).

Second the dimension estimate can be replaced by a much more precise guage

estimate. Both improvements will be given later sections.
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2.3 Makarov’s law of the iterated logarithm

In this section we considerably strengthen Lemma 2.2.2 on the almost every-

where growth of martinagles, and derive from this a stronger lower bound, in

terms of guage funtions, for the dimension of harmonic measure on “nice”

Jordan domains.

Theorem 2.3.1 Suppose { fn} is Bloch martingale of norm 1. Then

limsup
n→∞

| fn(θ)|√
n log logn

= O(1)

for almost every θ .

Proof YUVAL WILL FILL IN

Theorem 2.3.2 Suppose { fn} is Bloch martingale of norm 1 and there are

N < ∞ and δ > 0 so that for every dyadic interval I, there is a dyadic interval

J ⊂ I so that |J| ≥ 2−N |I| and | fI − fJ |> δ . Then

limsup
n→∞

| fn(θ)|√
n log logn

≥C(N,δ )> 0

for almost every θ

Proof YUVAL WILL FILL IN

Theorem 2.3.3 (Makarov’s LIL for Bloch functions) There is constant C <∞

so that the following holds. Suppose u is a real-valued Bloch function and

ψ(t) =

√
log

1

t
log log

1

t
.

Then

limsup
rր1

u(reiθ )ψ(1− r)≤ O(‖u‖B),

for almost every θ .

Proof Immediate from martingale version and Theorem 2.1.1.

Theorem 2.3.4 (Makarov’s LIL for harmonic measure) There is constant

C < ∞ so that the following holds. Suppose Ω is a quasidisk and E ⊂ ∂Ω has

zero ϕ-measure for the guage function

ϕC(t) = t exp(C

√
log

1

t
log log

1

t
).

Then E has zero harmonic measure in Ω.
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Proof The proof is essentially the same as Theorem 2.2.4, except that instead

of the easy o(n) upper bound for martingales, we use the more difficult Theo-

rem ??.

CHRIS WILL FILL IN DETAILS

2.4 The snowflake is sharp

DEFINE VON KOCH SNOWFLAKE

COMPUTE DIMENSION ?

Theorem 2.4.1 If f : D→ Ω is the conformal map to the interior of the von

Koch snowflake, then there is a c > 0 E ⊂ ∂Ω that has full harmonic measure,

but zero Hausdorff ϕ-measure for

ϕ(t) = t exp(c

√
log

1

t
log log

1

t
).

In other word, the snowflake shows Makarov’s LIL is sharp.

Proof CHRIS WILL FILL IN

NEED TO SHOW THE MARTINGALE HAS THE NEEDED LOWER

BOUND ON VARIANCES EVERYWHERE AT ALL SCALES

Given a segment I in the nth generation of the construction we want to use

extremal length to show that there is an α > 0 and segments in the n+kth gen-

eration whose harmonic measures are, respectively, greater than ω(I)3−(1−α)k

and less than ω(I)3−(1+α)k. Thus log | f ′| = Relog f ′ differs by at least 2αk

at interior point corresponding to these arcs, and the corresponding martigales

differs by 2αk−O(1). Choosing k large enough gives the lower bound on vari-

ance needed in the lower bound version of the law of the iterated logarithm.

Comment: It is somewhat easier to show that Imlog f ′ = arg( f ′) has the

desired lower bound on its variance, since here we just have to compute the

change in angles for segements in generations n and n+ k. But we would then

have to transfer this to the real part, using some version of harmonic con-

jugation or the Hilbert transform, and this seems much more ackward than

estimating | f ′|.
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Figure 2.4.1 The von Koch snowflake

2.5 Jordan domains

Next we remove the quasidisk assumtion from Makarov’s LIL (Theorem ??),

and prove the result for all Jordan domains. Later (Theorem 3.1.6) we will see

that this implies it for all simply connected domains. In the previous case we

assumed that for any disk D, all the components of D∩∂Ω were contained in a

single arc of ∂Ω whose diameter was comparable to the diameter of D. In gen-

eral, this is not true, so we consider the components of 2D∩∂Ω separately. Al-

though there may be infinitely many such components, using extremal length

we can show that at most O(− logdiam(D)) of these components account for

most of the harmonic measure of D∩∂Ω and the extra logarithmic factor can

be absorbed into the Makarov’s guage function by changing the constant.

in the previous paragraph. We say σ is a crosscut of Ω if σ is a Jordan arc

in Ω with both endpoints on ∂Ω. By Corollary ?? we can choose a δ so any
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disk of radius δ has harmonic measure less than 1/n. (Also see Exercise ?? of

Chapter ??.) The following lemma says that the diameter of a crosscut can be

estimated in terms of the size of its preimage and and the estimates on | f ′|.
Let

En = {eiθ : | f ′(reiθ )| ≥ ϕ−a(1− r)

1− r
,1− 1

n
≤ r < 1},

Lemma 2.5.1 Suppose σ is a crosscut on Ω contained in some disk D of

radius ≤ δ . Let β be the subarc of ∂Ω separated from z0 by σ and I ⊂ T be

the arc corresponding arc to β . Assume I ∩En 6= /0. Then

diam(D j)≥ diam(σ)≥Cϕ−a(|I|).

Proof The left hand inequality is trivial, so to prove the other, choose eiθ ∈
I ∩En and let z = (1−|I|)eiθ . By our choice of δ , |I| ≤ 1/n, so

| f ′(z)| ≥ ϕ−a(|I|)|I|−1.

By the Koebe 1/4 theorem (Theorem ??),

d = dist( f (z),∂Ω)≥Cϕ−a(|I|),

and so by Corollary ??

ω( f (z),σ ,Ω\σ)≤C(
|σ |
d

)1/2,

for some C < ∞. On the other hand,

ω( f (z),σ ,Ω\σ) = ω(z, f−1(σ),D\ f−1(σ))

≥ min{ω(z, I,D),ω(z, Ic,D)},

depending on which side of f−1(σ) the point z lies. By the definition of z we

see that both these terms are bigger than some absolute constant and so

|σ | ≥Cd ≥Cϕ−a(|I|),

as required.

The following lemma says that a neighborhood on ∂Ω does not have too

many preimages on the unit circle with large measure. The proof uses some

simple facts about extremal length.

Lemma 2.5.2 Suppose D is a disk of radius r < r0 such that ω(D) ≥ r and

let 2D be the concentric disk with twice the radius. Then there are crosscuts

{σ j} ⊂ 2D, j = 1, . . . ,m with associated arcs {β j}, {I j} such that

m ≤ 2π

log 2
log

1

r
,
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∑
j

|I j| ≥
3

4
ω(D).

Proof To normalize the situation assume that dist(z0,∂Ω) = 1 and let K be a

disk of radius 1/2 centered at z0.

Ω

U 1

U 2

U
3

U4

2D

Figure 2.5.1 Regions in proof of Lemma 2.5.2.

Let Ω0 be the component of Ω \ D containing {z0} and let {U j} be the

components of Ω0∩2D whose boundary contains arcs on ∂D. Since ω(D)> 0

this collection is nonempty.

Fix j and consider U j. It is a Jordan domain and ∂U j ∩(2D\D) is a union of

arcs exactly two of which Γ
j
1,Γ

j
2 connect ∂D to ∂2D. Their complement in ∂U j

consists of arcs, one of which, call it δ j, hits ∂D. Then the set (∂U j ∩∂D)\∂Ω

is a union of arcs {γk} of ∂D each of which is a crosscut of Ω with associated

arcs βk of ∂Ω. Let E j = ∪kγk.

Let F j be the family of all arcs separating K from E j and let F̃ j be the

family of all arcs in U j connecting Γ
j
1 to Γ

j
2 and F the family of all arcs in

2D \D separating the two boundary circles. Then by the estimate Corollary

1.5.2 relating extremal length to harmonic measure,

M(F j)≤
1

π
log(

C

ω(E j)
).

By monotonicity (lemma 1.1.2),

M(F̃ j)≤ M(F j).

By Lemma 1.1.5,

∑
j

λ (F̃ j)≤ λ (F ) =
2π

log2
,
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UΓ Γ21

δ jγ
1

γ
2

Ω

β β2
1

Figure 2.5.2 Detail of region U in proof of Lemma 2.5.2.

or

∑
j

M(F̃ j)
−1 ≤ M(F )−1 =

2π

log2
,

so

∑(log
C

ω(E j)
)−1 ≤ 2

log2
.

By Tchebyshev’s inequality,

|{ j : ω(E j)≥Crπk}| ≤ 2π

log2
k log

1

r
.

Hence

∑
ω(E j)≤Crπ

ω(E j)≤
∞

∑
k=1

(
2π

log2
(k+1) log

1

r
)Crπk

≤ (
2πC

log2
) log

1

r

∞

∑
k=1

(k+1)rπk

≤ 1

4
r,

if r < r0 is small enough. Thus

∑
ω(E j)>Crπ

ω(E j)≥ ω(D)− 1

4
r

≥ 3

4
ω(D),
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and there are at most 2π log 1
r
/ log2 such j’s. So if we take the σ j to be a

crosscut of Ω contained in U j with

β j = E j ∪ (δ j ∩∂Ω),

the lemma is proven.

Now that the technical lemmas are finished, we can complete the proof of

Makarov’s theorem.

Proof of Theorem ?? By Theorem ?? we can choose a universal a > 0 so that

liminf
r→1

| f ′(reiθ )|( 1− r

ϕ−a(1− r)
) = +∞,

for almost every θ . So if we define

En = {eiθ : | f ′(reiθ )| ≥ ϕ−a(1− r)

1− r
,1− 1

n
≤ r < 1},

then ∪nEn has full measure. Thus it suffices to prove the following: If E ⊂
f (En) and Hϕ2a

(E) = 0, then ω(E) = 0.

Suppose {D j} is a covering of E by disks of radius {r j} such that max j r j ≤
δ and ∑ j ϕ2a(r j) ≤ ε . By considering points of density of E (with respect to

harmonic measure) and taking δ to be small enough we may suppose

ω(D j)≤ 2ω(D j ∩E).

We may also assume ω(D j)≥ r j, for the remaining disks satisfy

Ω(∪ jD j)≤ ∑
j

r j ≤ ∑
j

ϕ2a(r j)≤ ε .

Now for each j let {σ
j

k } be the crosscuts given by the previous lemma which

also satisfy β
j

k ∩E 6= /0. Then

∑
k

ω(β j
k )≥

1

4
ω(D j),

so by the two lemmas,

ω(E)≤ ∑
j

ω(D j)

≤ 4∑
j
∑
k

ω(β j
k )

≤ 8π

log 2
∑

j

log
1

r j

ϕ−1
−a (

2r j

C
).
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Now observe ϕ−1
−a (t)≤ ϕa(t). To prove this, note

ϕ−a(ϕa(t)) = t exp(a

√
log

1

r
. . .−

√
log

1

ϕa(t)
. . .).

Since t ≤ ϕa(t), the power of the exponential is positive and so

ϕ−a(ϕ(t))≥ t.

Thus

ω(E)≤ 2π

log2
∑

j

ϕ2a(
2r j

C
)(log

1

r j

ϕ−a(2r j/C)

C/2r j

).

Note,

(log
1

t
)(

ϕ−a(t)

t
) = exp(log log

1

t
−a

√
log

1

t
log loglog

1

t
).

Since the left hand side tends to 0 as t → 0, the left hand side is bounded for

t < δ . Hence

ω(D)≤Cϕ2a(|D|),

so

ω(E)≤C∑
j

ϕ2a(2r j/C)≤C∑
j

ϕ2a(r j)≤Cε .

Since ε was arbitrary, we have proven the theorem.

Corollary 2.5.3 Harmonic measure for a general simply connected domain

gives full measure to a set of σ -finite 1-measure, and Makarov’s LIL holds.

Proof If Ω is a simply connected domain, then any subset of ∂Ω of positive

harmonic measure also has positive harmonic measure for some Jordan sub-

domain of Ω. Thus harmonic measure for Ω dominated by a countable sum of

harmonic measures for Jordan domains and thus gives full measure to σ -finite

length. On the the other hand if harmonic measure for Ω gave positive measure

to a set of zero ϕ-measure (ϕ as in Makarov’s LIL), then some Jordan domain

would also give it positive measure, a contradiction.

2.6 Converses

We have already seen that Makarov’s LIL for harmonic measure is sharp ex-

cept for the choice of the constant C. Here we give an alternate way to prove

this, by proving converses of two results from earlier in the text: to each Bloch
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martigale there is an associated Bloch harmonic function and ach Bloch holo-

morphic function of sufficiently small norm is of the form log f ′ for some

conformal map. Given these facts, we can start with a real-valued Bloch marti-

gales which is sharp for the martigales LIL and produce a conformal map that

is sharp for Makarov’s LIL.

We saw in Lemma 1.18 that if f is conformal, then ϕ = (log f ′)′ is Bloch

with norm at most 6. This fact has a partial converse.

Theorem 2.6.1 There is an ε > 0, so that if ϕ is in Bloch with norm at most

ε , then ϕ = log f ′ for some conformal map f onto a quasidisk.

Proof We will need the following inequality

∫ y

x
((

1− x

1− t
)ε −1)dt ≤ ε

1− ε
(y− x),

for 0 < ε < 1, 0 ≤ x ≤ y ≤ 1. This can be proved by observing that the left

hand side is a convex function of y (for fixed x) and equals the the linear right

hand side at y = x and y = 1.

Given z1 6= z2 in the disk we wish to show f (z1) 6= f (z2). First consider the

case when z1 = 0 and z2 = r > 0 . Then for 0 < t < r,

|ϕ(t)|= |
∫ t

r1

ϕ ′(s)ds| ≤ ε

∫ t

0

ds

1− s
= ε log

1

1− t
.

Thus,

| f (r2)− f (r1)− (r2 − r1)|= |
∫ r

0
( f ′(t)−1)dt|

≤
∫ r

0
(e|ϕ(t)|−1)dt

≤
∫ r

0
((

1− r1

1− t
)ε −1)dt

≤ ε

1− ε
r

≤ 1

2
r,

if ε ≥ 1/3 is small enough. Thus f (0) 6= f (r).

Now we consider the general case. It is easy to see that if f is not univalent

then there are points z1,z2 such that f (z1) = f (z2) and |z1|= |z2|. Without loss

of generality we may take z1 = r and z2 = reiθ with 0 < θ ≤ π . If r < θ , then
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the previous estimate gives

| f (z1)− f (z2)| ≥ |z2 − z1|− | f (z2)− f (0)− z2|− | f (z1)− f (0)− z1|

≥ |z2 − z1|−
2εr

1− ε

≥ 2

3
|z2 − z1|,

if ε < 1/4.

Finally, if r ≥ θ define a third point z3 = (r−θ)eiθ/2. This point is approxi-

mately “between” z1 and z2 and will play the role the origin did in the previous

argument. See Figure 2.6.

●

●

●

z1

z2

z
3

Figure 2.6.1 Proving f is univalent.

Without loss of generality we may assume f (z3) = 0 and f ′(z3) = 1 (so

ϕ(z3) = 0). Then if w lies on the line segment between z3 and z1, i.e.,

w = (1− t)z3 + tz1,

then we have

|ϕ(w)|= |
∫ w

z3

ϕ ′(ζ )dζ |

≤ 2ε

∫ |w|

|z3|

dζ

1−|ζ |

≤ 2ε log(
1−|z3|
1−|w| ).
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Thus by repeating the argument from above,

| f (z1)− f (z3)− (z3 − z1)|= |
∫ z1

z3

( f ′(t)−1)dt|

≤ 2

∫ |z1|

|z3|
((

1− r1

1− t
)2ε −1)dt

≤ 4ε

1−2ε
(|z1|− |z3|)

≤ 4ε

1−2ε
|z1 − z3|.

Of course, the same works with z1 replaced by z2. Thus

| f (z1)− f (z2)| ≥ |z2 − z1|− | f (z2)− (z2 − z3)|− | f (z1)− (z1 − z3)|

≥ |z2 − z1|−
8ε

1−2ε
|z1 − z2|

≥ 1

2
|z2 − z1|,

if ε is sufficiently small.

Lemma 2.1.1 has a converse:

Lemma 2.6.2 Given any Bloch martingale { fn} on the circle, there is har-

monic Bloch function u on the disk, such that ‖u‖B ≤C‖{ fn}‖B and

sup
I∈Dn

|u(zI)− fn(I)| ≤C‖{ fn}‖B.

Proof Suppose { fn} is a Bloch martingle of norm 1. Without loss of gener-

ality we may assume f0 = 0 and hence all the elements have mean value zero.

Let un is the harmonic extension of fn to the unit disk. By our assumption

un(0) = 0 for all n.

un(z) =
∫

T

Pz(e
iθ ) fn(e

iθ )dθ

=
n−1

∑
k=0

∫

T

Pz(e
iθ )[ fn+1(e

iθ )− fn(e
iθ )]dθ

=
n−1

∑
k=0

∫

T

Pz(e
iθ )∆n(e

iθ )dθ

Note that ∆n has means value zero over each dyadic interval of generation n,

is bounded by 1 everywhere, and Pz differ from a constant by at most O( 2−n

1−|z| )
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on such an interval. Thus if n < m,

|un(z)−um(z)| ≤
m−1

∑
k=n

∫

T

2−k

1−|z|dθ = O(
2−n

1−|z| ),

which shows the sequence of harmonic functions converges uniformly on com-

pact sets to a harmonic function u.

Next we want to prove

u(z)− fI = O(1),z ∈ T (I).

This automatically proves that u is Bloch, since its variation over and T (I) is

uniformly bounded. Give a dyadic interval I we can form a disjoint collection

C of dyadic intervals J so that |I| ≤ |J| ≃ dist(J, I) and there are only a bounded

number of intervals of any given size. Note that |J|= 2k|I| and dist(J, I)≤ 2k|I|
implies that | fJ − fI |= O(k) by the Bloch condition

un(z)− fI =
∫

T

Pz fn −Pz fIdθ

=

∫

T

Pz( fn − fI)dθ

= ∑
J∈C

∫

J
Pz( fn − fI)dθ

=
∞

∑
k=0

∑
J∈C ,|J|=2k|I|

∫

J
Pz( fn − fI)dθ

=
∞

∑
k=0

∑
J∈C ,|J|=2k|I|

∫

J
Pz( fn − fJ)+( fJ − fI)dθ

≤
∞

∑
k=0

∑
J∈C ,|J|=2k|I|

(∫

J
Pz( fn − fJ)dθ +

∫

J
Pz( fJ − fI)dθ

)

The second term is bounded by

∞

∑
k=0

∑
J∈C ,|J|=2k|I|

∫

J
O(2−2k|I|−1k)dθ ≤

∞

∑
k=0

∑
J∈C ,|J|=2k|I|

∑
k=0∞

O(2−kk = O(1).

If we choose n so that fn − fI mean zero on I, then fn − fJ also has mean zero

on each J ∈ C , since these are all at least as long as I. Let I be of generation

m. Since Pz varies by less than 2−n−2k|I|−1 on intervals of length 2−n in Jk, we
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get

|
∞

∑
k=0

∑
J∈C ,|J|=2k|I|

∫

J
Pz( fn − fJ)dθ |= |

∞

∑
k=0

∑
J∈C ,|J|=2k|I|

∫

J
Pz

n−1

∑
j=m−k

∆ jdθ |

= |
∞

∑
k=0

∑
J∈C ,|J|=2k|I|

∫

J

n−1

∑
j=m−k

|I|−12−2k− jdθ |

≤
∞

∑
k=0

∑
J∈C ,|J|=2k|I|

O(2m2−2k−m+k)

= O(
∞

∑
k=0

∑
J∈C ,|J|=2k|I|

2−k)

= O(1)

This completes the proof.

Theorem 2.6.3 There is a c > 0, a quasidisk Ω and a set E ⊂ ∂Ω that has

full harmonic measure, but zero Hausdorff ϕ-measure for

ϕ(t) = t exp(c

√
log

1

t
log log

1

t
).

Proof CHRIS WILL FILL IN. USE 5-ADIC MARTINGALE THAT IS 0 ON

FIRST, THIRD AND FIFTH INTERVALS AND -1, +1 ON SECOND AND

FOURTH. DRAW GRAPH

REMARK THAT MAXIMAL BLOCH FUNCTIONS LIKE :ACUNARY

SERIES WORK AND PETER JONES GAVE A GEOMETRIC SUFFICIENT

CONDITION

2.7 Notes

Makarov [? ] proved that for any gauge function ϕ such that

lim
t→0

ϕ(t)

t
= 0,

there is a subset E ⊂ ∂Ω so that ω(z,E,Ω) = 1 and H ϕ(E) = 0. Pommerenke

[? ] refined this to show that the set E can actually to take to have σ finite H 1

measure. Wolff has pointed out that this can also be deduced directly from

Makarov’s theorem using a result of Besicovitch: if E has zero H ψ measure

for every guage function which satisfies

lim
t→0

ψ(t)

ϕ(t)
= 0,
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then E has σ -finite H ϕ measure [? ].

2.8 Exercise

Exercise 2.1 Show that a planar compact set is locally connected if and only

if it is the continuous image of the unit circle.
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Cone points and twist points

We saw in the previous chapter that Makarov’s theorem split harmonic mea-

sure for a Jordan domain into two pieces: one supported on a set of σ -finite

length and corresponding to points on the circle where the derivative of the

conformal map has a radial limit, and another set of zero linear measure that

corresponds to points on the circle where f ′ oscillates between −∞ and +∞. In

this chapter we geometrically characterize these boundary points almost every-

where as either cone points or twist points. We also prove the F. and M. Riesz

theorem and chacterize when harmonic measures corresponding to two sides

of a closed Jordan curve are either mutually absolutely continuous or mutually

singular.

3.1 The F. and M. Riesz theorem

In this section we will prove that if Ω is a Jordan domain bounded by a rec-

tifiable curve, then harmonic measure is mutually absolutely continuous with

respect to length measure on ∂Ω, We start with Jensen’s formula:

Lemma 3.1.1 If f is analytic on the unit disk with zeros {zn}N
1 in D(0,r), and

suppose f (0) 6= 0 and f has no zeros on the circle {|z|= r}. Then

| f (0)|
N

∏
n=1

r

|zn|
= exp(

1

2π

∫ 2π

0
log | f (eiθ )|dθ).

Proof Let

B(z) =
N

∏
n=1

r2 − z̄nz

r(zn − z)
.

then B and f have the same zeros and |B|= 1 on the circle {|z|= r}. Thus g =

75
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f/B is analytic in D(0,r), never vanishes in this disk. Thus log |g| is harmonic

in D(0,r), so by the mean value property

log |g(0)|= 1

2π

∫ 2π

0
log |g(reiθ )|dθ .

Since |g|= | f | on the circle of radius r and | f (0)|= |g(0)||B(0)|= |g(0)|∏N
n=1

r
|zn| ,

we get the desired equality.

The next fact is crucial in our study of harmonic measure.

Lemma 3.1.2 If f ∈ H1 is not the constant zero function, then the boundary

values f ∗ satisfy | f ∗(eiθ )|> 0 for almost every θ .

This is a generalization of the much simpler fact that a analytic function on

the disk cannot vanish on an interval of the circle.

Proof Suppose f ∈ H1 did have boundary values which vanish on a set of

positive measure E on the boundary. By replacing f (z) by f (z)/zk for some k,

if necessary, we may assume f (0) 6= 0. Let

E+{| f ∗| ≥ 1}= {log | f ∗| ≥ 0},

E− = {| f |< 1}= {log | f ∗|< 0}.

Then since logx ≤ x for x ≥ 1, for any 0 < r < 1,
∫

E+

log | f (reiθ )|dθ | ≤ M f (reiθ )dθ ≤C‖ f‖1.

On the other hand, for any ε > 0 there is an r0 so that if r > r0 then | f (reiθ )|< ε

on a set of θ ’s of measure > |E|/2. Thus
∫

E−
log | f (reiθ )|dθ ≤ 1

2
H1(E) logε

Combining the two estimates we get

lim
r→1

∫ 2π

0
log | f (reiθ )|dθ |=−∞,

which implies | f (0)|= 0. This is a contradiction, so f ∗ cannot vanish on a set

of positive measure.

Theorem 3.1.3 (F. and M. Riesz, Version 1) Suppose µ is a finite measure

on the unit circle. Then ∫
f (eiθ )dµ(θ) = 0,

for every analytic function on the disk with continuous boundary values, iff
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dµ(θ) = h(eiθ )dθ for some H1 analytic function with h(0) = 0. In particular,

µ is mutually absolutely continuous with respect to Lebesgue measure.

Proof Suppose µ annihilates analytic functions. Let h be the Poisson integral

of µ , then h is clearly harmonic and satisfies

‖h‖H1 = sup
r

∫ 2π

0
|h(reiθ )|dθ < ‖µ‖.

In fact, h must be analytic since

∫ 2π

0
h(reiθ )(reiθ )ndθ =

∫ 2π

0
[
∫ 2π

0
Pr(e

i(θ−ψ))dµ(ψ)](reiθ )ndθ

=
∫ 2π

0
[
∫ 2π

0
Pr(e

i(θ−ψ))(reiθ )ndθ ]dµ(ψ)

= rn

∫
zndµ(z)

= 0,

for all n. Thus h is in the Hardy space H1(D), and so by Theorem ?? h is the

Poisson integral of its boundary values, i.e., dµ = h∗dθ , as desired. Since µ

kills constants, it must have mean value 0, hence h(0) = 0. The other direction

follows easily from the Cauchy integral formula.

We say that a connected set is rectifiable if it has finite 1-dimensional mea-

sure. It is easy to check that if K is locally rectifiable, then it is locally con-

nected. Thus if Ω is a simply connected domain with rectifiable boundary, ∂Ω

is locally connected so by Carathéodory theorem any Riemann mapping of the

disk onto Ω extends continuously to the boundary.

Theorem 3.1.4 If Φ is univalent mapping of the unit disk onto a simply con-

nected domain with rectifiable boundary, then Φ′ ∈ H1. In particular, Φ′ has

finite, non-zero, non-tangential limits almost everywhere.

Proof Since
∫ 2π

0 |Φ(reiθ )|dθ is the length of the image of circle {|z| = r}
we only have to check that these lengths remain uniformly bounded as r → 1.

Since ∂Ω is rectifiable, it is locally connected, so Φ extends continuous to

every boundary point. Thus every point in ∂Ω is the endpoint of a curve which

is the image of a radius of the disk under Φ. By the Moore troid theorem

(Theorem 3.1.7 only a countable subset of ∂Ω can be the endpoints of three or

more such rays.

Now cover {|z|= r} by intervals {I j} of length 1− r and centered at points

{z j}. Let {J j} be the radial projections of these intervals onto the unit circle.
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Since ω(z,J j,D) is clearly bounded away from zero, Lemma ?? and Koebe’s

theorem implies

H
1(Φ(J j))≥ diam(Φ(J j))≥C dist(Φ(z),∂Ω)≥C(1− r)|Φ′(z j)|.

Moreover, Moore’s theorem implies that ∑ j 1Φ(J j)(x)≤ 2 except possibly on a

countable set. Since log f ′ is a Bloch function (Lemma ??) there is a uniform

C < ∞ such that if f is univalent on the unit disk and z0 ∈ D, D = D(z0,
1
2
(1−

|z0|), then

C1− ≤ maxD | f ′(z)|
minD | f ′(z)| ≤C.

Therefore, if d = 1−|z0| and I is the interval of length d centered at z0/|z0|,
∫

I
|Φ′(reiθ )|dθ ≤C|I||Φ′(z j)|.

Using this and summing over the points {z j}, we get

∫ 2π

0
|Φ′(reiθ )|dθ ≤C(1− r)∑

j

|Φ′(z j)|

≤C∑
j

H
1(Φ(J j))

≤ 2CH
1(∂Ω).

Theorem 3.1.5 (F. and M. Riesz Theorem, Version 2) Suppose that Φ is a

univalent map of D onto a simply connected domain Ω with rectifiable bound-

ary. Suppose E ⊂ T. Then H 1(E) = 0 iff H 1(Φ(E)) = 0. In other words,

harmonic measure on ∂Ω is mutually absolutely continuous to 1-dimensional

Hausdorff measure.

Proof Since Φ is smooth inside the unit disk we have

Φ(reiθ1)−Φ(reiθ2) =
∫ θ2

θ1

Φ′(reiθ )ireiθ dθ ,

for any 0 < r < 1. Clearly the left hand side converges to

Φ(eiθ1)−Φ(eiθ2),

as r → 1. By Theorem 3.1.4 Φ′ ∈ H1, so the radial maximal function of Φ′ in is

L1. Thus we may use the Lebesgue dominated convergence theorem to deduce

the left hand side converges to

∫ θ2

θ1

Φ′(eiθ )ireiθ dθ ,



3.1 The F. and M. Riesz theorem 79

W

Figure 3.1.1 The sawtooth region W .

Therefore,

Φ(eiθ1)−Φ(eiθ2) =

∫ θ2

θ1

Φ′(reiθ )ieiθ dθ ,

for all θ1,θ2. This implies Φ is absolutely continuous on the unit circle. Thus

if E ⊂ T has zero length we have

H
1(Φ(E))≤

∫

E
|Φ′|dθ = 0.

Conversely, if E has positive length, then the boundary values of Φ′ are non-

zero almost everywhere on E, so there is a subset F ⊂ E so that Φ′ only takes

values in a ball D0 = D(x, |x|/2) on the set F . Let W be the union on Stolz

cones with vertices on F (and angle close to π) and let Γ be the boundary of W

(see Figure 3.1). Then using the existence of non-tangential limits we can find

a subarc of γ of Γ which hits F in positive measure and on which Φ′ on takes

values in D0. Then Φ is bi-Lipschitz on this arc and so F is mapped to a set of

positive length. This completes the proof.

Theorem 3.1.6 Suppose f : D→ Ω is a conformal map onto a simply con-

nected domain. If E ⊂ T has positive length, then there is subset F ⊂ E of

positive length so that f (WF) is a Jordan domain.

The proof of this requires a nice fact about planar topology due to R.L.Moore.

A triod is a “Y” in the plane, i.e., is the union of three Jordan arcs which are

pairwise disjoint except that they all share an endpoint. See Figure 3.1.

Theorem 3.1.7 (Moore’s triod theorem) Any pairwise disjoint collection of

triods in the plane is countable.
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●

Figure 3.1.2 A triod.

Proof If there is an uncountable such collection. then must be integers n,m

and distinct rationals r1,r2,r3 with |ri − r j| > 2/m all i, j and an uncountable

subset of triods so that if x is the common endpoint of a triod T then the three

arcs first intersect {|z−x|= 1/n} within angle 1/m of the arguments r1,r2,r3.

Since any uncountable set has a finite accumulation point, it is easy to drive a

contradiction.

Proof of Theorem 3.1.6 Let E1 ⊂ circle be where f has a radial limit and

define d : E ×E → [0,∞) as d(z,w) = | f (x)− f (y)|. Let

E1 = {z ∈ E : d(z,w) = 0 only if w = z},

E2 = {z ∈ E : d(z,w) = 0 for exactly one w 6= z}.

By Moore’s triod theorem, E \ (E1 ∪E2) is a countable set, hence has linear

measure zero. For each n let

En
2 = {z ∈ E2 : d(z,w) = 0, |z−w|< 1

n
implies z = w}.

Since ∪nEn
2 = E2 and these sets are nested the length of En

2 converges to the

length of E2.

If X ⊂ T has positive measure, then so does either X ∩ E1 or X ∩ E2. If

the former has positive measure, then consider X ∩E1 ∩Fm, where {Fm} are

of measure ≥ 1− 1/m chosen using Lemma 1.4.8, and m is chosen so large

that X ∩E1 ∩Fm has positive measure. If we take F to be a compact, positive

length subset of this set, then f is continuous on WF and is 1-to-1 on the whole

boundary, so f (WF) is a Jordan domain.

If X ∩E2 has positive length, then so does X ∩En
2 for some n. Fix such an

n and choose an interval I of length 1/2n so that I ∩X ∩En
2 also has positive

length. Then the radial limits of f are 1-to-1 restricted to this set, and the proof

is finished exactly as above.
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Thus in any question about where harmonic measure on a simply connected

domain is absolutely continuous to, or singular to, some other measure, it suf-

fices to consider harmonic measure only on Jordan domains.

Corollary 3.1.8 Suppose µ is a Borel measure on the plane and ω ≪ µ when

ever ω is harmonic measure for a Jordan domain. Then this holds whenever ω

is harmonic measure for a simply connected domain. The same principle holds

for the relations µ ≪ ω and µ ⊥ ω .

Proof If ω is harmonic measure for a simply connected domain and it gives

positive mass to set E such that µ(E), then Lemma ?? gives a Jordan domain

whose harmonic measure also gives E positive harmonic measure, by the F.

and M. Riesz Theorem (Theorem 1.23). The claim for µ ≪ ω is similar, but

only requires the maximum principle, in place of the Riesz theorem. Together,

these two claims prove the third one.

3.2 Winding numbers

In this section we establish a simple fact about windings of a curve which is

used in our proof of McMillan’s twist point theorem. Suppose γ is an analytic

Jordan curve defined on [0,1] such that γ(0) = 0 and γ(1) = 1. If x is a point

not on γ we can define the winding w(x,γ) of γ around x by taking

arg(0− x)− arg(1− x),

where we take a continuous branch of arg(z− x) defined on γ . Since the curve

is analytic it has a well defined tangent at each endpoint, so we can also define

the windings at the endpoints by truncating the curve and taking limits. We can

also define the change of argument of γ ′ as arg(γ ′(0))−arg(γ ′(1)) where again

we choose a continuous branch of arg.

Lemma 3.2.1

|2π[w(0,γ)+w(1,γ)]− [arg(γ ′(0)− arg(γ ′(1))]| ≤ 4π.

Proof If γ is a line segment then there is nothing to do. Otherwise, because

of analyticity we may assume γ hits [0,1] only finitely often. Replace γ by

a homotopic smooth curve which intersects [0,1] the least number of times

among all curves homotopic to γ by a homotopy which is the identity in some

neighborhood of 0 and 1 (thus 0 and 1 are fixed and so are the tangent direction



82 Cone points and twist points
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Figure 3.2.1 Three possible shapes for γi

at these points). The two quantities

w(0,γ)+w(1,γ),

arg(γ ′(0)− arg(γ ′(1)),

are invariant under such homotopies (since they can only take a discrete set of

values, they can not be changed under continuous deformations), so it suffices

to prove the result for the new curve.

So we assume γ has the minimum number of intersections with [0,1], say

{0= y0,y1,y2, . . .yn = 1}, which map via γ−1 to points say {0= x0,x1,x2, . . .xn =

1} ⊂ [0,1]. Divide γ into oriented subarcs γi = γ |[xi,xi+1]. Then γi is a Jordan arc

with endpoints on [0,1], but otherwise disjoint from [0,1]. The three possible

types of arcs (up to a homeomorphism of the plane mapping [0,1] to itself) are

shown in Figure 3.2. We denote the three types as 1,2 and 3.

Except at the points 0 and 1 its makes sense to say that γi approaches it

endpoints from either “above” or “below” [0,1]. For each xi with 0 < i < n it

is easy to see that γi−1 and γi approach from different sides; otherwise there

would be a smooth homotopy which removes the intersection at xi, thus low-

ering the total number of intersections. Similarly, none of these subarcs can be

of type 1 in Figure 3.2. Otherwise, using the fact that γi−1 and γi+1 approach xi

and xi+1 respectively from the opposite side we can homotopy γi across [0,1]

thus removing the intersections at both xi and xi + 1. Thus the subarcs of γ

must be either type 2 or 3.

We say that γi is “good” if yi+1 > yi and is “bad” if yi+1 < yi. We first claim

that the minimality of γ implies there are no bad subarcs. Suppose that there
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Figure 3.2.2 Bad arcs.

are bad arcs. We will consider two cases. First suppose there is a bad arc of

type 2. Then there is a bad arc γi of type 2 with endpoint yi as close to 1 as

possible (i.e., farthest to the right among all bad type 2 arcs). See Figure 3.2.

Then the preceding arc must be type 2 as well (see the figure), but this is only

possible it is bad as well. This is a contradiction and implies that there are no

bad arcs of type 2.

Now suppose all the bad arcs are type 3. Choose γi to be the last bad arc

in the ordering of γ . Then γi+1 is good and must be type 2. See Figure 3.2.

Topologically, the only possibilities for γi−1 are that it is type 1 or is a bad arc

of type 2. Both are ruled out by hypothesis, so we deduce there are no bad arcs.

We can now finish the proof. Replace γ by a homotopic arc where the homo-

topy is the identity except in small neighborhoods of each intersection point yi,

0 < 1 < n and in those neighborhoods the curve is changed so that γ ′ is hor-

izontal and points to the right as γ crosses [0,1]. Then for each subarc γi the

tangents points the same direction at either endpoint. Thus the change in ar-

gument of γ ′ along each γi is a multiple of 2π . There are only a few cases

and it is each of them it is trivial to check that the change in argument of γ ′ is

2π times w(0,γi)+w(1,γi) where w(z,γ) denotes the change in arg(y− z) for

some branch of the argument function defined on γ .

By summing over i we now get that the change of argument of γ ′ on [x1,xn−1

is equal to 2π times w(0,γ |[x1,xn−1])+w(1,γ |[x1,xn−1]). Adding in the two end
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Figure 3.3.1 Cone points of ∂Ω.

intervals γ0 and γn−1 can only alter the equality by a factor of at most 2π each

so we obtain the lemma.

3.3 McMillan’s Twist Point Theorem

If Ω is simply connected we say x ∈ ∂Ω is an inner tangent point of Ω if for

any ε > 0 x is the vertex of a cone in Ω with angle π − ε , but is the vertex of

no cone with angle > π . We say that x is a cone point if it is the vertex of some

cone in Ω.

Lemma 3.3.1 If Ω is simply connected then the set of cone points has σ -finite

1-dimensional measure and almost every cone point is an inner tangent point.

Proof By considering cones with rational angles and radius, we can write the

set of cone points as a countable union of sets, each of each are the vertices of

cones in Ω with fixed side directions and diameters. It clearly suffices to prove

the claims for any such set.

Let F ⊂ ∂Ω be the set of points x ∈ ∂Ω so that

Wx = {x+ z : |z|< r, |arg(−iz)| ≤ ε}} ⊂ Ω.

By again dividing into a countable number of subsets we may assume that F is

contained in the rectangle R = {z : |Im(z)|< r/10, |Re(z)|< rε/10}. Let W =

∪x∈FWx. Then R∩∂W is graph of a Lipschitz function (norm depending only

on ε), and hence is rectifiable. Since it contains F , F has finite 1-dimensional

measure and almost every point of F is a tangent point of the arc. Thus almost

every point of F is an inner tangent of W and hence of Ω.
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Figure 3.3.2 Cone points lie on Lipschitz graphs.

A point x is called a twist point for Ω if for any branch of arg(z− x) defined

on Ω we have

limsup
z→x,z∈Ω

arg(z− x) = ∞,

and

liminf
z→x,z∈Ω

arg(z− x) =−∞.

Thus to approach a twist point x through Ω we must “twist around” x arbitrarily

far in both directions. It is difficult to draw a twist point on the boundary (see

Figure 3.3 for a point with one twist), but we shall see later that such things

can exist. For example, harmonic measure on the von Koch snowflake gives

full measure to the twist points (see the exercises).

Thus inner tangent points and twist points represent two extremes of behav-

ior for boundary points. What is surprising is that, with respect to harmonic

measure, these are the only possibilities.

Theorem 3.3.2 (McMillan’s Twist Point Theorem) If Ω is a simply connected

domain then almost every point on ∂Ω (with respect to harmonic measure) is

either an inner tangent point or a twist point.

Proof The proof is essentially Plessner’s theorem. Let Φ : D→ Ω be a Rie-

mann mapping and apply Plessner’s theorem to the derivative Φ′. Plessner’s

theorem says that we can write T = E0 ∪E1 ∪E2 where E0 has measure zero,

Φ′ has non-zero non-tangential limits at every point of E1 and Φ′ is non-

tangentially dense at every point of E2.

Clearly the set Φ(E1)∪Φ(E2) has full harmonic measure on ∂Ω. Moreover,
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Figure 3.3.3 Boundary point with one “twist”.

we saw in the last section that Φ(E1) ⊂ ∂Ω consists of inner tangents. Thus

if we can show that Φ(E2) consists of twist points almost everywhere (with

respect to harmonic measure) we will be done. In fact all we have to do is

produce a sequence of points zn ∈ Ω with arg(zn − x)→+∞ and another with

arguments tending tending to −∞.

To prove this, suppose it fails. Then there is a set F of positive measure on

T on which Φ has nontangential limits, Φ′ is non-tangentially dense but

arg[Φ(reiθ )−Φ(eiθ )],

remains bounded above as r → 1. We will show this is impossible. Since Φ′

is non-tangentially dense on F , so is logΦ′ = log |Φ′|+ iargΦ′. Hence argΦ′

must be non-tangentially unbounded above and below by Plessner’s theorem.

By Lemma ?? there is a M so that the images of the rays [0,eiθ ) have length

less than M except on a set of measure |F |/2. So be replacing F by a set of

half the measure we may assume of the associated rays have bounded length.

Let θ0 ∈ F be a point of density and consider a sequence {zn} → 1 so that

argΦ(zn) → +∞. Fix a large N and choose an n so large that argΦ′(zn) >

4π(N +1). Let γ = Φ([0,zn) be the image of the radial segment from 0 to zn.

The change of argument of γ ′ from one endpoint to the other is |argΦ′(zn)|.
By an elementary property of curves in the plane (Lemma 3.2.1 in Appendix

C) the curve γ “winds around” one of its endpoints at least N times.

The winding of the curve is defined as follows. If x is not on γ we define

the winding w(x,γ) of γ around x by taking a continuous branch of arg(z− x)

defined on γ and taking taking the difference arg(a−x)−arg(b−x), where a,b

are the endpoints of γ . If x = a or x = b, then we can still define the winding
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by truncating the curve just short of the endpoint and taking the limit. Since γ

is analytic it has a well defined angle at each endpoint, so this is no problem.

We prove in Appendix C that if the argument of γ ′ changes by more than

4π(N +1) between its two endpoints then

w(a,γ)+w(b,γ)≥ 2N,

By rescaling we may assume Φ′(0) = 1. So by Koebe’s theorem (see Ap-

pendix C, Section ??) There is a disk D0 ⊂ Ω of diameter similar to 1 that γ

never re-enters once it leaves. Moreover, γ does not wind around 0 inside this

disk. In order to wind around a, γ must wind around the disk and since it has

length at most M, it can wind around 0 at most M/2π times. If N was chosen

large enough, we see that most of the winding of γ must be around the point b.

We would like to deduce that the curve γ also winds around the point Φ(eiθ0),

but this may not be true. Instead we will show that there is another point in F

near b around which the curve does wind.

Recall that θ0 was chosen to be a point of density of F . So if |zn| is close

enough to 1, more that half the interval of length 1−|zn| centered at eiθ0 con-

sists of point in F . By an application of Lemma ?? (where we now let zn play

the role of the origin) we can find a point x in F so that x can be connected

to b in Ω by a curve of length at most C dist(b,∂Ω). Just as we argued for the

origin above, this curve cannot wind around b more than a bounded number of

times. This implies that the winding of γ around b and around x can differ by

at most a bounded factor. Thus the winding of γ around x must be very large.

This contradicts the assumption that x ∈ F , proving the theorem.

The following is a local version of the F. and M. Riesz theorem.

Corollary 3.3.3 Suppose Ω is simply connected and let E be a subset of the

cone points on ∂Ω. Then E has positive harmonic measure iff it has positive

length.

Proof First suppose E has positive length. Then pass to a subset of positive

measure contained in a rectangle R exactly as in the proof of Lemma 3.3.1 and

let W be the union of cones constructed there. Then W1 =W ∩R is a rectifiable

subdomain of Ω which hits E in positive length. By the F. and M. Riesz theo-

rem Theorem 3.1.5 E has positive harmonic measure in W1 and hence in Ω by

the maximum principle.

Next suppose E has positive harmonic measure. Let Φ be a Riemann map-

ping of D to Ω. Then F = Φ−1(E) has positive length and Φ′ has a non-zero

non-tangential limit at almost every point of F . Therefore we can find a α > 0,

M < ∞ and a subset F0 ⊂ F of positive measure so that |Φ′| ≤ M on every
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Stolz cone of angle α with vertex in F0. Let W2 be the union of these cones.

Then W has rectifiable boundary, and |Φ′| is bounded on ∂W2, so Φ(W2) is

a subdomain of Ω with rectifiable boundary. By Theorem 3.1.5 again, Φ(F0)

has positive length (since it has positive harmonic measure) and hence so does

E.

3.4 Mutually singular harmonic measures

Two measures µ and ν are called mutually absolutely continuous if they have

the same null sets, i.e., µ(E) = 0 if and only if ν(E) = 0. The measures are

called mutually singular if each is supported on a null set of the other, i.e.,

there is a set E with µ(E) = 0 but ν(Ec) = 0.

Suppose Γ is a closed Jordan curve which divides the Riemann sphere C
∞

into two simply connected domains Ω1 and Ω2. We know (Lemma ??, Chap-

ter ??) that if we choose two points on the same side of Γ then the two har-

monic measures will be mutually absolutely continuous with respect to each

other. But what happens if we choose points from opposite sides of the curve?

Can the two measures be mutually singular?

We have already see that harmonic measure for a simply connected domain

Ω is mutually absolutely continuous with H 1 on the set of inner tangents. A

point of Γ is called a tangent point if it is an inner tangent for each of the two

complementary domains. Thus the ω1 and ω2 are mutually absolutely contin-

uous when restricted to the set tangent points of Γ. The following result says

they are mutually singular on the rest of Γ.

Theorem 3.4.1 Suppose z1 ∈ Ω1, z2 ∈ Ω2 and let ω1,ω2 denote the corre-

sponding harmonic measures. Then ω1 and ω2 are mutually absolutely contin-

uous on the set of tangent points of Γ and are mutually singular on the rest of

Γ. In particular, ω1 ⊥ ω2 iff H 1(tangent points) = 0.

Proof This result follows from the proof of Makarov’s theorem in Section ??

and an estimate of harmonic measure due to Beurling. The part of the proof of

Makarov’s theorem we need can be summarized as

Lemma 3.4.2 Suppose Ω is simply connected and let ω be harmonic measure

with respect to some point in Ω. If T ⊂ ∂Ω denotes the set of inner tangents

then there is an F ⊂ ∂Ω\T ω(F) = ω(∂Ω\T ) such that for any M > 0 there

is a disjoint covering of F by disks {D j} with ω(D j)≥ M|D j|.

The estimate of Beurling we want is
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Lemma 3.4.3 Suppose Γ is a closed Jordan curve dividing the sphere into

two simply connected domains Ω1,Ω2. Let zi ∈ Ωi satisfy dist(zi,∂Ω1) for i =

1,2. Then there is a C < ∞ so that for any disk D,

ω1(D)ω2(D)≤C|D|2.

Proof This follows from an estimate of harmonic measure known as the

Ahlfors distortion theorem (Corollary 1.5.3, Appendix C). Suppose Ω is sim-

ply connected and x ∈ ∂Ω. For each t > 0, let θ(t) denote the length of the

longest arc in Ω∩{|z− x| = t}. Then if dist(z0,∂Ω) ≥ 1, the distortion theo-

rem says

ω(z0,D(x,r),Ω)≤C exp(−π

∫ 1

r

dt

θ(t)
).

(A version of this also holds for multiply connected domains and for domains

in higher dimensions. For example see [? ] and its references.)

To apply this to our situation, let x ∈ Γ and let θi(t) be the function cor-

responding to Ωi for i = 1,2. The multiplying the estimates for each domain

gives

ω1(D)ω2(D)≤C exp(−π

∫ 1

|D|
(

1

θ1(t)
+

1

θ2(t)
)dt).

Since Ω1 and Ω2 are disjoint, θ1 +θ +2 ≤ 2πt and so a simple calculus exer-

cise shows that θ−1
1 +θ−1

2 ≥ 2/πt. Thus

ω1(D)ω2(D)≤C exp(−π

∫ 1

|D|

2πt

d
t) =C|D|2,

as desired.

We can now prove the singularity of harmonic measures. We can divide Γ

into 5 sets:

1. Tangent points,

2. Twist points,

3. Inner tangents for Ω1 which are not inner tangents for Ω2,

4. Inner tangents for Ω2 which are not inner tangents for Ω1,

5. Everything else.

We already know that the harmonic measures are mutually absolutely con-

tinuous on (1) and that (5) has zero harmonic measure from both sides. More-

over, ω2 gives zero mass to (3), so the measures are singular on that set. Sim-

ilarly for (4). Therefore all we need to show is that the measures are singular

on the twist points.
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Choose a large n and by the first lemma choose disjoint disks {Dn
j} so that

ω1(D
n
j)≥ n|Dn

j |,

ω(∪ jD
n
j) = ω1(twist points).

Then if F = ∩n ∪k>n ∪ jD
k
j , we have

ω1(F) = ω1(twist points),

but by Beurling’s estimate,

ω2(F) ≤ ∑
j

C|Dn
j |2

ω1(D
n
j)

≤ C

n
∑

j

|D j|

≤ C

n2 ∑
j

ω(D j)

≤ C

n2

→ 0.

Thus the measures are singular on the twist points.

The von Koch snowflake is an example where the harmonic measure for both

sides lives on the twist points, so the harmonic measures are singular in this

case. This is partly visible in Figure 3.4 which shows the images of Carleson

grids on the unit disk under the mappings to both the interior and exterior of

the snowflake. Note that the small boxes for the two sides seem to accumulate

on different sets. Compare with Figure ?? which shows a Carleson grid in the

disk and its image in the interior of the snowflake.
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Figure 3.4.1 Conformal images of the Whitney grids for two sides of snowflake.



92 Cone points and twist points

Figure 3.4.2 120 evenly spaced (for harmonic measure) radial lines mapped the

the complementary components of the snowflake. The singularity of harmonic

measure is evident in the distinct distributions of the endpoints on either side.
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Figure 3.4.3 Another way of visualizing the singularity of harmonic measures.

We have run 1000 random walks that step half-way to the boundary; this gives the

same hitting probability as Brownian motion.
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3.5 From fractals to space filling curves

By as space filling (or Peano) curve we mean a continuous map f : [0,1]→R
2

(or Rd) which covers an open set. There are many explicit constructions of such

maps. For example, see Figure 3.5 for a few steps in such a construction.

Figure 3.5.1 Approximation to a space filling curve.

Here we shall point out an indirect method for producing such examples

using Frostman measures. We need the following easy consequence of the ar-

gument principle in complex analysis.

Lemma 3.5.1 Suppose Γ is a simple Jordan arc in the plane and f is a

bounded continuous function on the Riemann sphere C
∞ which is analytic off

Γ. Then f (C∞)⊂ f (Γ).

Proof We need to show that if f takes a value off Γ it also takes it on Γ.

Suppose not, e.g., suppose f is zero somewhere on C
∞ but not on Γ. Since f is

continuous its zeros must be bounded away from Γ and since it is analytic off Γ

there are only finitely many of them. By the argument principle, the number of

zeros is counted (with multiplicity) by the winding number of a smooth curve

which surrounds Γ and is sufficiently close to Γ. But since f is never zero on

Γ, such a curve must have winding number zero, a contradiction

If Γ is a line segment, it is a consequence of Morera’s theorem that any

bounded, continuous function analytic off Γ must be entire and thus constant

by Liouville’s theorem. In this case the above lemma holds, but only trivially.

If Γ has dimension strictly larger than 1 however, there are many non-trivial

examples of such functions, as we shall now show.
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To get such an example, suppose Γ is any curve with dimension > 1, e.g.,

the von Koch snowflake. Let µ be a measure on Γ which satisfies

µ(B)≤C|B|α ,

for some C < ∞ and α > 1. Then define

F(z) =
1

z
∗µ =

∫
1

z−w
dµ(w).

To estimate the integral we break it up into annuli of the form

An = {w : 2−n ≤ |z−w| ≤ 2−n+1}.

Then using the facts that µ(An)≤ µ(D(z,2−n+1)) and that the kernel (z−w)−1

is bounded by 2n on An, we get

|F(z)| ≤
∞

∑
n=0

2nµ(D(z,2−n))≤
∞

∑
n=1

2−n(α−1) < ∞.

A similar calculation shows F is continuous, indeed, Hölder continuous. More

precisely, suppose z1 and z2 are two points and choose N so that

2−N ≤ |z1 − z2| ≤ 2−N+1.

We now estimate

|F(z1)−F(z2)|= |
∫
(

1

z1 −w
− 1

z2 −w
)dµ(w)|,

by breaking the integral to three types of pieces: annuli of size smaller than

2−N+2 around each of z1 and z2 and annuli of size greater than 2−N+1 around

z1. The estimates over the small annuli are exactly as above. For the large

annuli we use the estimate that

| 1

z1 −w
− 1

z2 −w
| ≤ |z1 − z2|

|w− z1||w− z2|
≤ 2−N+2n,

for |w− z1| ≥ 2−n > 2−N . Thus

|F(z1)−F(z2)| ≤
∞

∑
n=N−2

2nµ(D(z1,2
−n))+

∞

∑
n=N−2

2nµ(D(z2,2
−n))+

0

∑
n=−N

µ(D(z2,2
n))2−N−2n

≤C2N(α−1)+2−N
0

∑
n=−N

2nα+2n

≤C2−N(α−1)

≤C|z1 − z2|α−1.
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It’s easy to show using uniform convergence that

F ′(z) =
∫ −1

(z−w)2
dµ(w),

for z 6∈ K, so F is analytic off K. Furthermore,

Re(F ′(z)) =
∫ −1

Re((z−w)2)
dµ(w),

is strictly positive if w is a large real number, so F is non-constant.

Thus by the lemma

f (C∞)⊂ f (Γ).

But since f is a non-constant analytic function off Γ, the open mapping theo-

rem for analytic functions says the left hand side is an open set. Thus f : Γ →
R

2 covers an open set.

Since it is easy to parameterize Γ by [0,1], this gives the desired function. In

Figure 3.5.2 we show successive approximations to this curve when we start

with the usual measure on the von Koch Snowflake which gives equal mass to

each nth level piece. The figure shows the result of putting equal point masses

on each vertex of the n generation snowflake, convolving this with 1/z and

plotting the polygon with the image vertices.

Figure 3.5.2 Constructing a Peano curve from a Frostman measure
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From the figures it seems that the maps covers a hexagon. Is this correct?

What is the dimension of the image of µ under the mapping? Is is absolutely

continuous to or singular to area measure?

The singularity of harmonic measures arose as a natural condition in the

study of function algebras, long before there was geometric characterization

of when this occured.

Theorem 3.5.2 (Browder-Wermer) Suppose Γ is a closed Jordan curve and

the harmonic measures for the two sides of Γ are mutually singular. Then there

are non-constant continuous functions on Γ which extend continuously to be

bounded and analytic on C
∞ \Γ. In fact, the real parts of such functions are

(uniformly) dense in all the real valued functions on Γ.

Proof Let AΓ be all the continuous functions on Γ which extend continuously

to be bounded and analytic on C
∞ \ Γ. This is a closed subset of the set of

continuous functions on Γ C(Γ) with the sup norm. Let Ω1,Ω2 denote the two

simply connected complementary components of Γ and let A j, j = 1,2 be the

bounded analytic functions on Ω j which extend continuously to Γ. Let Wj be

the set of measures on Γ which annihilate A j, j = 1,2. By conformal invariance

and the F. and M. Riesz theorem (Theorem 3.1.3, Chapter ??), measures in Wj

are mutually absolutely continuous with respect to harmonic measure for Ω j.

Clearly everything in W1+W2 annihilates AΓ. Conversely if µ annihilates AΓ

then it must be in W1+W2, for otherwise the Hahn-Banach theorem provides a

function f ∈C(Γ) so that
∫

f dµ = 1 but
∫

f dν = 0 for every ν ∈W1∪W2. The

second condition implies f ∈ AΓ, a contradiction. Suppose for the moment that

we knew W1 +W2 was closed. Then if µ annihilates AΓ it must be in W1 +W2.

Write

µ = µ1 + iµ2 = (ν1 +ν2)+ i(τ1 + τ2),

as a sum of real measures with ν1,τ1 ∈ W1 and ν2,τ2 ∈ W2. If µ is real then

τ1 =−τ2. Since these measures are mutually singular, we deduce τ1 = τ2 = 0.

But measures in Wj are boundary values of analytic functions, so cannot be real

valued unless constant. Thus ν1 = ν2 = 0. Thus the only real valued measure

on Γ which annihilates AΓ is zero. Thus by the Hahn-Banach theorem Re(AΓ)

is dense in CR(Γ).

Thus it only remains to verify that W1+W2 is closed. Each of the two spaces

is closed (since it is defined as the annihilator of a space of functions). Given

µ ∈W1 and ν ∈W2, Note that

‖µ +ν‖= ‖µ‖+‖ν‖,

since these measures are singular. Thus if {λn = µn+νn}∈W1+W2 converges,
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we can find a subsequence along which µn → µ ∈W1 and νn → ν ∈W2. This

proves W1 +W2 is closed.

It is easy to construct curves of dimension 1, but with singular harmonic

measures (so that this techniques applies but the Frostman measure construc-

tion does not). For example, we mimic the construction of the von Koch snowflake.

For n not a power of 2 we simply replace each nth generation interval of length

r, with four subintervals of length r/4. For n a power of 2 we replace it by four

intervals of length r/3, arranged as in the usual construction of the snowflake.

This set has dimension 1, but has not tangents since it osscilates on arbitrarily

small scales.

A more concrete construction of functions in AΓ is given in [? ]. Theo-

rem 3.4.1 can be generalized to characterize when harmonic measures on two

general planar domains are mutually singular, [? ], but the analogous question

in R
3 is open.

3.6 Notes

Carleson’s proof for snowflake

Zdunik-Urbanski theorem for snowflake

Weierstrass graph , singular but 1-dimensional

Curves that have a.e. twists one one side, cones on the other

Dbar approach to Browder-Wermer

Curves with comparable harmonic measures; rectifiable if close to 1, high

dimension posible Semmes, Bishop

continuous analytic capacity

local F and M Riesz therorem

Suhi Choi theorem - harmonic measure oscillates

Burdzy open problem - direction of approach of Brownian motion

Burdy thm - complementaty components of Brownian motion have twist

points a.e.

β 2-theorem

ε2 conjecture

progress in higher dimensions

Browder-Wermer analog for conformal maps,

Conformal welding exists if homeo has bi-Lipschitz extension to disk, flex-

ible cuves, very singular harmonic measures log-singular
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3.7 Exercises

Exercise 3.1 Construct a continuous real valued function f on the line such

that the graph Γ = {(x, f (x))}, divides the plane into two components with

mutually singular harmonic measures.

Exercise 3.2 Let f (x) = ∑∞
n=1 2−n cos(2n). Then f is differentiable almost

nowhere, but the complementary domains of the graph of f have mutually

absolutely continuous harmonic measures.

Exercise 3.3 Suppose Γ is a closed Jordan curve with complementary com-

ponents Ω1 and Ω2 and harmonic measures ω1 and ω2. Let Φ1, Φ2 be Riemann

mappings onto the two domains. Then h = Φ−1
2 ◦Φ1 is a well defined home-

omorphism of the circle to itself. Show that h is absolutely continuous (i.e.,

the integral of its derivative) iff ω1 and ω2 are mutually absolutely continuous.

Show that h is singular (i.e., h′ = 0 almost everywhere) iff ω1 ⊥ ω2. Also, h is

singular iff there is a set E ⊂ T of full measure so that h(E) has zero measure.

The map h is called the conformal welding corresponding to Γ.

-0.0

1.0

2.0

3.0

4.0

5.0

6.0

-0.0 1.0 2.0 3.0 4.0 5.0 6.0

Figure 3.7.1 Welding map for von Koch snowflake graphed on [0,2π].

Exercise 3.4 Show there is a curve Γ with dim(Γ)> 1 but the corresponding

h is absolutely continuous. This is due to Garnett and O’Farrell [? ].

Exercise 3.5 Show there is a curve Γ with dim(Γ)> 1 but the corresponding

h is Lipschitz. See [? ]. It is interesting to note that the Lipschitz constant

cannot be taken close to 1 (if h is Lipschitz with constant close to 1 then Γ

must be rectifiable but the best constant is not known. See [? ]).



100 Cone points and twist points

Exercise 3.6 Suppose Γ is the von Koch snowflake and let ω1 and ω2 be

harmonic measures for the two sides. Show that there is a C < ∞ and ε > 0 so

that for any disk D(x,r) centered on Γ,

ω1(D(x,r))ω2(D(x,r))≤Cr2+ε .

(Hint: use the Ahlfors distortion theorem.)

Exercise 3.7 Let Φ1, Φ2 be Riemann mappings onto the two complementary

domains of the von Koch snowflake. Then h = Φ−1
2 ◦Φ1 has the following

property: There is a δ > 0 and a set E ⊂T so that dim(E)< 1−δ and dim(T\
h(E))< 1−δ . See [? ].

Exercise 3.8 Prove that if Γ is the graph of the Weierstrass function Wa,b with

ab = 1, then harmonic measures for the two sides of Γ are mutually absolutely

continuous.

Exercise 3.9 Suppose Ω1, Ω2 and Ω3 are three disjoint simply connected

domains with a common boundary point x. Show that there is a C < ∞ such

that for every r > 0, there is a i = 1,2,3 so that

ωi(D(x,r))≤Cr3/2,

and 3/2 is the largest value this is true for.

Exercise 3.10 Suppose Ω1, Ω2 and Ω3 are three disjoint simply connected

domains. Then there we can write ∂Ω1 ∪ ∂Ω2 ∪Ω3 as a union of three sets

E1,E2,E3 so that ωi(Ei) = 0 for i = 1,2,3. (This is open in three or more

dimensions, but is conjectured to be true. See [? ], [? ])

Exercise 3.11 Glicksberg [? ] calls a simply connected domain Ω nicely

connected if the Riemann mappings onto Ω are 1 to 1 almost everywhere on

the unit circle. Show that Ω is nicely connected iff the set of double cone points

has zero 1-dimensional measure (x ∈ ∂Ω is a double cone point for Ω is x is

the vertex of two cones in Ω, each the reflection of the other through x.)

Exercise 3.12 A compact set K is called a Dirichlet algebra if AK , the set of

continuous functions on K which extend continuously to be analytic on C\K,

is a Dirichlet algebra. Prove K is Dirichlet iff K is connected, each compo-

nent of Ω = C \K is nicely connected and harmonic measures for different

components of Ω are mutually singular. This is dues to Davie [? ], see also [?

]).

Exercise 3.13 Let A denote the disk algebra, the analytic functions on the

unit disk which extend continuously to the boundary. Suppose ϕ : T → T is
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singular and define Aϕ = { f ∈ A : f ◦ϕ ∈ A}. Then Aϕ is a Dirichlet algebra.

This is due to Browder and Wermer [? ], [? ].

Exercise 3.14 Suppose Ω is a simply connected domain on the Riemann

sphere with harmonic measure ω . Given any function in L∞(ω) we obtain a

bounded harmonic function in Ω if by solving the Dirichlet problem with these

boundary values. Ω is called Poissonian if every bounded harmonic function on

Ω is obtained in this way from something in L∞(ω). Show that the complement

of a line segment is not Poissonian. (Hint: given a function of the segment the

solution of the Dirichlet problem will be symmetric.)

Exercise 3.15 Let Γ be a subarc of the von Koch snowflake. Then the com-

plement of Γ is Poissonian

Exercise 3.16 Ω is Poissonian iff for any two subdomains Ω1, Ω2 such that

∂Ω1 ∩∂Ω2 ⊂ ∂Ω we have ω1 ⊥ ω2. [? ].

Exercise 3.17 For every 0 < α < 1 there is a multiply connected domain Ω

with dim(∂Ω) = α and harmonic measure for Ω is mutually absolutely con-

tinuous with respect to α-dimensional measure on ∂Ω.

Exercise 3.18 Given any 0 < α ≤ 1 and α ≤ β ≤ 2 there is a set E ⊂ T and

a univalent mapping F of the disk onto a Jordan domain so that dim(E) = α

and dim(F(E)) = β .

Exercise 3.19 Let Γ be the von Koch snowflake and let ω be harmonic

measure for the interior. Let F be the linear mapping (x,y) → (2x,y) and let

Γ′ = F(Γ) and let ω ′ be the harmonic measure for the interior of Γ′. Let F∗ω

be the push forward of ω by F onto Γ′. Prove F∗ω ⊥ ω ′. (This holds for any

linear map F which is not conformal.)

Exercise 3.20 Suppose Ω is a simply connected domain and for z ∈ Ω let

d(z) = dist(z,∂Ω). For t > 0 let

d(z, t) = sup
θ

d(z+ teiθ ).

Choose z0 ∈ Ω with d(z) ≥ 1 and let G be the Green’s function with pole z0.

Then there is a C < ∞ so that for any z ∈ Ω,

G(z)≤C exp(
1

2

∫ 1

0

dt

d(z, t)
).

See [? ] or [? ], page 14.

Exercise 3.21 Suppose Ω is a simply connected domain whose boundary has



102 Cone points and twist points

positive area. Show that for almost every point x ∈ ∂Ω (with respect to area)

we have

limsup
r→0

ω(D(x,r))

rn
= 0,

for any n > 0. (Hint: by the Lebesgue density theorem, almost every point of

∂Ω is very hard to approach through Ω. The sharp result due to Jones and

Makarov [? ] is that

limsup
r→0

ω(D(x,r))

exp(−M log2 1
r
)
= 0,

for every M > 0 and almost every (area) x ∈ ∂Ω.)

Exercise 3.22 Show the Lemma 3.5.1 is still true if the curve Γ is replaced

by any compact set [? ].

Exercise 3.23 If f : [0,1]→ [0,1]2 covers an open set, show there must be a

point with three distinct preimages.

Exercise 3.24 Construct a f : [0,1]→ [0,1]2 which covers an open set, and

so that the set of points with a unique preimage has positive area.
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The Jones-Wolff theorem

We saw in Chapter 2 that Makarov proved that harmonic measure on every

simply connected planar domain has dimension exactly equal to 1. We can’t

expect the lower bound part of Makarov’s theorem to hold for general domains,

since the boundary of the domain might have dimension strictly less than 1.

However, Peter Jones and Tom Wolff showed that the upper bound does hold

in general:

Theorem 4.0.1 (Jones-Wolff) For any compact planar set E with positive

logaritmic capacity, harmonic measure for Ω = C\E with respect to ∞ gives

full measure to a set of Hausdorff dimension at most 1.

4.1 Green’s function

As noted in Lemma 1.2.8, given a compact set E of positive logarithmic ca-

pacity, there exits a positive measure µ on E so that the potential

Uµ(z) =
∫

E
log

2

|z−w|dµ(w),

is bounded above by 1 everywhere in the plane and is equal to 1 everywhere on

E, except possibly on a subset of zero logarithmic capacity. Let ω = µ/‖µ‖.

The notation is not a coincidence; ω is the harmonic measure for Ω = C \E.

Define

G(z) =
1

Caplog(E)
−Uω(z).

This is the Green’s function for the domain Ω with pole at ∞, so we might write

this as G(z,∞), but since we not use any other poles in this chapter, we prefer

the more compact notation. Green’s function is a positive harmonic function on

103
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Ω that has a logarithmic pole at infinity; more precisely h(z) = G(z)− log |z|
is a bounded harmonic function in a neighborhood of ∞. Also, G = 0 on E,

except possibly for a subset of zero logarithmic capacity.

If E is a union of smooth curves, then it is not hard to show that

ω =
∂G

∂n
ds = |∇G|ds

where ∂/∂n is the normal derivative of G pointing into the domain Ω and ∇G

is the gradient of G (on a smooth boundary G = 0 so the normal derivative and

|∇G| are equal there). Since ω is a probability measure it will be supported on

a set of small length if |∇G| is large but is spread over large length if |∇G| is

small. One way to make this precise is to consider

I(E) =

∫

E

∂G

∂n
log |∇G|ds =

∫

E
log |∇G|dω. (4.1.1)

Roughly speaking, if this integral is large, then ω should give most of its mass

to the set where |∇G| is large, and hence most of harmonic measure lives on a

small set. To make this argument precise for general sets E, where it does not

make sense to take normal derivatives, we will replace E by an approximating

set consisting of a union of disks and apply the idea above to the new set.

Moreover, the Green’s integral above will not be take over the boundary, but

over a collection of closed curves that surround the set and so that G is constant

on each curve; these contours may include boundary components (where G =

0, but may also include curves γ that surround several boundary components

and such that G|γ = c > 0. Thus the precise estimate of (4.1.1) that we will use

is

Lemma 4.1.1 Suppose E ⊂D is a compact set of positive logarithmic capac-

ity and G is the Green’s function for Ω =C\E. Suppose Γ is a union of closed

curves that separates E from ∞ and that G is constant on each component of

Γ. Then

I(Γ)≡ 1

2π

∫

Γ
|∇G| log |∇G|ds ≥ 0. (4.1.2)

Proof Since G is harmonic, ∇G is a holomorphic function on Ω and so its

zeros are discrete and can only accumulate on ∂Ω ⊂ E. Given R > 0 let ΓR =

{|z|= R} and ΩR = Ω∩‖z|< R}. Note that ∂ΩR = Γ∪ΓR.

Let {z j} be the finitely many zeros of ∇G that lie outside Γ, i.e., {z j} are

the critical points of G in the unbounded complementary component of Γ. All

these critical points lie in the convex hull of E (Exercise 4.1), so they are also

in ΩR.
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Green’s formula states that
∫

ΩR

u∆v− v∆udxdy =
∫

∂ΩR

dsu
∂v

∂n
−

∫

∂ΩR

v
∂u

∂n
ds, (4.1.3)

where we use the outward pointing normal derivative. We apply this with u=G

and v = log |∇G|, and analyse each of the various pieces of the formula.

First consider the area integral (the left side of (4.1.3). Then ∆u = 0 on Ω

and ∆v is a sum of point masses at the zeros of ∇G (with mass d at a critical

point of multiplicity d). Thus the left side of (4.1.3) equals ∑ j G(z j), summed

with multiplicity.

Let {Γk} denote the connected components of Γ, and suppose G = ck on Γk.

Consider the first boundary integral over Γk. Here u = G is constant, so
∫

Γk

u
∂v

∂n
ds = ck

∫

Γk

∂

∂n
log |∇G|ds.

The second boundary integral over Γk is
∫

Γk

v
∂u

∂n
=

∫

Γk

|∇G| log |∇G|ds ≡ I(Γk).

Thus I(Γ) in (4.1.2) equals the second boundary integral (4.1.3) taken over Γ.

Finally consider the boundary integrals over ΓR. We know Green’s function

has the form

G(z) =
1

Caplog(E)
+H(z)+ log |z|

where H is a harmonic function that tends to zero at infinity, so the first bound-

ary integral is
∫

ΓR

u
∂v

∂n
ds =

∫

Γk

(γ +H(z)+ log |z|)(|∇H(z)|+ 1

| z|)ds

=
∫

Γk

(γ +H(z)+ log |z|)(O(|z|−2)+
1

| z|)ds

=
2π

Caplog(E)
+2π logR+o(1)

and the second boundary integral is
∫

ΓR

v
∂u

∂n
ds =

∫

Γk

log |∇G|(O(|z|−2 + log |z|)ds = 2π logR+o(1)

so their difference tends to 2π/Caplog(E). Combining our evaluations of the

terms in (4.1.3) gives

I(Γ) = ∑
j

G(z j)+∑
k

1

2π

∫

Γk

G log |∇G|ds+
1

Caplog(E)
.
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We now have to show that this is positive.

We start by noting that since ∇G is a holomorphic function, the functions

log |∇G| and arg∇G are harmonic conjugates of each other (away from the

critical points of G) and hence the normal derivative of one on Γk is the tangtial

derivative of the other. Thus

1

2π

∫

Γk

∂

∂n
log |∇G|ds =− 1

2π

∫

Γk

∂

∂ t
arg∇Gds,

where ∂/∂ t denotes the partial derivative in the tangential direction along Γk.

We have ∂G/∂n = −|∇G| since we are using the outward pointing normal

derivative in Green’s formula (on Γk this points in a direction where G is de-

creasing, hence is the negative of the gradient). Since Γk is a level curve of G,

the vector ∇G is perpendicular to Γk and so arg∇G changes by exactly 2π as

we make a complete loop around Γk. Thus taking the limit as R ր ∞ gives

1

2π

∫

Γk

G
∂

∂n
log |∇G|ds =

ck

2π

∫

Γk

∂

∂n
log |∇G|ds =−ck.

Therefore, summing over the components {Γk} gives

I(Γ) = ∑
j

G(z j)−∑
k

ck +
1

Caplog(E)
.

Now let n(c) be the number of components of {G = c} that lie outside Ω,

i.e., between E and Γ. Each such component is contained in the bounded region

bordered by some Γk where ck ≥ c (perhaps more than one component of {G =

c} is contain in this region)), so n(c)≥ #(k : ck ≥ c), the number of curves Γk

on which G ≥ c. Let m = max j G(z j) and let 1t<a be the function which equals

1 for t < a and equals 0 for t ≥ a. Then

∑
k

ck = ∑
k

∫ ∞

0
1t<ck

dt

=
∫ ∞

0
∑
k

1t<ck
dt

=

∫ ∞

0
#(k : ck > t)dt

≤
∫ m

0
n(t)dt,

and hence

∑
j

G(z j) =
∫ ∞

0
(n(t)−1)dt =

∫ m

0
n(t)dt −m ≥ ∑

k

ck −m.
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Thus

I(Γ)=∑
j

G(z j)−∑
k

ck+γ ≥ (∑
k

ck−m)+∑
k

ck+
1

Caplog(E)
=

1

Caplog(E)
−m.

For points w,z ∈ D, |z−w| ≤ 2, and we have assumed E ⊂ D, so for z ∈ D,

G(z) = γ −Uω(z) = γ −
∫

log
2

|z−w|dω(w)≤ γ .

Since {z j} ⊂ D (Exercise 4.1) we get m ≤ γ , and hence I(Γ)≥ 0.

4.2 Capacity and harmonic measure

A set E has positive logarithmic capacity if and only if it has a positive prob-

ability of being hit by a Brownian motion (started off the set). If we run the

Brownian motion forever, then it will eventually hit any set of positive capac-

ity. However, if we stop the Brownian motion, say when it hits some second

set X , then we expect the probability that it hits E before hitting E to decrease

to zero as the logarithmic capacity of E decreases to zero. In this section we

shall formulate and prove several results that make this idea precise.

Lemma 4.2.1 Suppose 0 < r < 1 and t = (1+ r)/2. Suppose E ⊂ r ·D has

positive capacity. Then

ω(t) = ω(E, t,D\E)≃ Caplog(E),

with constants that only depend on r.

Proof Let µ be the equilibrium measure for E. The potential function

Uµ(z) =
∫

2

log |z−w|dµ(w)

is harmonic off E, equals 1 on E and is positive on T, so by the maximum

principle

ω(t)≤Uµ(t)≤ ‖µ‖ · log
2

r− t
= Caplog(E) · log

4

1− r
,

which gives one direction.

By Harnack’s inequality ω(z) takes comparable values at every point of

{|z| = t} (with a constant only depending on r) so it is enough to bound ω(z)

any such point. We will do the estimate for z = tx where x ∈ T is the point
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where Uµ takes its maximum value m on T. By rotating we may assume x = 1.

Then Uµ(1) = m and

Uµ(t) =
∫

E
1dωt(w)+

∫

T

Uµ(w)dωt(w)≤ ω(t)+m(1−ω(t)) = m+(1−m)ω(t).

Note that

|z− t| ≤ λ (r)|z−1|

for every z ∈ E for some constant λ (r) < 1. Plugging this into the integral

formula for the potential function gives

Uµ(t)≥Uµ(1)+‖µ‖ log
1

λ (r)
>Uµ(1).

Therefore, combining our estimates gives

‖µ‖ log
1

λ (r)
≤Uµ(t)−Uµ(1)≤ ω(t)+m(1−ω(t))−m = ω(t)(1−m).

Note that m > 0, so we get

ω(t)≥ ‖µ‖ · 1

λ (r)
= Caplog(E) ·

1

λ (r)
.

Thus ω(z)≃ Caplog(E) with constants depending only on r.

Lemma 4.2.2 In Lemma 4.2.1, if r small and |z|= 1/2, then

Caplog(E)(log4−O(r))≤ ω(z)≤ Caplog(E)(log4+O(r)), (4.2.1)

with a uniform bound.

Proof We just rework the previous proof, being more careful about the con-

stants. As before the maximum principle implies ω(w) ≤ Uµ(w) on D\E, so

for |w|= 1/2,

0 < ω(w)≤Uµ(w)≤ ‖µ‖ log
2

(1/2)− r
= Caplog(E)(log4+O(r)).

This gives (??).

To prove the lower bound, note that when we move from w ∈ T to w/2

the distance from w to each point z of E decreases by a multiplicative factor

of 2+O(r) (the exact change depends on w and z. Thus the integral defining

Uµ increases by an additive factor of ‖µ‖(log2+O(r)). In other words, for

|w|= 1,

Uµ(
w

2
)≥Uµ(w)+‖µ‖(log4−O(r))≥ ‖µ‖(log2−O(r)).

On the other hand, since Uµ is a harmonic function, Uµ(
w
2
) can be evaluated
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by integrating its boundary values against harmonic measure. Let x = w/2 and

m = maxTUµ . Then

Uµ(x) =
∫

E
Uµ(z)dωx(z)+

∫

T

Uµ(z)ωx(z)

≤
∫

E
1dωx(z)+m

∫

T

1ωx(z)

= ω(x)+m(1−ω(x)).

Thus

‖µ‖(log4+O(r))≤Uµ(x)−Uµ(w)

≤ ω(x)+m(1−ω(x)))−Uµ(w)

= m+(1−m)ω(x)−Uµ(x)

≤ (m−Uµ(w))+ω(x)

= O(r)‖µ‖+ω(x)

so,

ω(x)≥ ‖µ‖(log4−O(r)).

Lemma 4.2.3 Suppose 1 < r ≤ 2 and let A = {1 < |z|< r}. Suppose X ,Y are

each compact sets of positive capacity that lie inside and outside A respectively.

Then for any z with |z|= (1+ r)/2,

ω(z,X ,C\ (X ∪Y ))≃
Caplog(X)

Caplog(X)+C(Y)
,

where C(Y )> 0 is positive constant depending on r and Y , but not on X.

Proof Again by Harnack’s inequality ω(z) takes comparable values at all

points of the circle {|z| = √
r} so we only need to prove the estimate at one

such point. Choose s, t so that 1 < s < 1+r
2

< t < r and with spacing between

these points all comparable to r−1. Let ΩX = tD\X and ΩY = C\ (Y ∪ sD).

Let ωX and ωY denote the harmonic measure functions for X and Y in ΩX and

ΩY respectively.

Let p = ωX (s) and q = ωY (t). By Lemma 4.2.1 p ≃ Caplog(X). Without loss

of generality we can assume that s and t are so close that p,q ≪ 1/2. Consider

a Brownian path started at s∈Cs. The path’s nth visit to Cs is the terminal point

of the nth subarc in {s < |z| < t} that starts on Ct and ends on Cs. Similarly

for visits to Ct . The probability that a path visits Cs more than k times decays

exponentially in k, since the probability of hitting hitting either X or Y first is

bounded uniformly away from zero.



110 The Jones-Wolff theorem

The probability of hitting X before hitting Y , starting from a point of Cs is

given by

P(X) =
∞

∑
k=1

P(K ≤ k)pk+1 ≃ p
∞

∑
k=1

P(K ≤ k),

where K is number of times the Brownian motion path visits Cs and pk+1 is the

probability that it hits X before Ct after making the kth visit (the zeroth visit

is the starting point). The infinite sum converges since the terms in it decay

geometrically fast.

Similarly, the probability of hitting Y before X is

P(Y ) =
∞

∑
k=1

P(K ≤ k)(1− pk+1)qk+1 ≃ q
∞

∑
k=1

P(K ≤ k),

where qk+1 =≃ q is the probability of hitting Y before Cs after the kth visit

to Ct . The sums converges since the terms in it decay geometrically fast (the

probability of making a crossing in starting at either circle is bounded strictly

below 1).

Then

P(X) =
P(X)

P(X)+P(Y )
≃ p

p+q
≃

Caplog(X)

Caplog(X)+q
.

Thus we can choose C(y) = q, the probability of hitting Y before Cs, starting

from t.

Corollary 4.2.4 Using the notation of Lemma 4.2.3, suppose X ′ is another

set satisfying the same conditions as X ′ and that Caplog(X)≃Caplog(X
′). Then

for any z with |z|= (1+ r)/2, we have

ω(z,X ,C\ (X ∪Y ))≃ ω(z,X ′,C\ (X ′∪Y ))

with bounds that only depend on r.

Proof By Lemma 4.2.3, the ratio of the two harmonic measures is compara-

ble to

Caplog(X)(Caplog(X)+C(Y))

Caplog(X
′)(Caplog(X

′)+C(Y))
≃

(Caplog(X)+C(Y))

(Caplog(X
′)+C(Y))

≃
Caplog(X)

Caplog(X
′)
≃ 1.

Lemma 4.2.5 Given A ≥ 1 there is a B = B(A) < ∞ so that the following

holds. Suppose Caplog(X
′) = ACaplog(X) and X ,X ′ ⊂ {|z|< 1/B}. Then

ω(z,E,C\ (D∪X ′))≤ ω(z,E,C\ (D∪X))

for any E ⊂ T and |z|= 1/2.
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Proof Thinking of harmonic measure as the hitting distribution of Brownian

motion, we can omit paths starting at z that never hit X or X ′. Thus the two

distributions on the unit circle are just the Poisson distribution corresponding

to z, minus the hitting distribution of paths started on X and X ′ according to the

first hitting distributions on these sets starting from z. The total masses of these

distributions are m = ω(z,X ,D \X) and m′ = ω(z,X ′,D \X ′) respectively. If

r is small then the hitting distribution from a point w with |w| ≤ r is between

1−O(r) and 1 on the whole unit circle. Thus the claim follows if

m ≤ m′(1− r).

By Lemma 4.2.2

m′ = Caplog(X
′)(log4+o(r)) = ACaplog(X)(log4+o(r)),

m = Caplog(X)(log4+o(r)),

and since A > 1, we see that the claim is true for sufficiently small r.

Lemma 4.2.6 Given A ≥ 1 there is a B = B(A) < ∞ so that the following

holds. Suppose Q is the square of side length 1 centered at the origin and

X ,X ′ ⊂ Q and ∩BQ = /0. Assume Caplog(X
′) = ACaplog(X). Then

ω(z,Z,C\ (Y ∪X ′))≤ ω(z,Z,C\ (Y ∪X))

for any Z ⊂ Y and |z|= B/4.

Proof The idea is that since X ′ has larger capacity, it should absorb more

Brownian paths than X , leaving fewer to hit Z ⊂ Y .

To make this precise, consider the regions D1 = {|z|>B/4} and D2 = {|z|<
B/2} and their boundaries C1,C2. As in the proof of Lemma 4.2.3 we consider

Brownian paths starting on C1 and its subsequent visits to C1 and C2. At each

visit to C2 the probabilities of hitting Z, Y or C1 obviously don’t depend on X

or X ′. By Lemma 4.2.5 the exit distribution on C2 for ΩX = D2 \X ′ is strictly

less than the corresponding distribution for X with the same starting point. This

inequality remains valid under iteration, so the probability of eventually hitting

Z in C\ (Y ∪X ′) is less than the probability of hitting Z in C\ (Y ∪X).

4.3 The modification algorithm

Our goal in the next two sections is to prove
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Theorem 4.3.1 Suppose E ⊂ D is compact and has positive logarithmic ca-

pacity. Suppose ε ,δ > 0. Then there are two collections of disjoint dyadic

squares {Q1
j} and {Q2

j} so that

E ⊂ ∪Q1
j

⋃
∪Q2

j , (4.3.1)

∑ℓ(Q1
j)

1+ε < δ , (4.3.2)

∑ω(E ∩Q2
j)< δ . (4.3.3)

If we can prove this, then the Jones-Wolff theorem (Theorem ?? is easily

deduced as follows.

Proof of Theorem ?? Fix ε and for n = 1,2, . . . take δ = 2−n. Let E1
n = E ∩

∪Q1
j , E2

n = E ∩∪Q2
j , for the squares obtained from Theorem 4.3.1. Then

E1 = ∩n ∪k>n Ek
1 , E2 = ∩n ∪k>n Ek

2

are subsets of E that satisfy E = E1 ∪E2, H1+ε(E
1) = 0 and ω(E2) = 0 (ω

is harmonic measure for the complement of E). Thus for every ε > 0 we have

dim(ω)≤ 1+ ε . Taking ε → 0 proves the result.

We will next describe an algorithm for constructing the collections of squares

described in Theorem 4.3.1. Given ε > 0 let A = 1+ ε and let B = B(A) be

the constant given by Lemma 4.2.6. Cover the plane by a grid D of dyadic

squares of side length 2−N and partition this collection into O(B) periodic sub-

collections Dk so that any two squares in the same sub-collection are separated

by at least B · 2−n. Give the compact set E ⊂ D we define O(B2) subsets by

∪Q∈Dk
E ∩Q. If we can prove Theorem 4.3.1 for each Ek but with δ divided by

the number of Ek’s, then union of resulting squares will satisfy Theorem 4.3.1

for E.

Therefore, from this point on, we may assume E is covered by a collection C

of dyadic squares Q of side length 2−n, with the property that E ∩BQ = E ∩Q.

In other words, BQ\Q contains no points of E.

To obtain the desired covering of E, we are going to modify E in a number

of stages, but to keep notation simply we will also denote the sets by E; when

we want to refer to the set we are starting with, we will call it the “original E”.

The modifications are necessary to make E smooth. To start with, E is simply

compact and has positive logarithmic capacity. To apply our Green’s function

estimates, we have to replace E by something with a smooth boundary; our

final version of E will be a finite union of disks.

The two basic modification we make are:
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A-Disk construction: Given a compact set E, A ≥ 1 and a square Q of side

length 1, we remove E∩Q from E and replace it by a disk D, concentric with Q

and having logarithmic capacity Caplog(D) = Caplog(E∩Q)/A. If Q has some

other side length, then we rescale E and Q so Q has side length 1, perform this

construction, and then rescale back to the original size.

B-Annulus construction: Given a compact E, a square Q and B < ∞, we

remove E ∩ (BQ \Q) from E, where BQ denotes the concentric square with

side length B times that of Q.

When we do the B-annulus contruction, it is clear that the harmonic measure

of every remaining subset of E increases; we have increased the collection of

Brownian path that can hit these sets. It is not immediately obvious what effect

the A-disk construction has, since we are both adding and removing boundary,

but it clarified by the following:

Lemma 4.3.2 Suppose A > 1. Suppose Q∩E 6= /0 and assume E does not hit

BQ\Q. If B = B(A) is the constant from Lemma 4.2.6, then when we perform

an A-disk construction on E, the harmonic measure of any subset of E \Q

increases and the harmonic measure of E ∩Q decreases by at most a bounded

factor (depending on A).

Proof The fact that harmonic measure in E ∩BQ increases is Lemma 4.2.6.

The fact that harmonic measures inside Q decrease by at most a bounded factor

is Corollary 4.2.4.

Now suppose we are given a compact E ⊂ D and ε ,δ > 0. As above, set

A = 1+ ε , let B = B(A) as in Lemma 4.2.6, and suppose that N is a large

integer, chosen later depending on ε and δ . Let M =
√

N. Assume that we have

“thinned out” the set E as described earlier, so that E is covered by a collection

of C of dyadic squares with side length 2−N and so that E ∩ (BQ\Q) = /0.

From this initial set, we perform the following operations:

Step 0: Apply the A-disk construction to all Q ∈ C . Thus E is now a union of

tiny disks.

Step 1: Choose the largest dyadic square Q so that ℓ(Q)≥ 2−N and both

(1) ω(Q)≥ Mℓ(Q), and

(2) Q is not contained in any previously chosen square.

If this is jth time Step 1 has been performed, label this square Q j. If no such

square exists, the algorithm stops here. Otherwise proceed to Step 2.

Step 2: Perform the B-annulus construction for the square Q j found in Step

1,i.e., delete BQ \Q from E. However, if k < j and BQk 6⊂ BQ j then do not

remove any part of E ∩Qk. In other words, previously chosen squares so that
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BQk ⊂ BQ j are removed, but the parts of E in all other previously chosen

squares are left alone. Go to Step 3.

Step 3: Perform the A-disk construction for Q j. Go to Step 1.

Lemma 4.3.3 The algorithm stops.

Proof By condition (2) in Step 1 we never choose a sub-square of a previ-

ously chosen square. Thus the chosen dyadic squares are pairwise disjoint and

each contains at least one square in C . This is a finite collection, so Step 1 is

performed only finitely often.

When the algorithm stops we are left with three types of squares. Type 0

squares are those selected at some stage in Step 1, and were never removed at

later stages of Step 2. The remaining squares all elements of C that were never

removed. We subdivide these surviving squares into two subclasses as follows:

if

ω(E ∩Q)≥ r(∆)2−Nε/2,

then we call Q Type 1. Here ∆ is the disk that Q was replaced by in Step 0 of the

algorithm and r(∆) is its radius. Otherwise we say Q is Type 2. The union of all

three types we will call the “remaining squares”. Eventually we will show that

the union of Type 0 and Type 1 squares has small 1+3ε Hausdorff content and

that the union of Type 2 squares has small harmonic measure. First we gather

some facts about the output of the algorithm.

Lemma 4.3.4 Each Type 0 square satisfies E ∩ (BQ j \Q j) = /0.

Proof This is obvious when Step 2 is performed on Q j, and in later stages,

E ∩Q j is either completely removed or left alone.

Lemma 4.3.5 All Type 1 and 2 squares have larger harmonic measure than

before the algorithm was run.

Proof This follows from Lemma 4.3.2.

Lemma 4.3.6 Let E∗ denote the original set (pre-algorithm) and E the mod-

ified version (post-algorithm). For any Q ∈ C , that is not Type 1 or 2, we have

Q ⊂ 2BQ j for some Type 0 square Q′.

Proof If Q is no longer present, it must have been removed by Step 2 being

applied to some chosen square Q j1 , so Q ⊂ BQ j1 . Clearly ℓ(Q j1)≥ ℓ(Q) since

we never select squares with side length smaller than 2−N . However Q j1 may

itself have been removed at a later stage. If so, BQ j1 must have been contained

in BQ j2 for some Q j2 that was selected later, i.e., j2 > j1. Since Q j1 6= Q j2 , this
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is only possible if ℓ(Q j1) < ℓ(Q j2) and since the squares are dyadic we must

have ℓ(Q j1)≤ 2ℓ(Q j2). Continuing in this way, we get a finite chain of squares

{Q jn} so each square is at least twice as large as the previous one and its B-fold

expansion contains B-fold expansion of the previous square. This implies the

first square is inside the B+B/2+B/4+ · · ·= 2B expansion of the last square,

as claimed.

Corollary 4.3.7 The collection BQ where Q ranges over all Type 0, 1 and 2

squares covers E.

Lemma 4.3.8 Each Type 0 square Q satisfies ω(Q) ≥ CMℓ(Q) for some

constant C depending on A.

Proof By construction, ω(Q)≥ Mℓ(Q) when it was chosen in Step 1, its har-

monic measure increases in Step 2, and the harmonic measure only decreases

by a bounded factor in Step 3. In later stages, Lemma 4.3.2 implies its har-

monic measure only increases.

Lemma 4.3.9 If Q is Type 0, 1 or 2, z ∈ Q and r > ℓ(Q), then ω(D(z,r)) ≤
CMr.

Proof If ω(D(z,r))>CMr, then D(z,r) is covered by at most 4 dyadic squares

with side length between 2r and 4r and at one of these, say Q′ must satisfy

ω(Q′)≥ ω(D)z,r))/4 and hence ω(Q′)≥ Mℓ(Q), if C is large enough. Such a

square would have been chosen in Step 1. If this had happened, we claim that

Q would have been removed in Step 2. Note that ℓ(Q) ≤ r ≤≤ ℓ(Q′)/2 and

Q ⊂ D(z,r) ⊂ 3Q′. This implies BQ ⊂ BQ′, so Q would have been removed,

as claimed. This contradiction proves the lemma.

Lemma 4.3.10 The Hausdorff 1-content of the union of the Type 0 squares

tends to zero as N ր ∞, uniform in ε .

Proof These squares were chosen to satisfy ω(Q) ≥ Mℓ(Q) and by Lemma

4.3.2 their harmonic measure only increases at later stages. Therefore summing

over Type 0 squares gives

∑ℓ(Q j)≤
1

M
∑ω(Q j)≤

1

M
,

since ω is a probability measure. Since M2 = N, the lemma follows.

Lemma 4.3.11 For every Type 0, 1 or 2 square

|∇G| ≃ ω(∆)/r(∆)

on ∂∆ (since G= 0 on ∂∆ this is the same as estimating the normal derivative).
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Proof Before Step 0, the Type 1 and 2 squares where chosen to have disjoint

B-fold expansions, so if we set A = {r(∆) < |z− z0| < 4r(∆)}, then it is clear

that A∩E = /0. Thus Harnack’s inequality applies on the circle |z− z0|= 2r(∆)

and we deduce G has values comparable to D = G(z0 +2r(∆)). We then easily

deduce that the normal derivative is comparable to D/r(∆) at every point of

∂∆. Since integrating this around ∂∆ gives ω(∆), we must have D ≃ ω(∆) and

the lemma follows.

4.4 Constructing the contours

At the beginning of this chapter we proved Lemma 1.23, giving an estimate

for a certain integral involving |∇G|. The integral was over certain contours

{Γk} that surrounded the set E and such that G was constant on each Γ. In

this section we select these contours for the modified set E constructed in the

last section. There will be one contour ΓQ for each Type 0, 1 and 2 square Q.

Moreover, we will want the estimate

ω(∆) = O(N2S),

where ∆ is the disk associated to Q and S = S(Q) is the diameter of the contour

associated to Q.. Types 0 and 2 will be easy to describe; Type 1 will take more

work. We will let S(Q) be the diameter of the contour associated to Q.

Lemma 4.4.1 For each Type 0 square Q let the contour ΓQ be the circle of

radius ℓ(Q) and let S(Q) = ℓ(Q). Then ω(∆)≤ M2NS = N2S.

Proof Lemma 4.3.9 implies

ω(∆)≤CMℓ(Q)≤ M2Nℓ(Q).

Lemma 4.4.2 For each Type 2 square Q, let the contour γ surrounding ∆ just

be ∂∆. Then ω(∆)≤ MNS(∆).

Proof This is obvious, since the Type 2 condition implies

ω(∆)≤ r(∆)2−Nε/2 ≪ r(∆).

Lemma 4.4.3 If Q is Type 0 or Type 1 with associated disk ∆, then there is

r(∆)≤ S ≤ ℓ(Q), and a contour ΓQ surrounding ∆ on which G is constant and

S = diam(ΓQ)≃ dist(ΓQ,∆). Moreover we have ω(∆) = O(M2NS) = O(N2S).
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Proof For the first part of the proof we let Q be either Type 0 or Type 1 and

let ∆ be its corresponding disk. Later we will specialize to Type 1.

Define T = ω(∆)/M2N. If T ≤ r(∆) then we take S = r(∆) and the contour

is ∂∆. In this case

ω(∆)≤ M2NT ≤ M2Nr(∆) = M2NS.

Next suppose T ≥ ℓ(Q). Then we take S = ℓ(Q) and by Lemma 4.3.9

ω(∆)≤CMℓ(Q) = 2CMS ≤ M2NS,

since M and N are both large.

Finally, assume r(∆)< T < ℓ(Q). For z ∈ Q\∆ we can write

G(z) =
∫

∆
log |z−w|dµ(w)+

∫

E\∆
log |z−w|dµ(w)+

1

Caplog(E)

= u(z)+ v(z)+
1

Caplog(E)
,

where µ is the equilibrium measure for E (it agrees with the harmonic measure

for E with respect to ∞ up to renormalization). Then using Lemma 4.3.9,

|∇v(z)| ≤
∫

E\∆

dµ(w)

|z−w| ≤CM

∫

ℓ(Q)

dr

r
=CM log

1

ℓ(Q)
.

Also note

∇u(z) =
∫

∆

z− z0

|z−w|2 dµ(w),

and that for r ≥ r(∆) the vectors we are integrating all lie in a cone of angle

O(r(∆)/r) around the direction z− z0/|z− z0|. Projecting these vectors onto

this fixed vector only shortens their length by a factor of cos(r(∆)/r) = 1−
O((r(∆)/r)2), so

−∂u

∂ r
(z)≥ ω(∆)

|z− z0|
−O(

r(∆)ω(∆)

|z− z0|2
).

If we take r = |z− z0| ≃ S then this becomes

−∂u

∂ r
(z)≥ ω(∆)

S
−O(

r(∆)ω(∆)

S2
). (4.4.1)

This equation holds for both Type 0 and Type 1 squares. We now assume that

Q is Type 1 and we shall return to the Type 2 case below.
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Using the definition of S = T and of Type 1 squares, this becomes

−∂u

∂ r
(z)≥ ω(∆)M2N

ω(∆)
−O(

r(∆)ω(∆)M4N2

ω(∆)2
)

≥ M2N −O(
r(∆)M4N2

ω(∆)
)

≥ M2N −O(
r(∆)M4N2

r(∆)2Nε/2
)

≥ M2N −O(
M4N2

2Nε/2
)

Since M2 = N this becomes

−∂u

∂ r
(z)≥CN2 −O(

N4

2Nε/2
)≥ 1

2
CN2,

if N is large enough. This lower bound is much larger than our upper bound

for |∇v|= O(MN) = O(N3/2). This means that the gradient vector of G at z is

within a small angle of the radial direction. Thus the level sets of G have tan-

gents that are close to perpendicular to this direction. Following such a curve

around ∆, it must stay in the annulus {S/2 < |z|< 2S}. Moreover, it must form

a closed loop, since our estimates show G is strictly decreasing in the radial

direction.

Finally, by the definition of T ω(∆) = M2NT = N2S as desired.

Now assume Q is Type 0. If r(∆) ≃ ℓ(Q), then we just take the contour to

be ∂∆ and S = 2r∗∆. Then by Lemma 4.3.9 ω(∆) = O(Mℓ(Q))) = O(MS) =

O(N2S).

Otherwise we can assume r(∆)≪ ℓ(Q). In this case (4.4.1) becomes

−∂u

∂ r
(z)≥C

ω(∆)

|z− z0|
(1−O(

r(∆)

|z− z0
)).

If we take S = ℓ(Q)≫ r(∆), then the second term is comparable to 1, so

−∂u

∂ r
(z)≥C

ω(∆)

S
≃ M.

4.5 Finishing the proof

We saw in Lemma 4.1.1

I(Γ) =
1

2π

∫

Γ
|∇G| log |∇G|ds ≥ 0.
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The integrand has negative and positive parts, depending on whether |∇G|> 1

or |∇G| <. The estimate above says that the positive part dominates the neg-

ative part, so we can obtain a bound on the negative part by bounded just the

positive part. Let log+ = max(log,0) and log− = min(log,0).

Lemma 4.5.1 If Γ consists of the contours constructed in Lemmas ??, and

4.4.2, then

1

2π

∫

Γ
|∇G| log− |∇G|ds ≥−C logN.

1

2π

∫

Γ
|∇G| log+ |∇G|ds ≤C logN.

Proof As noted above only have to prove the second inequality. Note that

1

2π

∫

Γ
|∇G| log+ |∇G|ds ≤C

∫

Γ
|∇G| log+

(
ω(∆)

S(Q)

)
ds

≤C

∫

Γ
|∇G| log+(N2)ds

≤C logN ∑ω(∆)

= O(logN)

Lemma 4.5.2 The union of the Type 2 squares has harmonic measure that

tends to zero as N ր ∞.

Proof Suppose Q and ∆ are Type 2. Since ω(∆) ≥ r(∆)2−Nε/2, and using

Lemma 4.3.11, on ∂∆ we have

log
1

|∇G| ≥ log
Cr(∆)

ω(∆)
≥ log

Cr(∆)

r(∆)2−Nε/2

= logC2Nε/2 = N
ε

2
log2+ logC.

For N large enough the rightmost term is larger than Nε/8. Summing over all

Type 2 squares gives

∑ω(Q j) = ∑
1

2π

∫

∂∆ j

∂G

∂n
ds ≤ ∑

C

εN

∫

∂∆ j

∂G

∂n
log

1

|∇G|ds ≤ ∑
C logN

εN

where we used Lemma 4.5.1 in the last step.

Lemma 4.5.3 Suppose α > 0 and E ⊂ D has positive Hausdorff α-content.

Then H α
∞ (E)≤Cα exp(−α/Caplog(E)).

Proof By Frostman’s (e.g., Lemma 3.1.1 of [? ] E supports measure µ such
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that µ(D(x,r)) ≤ Crα and ‖µ | ≥ H α
∞ . Fix z and let An = {e−n < |z−w| <

e−n+1} . Then

Uµ(z) =
∫

E
log

1

|z−w|dµ(w)≤C
∞

∑
n=0

nµ(An)

For a given amount of mass, this sum will be maximized if we give the most

mass to the smallest annuli, i.e., if m = 1
α log 1

‖µ‖ , then

Uµ(z)≤
∞

∑
n=m

ne−αn ≤ mexp(−αm) =
1

α
‖µ‖ log

1

‖µ‖ .

Hence the capacity of E is at least Cα/ log1/‖µ‖, or ‖µ‖≤ exp(−Cα/Caplog(E)).

Since ‖µ‖ ≥ H α
∞ (E), this proves the lemma.

Lemma 4.5.4 The Hausdorff (1+ ε)-content of the union of Type 1 squares

tends to 0 as N → ∞.

Proof Let Q j be a Type 1 square and let E j = E ∩Q j. Using α = 1+ ε = A

in Lemma 4.5.3 we get

H
α

∞ (E j)≤ exp(−α/Caplog(Ej)) = exp(−α/Caplog(∆j)(1+ ε)) = exp(−1/Caplog(∆j))
α/(1+ε) = r(∆).

Summing over all the Type 1 squares gives

H
α

∞ (E)≤ ∑H
α

∞ (E j)

≤ ∑ r(∆)

≤ ∑ω(∆)2−Nε/2

≤ 2−Nε/2 ∑ω(∆)→ 0.

Notes

Exercises

Exercise 4.1 All the critical points of G, Green’s function for C\E with pole

at ∞, are within the convex hull of E.

Solution 4.1 The gradient of G is non-zero iff the gradient of Uµ is and for

z is outside the convex hull of E this gradient is given by the convolution of ω

and 1/(z−w). Since E lies in a half-plane not containing z, this convolution is

clearly non-zero.

Exercise 4.2 If G(z,w) is Green’s function for a domain Ω with pole at w

then G(z,w) = G(w,z).
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Solution 4.2 This follows taking Green’s theorem with u(x) = G(x,w) and

v(x) = G(x,z) and fact that ∆G(z,w) is a δ -mass at w.
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Wolff snowflakes
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6

Analytic capacity

6.1 Definitions

Suppose E is a compact set in the complex plane and let Ω denote its comple-

ment. Recall that H∞(Ω) denotes the algebra of bounded holomorphic func-

tions on Ω. We define the analytic capacity of E as

γ(E) = sup{| f ′(∞)| : f ∈ H∞(Ω),‖ f‖∞ ≤ 1}.

The derivative of f at ∞ can either be defined by as f ′(∞) = g′(0) where g(z) =

f (1/z), or as the limit

f ′(z) = lim
z→∞

z( f (z)− f (∞)).

The capacity is a monotone set function, but is not well understood at all. For

example, it is unknown whether the union of two sets of analytic capacity zero

also has capacity zero (but it is true for disjoint compact sets). This question

is a special case of the subadditivity conjecture: Does there exist a constant

C < ∞ so that

γ(E ∪F)≤C[γ(E)+ γ(F)],

for any two compact sets E and F? This is only known in some special cases,

e.g., if E and F are separated by a straight line.

Analytic capacity is interesting because it characterizes which domains sup-

port a non-constant bounded analytic function. Any proper open set of the

Riemann sphere has a non-constant holomorphic function defined on it, but if

we consider bounded analytic functions then this is not always true. Riemann’s

theorem says that an isolated singularity of a bounded holomorphic function

is removable. Therefore if f is bounded and holomorphic on the complement

of a finite number of of points, then it can be extended to be bounded and

holomorphic on the whole plane. Hence it is constant by Liouville’s Theorem.

123
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It follows easily from the definition of analytic capacity that H∞(Ω) has non-

constant functions iff γ(Ωc) 6= 0.

A related capacity is the continuous analytic capacity, defined by

α(E) = sup{| f ′(∞)| : f ∈ A(Ω),‖ f‖∞ ≤ 1},

where A(Ω) ⊂ H∞(Ω) are those elements of H∞(Ω) which extend continu-

ously to the closure of Ω. The continuous analytic capacity is even less well

understood than analytic capacity.

Clearly we always have γ(E) ≥ α(E). To see that equality need not hold,

note that if E = [0,1] is a line segment then the Riemann mapping from Ec to

the unit disk is a non-constant bounded analytic function and so γ(E).0 How-

ever, an easy application of Morera’s theorem shows that if f is holomorphic

on the complement of a line segment and extends continuously across the seg-

ment, then f is entire. If f is in addition bounded then it must be constant by

Liouville’s theorem, which implies α(E) = 0.

6.2 Capacity and Length

Theorem 6.2.1 If H1(E) = 0 then γ(E) = 0. If dimH(E) > 1 then γ(E) ≥
α(E)> 0.

Proof If E is compact and H1(E) = 0, then we can cover E by a finite union

of disks whose radii sum to less than ε , for any ε we choose. Let Γ be the rec-

tifiable curve bounding this union of disks. Its length is at most 2πε . Suppose

f ∈ H∞(Ω) with ‖ f‖∞ ≤ 1 and apply Cauchy’s formula for the derivative of f

at some point z 6∈ E. Then

| f ′(z)|= | 1

2πi

∫

Γ

f (w)dw

(w− z)2
| ≤ ε

dist(z,E)
.

Taking ε → 0 shows f must be constant on Ω, so γ(E) = 0.

If dimH(E) > 1 then by Frostman’s lemma there is an ε > 0 and a positive

measure µ supported on E which satisfies

µ(B(x,r))≤ r1+ε ,

for every ball. If we convolve this measure with the function 1/z the result is a

bounded, continuous function

f (z) =
∫

dµ(w)

w− z
,
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on the plane which is holomorphic off the support of µ . Its easy to check that

f ′(z) = lim
z→∞

z( f (z)− f (∞)) =
∫

zdµ(w)

z−w
= µ(E)> 0,

so that α(E)> 0.

For the contnuous analytic capacity we have

Theorem 6.2.2 If E is compact and has σ finite H1 measure then α(E) =

0. For any gauge function ϕ(t) = o(t) there is a set E with α(E) > 0 and

H ϕ(E) = 0.

Proof Suppose E = ∪En where En have finite 1-dimensional measure. As-

sume f is analytic off E and extends continuously to E. Then since E is com-

pact there f is uniformly continuous on E, i.e., there is a function h(t) = o(1),

such that | f (x)− f (y)| ≤ h(|x− y|) for x,y in neigbothood of E. Cover En by

open squares {Q j} such that ∑ |Q j|h(|Q j|) ≤ ε2−n. Taking the union over n

gives a covering of E. Since E is compact there is a finite subcovering. By the

Cauchy integral theorem we have (for z outside the union of squares)

| f ′(z)| ≤ 1

2π ∑
n

∑
j

∫

∂Q jn

f (w)− c jn

(w− z)2
dw,

where Q jn are squares of the covering coming from the cover of En and c jn is

any constant we choose (since the Cauchy integral of constants is zero). We

now choose c jn so that

| f (w)− c jn| ≤ h(|Q jn|),

for w ∈ ∂Q jn. Then

| f ′(z)| ≤ C

dist
(z,E)−2 ∑

n
∑

j

|Q jn|h(|Q jn|)≤Cε ,

for any ε we wish. Thus E has zero continuous analytic capacity.

To prove the other statement, we simply note that it is easy to build closed

curves Γ with H ϕ(Γ) = 0 for a given guage ϕ and which have tangents almost

nowhere. Thus by the results of Chapter 3 the harmonic measures for the two

sides of Γ are mutually singular and so By the Browder-Wermer theorem The-

orem ??, there are many functions analytic off Γ and continuous on the whole

sphere.

The results above for analytic capacity show that the problem of geometri-

cally characterizing the sets of zero analytic capacity comes down to the sets

of dimension 1. To state the main conjecture we need to define a few terms.
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that for 0 < H1(E) < ∞, γ(E) = 0 iff E has zero Favard length. For a set E

define the upper and lower densities

D(E,x) = limsup
r→0

H1(E ∩B(x,r))

2r
,

D(E,x) = liminf
r→0

H1(E ∩B(x,r))

2r
.

A point x of E is called regular if D(E,x) = D(E,x) = 1 and is called irregular

otherwise. A set E is called (Besicovitch) regular if a.e. point of E (w.r.t. H1)

is regular. Similarly, E is called (Besicovitch) irregular if a.e. point is irregular.

It is a theorem of Besicovitch that every set E with 0 < H1(E) < ∞ can be

written as the union of a regular and irregular set [? ], [? ]. Moreover, E is

regular iff it is contained in a countable union of rectifiable curves. On the

other hand, if E is irregular then H1(E ∩Γ) = 0 for any rectifiable curve Γ.

Moreover, a set of finite 1 dimensional measure is Besicovitch irregular iff its

Favard length

Fav(E) =
∫ π

0
|Pθ (E)|dθ ,

is zero (Pθ is the orthogonal projection of E on to a line of angle θ to the x-

axis). See Section 1.23. All these results can be found in Falconer’s book [?

]

Vitushkin’s conjecture states that if that 0 < H1(E) < ∞, then γ(E) = 0 iff

E is Besicovitch irregular. One direction known; if γ(E) = 0 then E is iregular.

This follows from the Denjoy conjecture: a positive length subset of a rectifa-

ble curve has positive analytic capacity. This follows from the deep result of

Calderón [? ] that the Cauchy integral corresponding to a Lipschitz graph is a

bounded operator on L2 . Although there are by now many proofs of Calderón’s

theorem, all require a fair amount of work. The shortest proof is probably in

[? ]. See also the excellent text of Christ [? ] for another proof of Calderón’s

theorem and how the Denjoy conjecture follows (as well as a survey of more

recent work).

It is also known that there exist irregular sets of positive H1 measure but

zero analytic capacity [? ] , [? ], [? ] We shall give an example of such a set in

the next section.

A few special cases of the Vitushkin conjecture are known, when the set E

satisfies additional geometric assumptions. We shall state two such cases in

order to give a flavor of what is known. We require yet more notation.

Suppose x ∈ E is such that D(E,x)> 0 and L is a line passing through E. Let

S(x,L,θ) be the union of lines passing through x making angle less than θ with
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Figure 6.2.1 S(x,L,θ)

L. Clearly S(x,L,θ) is the union of {x} with two open cones centered along

L. When needed, we will refer to the two cones as S+(x,L,θ) and S−(x,L,θ).
We also let S±(x,L,θ ,r) = S±(x,L,θ)∩B(x,r) denote the truncated cone.

The line L is called a tangent of E if

lim
r→0

H1(E ∩D(x,r))\S(x,L,θ) = 0,

for every θ > 0. The line L is called a weak tangent if

liminf
r→0

H1(E ∩D(x,r))\S(x,L,θ) = 0,

for every θ > 0.

A very useful result in this connection is the following estimate of Besicov-

itch [? ]: suppose E is Besicovitch irregular and H1(E) < ∞. Then for a.e.

x ∈ E, and a line L passing through x,

limsup
r→0

H1(E ∩S+(x,L,θ ,r))

r
+ limsup

r→0

H1(E ∩S−(x,L,θ ,r))
r

≥ 1

6
sin(θ).

Because of this an irregular set cannot have tangents except on a set of measure

0. They can have weak tangents however. Indeed, there are irregular sets with

weak tangents in all directions at every point (e.g., locally flat sets; see Section

?). On the other hand, Besicovitch regular sets have tangents at a.e. point since

they are contained in countable unions of rectifiable curves.

Our first special case is due to Mattila [? ]:

Theorem 6.2.3 Let E be a compact Besicovitch irregular set in the plane with

H1(E)< ∞. Suppose that for H1 almost every x ∈ E, D(E,x)> 0 and there is

a θ ∈ [0,π) which is not a weak tangent direction for E. Then γ(E) = 0.

If E is a self-similar set satisfying the the open set condition (see Section ??)
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with finite H1 measure, then either E is a line segment or E has no weak

tangent directions at all ([? ]). Thus

Corollary 6.2.4 Suppose E is a compact, self-similar set satisfying the open

set condition and that H1(E)<∞. Then either E is a line segment or γ(E) = 0.

Another special case of the conjecture is due to Fang [? ] Recall that a set

E is called local flat if βE(Q)→ 0 as ℓ(Q)→ 0 (see Section ??) and that E is

called Ahlfors-David regular if there are constants so that

C−1r ≤ H
1(E ∩D(x,r))≤Cr,

for every x ∈ E and 0 < r ≤ |E|. Fang shows that

Proposition 6.2.5 [? ] If E Ahlfors-David regular and locally flat then γ(E)=

0 iff E is Besicovitch irregular.

This is a complement of Mattila’s result because an Ahlfors-David regular,

Besicovitch irregular, locally flat set has weak tangents in every direction [? ].

Therefore Mattila’s result does not apply to such a set.

Because a set of finite 1-dimensional measure is Besicovitch irregular iff its

Favard length is zero, Vitushkin’s conjecture can be restated as saying γ(E)= 0

iff Fav(E) = 0. The latter statement has the advantage that we do not have to

assume that H 1(E)< ∞ in order to state it.

However, for sets of infinite 1-dimensional measure it is known that the

conjecture fails. In [? ] Mattila constructed a set E and a Möbius transformation

τ such that Fav(E) = 0 but Fav(τ(E)) > 0. Since vanishing analytic capacity

is clearly invariant under conformal transformations, either E or τ(E) must

be a counterexample to the conjecture (but the proof does not say which is)!

Later Murai [? ] constructed a sequence of sets En with Fav(En) → 0, but

γ(En) bounded away from zero using delicate estimates of the bounds on the

L2 norm of the Cauchy integral. Unfortunately the limit of his sets En is a line

segment, which is not a counterexample. However, he and Jones [? ] eventually

constructed an example of a set E with γ(E) > 0 and Fav(E) = 0. Simpler

examples have since been discovered and will be described in a later section.

The question of whether there is a set E with γ(E) = 0 and Fav(E)> 0 remains

open.

6.3 Positive Length but Zero Capacity

First we show that there is a set E with 0<H1(E)<∞ and γ . The first example

of such a set is due to Vitushkin [? ]. The example we present is due to Garnett
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S

S3

S1 S2

S4

Figure 6.3.1 The square S and its 4 subsquares.

and is the product of the 1/4 Cantor set [∑∞
n=1 an4−n : an ∈ {0,3}] with itself.

This set clearly has the correct Hausdorff measure, so we need only show it

has zero analytic capacity.

It is convenient to think of this set as formed by an iterative construction

in which a square S of size r is replaced by 4 disjoint, closed subsquares Si,

i = 1,2,3,4, each of size r/4. We may also assume that the subsquares satisfy

dist(Si,S j)∼ dist(Si,S
c)∼ diam(S).

See Figure 6.3.1 Thus W = int(S)\(∪iSi) is a 4-connected domain (this is the

shaded region in Figure 6.3.1. Let Ω = Ec and suppose f were an analytic

function on Ω bounded by 1 and f (∞) = 0. Let En = ∪ jSn, j be the nth stage of

constructing E, Ωn = Ec
n and write Ωn = ∪n, jWn, j. If Sm,k ⊂ Sn, j we will write

m,k << n, j.

Jones’ Proof: Our first proof is based on the proof given by Jones in [? ].

Let bn, j = supWn, j
4−n| f ′(z)|. We claim that

Lemma 6.3.1 Fix a δ > 0. For each n, j there is a m,k with Sm,k ⊂ Sn, j with

bm,k ≤ δ and m ≤ n+Mδ−2.

First we will show how to deduce γ(E) = 0 and then we will prove the

lemma. Let δ > 0 be small. By iterating the lemma we can cover E by two

finite families of squares F1 and F2; the first with diameters summing to less

than δ and the second with consisting of squares Sn, j were f differs from some
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constant cn, j by at most δ . Then by the Cauchy integral formula applied to f

|2πi f (w)| ≤ |∑
F1

∫

∂S

f (z)dz

z−w
|+ |∑

F2

∫

∂S

f (z)− cn, jdz

z−w
|

≤C∑
F1

ℓ(Sn, j)+δ ∑
F2

ℓ(S j)

≤Cδ .

Taking δ → 0 shows f must be the constant zero.

Now we prove the lemma. Let G denote the Green’s function for Ω with

pole at ∞ and Gn the corresponding Green’s function for Ωn. Note that by

the Maximum principle, G ≤ Gn. By Greens Theorem and using the equality

∆| f |2 = 4| f ′|2,
∫∫

Ωn

| f ′(z)|2G(z)dxdy ≤
∫∫

Ωn

| f ′(z)|2Gn(z)dxdy

=C

∫

∂Ωn

| f |2 ∂G

∂n
ds ≤C‖ f ||2∞

< ∞.

Thus if we break up the sum into the integrals over all the regions Wn, j we get

∑an j
= ∑

∫∫

Wn, j

| f ′(z)|2G(z)dxdy < ∞.

By Harnack’s inequality G is approximately constant on Wn j
, and by Green’s

theorem

G(z)∼
∫

∂Wn, j

∂G(z)

∂n
ds ∼ ωn, j,

where ωn, j = ω(Sn, j ∩E) denotes the harmonic measure on E with respect to

∞. Its easy to check that b2
n, j ≤Can, j, so we deduce

∑
m,k<<n, j

b2
n, jωn, j ≤C < ∞.

Let F be the subsquares Sm,k of Sn, j with n ≤ m ≤ n+Mδ−2. If the lemma

fails then bm,k ≥ δ for all squares in F . Thus

∑
F

b2
m,kωm,k ≥ δ 2 ∑

F

δ 2ωn, j

≥ δ 2
n+Mδ−2

∑
m=n

ω(E)

≥ δ 2Mδ−2

≥ M,
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which is a contradiction if M is large enough. Hence the lemma is true.

6.4 Mattila’s counterexample to Vitushkin conjecture

In [? ] Mattila proved

Proposition 6.4.1 Suppose f is a C2 diffeomorphism of the plane which is

not segmented. Then there is a compact set E so that Fav(E) = 0, but such that

|Pθ ( f (E))|> 0 for every direction.

We shall sketch his construction with the stronger assumption that f maps

no segment to a another segment (e.g., a Möbius transformation which moves

∞ to a finite point has this property), and we will only show that Fav( f (E))> 0.

In what follows parallelogram always means a parallelogram with short sides

parallel to the x-axis. Γ(P) denotes the C1 curves so that some component

of C∩P connect the two long sides, and dir(C,P) ⊂ [0,π] denotes the set of

tangent directions taken along that arc.

Lemma 6.4.2 Suppose P is parallelogram and suppose we are given angles

0 < ζ < ζ +2α < π and ε > 0. Then there is a finite family P =P(P,ζ ,α,ε)

such that

(1) |Pθ (∪P)| ≤ ε for all ζ ≤ θ ≤ ζ +α.

(2) If C ∈ Γ(P) with dir(C,P)∩ (ζ −α,ζ + 2α) = /0, then C ∈ Γ(P′) for

some P′ ∈ P .

Proof If the long sides of P are not in direction ζ then replace P be a finite

collection of subparallelograms with this property and such that C ∈ Γ(P) im-

plies C ∈ Γ(P′) for at least on of the new parallelograms. Thus we may assume

P has longer sides in direction ζ . Let p be a large enough integer so that

β ≡ α

p
≤ ε sin(α)

2diam(P)
.

Let J be the left hand longer side of P and subdivide it into m equal subin-

tervals with endpoints {x0, . . .xm}. Replace J by the m segments Ji = [xi,yi] =

[xi,xi + tei(ζ+β )] where t is chosen so that arg(yi − xi+1) = ζ + 2α . Let K1 =

∪iJi. See Figure 6.4.1

Obviously |Pζ+β |(K) = 0 and |Pζ |(K1) = sin(β )t ≤ β diam(P)≤ ε/2. Sim-

ilarly, for ζ ≤ θ ≤ ζ +β we get

|P−θ(K1)| ≤ |Pθ (J)|+
ε

2
≤ ε ,
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Figure 6.4.1 The segments J and {Ji}

if m is large enough. For angles ζ +β ≤ θ ≤ ζ +2β we have

|Pθ (K1)| ≤ ∑
i

sin(β )

sin(α)
|Pζ+α(Ji)|=

sin(β )

sin(α) ∑
i

|J|/m ≤ ε

2
.

Also note that any curve in Γ(P) which misses all the Ji’s must pass between

two of them and therefore (by the mean value theorem) takes a direction in

∩(ζ −α,ζ +2α). Thus any curve omitting these directions must hit one of the

Ji.

Now repeat the construction by replacing each Ji with segments [xi,yi] in

direction ζ +2β , with lengths chosen so that arg(y1 − xi+1) = ζ +2α . If m is

large enough the resulting set K2 still has projections less than ε in directions

ζ ≤ θ ≤ ζ + 2β , while the previous argument shows that it projections in

directions ζ +2β ≤ θζ +4β may be made less than ε .

Continue the replacements for p generations. The resulting set Kp consists

of a finite union of line segments and has projection of measure less than ε

is all directions ζ ≤ θζ +α , as desired. Moreover, our remarks above plus

induction show that any C ∈ Γ(P) omitting directions in (ζ −α,ζ +2α) must

hit some segment in K. Finally we truncate the segments as necessary so that

they lie in P and replace each of them by a very thin parallelogram.

Lemma 6.4.3 Let p be a parallelogram, δ > 0 and α = π/(5(k + 1)) for

some large integer k. Then there is a finite family of subparallelograms R such

that if R = ∪RPi, then

(1) |Pθ (R)| ≤ δ for θ ∈ E = Eα = ∪k
j=1[5 jα,(5 j+1)α].

(2) If C ∈ Γ(P) omits all directions in F = ∪k
j=1[(5 j−1)α,(5 j+2)α], then

C ∈ Γ(Pj) for some Pj ∈ R.

Proof Simply apply the previous lemma k times. If at the jth stage we have

constructed a collection of n j parallelograms then the next time we apply the

lemma to each of these with ζ = 5 jα and ε = δ/n j.

We will construct S so that Fav(S) = 0 but Fav( f (S))> 0 as S =∩nSn where
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Sn is a finite union of parallelograms and Sn+1 is obtained from En by applying

the second lemma to each parallelogram in En. Let ΓL(P)⊂ Γ(P) denote those

curves C such that f (C) is a line. Start with a parallelogram S0 so that {(r,θ) :

f (L(r,θ)) ∈ Γ(S0)} has positive measure in the space of lines.

Suppose in general that Sn−1 consists of M parallelograms {P1 . . . ,PM}.

Choose αn so small that |dir(C,P)| ≥ αn for every C ∈ ΓL(Pj) and every Pj.

Then subdivide each Pj into subparallelograms {Pj,k} (with sides parallel to Pj)

so that |dir(C,Pj,k)| ≤ αn/20 for every C ∈ ΓL(Pj,k) (which we can do since

f ∈ C2). Let N be the total number of such subparallelograms and apply the

previous lemma to each Pj,k with αn/5 < α ≤ αn, δ = 1/(nN), and let Sn be

the union of the resulting parallelograms. By Lemma 6.4.3

|Pθ (Sn)| ≤
1

n
,

for θ ∈ Eαn , so |Pθ (E)|= 0 for

θ ∈ E ≡ ∩n ∪k>n Eαk
.

Taking αn → 0 fast enough (which we may clearly do), and applying the sec-

ond Borel-Cantelli lemma proves |E| has full measure, as desired.

We will construct S so that Fav(S) = 0 but Fav( f (S))> 0 as S =∩nSn where

Sn is a finite union of parallelograms and Sn+1 is obtained from En by applying

the second lemma to each parallelogram in En. Let ΓL(P)⊂ Γ(P) denote those

curves C such that f (C) is a line. Start with a parallelogram S0 so that {(r,θ) :

f (L(r,θ)) ∈ Γ(S0)} has positive measure in the space of lines.

Suppose in general that Sn−1 consists of M parallelograms {P1 . . . ,PM}.

Choose αn so small that |dir(C,P)| ≥ αn for every C ∈ ΓL(Pj) and every Pj.

Then subdivide each Pj into subparallelograms {Pj,k} (with sides parallel to Pj)

so that |dir(C,Pj,k)| ≤ αn/20 for every C ∈ ΓL(Pj,k) (which we can do since

f ∈ C2). Let N be the total number of such subparallelograms and apply the

previous lemma to each Pj,k with αn/5 < α ≤ αn, δ = 1/(nN), and let Sn be

the union of the resulting parallelograms. By Lemma 6.4.3

|Pθ (Sn)| ≤
1

n
,

for θ ∈ Eαn , so |Pθ (E)|= 0 for

θ ∈ E ≡ ∩n ∪k>n Eαk
.

Taking αn → 0 fast enough (which we may clearly do), and applying the sec-

ond Borel-Cantelli lemma proves |E| has full measure, as desired.

Suppose C ∈ΓL(Pj). Finally, because each element of |dirΓL(Pj)| ≥ 5αn, but

|dirΓL(Pj,k)| ≤ αn/2, for every Pj,k ⊂ Pj, there must be some Pj,k ⊂ Pj where
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dir(C) omits all values in Fαn . Thus C ∈ ΓL(Pj,k) by the lemma. By induction

we see that C ∈ ΓL(S0) implies C hits S. Thus f (S) is hit by a positive measure

set of lines, as desired.

We already know that Fav(K) = 0 implies Cap1(K) = 0. If we choose a

smooth f and K so Fav(K)= 0, Fav( f (K)) 6= 0, then Cap1( f (K))=Cap1(K)=

0. Thus we have proven

Corollary 6.4.4 There is compact set K so that Fav(K)> 0 but Cap1(K) = 0.

6.5 The venitian blind example

6.6 exercises

Exercise 6.1 Prove Mattila’s theorem.

Exercise 6.2 This and following two exercises complete Garnett’s proof.

With an, j as defined in Garnett’s proof, show |an, j| ≤ M4−n for some uniform

M < ∞.

Exercise 6.3 Let hn, j(z) = an, j4
2n

∫∫
En, j

dxdy
x+iy−z

. Show that hn = ∑ j hn, j are

uniformly bounded.

Exercise 6.4 Show that for some n, j, an, j 6= a4−n. Deduce the claim used

in this section that for any ε > 0 and M < ∞ there is a δ > 0 such that if f

is holomorphic on Ec, ‖ f‖∞ < M and | f ′(∞)| ≥ ε then there is a n, j so that

|an, j| ≥ (1+δ )4−n| f ′(∞)|.

Exercise 6.5 Vitushkin’s example. Start with a line segment of unit length.

Divide it into two equal segments and rotate each around its center by 90 de-

grees. In general, given an interval in the nth stage of the construction, sub-

divide it and rotate around its center by 90 degrees. Let E the limit of the

resulting sets. Show 0 < H1(E)< ∞ but γ(E) = 0.

Exercise 6.6 Rising sun lemma: Suppose f is continuous on [a,b]→ R and

has total variation V . Show that for any λ > 0 there is a collection of closed

intervals I j = [a,b j] ⊂ [a,b] such that (1) f (x)− f (y) ≤ λ (y− x) for x ≤ y,

y 6∈ ∪ jI j, (2) f (b j)− f (a j) = λ (b j −a j) and (3) ∑ j |I j| ≤V/λ .
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Exercise 6.7 Let f : [a,b]→ R be continuous and bounded variation. Prove

there exists a Lipschitz h on [a,b] so that {x : f (x) = h(x)} ≥ (b−a)/2. (Hint:

use previous exercise twice.)

Exercise 6.8 Show that if Γ is rectifiable, then there is a Lipschitz graph Γ′

so that H1(Γ∩Γ′)> 0.
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Limit sets of Kleinian groups

7.1 Definitions

A Möbius transformation is a mapping of the form

az+b

cz+d
,

which map C 1-1 and onto itself and they are the only analytic 1-1 maps of the

sphere to itself. These are also called linear fractional transformations. Since

az+b

cz+d
=

λaz+λb

λcz+λd
,

for any λ ∈ C, these mappings can be identified with elements of the group

PSL(2,C) = {
(

a b

c d

)
: ad −bc = 1}

by the identification

az+b

cz+d
↔

(
a b

c d

)
.

This gives us a topology on the set of Möbius transformations. A Kleinian

group is a discrete group of Möbius transformations acting on the Riemann

sphere C. This means that there is no sequence {gn} ⊂ G of distinct elements

which converges to the identity.

If we think of the Riemann sphere C as the unit sphere S2 in R
3 then any

Möbius transformation acting on S2 has a canonical extension to the unit ball

B⊂R
3. One way to see this is to note that the Möbius group and its conjugates

are generated by reflections through circles on S2. These reflections can be

extended to reflections through spheres and these map B to itself.

The limit set, Λ(G), is the accumulation set (on S2) of the orbit of the origin

136
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in B. It is easy to see that the accumulation set of any other point gives the same

set. The ordinary set of G, Ω(G) = S2 \Λ(G), is the subset of S2 where G acts

discontinuously, e.g., Ω(G) is the set of points z such that there exists a disk

around z which hits itself only finitely often under the action of G. The limit

set Λ(G) has either 0,1,2 or infinitely many points and G is called elementary

if Λ(G) is finite. In some sources, the term “Kleinian group” is reserved for

discrete Möbius groups such that Ω(G) is not empty.

A few examples of limits sets are shown in the figures. In each case the

figures show a collection of light gray circles. The group is formed by taking

the reflections through these circles as generators. (This gives a group of trans-

formations which includes orientation reversing maps. To get a true Kleinian

group we should pass to the index two subgroup of orientation preserving

transformations. However, this does not effect the limit sets). The black set

is a approximation of the limit set. The top left shows a totally disconnected

limit set and the top right a Jordan curve. On the lower left is an example where

Ω has infinitely many components, all of which are disks. In the example on

the lower right there is a single distinguished component which is not a disk

(the “outside”).

In addition to these examples, is fairly easy to construct groups where the

limit set is a circle or line. Such groups are called Fuchsian or extended-

Fuchsian (depending on whether each side of the circle is invariant or not).

It is also possible for the limit set to be the whole sphere.

There is another possibility as well. G is called degenerate (or totally de-

generate) if Ω(G) is connected and simply connected, i.e., Λ is connected and

does not divide the plane. Such sets are called “dendrites”. Although Bers [?

] proved that such groups exist, there is no good procedure for drawing their

limit sets.

Every Möbius transformations is conjugate to one of the following types of

maps

z → z+1,

z → zeiθ , for some θ ,

z → zλeiθ for some θ and some λ > 0.

These three types are called parabolic, elliptic and loxodromic respectively.

The study of Kleinian groups simplifies somewhat if we assume that there are

no elliptics or parabolics in the group and we shall make this assumption from

now on (except where we explicitly state otherwise). We shall refer to a group

with no elliptics or parabolics as a loxodromic group.
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Figure 7.1.1 Some examples of limit sets

The unit ball B ⊂ R
3 comes with a hyperbolic metric ρ (just as the disk in

the plane does) defined as

dρ =
d|z|

1−|z|2 .

We define the Poincaré series for a discrete group G acting on B
3 to be

∑
G

exp(−sρ(0,g(0))),
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where s > 0. Because

ρ(0,z) = log
1+ |z|
1−|z| ∼ log

1

1−|z| ,

the sum in the Poincaré series is comparable to

∑
G

(1−|g(0|)s.

One can easily show the series converges for all large enough values of s (e.g.,

all s > 2) and we define

δ (G) = inf{s : ∑
G

exp(−sρ(0,g(0)))< ∞}.

This is called the Poincaré exponent or critical exponent of the group.

A point x ∈ Λ(G) is called a conical limit point if there is a sequence of or-

bit points which converges to x inside a (Euclidean) non-tangential cone with

vertex at x (such points are also called radial limit points or points of approxi-

mation). The set of such points is the conical limit set and is denoted Λc(G).

G is called geometrically finite if there is a finite sided fundamental poly-

hedron for the G action on B. Otherwise G is called geometrically infinite.

A result of Beardon and Maskit [? ] implies that if G is loxodromic then it

is geometrically finite iff Λ(G) = Λc(G). An alternate characterization that we

will want to use involves the convex hull of the limit set. If K is a compact set

on S2 = ∂B we will let C(K) ⊂ B denote its convex hull with respect to the

hyperbolic metric on B. We let M = B/G be the 3-manifold associated to G. A

manifold of this form is called hyperbolic. Then C(M) = C(Λ(G))/G ⊂ M is

called the convex core of M. Much of the interesting topology of M is associ-

ated to the topology of the convex core. In particular, for loxodromic groups,

G is geometrically finite iff C(M) is compact. (For a general finitely generated

Kleinian group, G is geometrically finite iff C(M) has finite volume.)

In this chapter we will prove the following results

Theorem 7.1.1 Suppose G is a finitely generated (loxodromic) Kleinian group.

Then Λ(G) is either uniformly wiggley for it is a circle. In particular dim(Λ(G))=

1 iff ∂Ω is a circle.

Theorem 7.1.1 was first formulated by Bowen in [? ] in the case of quasi-

Fuchsian, loxodromic groups. The geometrically finite, loxodromic Kleinian

case is proven in [? ] and [? ]. This case is sometimes called “convex co-

compact”. See also [? ]. The general geometrically finite case is proven by

Canary and Taylor in [? ] and the result for all finitely generated Kleinian

groups is in [? ].
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Theorem 7.1.2 If G is a non-elementary, discrete Möbius group on B then

δ (G) = dim(Λc(G)).

The direction

dim(Λc(G))≤ δ (G),

of Theorem 7.1.2 is easy and well known. The opposite direction with the

additional assumptions that G is geometrically finite or Fuchsian is found in [?

], [? ]. The general case is proven in [? ].

Theorem 7.1.3 If G is a (loxodromic) finitely generated Kleinian group then

the Minkowski dimension of Λ exists and equals the Hausdorff dimension.

Theorem 7.1.3 was proven in the geometrically finite case by Stratmann

and Urbanski [? ]. The case with general, finitely generated Kleinian groups

follows from this and the general case of Theorem 7.1.4 (however, there is also

an “elementary” proof of the general case of Theorem 7.1.3 which does not

use Theorem 7.1.4).

Theorem 7.1.4 If G is a (loxodromic) finitely generated Kleinian group and

the injectivity radius of the manifold M =B/G is bounded away from zero then

dim(Λ(G))< 2 iff G is geometrically finite.

The assumption on the injectivity radius is not essential and is made only

to avoid having to quote a well known result about Kleinian groups (the Mar-

gulis lemma). Examples of groups with dim(Λ(G)) = 2 were constructed by

Sullivan in [? ], and Canary [? ] proved Theorem 7.1.4 holds if M = B/G

is a certain topological condition (that it is “topologically tame”, i.e., home-

omorphic to the interior of a compact manifold with boundary) and a certain

geometric condition (a special case is that the injectivity radius of the mani-

fold is bounded away from zero). The proof for all finitely generated Kleinian

groups is in [? ]. Sullivan [? ] and Tukia [? ] independently showed that if G

is a geometrically finite group then dim(Λ(G)) < 2. Thus a finitely generated

group is geometrically finite iff dim(Λ(G))< 2.

In each theorem stated above, the assumption that there are only loxodromic

elements is completely unnecessary and is only made to simplify the exposition

of the proofs. Selberg’s lemma [? ] says that any finitely generated matrix

group contains a normal subgroup of finite index which contains no elements

of finite order. It is easy to show that a discrete group can only contain elliptic

elements if they have finite order, so Selberg’s lemma can be used to reduce the

general case to the elliptic-free case. The presence of parabolics causes more

substantial difficulties, but these can always be handled.



7.2 Limit sets are uniformly wiggley 141

The way that we will make use of the loxodromic hypothesis is by quoting

the following two results:

Theorem 7.1.5 If G is a finitely generated Kleinian group with no parabolic

or elliptic elements, then Ω(G)/G is a a finite union of compact Riemann sur-

faces. In particular, if Ω0 is a component of Ω(G) and z0 ∈ Ω0 is any point.

Then every point of Ω is within a bounded hyperbolic distance of the orbit of

z0.

Theorem 7.1.6 If G is a finitely generated Kleinian group then Λ(G) is uni-

formly perfect. In other words, if dρ is hyperbolic metric on a component of

Ω(G) then

|dρ(z)| ∼ |dz|
d(z)

.

The first is a version of the Ahlfors’ finiteness theorem [? ]. In general, this

says that if G is any finitely generated group then Ω(G)/G is a finite union of

finite type surfaces (i.e., compact with a finite number of punctures. The type

of the surfaces can be explicitly bounded using the “area estimate” of Bers [?

]. The second proposition is easier and can be found in [? ] or [? ].

A Whitney square for a domain Ω is a square Q ⊂ Ω such that ℓ(Q) ∼
dist(Q,∂Ω). If G is a finitely generated Kleinian group then using these two

results we can easily see that there is a finite set E ⊂ Ω(G) so that every Whit-

ney square in Ω contains at least one point of E and at most a bounded number

(the bound depending on G). This is property of loxodromic groups that we

shall actually use in our proofs.

7.2 Limit sets are uniformly wiggley

In this section we prove Theorem 7.1.1. Suppose G is a finitely generated lox-

odromic Kleinian group. These means that there is a C < ∞ and a finite set of

points {z1, . . . ,zn} so that for any point z ∈ Ω(G) there is a z j and a g ∈ G so

that g(z j) is in the same component of Ω(G) as z and the hyperbolic distance

(in this component) between z and g(z j) is less than C.

Now suppose Λ(G) is not uniformly wiggley and choose a square Q hitting

E for which β = βE(Q) is very, very small. Let S denote the strip of width

βℓ(Q) which contains E ∩ 3Q. Choose a point z ∈ Ω∩ 3Q with dist(z,E) ∼
β 1/2ℓ(Q). Because Λ is connected, each component of Ω is simply connected

and so the hyperbolic metric on each component of Ω is comparable to dist(z,Λ)−1ds.

Therefore our hypothesis gives us z j and g∈G so that |z−g(z j)| ≤Cβ 1/2ℓ(Q).
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●
●

Q

3Q

Λ

Λ

Figure 7.2.1 Proof that limit sets are uniformly wiggley.

Now map the picture back to z j by the mapping g−1 and consider the picture

on the sphere S2. The limit set is mapped to itself and the strip S is mapped to a

region between two circles. The distance between the circles is approximately

β 1/2 dist(z j,Λ) and the part of Λ outside of 3Q is mapped into a region of di-

ameter at most Cβ 1/2 dist(z j,Λ). Thus Λ is contained in a Sβ 1/2 neighborhood

of circle on the sphere.

Taking limits as β → 0, we deduce that Λ must be a circle, as desired.

7.3 The conical limit set

In this section we prove Theorem 7.1.2.

Proof We start with the easy direction

dim(Λc(G))≤ δ (G).

Let G = G(0) denote the orbit of the origin of the ball B under G. Fix a large

number M and for each g ∈ G let Bg be the ball centered at g(0)/|g(0)| (the

radial projection of the orbit point onto the sphere) and radius M(1−|g(0)|).
Let EM be the set of points which are in infinitely many of the balls Bg. Since

∑
g

|Bg|δ+ε < ∞,

for any ε > 0 we see that dim(EM)≤ δ (G) for any M. On the other hand, and

point of Λc(G) is in EM for some M. Thus dim(Λc(G))≤ δ (G), as desired.

Now we prove the opposite inequality. Let {zn} denote the orbit of 0 under

G in the hyperbolic 3-ball, B. Let δ = δ (G) be the critical exponent for the
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Poincaré series of G and let ε > 0. Choose a point x ∈ C= ∂B so that

∑
j:|z j−x|<r

(1−|z j|)δ−ε = ∞,

for every r > 0 (here |z− x| denotes the spherical metric). We can do this by

a simple compactness argument. Since G is non-elementary, x is not fixed by

every element of G. Therefore we can choose elements {g1, . . . ,g4} ∈ G so

that xi = gi(x) are all distinct. Fix r > 0 to be so small that the balls Bi on C

(in the spherical metric) of radius 2r around the points {x1, . . .x4} are pairwise

disjoint.

Suppose M,N are large numbers (to be chosen below depending only on G

and r). Let An = {z ∈ B : 2−n−1 ≤ 1−|z|< 2−n}. If it were true that

∑
j:z j∈Bi∩An

(1−|z j|)δ−2ε ≤ M,

for all large enough n, then

∑
j:z j∈Bi

(1−|z j|)δ−ε ≤C∑
n

2−nε ∑
j:z j∈Bi∩An

(1−|z j|)δ−2ε

≤CM∑
n

2−nε

< ∞.

This is a contradiction, so we must have

∑
j:z j∈Bi∩An

(1−|z j|)δ−2ε ≥ M,

for infinitely many values of n. For each i = 1,2,3,4, fix a value of ni (depend-

ing on M and hence of r) for which this inequality holds.

Since the z j’s make up the orbit of a single point, they are uniformly sep-

arated in the hyperbolic metric of B. Thus for any A < ∞ we may split the

sequence into a finite number B of sequences (depending on A) each of which

is separated by at least A in the hyperbolic metric. Therefore, to each point xi

we may associate a collection of points Gi(0)⊂ {z j} such that

Gi(0)⊂ Bi ∩Ani
,

z,w ∈ Gi(0) implies |z−w| ≥ 3N2−ni ,

∑
j:z j∈Gi(0)

(1−|z j|)δ−2ε ≥ M/B.
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For each z ∈ Gi(0) let z∗ = z/|z| denote its radial projection onto the sphere

C= ∂B. For z ∈ B, let

B(z j) = B(z∗j ,N(1−|z|)).

By hypothesis, the balls B(z j) are disjoint for all z j ∈ ∪4
i=1Gi(0).

Since the balls {B1, . . . ,B4} have disjoint doubles, any sufficiently small

disk (depending on r) can intersect at most one of the balls. For any point z =

g(0) in the orbit of 0 consider the four balls {g(B1), . . . ,g(B4)}. The preceding

statement implies that if N is sufficiently large (depending only on r) then at

most one of these balls can intersect B \B(z). This determines our choice of

N. Therefore, at least three of the balls are contained in B(z). Without loss of

generality, assume they are g(B1),g(B2) and g(B3).

The Möbius transformation g has bounded distortion as a map from S2 to

itself except possibly at one point. More precisely,

Lemma 7.3.1 Suppose r > 0. There is a C < ∞ (depending only on r) such

that given any Möbius transformation g of S2 = C to itself we have

C−1(1−|g(0)|)≤ |g′| ≤C(1−|g(0)|),

except possibly on a disk D of radius r (both the derivatives and the disk are

taken with respect to the spherical metric).

Proof We may assume g(0) 6= 0 since otherwise the lemma is easy. Let z be

the radial projection of g(0) onto S2 and choose R so big (depending only on

r) so that

ω(g(0),S2 \B(z,R(1−|g(0)|),B)≤ r2.

Then D = g−1(B(z,R(1− |g(0)|)) is a disk of radius less than r and |g′| is

comparable to 1−|g(0)| on its complement.

So for any g ∈ G, at least two of the disks (say B1 and B2) are bounded away

from this point so we get

C−1(1−|g(0)|)≤ |g′| ≤C(1−|g(0)|),

on B1 and B2 with constants depending only on r.

Note that if we choose ni large enough (depending only on N) we may as-

sume

1−|z|
2N

≥ 1−|z j| ≥
1−|z|

CN
,

for some uniform C depending only on G and r.
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Now for the orbit point z = g(0) define G (z) = g(G1(0)). Thus

∑
z j∈G (z)

(1−|z j|)δ−2ε ≥C−δ+2ε(1−|z|)δ−2ε ∑
zk∈G1(0)

(1−|zk|)δ−2ε

≥C−δ+2ε(1−|z|)δ−2ε M

B

≥C−2 M

B
(1−|z|)δ−2ε

≥ (1−|z|)δ−2ε ,

where the last line holds if M is large enough. Since C1 depends only on r and

B depends only on group G (more precisely it only depends on the injectivity

radius of G at 0), this determines our choice of M.

We have now constructed a set of points z j = G (z) which satisfy the follow-

ing conditions:

z j ∈ B(z∗,N(1−|z|)),

B(z∗j ,2N(1−|z j|))∩B(z∗k ,2N(1−|zk|)) = /0 for j 6= k,

∑
j

(1−|z j|)δ−2ε ≥ (1−|z|)δ−2ε ,

1−|z|
2N

≥ 1−|z j| ≥
1−|z|

CN
,

for some uniform C depending only on G and r (because the points in G1(0)

do and the map g has uniformly bounded distortion on G1(0)).

Construct generations of points starting with G0 = {0}, and for each z ∈ Gn,

define points {z j} in Gn+1 as above. To each point z ∈ G = ∪nGn, associate the

disk Bz = B(z∗,2N(1−|z|)). Then let

En = ∪z∈Gn
Bz,

E = ∩nEn.

It is easy to see that E ⊂ Λc(G).

Define a probability measure µ on E by setting µ(E0) = 1, and for z ∈ Gn

with “parent” z′ ∈ Gn−1, set

µ(Bz) =
(1−|z|)δ−2ε

∑w∈G (z′)(1−|w|)δ−2ε
µ(Bz′).

It is easy to see by induction that

µ(Bz)≤ (1−|z|)δ−2ε ≤C diam(Bz)
δ−2ε ,
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for each z in G . We want to show this inequality is true for any disk D. Let D

be any disk and let D0 = Bz be the lowest generation disk in our construction

so that D0∩D 6= /0 but D0 ⊂ 2D. Let D1 be the parent of D0. By the maximality

of D0 we have D ⊂ 2D1. Since 2D1 is disjoint from any other balls of the same

generation,

µ(D)≤ µ(D1)

≤C diam(D1)
δ−2ε

≤C(NC)δ−2ε diam(D0)
δ−2ε

≤ 2C(NC)δ−2ε diam(D)δ−2ε .

This is the desired inequality (the constant in front is larger, but is uniform over

all disks; the power is the same). The mass distribution principle Lemma ??

now implies dim(Λc(G)) ≥ δ (G)− 2ε . Since ε was arbitrary, we get Theo-

rem 7.1.2.

We mentioned in the introduction that for geometrically finite loxodromic

groups, Λc(G) = Λ(G). Thus

Corollary 7.3.2 If G is a geometrically finite loxodromic group then δ (G) =

dim(Λ(G)).

Beardon and Maskit [? ] show that for a general geometrically finite group,

Λ(G) is the union of Λc(G) and a countable set (the parabolic fixed points of

G), so the corollary is true for all geometrically finite groups. It is not known if

it is true for all finitely generated groups, but any counterexample would have

a limit set of positive area (see Section 7.5).

7.4 The Besicovitch-Taylor index

Given a compact set K in the plane let Ω =R
2 \K be its complement. A Whit-

ney decomposition of Ω is a collection of squares {Q j} which are disjoint,

except along their boundaries, and such that

1

10
dist(Q j,∂Ω)≤ ℓ(Q j)≤ 10dist(Q j,∂Ω).

The existence of Whitney decomposition for any open set is a standard fact in

real analysis (e.g., [? ]). The squares {Q j} may also be taken to be dyadic.

For any compact set K ⊂ C we can define an exponent of convergence sim-

ilar to the exponent of convergence of a Poincaré series,

κ = κ(K) = inf{α : ∑
j

ℓ(Q j)
α < ∞},
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where the sum is taken over all squares in Whitney decomposition of Ω = Kc

which are within distance 1 of K (we have to drop the “far away” squares or

the series might not converge). It is easy to check that this does not depend

on the particular choice of Whitney decomposition. This number has been re-

discovered many times in the literature, but seem to have been first used by

Besicovitch and Taylor in [? ]. See also Tricot’s paper[? ] where he shows that

it agrees with the upper Minkowski dimension.

Lemma 7.4.1 For any compact set K, κ ≤ dimM (K). If K also has zero area

then κ = dimM (K).

Proof We start with the easy direction, κ ≤ dimM (K). Let D = dimM (K)

and choose ε > 0. Then by the definition of dimM (K) we have that

N(K,2−n)≤C2D+ε .

Let Sn be a covering of K by fewer than C2D+ε squares of size 2−n. If Q is

a Whitney square with 2−n−1 ≤ ℓ(Q) < 2−n, then choose a point x ∈ K with

dist(x,Q)≤ ℓ(Q). Let S(Q) ∈ Sn be the square containing Q. Since S(Q) and

Q have comparable sizes and there distance apart is at most ℓ(Q), we easily

see that each S ∈Sn can only be associated to a uniformly bounded number of

Q’s in the Whitney decomposition, say A.

Let Wn be the number of Whitney squares with size 2−n−1 ≤ ℓ(Q) < 2−n.

Then

∑
j

ℓ(Q j)
D+2ε ≤

∞

∑
n=0

Wn2−n(D+2ε)

≤
∞

∑
n=0

CN(K,2−n)2−n(D+2ε)

≤C
∞

∑
n=0

2n(D+ε)2−n(D+2ε)

≤C
∞

∑
n=0

2−nε

< ∞,

which proves κ ≤ D+2ε . Taking ε → 0 gives κ ≤ D = dimM (K).

Now we assume K has zero area and will prove κ ≥ D = dimM (K). As

above, let ε > 0 and suppose {Q j} is a Whitney decomposition of Ω = Kc. By

the definition of dimM (K) we have

N(K,2−n)≥ 2n(D−ε),

for infinitely many n. Suppose n0 is a value where this occurs and let S = {Sk}
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be a covering of K with dyadic squares of size 2−n0 . Let for each Sk ∈ S ,

Ck = {Q jk} be the collection of Whitney squares which intersect Sk. If we

assume the Q j are dyadic, then every square hitting Sk is contained in Sk. Since

the area of K is zero, this gives

2−2n0 = area(Sk) = area(Sk \K) = area(Sk ∩Ω) = ∑
Ck

ℓ(Q jk)
2.

Therefore,

∑
Ck

ℓ(Q jk)
D−2ε = ∑

Ck

ℓ(Q jk)
2ℓ(Q jk)

−2+D−2ε

≥ ∑
Ck

ℓ(Q jk)
2ℓ(Sk)

−2+D−2ε

= ℓ(Sk)
−2+D−2ε ∑

Ck

ℓ(Q jk)
2

= ℓ(Sk)
−2+D−2εℓ(Sk)

2

= ℓ(Sk)
D−2ε

= 2−n0(D−2ε).

Hence,

∑
j

ℓ(Q j)
D−2ε ≥ ∑

k

∑
Ck

ℓ(Q jk)
D−2ε

≥ ∑
k

ℓ(Sk)
D−2ε

≥ N(K,2−n0)2−n0(D−2ε)

≥ 2n0(D−ε)2−n0(D−2ε)

= 2n0ε .

Taking n0 →∞, we get ∑ j ℓ(Q j)
D−2ε =∞, and hence κ ≥D−2ε . Taking ε → 0

gives the desired result.

7.5 Minkowski dimension equals Hausdorff dimension

In this section we will prove Theorem 7.1.3. We will deduce it from

Theorem 7.5.1 Suppose G is a finitely generated, loxodromic Kleinian group.

If area(Λ(G)) = 0 then δ (G) = dimM (Λ(G)).
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As usual, the assumption that G contains no parabolics is not essential for

this theorem. It is not known whether the assumption that area(Λ(G)) = 0 is

necessary. The Ahlfors conjecture states that the limit set of finitely generated

Kleinian group is either the whole sphere or has zero area, but so far this has

only been proven in special cases (see Canary’s paper [? ] and its references).

The following lemma says that to check the convergence or divergence of the

Poincaré series, it is enough to consider points in Ω(G) (rather than points in

B).

Lemma 7.5.2 If G is a Kleinian group, 0 is the center of B and z ∈ Ω(G)⊂
∂B, then

d(g(z))∼ 1−|g(0)|, for all g ∈ G

with constants that depend on z and G, but not on g.

Proof Choose a ball B ⊂ Ω centered at z0 so that diam(B) ≤ 1
2

dist(z0,∂Ω.

Let ω1 = ω(0,B,B) be the harmonic measure of this ball in B with respect to

the point zero and let ω2 be the harmonic measure of 1
2
B with respect to 0.

Then by the conformal invariance of harmonic measure, for any g ∈ G, g(0) is

the unique point z so that

ω(z,g(B),B) = ω1,

ω(z,g(
1

2
B),B) = ω2.

By our choice of B and the Koebe 1/4 theorem, g( 1
2
B)⊂ λg(B) for some λ < 1

independent of g. Therefore any z ∈ B which satisfies the two equalities above

must satisfy

|g(z0)− z| ≤C diam(g(B)),

1−|z| ≥ 1

C
diam(g(B)).

This proves the lemma.

Proof of Theorem 7.5.1: We can choose a finite number of points

E = {z1, . . . ,zM} ⊂ Ω(G),

so that the G-orbit of E is ε-dense in the hyperbolic metric on Ω(G), i.e., every

point of Ω is within distance ε of some point of G(E) = ∪M
i=1 ∪g∈G g(zi). Thus

each Whitney square Q j contains at least one point of G(E). Therefore

∑
j

ℓ(Q j)
α ≤C ∑

z∈G(E)

d(z)α .
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By Lemma 7.5.2, the infinite series on the right hand side converges for α >

δ (G), hence so does the left hand side, i.e., κ(λ ) ≤ δ (G). Since we already

proved

δ (G) = dim(Λc(G))≤ dim(Λ(G))≤ dimM (Λ(G)),

we have the desired equality the desired equality κ(Λ) = δ (G).

If Λ(G) has zero area, then Lemma 7.4.1 implies

dimM (Λ) = κ(Λ) = δ (G),

as desired.

Proof of Theorem 7.1.3: Consider two cases. First, if dim(Λ) = 2 then

2 = dim(Λ)≤ dimM (Λ)≤ dimM (Λ)≤ 2,

so all are equal to 2. Secondly, if dim(Λ) < 2, then Λ has zero area, so Theo-

rem 7.5.1 applies and gives

dim(Λ)≤ dimM (Λ)≤ dimM (Λ) = δ (G) = dim(Λc)≤ dim(Λ),

so again, all these numbers are equal. Thus in both cases the Minkowski di-

mension exists and equals the Hausdorff dimension.

7.6 Geometrically finite groups

Here is where we need to use the fact stated in Section 7.1 that a loxodromic

group is geometrically finite iff the convex core C(M) is compact. We will

also want to use the observation that the convex hull of the limit set is the

complement in B of all the hemispheres perpendicular to S2 whose bases lie

in Ω(G) (this is just the characterization of convex sets in terms of supporting

half-spaces).

The important distinction between geometrically finite and geometrically

infinite groups is that (at least for loxodromic groups) the convex core C(M) of

M = B/G is compact in the first case and non-compact in the second case. The

ordinary set Ω(G) corresponds to exponentially expanding ends of the mani-

fold M. Think of a Brownian motion on the manifold starting somewhere in

the convex core (this is defined by taking the image of a Brownian path on

B under the quotient map). If the convex core is compact, the Brownian path

will almost surely leave the core eventually and enter one of the exponentially

expanding ends corresponding to a component of Ω(G). Once in such an end

it has a positive chance of going to infinity in this end. Thus by Borel-Cantelli
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C(M)

C(M)

Figure 7.6.1 Geometrically finite and infinite 3-manifolds

almost all Brownian paths are transient, tending to infinity in one of ends cor-

responding to Ω(G). See Figure 7.6.

Lifting to the disk, this argument implies that Ω(G) has full harmonic mea-

sure from inside B. Thus Λ(G) must have zero area for any geometrically finite

group. We shall sharpen this below to show that the limit set actually has di-

mension less than 2.

If G is geometrically infinite, can a Brownian motion remain in the convex

core forever (with positive probability). Using results of Davies and Sullivan,

we shall see that this does happen if δ (G) < 2. Thus if G is geometrically

infinite and δ (G) < 2 we shall be able to prove that the limit set must have

positive area. If δ (G) = 2 then Theorem 7.1.1 says dim(Λ(G)) = 2 as well, so

we get that dim(Λ(G)) = 2 for any (loxodromic) geometrically infinite group.

Theorem 7.6.1 Suppose G is a finitely generated, loxodromic group and

Λ(G) 6= S2. If G is geometrically finite then dim(Λ(G))< 2.

Proof For z ∈ B define

w(z) = max
D⊂Ω(G)

ω(z,D,B),

where the max is over all round disks in Ω(G). Then C(Λ) = {z : w(z)≤ 1/2}.

It is also G invariant, so defines a function on M.

Since w never vanishes and C(M) is compact it takes a positive minimum

w0 on C(M). Thus w(x)≥ w0 on all of M (since it is larger than 1/2 off C(M)).

Therefore at any point z ∈ B there is a disk in Ω with size ∼ 1−|z| and with

distance to z ∼ 1−|z|.
To see why this implies dim(Λ(G)) < 2 consider any square in the plane.
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Choose N very large and divide Q in N4 equal subsquares of side length N−2.

Let c be the center of Q and consider the point z in the upper half space distance

N−1 above c. Each of the subsquares has small harmonic measure from z if N is

large. Since w(z) is bounded away from zero, we can deduce that at least one

of the subsquares is completely contained in Ω(G). Throw away this square

and repeat the argument on the rest. By induction we see that Λ(G)∩Q can be

covered by (N4 −1)n squares of side length N−2n. This implies

dim(Λ(G)∩Q)≤ logN4 −1

logN2
< 2.

This easily implies dim(Λ(G))< 2.

7.7 Geometrically infinite groups

In this section we will prove that if G is a finitely generated, geometrically

infinite group then the limit set has dimension 2. If δ (G) = 2 the this follows

immediately from Theorem 7.1.2.

Therefore we may assume that δ (G)< 2. In this case we will show Λ must

have positive area (hence dimension 2).

The heat kernel K(x,y, t) is a positive function on M which gives the dis-

tribution of Brownian paths started at x at time t. In other words, if B(t) is a

Brownian motion started at x then at time t the probability that the Brownian

path is in a set E ⊂ M is ∫

E
K(x,y, t)dy.

The expected time that a Brownian path spends in the set E is
∫ ∞

0

∫

E
K(x,y, t)dydt.

We will apply this by taking a unit neighborhood of ∂C(M) and showing

that if we start Brownian motion far enough away from ∂C(M) then the expect

time spent in this neighborhood is as small as we wish. We will then deduce

that the chance of ever hitting ∂C(M) must also be small.

Proposition 7.7.1 If δ (G)< 2 and M = B/G then there exists λ > 0 so that

0 ≤ K(x,y, t)≤Cvol(B(x,1))−1/2vol(B(y,1))−1/2e−λ t .

This follows by combining a result of Sullivan [? ] which relates δ (G) to the

base eigenvalue for the Laplacian of M with a heat kernel estimate of Davies

[? ] with gives a Gaussian upper bound for the heat kernel in terms of the base
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eigenvalue. However, there is a also a simple direct proof of the proposition

above by summing over the group G.

Using this proposition we will now prove:

Theorem 7.7.2 Suppose G is a finitely generated, loxodromic group and

δ (G)< 2. If G is geometrically infinite then Λ(G) has positive area.

Proof Since ∂C(M) is compact, its unit hyperbolic neighborhood U has finite

volume. Choose R large and by the first proposition above choose x ∈ C(M),

so that dist(x,∂C(M)) > R. Suppose T > 0 is given. Since Brownian motion

on M moves no faster than on B, we can choose R so large that the probability

that a Brownian motion started at x every hits U before time T is less than 1/4.

Since U is compact vol(B(y,1))−1/2 is bounded on U . Thus by the propo-

sition, the expected time that a Brownian motion starting at x will spend in U

after time T is

Cvol(B(x,1))−1/2
∫ ∞

T
e−λ tdt.

Using the fact that the injectivity radius is bounded below we get that the ex-

pected time spent in U is at most

C

∫ ∞

T
e−λ tdt.

By choosing T large we can make this as small as we wish.

Note that the expected time it takes a Brownian motion started at a point y

of ∂C(M) to first leave U (i.e., to travel unit distance from ∂C(M)) is bounded

away from zero independent of the starting point y. This is because the ex-

pected time to travel distance 1 in M is greater than or equal the expected time

to travel this distance in the covering space B, and this is bounded away from

zero. Let t0 > 0 be a lower bound for the expected time to travel distance 1.

Thus the expected time a Brownian motion started at x spends in U is at

least the probability that it every hits ∂C(M) times the bound t0. Now choose

T so that the expected time spent in U after time T is less than t0/2. Then the

probability that a Brownian motion starting at x0 hits ∂C(M) after T is < 1/2.

Given this T now choose R= dist(x,∂C(M)) to be so large that the probabil-

ity of hitting ∂C(M) before time T is < 1/4. Thus the chance that a Brownian

motion started at x every hits ∂C(M) is < 3/4. Thus with probability > 1/4

such paths stay in C(M) forever.

Lifting to the ball, B, we see that we can start Brownian motion at a point

somewhere in the convex hull of the limit set and that with probability > 1/4

the path never leaves the convex hull. Such a path first hits the boundary of the

ball in the limit set. Hence the limit set has positive area.
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Exercises

Exercise 7.1 Prove a discrete group G acts discontinuously on Ω(G).

Exercise 7.2 Prove that the limit set of a Kleinian group contains either 0,1,2

or infinitely many points.

Exercise 7.3 Prove that if the limit set has interior then it is the whole sphere.

Exercise 7.4 Prove that the limit set is either finite or perfect.

Exercise 7.5 Prove that the limit set of a finitely generated Kleinian group is

uniformly perfect [? ], [? ].

Exercise 7.6 K is uniformly perfect iff the hyperbolic metric ρ on every

component of Ω = C\K satisfies [? ], [? ]

dρ ∼ ds

dist(z,K)
.

Exercise 7.7 Use Selberg’s lemma [? ] to show that for any finitely gener-

ated Kleinian group G there is a subgroup G′ with no elliptic elements so that

Λ(G) = Λ(G′).

Exercise 7.8 If x is a point which is fixed by a parabolic element of a Kleinian

group G then the set of all parabolic elements in G which fix x form a subgroup

which is isomorphic to either Z or Z2. The point x is called a fixed point of rank

1 or rank 2 respectively. Show that if G is non-elementary and Λ(G) contains

a rank 1 fixed point then dim(Λ(G))≥ 1/2. If G is non-elementary and Λ(G)

contains a rank 2 fixed point then dim(Λ(G))≥ 1.

Exercise 7.9 Suppose r > 0 and let C =C(r) and N = N(r) be the constants

in the proof of Theorem 7.1.2. Suppose G is a group of Möbius transformations

on B and suppose there are three disjoint balls B1,B2,B3 of (spherical) radius

r and a collection of points F ⊂ G(0)∩An which satisfy

z,w ∈ F implies |z−w| ≥ N2−n,

∑
z∈F∩Bi

(1−|z|)α ≥C−2.

Prove δ (G)≥ α.

Exercise 7.10 Suppose {Gn} is a sequence of m-generated Möbius groups

each with a specific listing of its generators Gn = {g1n, . . .gmn}. We say that

Gn converges algebraically to a Kleinian group G with generators {g1, . . . ,gm}
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if g jn → g j for each 1 ≤ j ≤ m, as elements of PSL(2,C). See [? ]. If we iden-

tify groups with points in PSL(2,C)m, this is just convergence in the product

topology. Use the previous exercise to show:

If {Gn} is a sequence of discrete Möbius groups converging algebraically to

G, then

liminf
n→∞

δ (Gn)≥ δ (G).

This says δ (G) is lower semi-continuous with respect to algebraic conver-

gence.

Strict inequality can occur. For example, it is possible to have a sequence of

geometrically infinite groups (which have dimension 2) converge algebraically

to a geometrically finite group (which has dimension < 2).

Exercise 7.11 Suppose K is a compact set in the plane. Define the conical

limit set Kc ⊂ K as the set of points z ∈ K such that there exists ε > 0 and

a sequence zn ∈ Ω = R
2 \K converging to z and with dist(zn,K) ≥ ε |z− zn|.

Show that H 2(Kc) = 0 for any K.

Exercise 7.12 Show that if K = 0 has zero area, then dim(K) = dim(Kc).

Give an example to show this can fail if K has positive area.

Exercise 7.13 The circle of inversion of a Möbius transformation g is defined

to be

I(g) = {z : |g′(z)|= 1}.

Show that g can be written as inversion through this circle followed by a Eu-

clidean similarity.

Exercise 7.14 Let r(g) denote the radius of the circle of inversion of g. If G

is a discrete group show

∑
g∈G

r(g)4 < ∞.

Exercise 7.15 Let {C1, . . .Cn} be disjoint circles with disjoint interiors and

let {g1, . . . ,gn} be the reflections through each circle. Let G be the group of

transformations generated by these maps. Show that G is discrete and that the

limit set is totally disconnected. (G is not Kleinian since it contains orientation

reversing elements, but it does have a Kleinian subgroup of index 2. This kind

of group is called a classical Schottky group.)

Exercise 7.16 Let {C1,C2,C3} be three circles with disjoint interiors so that

each is tangent to the other two. let {g1, . . . ,gn} be the reflections through each
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circle. Let G be the group of transformations generated by these maps. Show

that the limit set is a circle.

Exercise 7.17 Let {C1, . . .Cn} be circles with disjoint interiors so that C j is

tangent to C j−1 and C j+1 (modulo n). let {g1, . . . ,gn} be the reflections through

each circle. Let G be the group of transformations generated by these maps.

Show that G is discrete and that the limit set is a closed Jordan curve.

Exercise 7.18 Let C0 be the unit circle and {C1,C2,C3,C4} be circles of ra-

dius 1/(
√

2−1) centered at ±1,±i. Let G be the group generated by reflections

through these circles. Show that the ordinary set has infinitely many compo-

nents, all of which are disks (on the sphere).

Exercise 7.19 Show that for every 0 < α ≤ 1 there is a finitely generated

Kleinian group with dim(Λ(G) = α . (Hint: use reflections through disjoint cir-

cles to get totally disconnected limit sets whose dimension varies continuously

with the circles. There are limit sets with all possible dimensions in (0,2], but

a theorem of Doyle [? ] says that one cannot get dimensions close to 2 just by

reflecting through disjoint circles.)

Exercise 7.20 Suppose G is a finitely generated Kleinian group with a simply

connected invariant component Ω. Prove the following are equivalent (you may

assume the group is loxodromic, but this is not necessary):

1. G is not an extended Fuchsian group.

2. ∂Ω is not a circle.

3. ∂Ω has infinite 1-dimensional measure.

4. dim(∂Ω)> 1.

5. dim(Λc(G))> 1.

6. δ (G)> 1.

7. ∂Ω fails to have a tangent somewhere.

8. ∂Ω fails to have a inner tangent and all points except possibly the rank 1

parabolic fixed points.

9. The set of inner tangent points of ∂Ω has zero 1-dimensional measure.

10. Harmonic measure for Ω is singular to 1-dimensional measure (i.e., there is

a subset of ∂Ω of full harmonic measure and 1-dimensional measure zero).

11. Almost every (with respect to harmonic measure) point of ∂Ω is a twist

point.

12. Harmonic measures for distinct components of Ω(G) are mutually singular.

Exercise 7.21 A finitely generated Kleinian group is called degenerate if

Ω(G) is non-empty, connected and simply connected. prove that if G is de-

generate then Λ(G) is uniformly wiggley (even if we allow parabolics). (A
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degenerate group must be geometrically infinite by a theorem of Greenberg [?

], hence have dimension 2).)

Exercise 7.22 Prove that if G is finitely generated and Ω(G) is a union of

disks, then dim(Λ(G))> 1.

Exercise 7.23 Prove Larman’s theorem [? ]: there is an ε > 0 so that if {D j}
is a collection of three or more disjoint open disks and K = R

2 \∪ jD j, then

dim(K)> 1+ ε .

Exercise 7.24 Prove that if Λ(G) has zero area then δ (G) = dim(Λ(G)).

Exercise 7.25 Show the set of conical limit points of a Kleinian groups either

has full measure on the sphere or zero measure. The conical limit set has zero

measure iff the Poincaré series converges when s = 2. [? ].

Exercise 7.26 Show that a point x ∈ Λ(G) is in the conical limit set iff the

geodesic ray which connects 0 ∈ B to x returns to some compact subset (in

M = B/G) infinitely often.

Exercise 7.27 If M = B/G and x ∈ M, let Ex denote the set of directions

at x which correspond to geodesic rays starting at x which remain bounded

forever. Show that dim(Ex) = δ (G). (Hint: this is contained in the proof of

Theorem 7.1.2.)
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