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Intentions

Despite many previous opportunities and a brush with conformal dynamics in the

form of Kleinian groups, I had never worked on the iteration of holomorphic functions

until April 2011 when I met Misha Lyubich on the stairwell of the Stony Brook math

building he told me that Alex Eremenko had a question for me. Alex was visiting for

a few days and his question was the following: given any compact, connected, planar

set K and an ǫ > 0, is there a polynomial p(z) with only two critical values, whose

critical points approximate K to within ǫ in the Hausdorff metric?

It turns out that we can assume the critical values are±1 and then T = p−1([−1, 1])

is a finite tree in the plane and Alex’s question is equivalent to asking if such trees

are dense in all compact sets. Such a tree is conformally balanced in the sense that

every edge gets equal harmonic measure from ∞ and every subset of an edge gets

equal harmonic measure from either side. This makes the existence of such trees

seem unlikely, or at least requiring very special geometry, but I was able to show that

Alex’s conjecture was correct by building an approximating tree that is balanced in

a quasiconformal sense and then “fixing” it with the measurable Riemann mapping

theorem.

When I asked for the motivation behind the question, Alex explained that entire

functions with a finite number of critical points play an important role in transcen-

dental dynamics because they mimic certain properties of polynomials, e.g., Dennis

Sullivan’s “no wandering domains” theorem can be extended to such functions. He

wanted to know if the geometry of polynomials of high degree but with a low num-

ber of critical points was somehow “special”. At least in the case of this particular

question, the answer is no.

This discussion led to an analogous question for entire functions. If f is entire

and has only two critical points, say ±1, then T = f−1([−1, 1]) is an unbounded tree

in the plane. Conversely, given an unbounded tree in the plane can we approximate
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it by a tree of this form? We need to impose a few conditions, but the basic answer

is yes, any “reasonable” tree T can be approximated. The “reasonable” conditions

include that the tree has uniformly bounded degrees, the edges are uniformly C2 arcs,

adjacent edges have comparable Euclidean lengths and one more technical looking

condition. Since T is connected and unbounded, its complementary components are

simply connected and can be conformally mapped to a half-plane with ∞ mapping

to infinity. Pulling back Lebesgue measure on the boundary of the half-plane to T

defines a conformal length for each side of each edge. We require that each side of

each edge in the tree has conformal length that is uniformly bounded away from zero.

Given this, we can approximate the tree in a precise sense by a tree T ′ of the form

f−1([−1, 1]) where f is entire and has exactly two critical values.

With this construction in hand, one can create a large number of new entire

functions with finite singular set S(f) (critical values and finite asymptotic values).

This collection is called the Speiser class. With a small variation we can also build

functions in the larger Eremenko-Lyubich class (bounded singular set). One of the

first applications was to build an entire function in the Eremenko-Lyubich that has

a wandering domain; as noted above, this is impossible in the Speiser class, but was

previously known for more general entire functions. Another application of the ideas

(though not of the precise method) led to the construction of an entire function whose

Julia set has Hausdorff dimension 1. Baker had proven in 1975 [?] that the Julia set

of an entire function always contains an non-trivial continuum, so its dimension is

always ≥ 1, and Stallard [130], [132] had given examples with dimension 1+ǫ for any

ǫ > 0. Furthermore, the new example has packing dimension 1 and is the first entire

function known to have packing dimension < 2. At this writing, no known examples

have packing dimension strictly between 1 and 2 (but I hope this will change shortly).

In the course of thinking about my examples, I looked at many papers in the field

and benefited greatly from a number of well written surveys, especially by Bergweiler

and Schleicher. However, I felt that I needed to learn some of the basic theory in

more detail and the standard way to do this quickly is to offer to each a graduate

course on the topic, which I volunteered to due during Spring 2013, and followed by a

sequel during Spring 2014. These notes are my attempt to record and organize some

of the topics I hope to cover.
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First, there are topics from complex analysis that are not usually covered in the

standard first year graduate course, such as the hyperbolic and spherical metrics, the

uniformization theorem, Koebe’s 1
4
-theorem, normal families, the Ahlfors 5 islands

theorem, Arakelian’s approximation theorem (or is it Arakeljan?), Hausdorff and

packing dimensions, extremal length, harmonic measure estimates. We will also

need a certain amount of quasiconformal theory, especially the measurable Riemann

mapping theorem, and some extensions of to more general homeomorphisms.

Second, there are the topics from transcendental dynamics that are the real goal

of the course. I will interpret “transcendental dynamics” as the iteration of entire

functions. One can also develop parallel theories for holomorphic functions mapping

C∗ = C \ {0} to itself, for meromorphic functions on the plane, or even for maps

between domains on a Riemann surface, but I will limit myself to entire functions,

except in a few cases where we can obtain a more general result for no extra work or

need a more general result for an application to entire functions.

If f is entire let {fn} denote the iterates of f . The basic objects of study are the

Fatou set

F(f) = {z : {fn} is a normal family on a neighborhood of z},

its complement the Julia set, J (f). The escaping set

I(f) = {z : fn(z) → ∞},

plays a crucial role in the theory; J (f) = ∂I(f) for all entire functions and J (f) =

I(f) in many cases of interest (e.g., the Eremenko-Lyubich class). I(f) often has an

interesting internal structure, due in part to the ability to define subsets in terms of

the rate of escape to ∞. We will spend a great deal of effort trying to understand

its geometry. Indeed, the first “dynamical” result we prove (after some background

material) is that I(f) 6= ∅, a fundamental result of Eremenko.

Some of the other results we will cover include:

• The Julia set is non-empty, the closure of the repelling fixed points and the boundary

of the escaping set. It is either the whole plane or nowhere dense.

• The Fatou set has no unbounded multiply connected components. Thus the Julia

set can’t be totally disconnected and must have dimension ≥ 1.



iv INTENTIONS

• Multiply connected components of the Fatou set must be wandering domains. Ex-

amples exists with all connectivities 2, 3, . . . ,∞.

• Properties of various subsets of the escaping set defined in terms of rates of escape,

especially the “fast escaping set”.

• Special results for the Speiser and Eremenko-Lyubich classes, e.g., the Julia set con-

tains the escaping set, the Hausdorff dimension of the Julia set is strictly bigger than

1, but the escaping set can have dimension 1. The Julia set has packing dimension

2. How to construct such functions with prescribed geometry near infinity.

• The Julia set of exp(z) is the whole plane. Examples where the Julia set has positive

area, but is not the whole plane, where it has zero area but Hausdorff dimension 2,

examples of dimension < 2.

• Periodic components of the Fatou set of an entire functions include all the possi-

bilities for polynomial plus one other. There can be Baker domains, i.e., unbounded

periodic domains that iterate to ∞, a sort of analog to a the petal associated to a

rationally neutral fixed point. We will give examples, estimate the escape rate in such

a domain and show that they force the presence of nearby singular points (although

the Baker domain itself need not contain any singular points).

• Progress on Eremenko’s question: is every component of the escaping set is un-

bounded? Among other partial results we know this is false for path components,

true for the closure of the escaping set, and there is always at least one unbounded

component.

• Progress on Baker’s conjecture: an entire function that grows slower than exp(
√
z)

has only bounded Fatou components. This is known to be true under various extra

conditions such as very slow growth or some regularity on growth (e.g., the maximum

modulus on the circle of radius r is “nice” as a function of r).

Well, this should be enough to get started. In general, I am most interested in

topics where the behavior for entire functions contrasts with that for polynomials.

For example, the “simplest” examples of transcendental Julia sets have dimension 2;

it requires work to build one of dimension < 2 and more work to reach the minimum

value 1. For polynomials, the situation is reversed; it is easy to build Julia sets that

are small Cantor sets but required sophisticated methods to construct examples with

dimension 2 [128], [129] or positive area [38], [39].
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The prerequisite for reading these notes is to be Lars Ahlfors, or failing this, to

have read Ahlfors’ book “Complex Variables”, or at the very least, to believe results

quoted from this book.

At present the notes are incomplete, missing many references and contain more

mistakes than I care to contemplate. Use extreme caution when reading them and

please let me know of the errors you find.

Chris Bishop

Stony Brook, NY

March 2014
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CHAPTER 1

The hyperbolic metric

The study of conformal dynamics is made possible in great part by the use of con-

formal invariants, i.e., numerical values that can be associated to a certain geometric

configurations and that remain unchanged (or at least change in predictable ways)

under the application of conformal or holomorphic maps. In the course of these notes

we shall see several examples: hyperbolic distance, harmonic measure and extremal

length, to name a few. In this chapter we start with the the definition and properties

of the hyperbolic metric; first on the disk, then extending it to simply connected do-

mains via the Riemann mapping theorem and then to general planar domains (with

a few exceptions) via the uniformization theorem.

For simply connected domains, the principal tool is the Koebe 1
4
-theorem that

allows us to estimate hyperbolic distances, up to a bounded factor, by Euclidean

quantities. For more general domains, similar estimates are obtained from compar-

isons with the hyperbolic metric for the twice puncture plane. Also of critical impor-

tance is Schwarz lemma: holomorphic maps never increase hyperbolic distances. The

Schwarz lemma has a number of important implications in dynamics, e.g., it limits

how quickly a point can iterate to the boundary of a Fatou component (assuming

all iterates remain in the same component), and we shall end the chapter by proving

that every non-trivial entire function has a point that iterates to ∞, i.e., the escaping

set is non-empty.

1.1. Schwarz’s lemma

The hyperbolic metric on D is given by dρ(z) = |dz|/(1 − |z|2). This means

that the hyperbolic length of a rectifiable curve γ in D is defined as

ℓρ(γ) =

∫

γ

|dz|
1− |z|2 ,(1)

1



2 1. THE HYPERBOLIC METRIC

and the hyperbolic distance between two points z, w ∈ D is the infimum of the lengths

of paths connecting them (we shall see shortly that there is an explicit formula for

this distance in terms of z and w). In many sources, there is a “2” in the numerator

of (1), but we follow [59], where the definition is as given in (1). For most things,

this makes no difference, but the reader is warned that some of our formulas may

differ by a factor of 2 from the analogous formulas in some papers and books.

We define the hyperbolic gradient of a holomorphic function f : D → D as

DH
Hf(z) = |f ′(z)| 1− |z|2

1− |f(z)|2 .

More generally, given a map f between metric spaces (X, d) and (Y, ρ) we define the

gradient at a point z as

Dρ
df(z) = lim sup

x→z

ρ(f(z), f(x))

d(x, z)
.

The use of the word “gradient” is not quite correct; a gradient is usually a vector

indicating both the direction and magnitude of the greatest change in a function. We

use the term in a sense more like the term “upper gradient” that occurs in metric

measure theory to denote a function ρ ≥ 0 that satisfies

|f(b)− f(a)| ≤
∫

γ

ρds,

for any curve γ connecting a and b. I hope that the slight abuse of the term will not

be confusing.

In these notes, the most common metrics we will use are the usual Euclidean

metric on C, the spherical metric

ds

1 + |z|2 ,

on the Riemann Sphere, Ĉ and the hyperbolic metric on the disk or on some other

hyperbolic planar domain (these will be defined in Section 1.4). To simplify (?)

notation, we use E, S and H to denote whether we are taking a gradient with respect

to Euclidean, Spherical or Hyperbolic metrics. For example if f : U → V , the symbol

DH
Hf means that we are taking a gradient from the hyperbolic metric on U to the

hyperbolic metric on V (assuming the domains are clear from context; otherwise we

write DV
U or Dρv

ρU
it we need to be very precise).
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In this notation, the spherical derivative of a function, usually denoted

f#(z) =
|f ′(z)|

1 + |f(z)|2 ,

is written DS
Ef(z) since it is a limit of quotients where the numerator is measured in

the spherical metric and the denominator is measured in the Euclidean metric. Sim-

ilarly DS
H denotes a gradient measuring expansion from a hyperbolic to the spherical

metric. This particular gradient will be important in Chapter 2 when we characterize

conformally invariant normal families.

A linear fractional transformation is a map of the form

z → a+ bxc+ dz,

where a, b, c, d ∈ C. These exactly the 1-to-1, holomorphic maps of the Riemann

sphere to itself. Such maps are also called Möbius transformation

EXERCISE: Show that the linear fractional transformations that map D 1-to-1,

onto itself are exactly those of the form z → λ(z − a)/(1 − az) where |a| < 1 and

|λ| = 1.

Lemma 1.1.1. Möbius transformations of D to itself are isometries of the hyper-

bolic metric.

Proof. When f is a Möbius transformation of the disk we have

f(z) =
z − a

1− āz
,

f ′(z) =
1− |a|2
(1− āz)2

.

Thus

DH
Hf(z) =

1− |a|2
(1− āz)2

1− |z|2
1− |f(z)|2 =

1− |a|2
(1− āz)2

1− |z|2
1− | z−a

1−āz |2

=
(1− |a|2)(1− |z|2)
|1− āz|2 − |z − a|2 =

(1− |a|2)(1− |z|2)
(1− āz)(1− az̄)− (z − a)(z̄ − ā)

=
(1− |a|2)(1− |z|2)

(1− āz − az̄ + |az|2)− (|z|2 − az̄ − zā+ |a|2)

=
(1− |a|2)(1− |z|2)

(1 + |az|2 − |z|2 − |a|2) = .
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Note that

ℓρ(f(γ)) ≤
∫

γ

DH
Hf(z)

|dz|
1− |z|2 .

Thus Möbius transformations multiply hyperbolic length by at most one. Since the

inverse also has this property, we see that Möbius transformation preserve hyperbolic

length. �

The segment (−1, 1) is clearly a geodesic for the hyperbolic metric and since

isometries take geodesics to geodesics, we see that geodesics for the hyperbolic metric

are circles orthogonal to the boundary.

On the disk it is convenient to define the pseudo-hyperbolic metric

T (z, w) = | z − w

1− w̄z
|.

The hyperbolic metric between two points can then be expressed as

ρ(w, z) =
1

2
log

1 + T (w, z)

1− T (w, z)
.(2)

On the upper half-plane the corresponding function is

T (z, w) = |z − w

w − z̄
|,

and ρ is related as before.

EXERCISE: Show a hyperbolic ball in the disk is also a Euclidean ball, but

the hyperbolic and Euclidean centers are different (unless they are both the origin).

Compute the Euclidean center and radius of a hyperbolic ball of radius r centered at

z in D.

Lemma 1.1.2 (Schwarz’s Lemma). If f : D → D is holomorphic and f(0) = 0

then |f ′(0)| ≤ 1 with equality iff f is a rotation. Moreover, |f(z)| ≤ |z| for all |z| < 1,

with equality for z 6= 0 iff f is a rotation.

Proof. Define g(z) = f(z)/z for z 6= 0 and g(0) = f ′(0). This is a holomorphic

function since if f(z) =
∑
anz

n then a0 = 0 and so g(z) =
∑
anz

n−1 has a convergent

power series expansion. Since max|z|=r |g(z)| ≤ 1
r
max|z|=r |f | ≤ 1

r
. By the maximum

principle |g| ≤ 1
r
on {|z| < r}. Taking r ր 1 shows |g| ≤ 1 on D and equality

anywhere implies g is constant. Thus |f(z)| ≤ |z| and |f ′(0)| = |g(0)| ≤ 1 and

equality implies f is a rotation. �
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In terms of the hyperbolic metric this says that

ρ(f(0), f(z)) = ρ(0, f(z)) ≤ Hr(0, z),

which shows the hyperbolic distance from 0 to any point is non-increasing. For an

arbitrary holomorphic self-map of the disk f and any point w ∈ D we can always

choose Möbius transformations τ, σ so that τ(0) = w and σ(f(w)) = 0, so that

σ ◦ f ◦ τ(0) = 0. Since Möbius transformations are hyperbolic isometries, this shows

Corollary 1.1.3. If f : D → D is a holomorphic then ρ(f(w), f(z)) ≤ ρ(w, z).

Another formulation is

Corollary 1.1.4. If f : D → D is holomorphic then DH
Hf(z) ≤ 1.

Corollary 1.1.5. If f : U → V is conformal and z0 = f(z0) ∈ U ⊂ V , then

|f ′(z0)| ≥ 1 with equality iff U = V .

EXERCISE: Show that the only isometries of the hyperbolic disk are Möbius

transformations and their reflections across R.

Since f(z) = z2 maps the disk to itself, it strictly contracts the hyperbolic metric;

a more explicit computation shows

DH
Hf(z) = |2z|1− |z|2

1− |z|4 =
2|z|

1 + |z|2 < 1.

Thus g(z) =
√
z is locally an expansion of the hyperbolic metric, at least on a

subdomain W ⊂ D where it has a well defined branch. For z 6= 0,

DH
Hg(z) = | 1

2
√
z
|1− |z|2
1− |z| ≥ 1 + |z|

2
√
z
.(3)

For z = 0

DH
Hg(0) = lim sup

z→0

ρ(0,
√
z)

ρ(0, z)
= ∞.

Similarly, if α > 0, then the map pα(z) = zα sends D to D, and satisfies

DH
Hpα(z) = α|z|α−1 1− |z|2

1− |z|2α < 1,(4)

hence is a hyperbolic contraction if α > 1 and an expansion if α < 1.

EXERCISE: If a > 1 and 0 < r < 1 show that

αra−1 1− r2

1− r2a
< 1,(5)
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if a > 1 and 0 < r < 1.

Another consequence of the Schwarz lemma that we will use later is the Borel-

Carathéodory theorem: Borel and Carathéodory:

Lemma 1.1.6. If g = u+ iv is holomorphic on D and g(0) = 0 then

max
|z|<1/2

|g(z)| ≤ 2max
|z|<1

u(z).

Proof. Without loss of generality we may assume that u < 1 on D, so that g

maps the disk into the half-plane H = {x + iy : x < 1}. If τ(z) = z/(2 − z) is a

Möbius transformation that takes H to D and fixes 0, then by the Schwarz lemma,

|τ(g(z))| ≤ |z|. Therefore g maps D into τ−1(D(0, 1
2
)) ⊂ D(0, 2). �

EXERCISE: Show, more generally, that

sup
|z|=r

|g(z)| ≤ 2r

1− r
sup
|z|<1

u(z) +
1 + r

1− r
|g(0)|.

this is the “full strength” version of the Borel-Carathéodory theorem.

1.2. Uniformization for planar domains

let p : E → B be continuous and surjective. An open set U ⊂ B is evenly

covered if the inverse image p−1(U) can be written as a disjoint union of sets Vα so

that p restricted to each Vα is a homeomorphism onto U . If every point b of B has

a neighborhood U that is evenly covered by p, then p is called a covering map. A

space X is simply connected if it is path connected and if its fundamental group

is trivial, i.e., every closed loop in X can be homotoped to a point.

Lemma 1.2.1 ([102], Lemma 8.4.1). Let p : E → B be a covering map; let

p(e0) = b0. Any path f [0, 1] → B beginning at b0 has a unique lift to a path f̃ in E

beginning at e0.

Lemma 1.2.2 ([102], Exercise 8.4.12(a)). Let p : E → B be a covering map; let

p(e0) = b0. Let f : Y → B be continuous with f(y0) = b0. If Y is locally path

connected and simply connected then f can be lifted uniquely to a continuous map

f̃ : (Y, y0),→ (E, e0).

The theory of covering spaces says that every Riemann surface has a universal

covering surface that is also a Riemann surface. Koebe’s uniformization theorem
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says that there are only three simply connected Riemann surfaces (up to conformal

isomorphism): D, C and Ĉ. Any other Riemann surface (and there are many) is the

quotient of one of these by a discrete group of Möbius transformations. An element of

such group can’t have a fixed point, and this implies that the sphere covers only itself

and the plane covers only genus 1 tori and the once punctured plane C∗ = C \ {0}.
Every other Riemann surface is the quotient of the disk by a Fuchsian group (i.e., a

discrete group of Möbius transformations acting on D).

We will not prove the complete uniformization theorem here, although there are

proofs using potential theory that take only about a dozen pages (e.g. see Don Mar-

shall’s paper [91]). However, we will give the proof for hyperbolic planar domains, a

case that we will use throughout these notes. A planar domain Ω is called hyperbolic

if C \ Ω has at least two points.

Theorem 1.2.3. Every hyperbolic plane domain Ω is holomorphically covered by

D (i.e., there is a locally 1-to-1, holomorphic covering map from D to Ω).

We will first prove this for bounded domains, then for general simply connected

domains, and then finally general hyperbolic domains. The proof will use Montel’s

theorem that a sequence of uniformly bounded holomorphic functions on D has a

subsequence that converges uniformly on compact sets. This will be proved later; see

Theorem 2.3.2. We will also need the following.

Lemma 1.2.4. If {fn} are holomorphic functions on a domain Ω that converge

uniformly on compact sets to f and if zn → z ∈ Ω, then fn(zn) → f(z).

Proof. We may assume {zn} are contained in some disk D ⊂ Ω around z. Let

E = {zn} ∪ {z}. This is a compact set so it has a positive distance d from ∂Ω. The

points within distance d/2 of E form a compact set F on which the functions {fn}
are uniformly bounded on E, say by M . By the Cauchy estimate the derivatives are

bounded by a constant M ′ on E. Thus

|f(z)− fn(zn) ≤ |f(z)− fn(z)|+ |fn(z)− fn(zn)| ≤ |f(z)− fn(z)|+M ′|z − zn|,
and both terms on the right tend to zero by hypothesis. �

Proof of uniformization for bounded domains. If Ω is bounded, then by

a translation and rescaling, we may assume Ω ⊂ D and 0 ∈ Ω. We will define a
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sequence of domains {Ωn} with Ω0 = Ω and covering maps pn : Ωn → Ωn−1 such that

p(0) = 0. We will show that Ωn contains hyperbolic disks centered at 0 of arbitrarily

large radius and that the covering map qn = p1 ◦ · · · ◦ pn : Ωn → Ω0 = Ω converges

uniformly on compacta to a covering map q : D → Ω.

If Ω0 = D we are done, since the identity map will work. In general assume

that we have qn : Ωn → Ω0 and that there is a point w ∈ D \ Ωn. Let τ and σ be

Möbius transformations of the disk to itself so that τ(w) = 0, choose a square root

α of τ(0) and choose σ so σ(α) = 0. Then pn+1(z) = σ(
√
τ(z)) and let Ωn+1 be the

component of U = p−1
n+1(Ωn) that contains the origin (the set U will have one or two

components; two if w is in a connected component of D \ Ωn that is compact in D,

and one otherwise). Since σ and τ are hyperbolic isometries and
√
z expands the

hyperbolic metric, we see that Ωn+1 contains a larger hyperbolic ball around 0 than

Ωn did. Suppose dist(∂Ωn, 0) < r < 1 for all n. Then (3) says that

DH
Hpn(0) = DH

H

√
z(τ(0)) >

1 + r

2
√
r
> 1,

since |τ(0| = |w| > r. Hence DH
Hqn(0) increases by this much at every step. But

DH
Hqn(0) ≤ 1, which is a contradiction. Thus dn → 1.

Thus {qn} is a sequence of uniformly bounded holomorphic functions on the disk.

By Montel’s theorem, there a subsequence that converges uniformly on compact

subsets of D to a holomorphic map q : D → Ω. It is non-constant since it has non-

zero gradient at the origin; moreover, by Hurwitz’s theorem, q′ never vanishes on D

since it is the locally uniform limit of the sequence{qn}, and these functions never

vanish since they are all covering maps. Next we show that q is a covering map

D → Ω.

Fix a ∈ Ω and let d = dist(a, ∂Ω). Since Ω is bounded, this is finite. Let D =

D(a, d) ⊂ Ω. Since qn is a covering map, every branch of q−1
n is 1-to-1 holomorphic

map of D into D and hence each qn is a contraction from the hyperbolic metric on D

to the hyperbolic metric on D. Thus every preimage of 1
2
D has uniformly bounded

hyperbolic diameter.

Now fix a point b ∈ q−1(a). Since qn(b) → q(b) = a, qn(b) ∈ 1
2
D for n large

enough, so there is branch of q−1
n that contains b. Since these branches are uniformly

bounded holomorphic functions, by Montel’s theorem we can pass to a subsequence
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so that they converge to a holomorphic function g from 1
2
D into D. Moreover,

q(g(z)) = lim
n
qn(q

−1
n (z)) = z,

by Lemma 1.2.4. �

This proves the existence of a covering map for bounded domains Ω. If Ω is

bounded and simply connected, then we have proved the Riemann mapping theorem

for Ω. To deduce Riemann’s theorem for all proper simply connected plane domains,

we only need:

Lemma 1.2.5. Any simply connected planar domain, except for the plane itself,

can be conformally mapped to a bounded domain.

Proof. If the domain Ω is bounded, there is nothing to do. If Ω. omits a disk

D(x, r) then the map z → 1/(z − x) conformal maps Ω to a bounded domain. Oth-

erwise, translate the domain so that 0 is on the boundary and consider a continuous

branch of
√
z. The image is a 1-1, holomorphic image of Ω, but does not contain

both a point and its negative. Since the image does contain some open ball, it also

omits an open ball and hence can be mapped to a bounded domain by the previous

case. �

Next we want to deduce the uniformization theorem for all hyperbolic plane do-

mains (we have only proved it for bounded domains so far). It suffices to show that

any hyperbolic plane domain has a covering map from some bounded domain W , for

then we can compose the covering maps D → W and W → Ω.

Assume for the moment that we already have a covering map of the twice punc-

tured plane, q : D → C∗∗ = C \ {0, 1}. If {a, b} ∈ C \ Ω then h(z) = bq(z) + a is

a covering map from U = h−1(Ω) ⊂ D to Ω. Any connected component of U shows

that Ω has a covering from a bounded plane domain, finishing the proof. Thus we

are reduced to proving:

Theorem 1.2.6. There is a holomorphic covering map from D to C∗∗ = C\{0, 1}

Proof. Let

Ω = {z = x+ iy : y > 0, 0 < x < 1, |z − 1

2
| > 1

2
} ⊂ H.
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This is simply connected and hence can be conformally mapped to H with 0, 1,∞
each fixed. We can then use Schwarz reflection to extend the map across the sides of

Ω. Every such reflection of Ω stays in H maps to either the lower or upper half-planes.

Continuing this forever gives a covering map from a simply connected subdomain U

of H to W . Since U is simply connected and not the whole plane (it is a subset of

H) it is conformally equivalent to D and hence a covering q : D → W exists. �

FIGURE OF COVERING MAP, TESSELATION OF UPPER HALF-PLANE

EXERCISE: Show that the domain U formed by repeated reflections across ∂Ω

is, in fact, all of H.

There is an explicit formula for the covering map from the upper half-plane to

C \ {0, 1}. in terms of the Weierstrass P-function. See [].

1.3. Koebe’s 1
4
-theorem

We start by recalling Green’s theorem and some useful variants. We start with

the “standard version”:
∫∫

Ω

u∆v − v∆udxdy =

∫

∂Ω

u
∂v

∂n
− v

∂u

∂n
ds,(6)

where n denotes the outward pointing normal vector of ∂Ω. We will also use Green’s

theorem in the following form:
∫

∂Ω

f(x, y)dx+ g(x, y)dy =

∫∫

Ω

∂g

∂x
− ∂f

∂g
dxdy(7)

and its simple consequence that the area of a region Ω is given by

area(Ω) =
1

2

∫

∂Ω

xdy − ydx =
1

2i

∫

∂Ω

zdz.(8)

The complex form of Green’s theorem uses dz = dx+ idy,
∫

∂Ω

gdz =

∫

∂Ω

gdx+

∫

∂Ω

igdy

=

∫∫

Ω

(i
∂g

∂x
− ∂g

∂y
)dxdy

= 2i

∫∫

Ω

∂g

∂z̄
dxdy
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Next, apply this to the domain Ω\D(ǫ, w) where w ∈ Ω and the function g(z)/(z−w)
to get
∫

∂Ω

g(z)− g(w)

z − w
dz −

∫

∂D(ǫ,w)

g(z)− g(w)

z − w
dz = 2i

∫∫

Ω\D(ǫ,w)

∂

∂z̄
(
g(z)− g(w)

z − w
)dxdy

= 2i

∫∫

Ω\D(ǫ,w)

∂g

∂z̄
(

1

z − w
)dxdy.

Since g is continuous at w, the integral over ∂D(ǫ, w) tends to 0 as ǫց 0 and by the

Cauchy’s theorem, the integral over ∂Ω is equal to
∫

∂Ω

g(z)

z − w
dz − 2πig(w).

Since |z − w|−1 is integrable over bounded sets, the area integral above tend to the

integral over all of Ω. Thus we obtain Pompeiu’s formula:

g(w) =
1

2πi

∫

∂Ω

g(z)

z − w
dz − 1

π

∫∫

Ω\D(ǫ,w)

gzbar
z − w

dxdy.(9)

We now start towards the proof of Koebe’s theorem.

Theorem 1.3.1 (Area theorem). Suppose g(z) = 1
z
+ b0 + b1z + . . . is univalent

in D. Then
∑∞

n=0 n|bn|2 ≤ 1. In particular, |b1| ≤ 1.

Proof. For 0 < r < 1 let Dr = C \ g(D(0, r)). If z = g(w) and w = eiθ then

dw = iwdθ, so by (8),

area(Dr) =

∫∫

Dr

dxdy =
1

2i

∫

∂Dr

z̄dz =
−1

2i

∫

∂D(0,r)

ḡ(w)g′(w)dw.

To evaluate the right hand side note that

g(z) =
1

z
+ b0 + b1z + . . . ,

g′(z) =
1

z2
+ 0 + b1 + 2b2z + . . . ,

so that∫

|w|=r
ḡ(w)g′(w)dw = i

∫
ḡ(w)g′(w)wdθ

= i

∫
(
1

w̄
+ b̄0 + b̄1w̄ + . . . )(− 1

w
+ b1w + 2b2w + . . . )dθ

= 2πi(− 1

r2
+ |b1|2r2 + 2|b2|r4 + . . . )
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Thus,

0 ≤ area(Dr) = π(
1

r2
−

∞∑

n=1

n|bn|2r2n).

Taking r → 1 gives the result. �

Corollary 1.3.2. If f(z) = z +
∑∞

n=2 anz
n is univalent on the unit disk, then

|a2| ≤ 2.

Proof. Let F (z) = z
√
f(z2)/z2. Then the quantity inside the square root is

even and doesn’t vanish in D, so F is odd, univalent and

F (z) = z +
a2
2
z + . . . .

Thus

g(z) =
1

F (z)
=

1

z
− a2

2
z + . . . ,

is univalent and satisfies Theorem 1.3.1, so |a2| ≤ 2. �

Theorem 1.3.3 (Koebe 1/4 theorem). If f is univalent on D, then

1

4
|f ′(z)|(1− |z|2) ≤ dist(f(z), ∂Ω) ≤ |f ′(z)|(1− |z|2).

Proof. By pre-composing with a Möbius transformation and post-composing by

a linear map, we may assume z = 0, f(0) = 0 and f ′(0) = 1. Then the right hand

inequality is just Schwarz’s lemma applied to f−1. To prove the left hand inequality,

suppose f never equals w in D. Then

g(z) =
wf(z)

w − f(z)

= w(z + a2z
2 + . . . )

1

w
[(1 +

1

w
(z + a2z

2 + . . . ) +
1

w2
(z + a2z

2 + . . . )2 + . . . )]

= z + (a2 +
1

w
)z2 + . . . ,

is univalent with f(0) = 0 and f ′(0) = 1. Applying Corollary 1.3.2 to f and g gives

1

|w| ≤ |a2|+ |a2 +
1

w
| ≤ 2 + 2 = 4.

Thus the omitted point w lies outside D(0, 1/4), as desired. �

A second proof of Koebe’s theorem using extremal length is given in the Appendix,

Theorem A.12.4.

The following estimate is known as the distortion theorem.
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Lemma 1.3.4. Suppose f is univalent on D, f(0) = 0 and f ′(0) = 1. Then

1− |z|
(1 + |z|)3 ≤ |f ′(z)| ≤ 1 + |z|

(1− |z|)3 ,(10)

Proof. Fix a point w ∈ D and write the Koebe transform of f ,

F (z) =
f(τ(z))− f(w)

(1− |w|2)f ′(w)
,

where

τ(z) =
z + w

1− w̄z
.

This is univalent, so by Corollary 1.3.2, |a2(w)| ≤ 2. Differentiation and setting z = 0

shows

F ′(z) =
f ′(τ(z))τ ′(z)

(1− |w|2)f ′(w)
,

F ′′(z) =
f ′′(τ(z))τ ′(z)2 + f ′(τ(z))τ ′′(z)

(1− |w|2)f ′(w)
,

τ ′(0) = 1− |w|2, τ ′′(0) = −2(1− |w|2),

F ′′(0) =
f ′′(w)

f(w)
(1− |w|2)− 2w̄.

This implies that the coefficient of z2 (as a function of w) in the power series of F is

a2(w) =
1

2
((1− |w|2)f

′′(w)

f ′(w)
− 2w̄).

Using |a2| ≤ 2 and multiplying by w/(1− |w|2), we get

|wf
′′(w)

f ′(w)
− 2|w|2

1− |w|2 | ≤
4|w|

1− |w|2 .

Thus
2|w|2 − 4|w|
1− |w|2 ≤ wf ′′(w)

f ′(w)
≤ 4|w|+ 2|w|2

1− |w|2 .

Now divide by |w| and use partial fractions,

−1

1− |w| +
−3

1 + |w| ≤
1

|w|
wf ′′(w)

f ′(w)
≤ 3

1− |w| +
1

1 + |w|
Note that
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∂

∂r
log |f ′(reiθ)| =

∂

∂r
Re log f ′(z)

= Re
z

|z|
∂

∂z
log f ′(z)

=
1

|z|Re(
zf ′′(z)

f ′(z)
)

Since w = reiθ and f ′(0) = 1, we can integrate to get

log(1− r)− 3 log(1 + r) ≤ log |f ′(reiθ)| ≤ −3 log(1− r) + log(1 + r).

Exponentiating gives the result. �

EXERCISE: Integrate the distortion theorem to obtain the growth estimate:

|z|
(1 + |z|)2 ≤ |f(z)| ≤ |z|

(1− |z|)2 .

If f : ω → D is conformal, then clearly
∫
Ω
|f ′(z)|2dxdy = area(D) = π. The

distortion theorem implies a better estimate is true.

Corollary 1.3.5. If f : Ω → D is conformal then
∫
Ω
|f ′(z)|pdxdy < ∞ for all

2 ≤ p < 3.

Proof. Let g = f−1. Then

∫

Ω

|f ′(z)|pdxdy =

∫

D

|g(z)|2−pdxdy,

and the right-hand side is finite for 2 ≤ p < 3 by the left-hand side of (10). �

The famous Brennan conjecture [37] states that this is true for all 4
3
< p < 3. For

p ≤ 4
3
or p ≥ 4 the integral diverges for f−1(z) = g(z) = z/(1− z)2, where f maps a

slit plane to the disk. Pommerenke [108] proved the integral converges for p < 3.39,

and this has been improved by Bertilsson [22], Shimorin [127] and Hedenmalm and

Shimorin [66].
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1.4. The hyperbolic metric in simply connected domains

If Ω ⊂ C has at least two boundary points we want to use the covering map

p : D → Ω to define a metric ρΩ(z)ds on Ω. ρ should be defined so that p is locally

an isometry, i.e., for w ∈ D, z = p(w),

1 = DρΩ
ρD
p(w)

= DE
ρD
Id(w) ·DE

Ep(w) ·DρΩ
E Id(p(w))

=
1

ρD(w)
· |p′(w)| · ρΩ(z)

and so we take

ρΩ(z) =
|p′(w)|
1− |w|2 = |p′(w)|ρD(w)

where p(w) = z. Different choices of p and w give the same value for ρΩ(z) since they

differ by an isometry of D. Thus every hyperbolic planar domain has a hyperbolic

metric.

For parabolic planar domains (i.e., C and C∗ = C \ {0}) it is convenient to

define the “hyperbolic metric” to be ρ(z) = 0. This reflects the fact that there are

only constant holomorphic maps from a parabolic domain to a hyperbolic domain

(Picard’s little theorem, Theorem 2.3.1) and no restrictions on a holomorphic map

from a hyperbolic to a parabolic domain.

We want to give some useful estimates for ρΩ in terms of more geometric quanti-

ties, such as the quasi-hyperbolic metric, defined as

ρ̃Ω(z)ds =
ds

dist(z, ∂Ω)
.

For simply connected domains, ρ and ρ̃ are boundedly equivalent; for more general

domains this can fail, but some useful estimates are still available.

The first observation is that if f : U → V is conformal and ρU(z)ds and ρV (z)ds

are the densities of the hyperbolic metrics on U and V then

ρV (f(z)) = ρU(z)/|f ′(z)|.

Applying this to the map τ(z) = (z + 1)/(z − 1) that maps the right half-plane

Hr = {x + iy : x > 0} to the unit disk D, we see that the hyperbolic density for the
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half-plane is

ρHr
(z) = |τ ′(z)|ρD(τ(z)) =

2

|z − 1|2
1

1− |τ(z)|2 =
1

2x
=

1

2dist(z, ∂Hr)
.

Thus the hyperbolic density on a half-plane is approximately the same as the quasi-

hyperbolic metric. Using Koebe’s theorem we can deduce that that this is true for

any simply connected domain.

Lemma 1.4.1. For simply connected domains, the hyperbolic and quasi-hyperbolic

metrics are bi-Lipschitz equivalent, i.e.,

dρΩ ≤ dρ̃Ω ≤ 4dρΩ.(11)

Proof. Using Koebe’s theorem,

ρΩ(f(z)) =
ρD(z)

|f ′(z)| ≤ ρD(z)
1− |z|2

dist(f(z), ∂Ω
=

1

dist(f(z), ∂Ω
= ρ̃(f(z)),

which is one half of the result. The other half is similar:

ρΩ(f(z)) =
ρD(z)

|f ′(z)| ≥
1

4
ρD(z)

1− |z|2
dist(f(z), ∂Ω)

=
1

4
ρ̃(f(z)).

�

Corollary 1.4.2. Suppose Ω is simply connected, z, w ∈ Ω. Then

ρ(z, w) ≥ 1

4
| log dist(z, ∂Ω)

dist(w, ∂Ω)
|.

Proof. Suppose γ is a curve in Ω connecting the two points. Then the quasi-

hyperbolic length of γ is at least

|
∫ dist(w,∂Ω)

dist(z,∂Ω)

dt

t
| = | log dist(z, ∂Ω

dist(w, ∂Ω)
|.

By our previous remarks, the hyperbolic distance is at least 1
4
of this. �

Corollary 1.4.3. If f : Ω → Ω′ is conformal, then

dist(f(z), ∂Ω′)

4dist(z, ∂Ω)
≤ |f ′(z)| ≤ 4dist(f(z), ∂Ω′)

dist(z, ∂Ω)
.

Proof. Write f = g ◦ h−1 where g : D → Ω′ and h : D → Ω and use the chain

rule and Koebe’s theorem. �

The following is a consequence we will use repeatedly
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Corollary 1.4.4. Suppose Ω is simply connected and a 6∈ Ω. Then if |z| > 2|a|
and w ∈ Ω,

|w| ≤ |z| exp(8ρ(z, w)).

Proof. If |w| ≤ |z|, there is nothing to do, so assume the reverse is true. Connect

z and w by a curve in Ω and let γ be a subarc that connects the circles of radius |z|
and |w| without leaving the annulus between these circles. For y ∈ γ with |y| = t,

the pseudo-hyperbolic metric is bounded below by

1

dist(y, ∂Ω
≥ 1

|y − a| ≥
1

|y|+ |a| ≥
1

2|y| ,

so the length of γ in this metric is at least 1
2
log |w|/|z|. Thus

|w| ≤ |z| exp(2ρ̃(z, w)) ≤ |z| exp 8ρ(z, w)).

�

If we apply the previous result and the Schwarz inequality we get:

Corollary 1.4.5. Suppose Ω is simply connected, 0 6∈ Ω and f : Ω → Ω is

holomorphic. If z, w ∈ Ω, then

|f(w)| ≤ |f(z)| exp(8ρ(z, w)).

This will be useful later when we consider iterations of f , e.g., if Ω is unbounded,

proper, simply connected domain and f : Ω → Ω then the iterates of z cannot grow

faster than Cn where C = exp(8ρ(z, f(z)). As we shall see later, this is rather slow

escape to ∞; a transcendental entire function always has points that iterate to ∞
much faster than this (see Chapter 6).

Corollary 1.4.6. If Ω is simply connected and not the whole plane, f : Ω → Ω

is holomorphic, and z ∈ Ω, then there is a C <∞ so that |fn(z)| ≤ Cn

1.5. Hyperbolic metric multiply connected domains

The following is immediate from Schwarz’s lemma.

Corollary 1.5.1. If U ⊂ V are both hyperbolic, then ρU ≥ ρV .
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Proof. If ΠU : D → U and ΠV : D → V are the covering maps then the inclusion

map U → V can be lifted to conformal map D → Π−1
V (U) ⊂ D. Applying Schwarz’s

lemma to this map (and using the fact that the projections are local isometries) gives

the result. �

We will also need estimates for hyperbolic metrics in domains that are not simply

connected. The most important (and useful) cases are the punctured disk C∗ =

D \ {0}, an annulus, and the twice punctured plane C∗∗ = C \ {0, 1}.
For the punctured disk, z → exp(z) is a covering map from the left half-plane to

C∗. Transferring the hyperbolic metric on the half-plane gives

ρD∗(z) =
1

2|z| log(1/|z|) .(12)

Note that in this case, the hyperbolic and quasi-hyperbolic metrics are not boundedly

equivalent: the circle of radius r around the origin has length 2π for the quasi-

hyperbolic metric but only has length 2π/ log 1/r.

The exponential map sends the strip S = {x+ iy : |y| < π} to the right half-plane

and this can be used to show that the hyperbolic metric density on S is

ρS(z) =
1

cos y
.

The vertical strip V = {x + iy : log a < x < log b} is mapped by the exponential to

the annulus A = {z : a < |z| < b}. If we simplify slightly to the case 0 < a < 1 and

b = 1/a, then we get

ρA(z) =
π

| log a| cos( π
| log a| log r)

.(13)

The next case we consider is C∗∗ = C \ {−1, 1}.

Lemma 1.5.2. The hyperbolic density ρ for C∗∗ = C \ {−1, 1} satisfies

ρ(z) ≃ 1

|z| log |z| , |z| > 2,

ρ(z) ≃ 1

|z − 1| log 1/|z − 1| , |z − 1| < 1/2,

ρ(z) ≃ 1

|z + 1| log 1/|z + 1| , |z + 1| < 1/2,

and ρ ≃ 1 elsewhere.
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Proof. The upper bounds are immediate by Lemma 1.5.1 and comparing to a

punctured disk; the lower bounds require some more work.

We saw earlier that the covering map F : H → C∗∗ was obtained by conformally

mapping

W = {x+ iy : |x| < 1, |z| > 1}
to the upper half-plane H with −1, 1,∞ each fixed and then extending this to the rest

of H by repeated reflections. Thus F restricted toW can be written as a composition

of three conformal maps:

f : W → S = {x+ iy : y > 0, |x| < 1},

exp : S → U = {x+ iy : y > 0, |z| > 1}.
J : U → H.

Here J(z) = 1
2
(z+ 1

z
) the Joukowsky map. Let V be the union ofW and its horizontal

translates by 2Z. By reflection, f extends to be a conformal map of V to H and since

0 ≤ ℑ(f(z)) ≤ 1 on ∂V , one can prove that ℑ(z) − 1 ≤ ℑ(f(z)) ≤ ℑ(z). By the

Koebe theorem,

|f ′(x+ iy)| ≃ ℑ(f(z))
ℑ(z) ≃ 1,

for y > 2. Similarly,

J ′(z) =
1

2
(1− 1

z2
),

so 3
8
≤ |J ′| ≤ 5

8
for |z| > 2. Thus if z = F (w),

ρC∗∗(z) =
ρH(w)

|F ′(w)| ≃
1

| exp(w)|ℑ(w) =
1

|z| log |z| ,

for |z| ≥ 2. The estimates in D(−1, 1) and D(1, 1) follow by applying Möbius trans-

formations that permute −1, 1,∞. The remaining region of the plane is compact and

so ρ is bounded above and below there. �

U H

Jexp

SW

f

Figure 1. The sequence of maps in the proof of Lemma 1.5.2.
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The twice punctured plane is one of the few domains for which there is an explicit

expression for the hyperbolic metric. Assuming the punctures are 0, 1, the hyperbolic

density is given by

1

ρ(w)
=

1

π

∫∫

C

| w(w − 1)

z(z − 1)(z − w)
|dxdy.

See [1], [85]. For Ĉ \ {a, b, c} it has the more symmetric looking form

1

ρ(w)
=

1

π

∫∫

C

| (w − a))(w − b)(w − c)

(z − a)(z − b)(z − c)(z − w)
|dxdy.

We will not prove these formulas since the simpler estimate in Lemma 1.5.2, will be

enough for our applications.

We can now give a geometric estimate of the hyperbolic density that is valid in

all planar hyperbolic domains. We normalize by supposing 1 ∈ Ω and that 0 ∈ ∂Ω is

a closest point of ∂Ω to 1 (thus D(1, 1) ⊂ Ω). Let R be the maximum value such that

A = { 1
R
< |z| < R} ⊂ Ω. R must be finite, for otherwise Ω is the once punctured

plane and hence a parabolic, not hyperbolic, domain.

Lemma 1.5.3. With notation as above, ρΩ(1) ≃ 1/(1 + logR).

Proof. The inclusion AR ⊂ Ω gives ρΩ(1) . 1/(1 + logR). By the maximality

of R there is a point w ∈ ∂Ω on either {|z| = R} or {|z| = 1/R}. The inclusion

Ω ⊂ C \ {0, w} gives the other direction. �

Corollary 1.5.4. For a, b ∈ C let ρa,b(z) be the hyperbolic density for the C \
{a, b} and let

ΥΩ(z) = sup
a,b

ρa,b(z).

There is a C < ∞ so that for any hyperbolic planar domain Ω ΥΩ(z) ≤ ρΩ(z) ≤
CΥΩ(z).

Proof. The first inequality is clear by Lemma 1.5.1. The second is given by the

proof of Lemma 1.5.3. �

This result is due to Gardiner and Lakic [57], and explicit estimates for C are

given in [23], [5] and [134].

A special case that we will need is:
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Corollary 1.5.5. There is a constant c > 0 so that the following holds. Suppose

w ∈ Ω, but there are points a, b 6∈ Ω with |a| = |w| and |b| = 2|w|. Then ρ(w) ≥ c/|w|.

Lemma 1.5.6 (Bohr’s lemma). If 0 < r < 1 let ρ = ρ(r) be the hyperbolic distance

from 0 o0 r in D, let c be the constant from Corollary 1.5.5 and let β = β(r) =

exp(r/c) > 0. If f is holomorphic on D, |f(0)| ≤ β, |f | < 1 on Dr and |f | = 1

somewhere on ∂Dr, then ∂Dt ⊂ f(D) for some t ≥ β.

Proof. Let R = sup{t : {|z| = t} ⊂ disk}. Choose |w| = r so that |f(w)| = 1.

We will estimate the hyperbolic distance between f(0) and f(w) in f(D) in two

different ways, that give a contradiction if R < β. This implies the lemma.

So suppose R < β. Let γ be the radial segment joining 0 and w; by definition

it has hyperbolic length ρ. Since |f(0)| ≤ β, f(γ) contains a subarc σ that connects

{|z| = β} and {|z| = 1} and is contained in the annulus between these circles. At

each point z ∈ σ, Corollary 1.5.5 says the hyperbolic metric is bounded below by

c/|z| and hence

ρf(D)(w, f(0)) > ρf(D)(σ) ≥ c

∫ 1

β

dt

t
= c log

1

β
.

Thus by Schwarz’s lemma

ρ > c log
1

β
,

or

β < exp(r/c).

This contradicts the definition of β = exp(r/c), and hence R ≥ β. Thus f(D) contains

∂Dt for some t ≥ β. �

There is a beautiful estimate of Weitsman [141] that says for any hyperbolic

domain W ,

min{ρD(z) : z ∈ D, |z| = r} ≥ ρD∗(r),

where D∗ is the circular symmetrization of D (if {|z| = t} ⊂ D, then it is also in

D∗, otherwise −t 6∈ D∗ ∩ {|z| = t} and D∗ ∩ {|z| = t} is an open arc centered at t

whose total length equals that of D ∩ {|z| = t}.) In the proof of Bohr’s lemma, this

allows us to estimate the hyperbolic density in U by comparing it to the density for
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C \ [−R,−∞) and using Koebe’s theorem gives the estimate

ρU(w, f(0)) ≥
1

4
log(1 +

w

R
),

which leads to R ≥ q(e4ρ− 1)−1. Taking r = 1/2 gives ρ = 1
2
log 3 and s = (e4ρ− 1 =

(elog 9 − 1)−1 = 1/8. For this particular application, the symmetrized domain D∗ is

simply connected, and in this case the necessary estimate had been proven earlier by

Hayman [63]. See also [69]

Next we record a result that will be used later in the book when we discuss fast

escaping points (see Theorem 6.8.4).

Lemma 1.5.7 (Schottky’s Lemma). Suppose f is a holomorphic function on a

hyperbolic domain Ω and that f omits the values 0, 1. If K ⊂ Ω is compact, then

there is are constants B,C, depending only on K, so that

max
K

|f(z)| ≤ B(1 + min
K

|f(z)|)C .

Proof. f is a holomorphic map from Ω to C∗∗ = C \ {0, 1} and hence is a

contraction of the hyperbolic metrics. SinceK ⊂ Ω is compact, it has finite hyperbolic

diameter in Ω and hence f(K) has finite hyperbolic diameter d in C∗∗. We may also

assume f(K) is connected (if not, replace it by a covering hyperbolic ball of at most

twice the diameter).

Let r0 = 1, r1 = 2 and, in general, rn = (rn−1)
2 = 22

n

. By Corollary 1.5.4 the

hyperbolic distance between these circles is at least
∫ 22

n+1

22
n

dr

r log r
≥ log log 22

n+1 − log log 22
n

= log 2.

Thus the circles are a uniformly positive hyperbolic distance apart in C∗∗ and hence

f(K) hits at most a bounded number of them and hence is trapped between rk and

rk+M some k (depending on f) and some M (depending only on d). This proves the

result with B = 2 = C = 2M+1. �

1.6. Maximum modulus

If f is entire we define

m(r, f) = min{|f(z)| : |z| = r},

M(r, f) = max{|f(z)| : |z| = r}.
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The iterates of M are defined iteratively as

Mn(r, f) =M(Mn−1(r, f), f),

where M1(r, f) =M(r, f). Note that

M(r, fn) ≤Mn(r, f),

and strict inequality is possible, but we shall see later (Theorem 6.5.2) that the two

quantities are always close in a certain sense. Also note that if |z| ≤ Mn(r, f) then

|fk(z)| ≤Mn+k(r, f). The most important properties of M(r, f) are described in the

following results.

Lemma 1.6.1. For r > 0, M(r, f) is an increasing, convex function of log r.

Proof. ClearlyM(r, f) increases with r by the maximum principle. Since g(z) =

f(ez) is entire, log |g(z)| is subharmonic on the plane. Hence

M(ex, f) = sup{log |g(x+ iy))| : y ∈ R},

is a subharmonic function of x alone and hence convex (a supremum of subharmonic

functions is subharmonic). �

As a consequence of convexity we see that

logM(r, f)− logM(1, f)

log r

increases with r ≥ 0 and hence has a limit in [0,∞] as r → ∞. If f is a polynomial

of degree d then it is easy to check the limit is d. Conversely, if the limit is ≤ d, then

for r = |z| large we have

logM(r, f) ≤ logM(1, f) + d log r,

or

|f(z)| ≤M(1, f)|z|d,
which implies f is a polynomial of degree ≤ d by a well known argument (use the

Cauchy estimates to show all derivatives of order > d vanish at the origin). Thus

Lemma 1.6.2. If f is a transcendental entire function,

lim
r→∞

logM(r, f)

log r
= ∞.
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Lemma 1.6.3. If f is a transcendental entire function and λ > 1, then

lim
r→∞

M(λr, f)

M(r, f)
= ∞.

Proof. Since logM(r, f) is an increasing convex function of log r, log(M(λr, f)−
logM(r, f) is increasing in r if λ > 1 is fixed. If this difference is bounded above by

A <∞ for all r ≥ 0, then setting rn = λn and summing a telescoping series shows

M(rn, f) ≤ (n+ 1)A = (1 +
1

n
)
A

log λ
log rn,

which implies f is a polynomial of degree d ≤ A log λ by Lemma 1.6.2. �

Lemma 1.6.4. If f is a transcendental entire function and λ > 1, then there is

an R > 0 so that for all r ≥ R and all c ≥ 1,

logM(rc, f) ≥ λ(c− 1) logM(r, f).

Proof. Since logM(r, f) is an increasing, convex function of log r it is the inte-

gral of some positive, increasing function, say

logM(r, f) =

∫ log r

−∞
a(t)dt.

Choose R so that a(t) ≥ λ if t ≥ logR. Then if r ≥ R,

logM(rc, f)− logM(r, f) =

∫ c log r

log r

a(t)dt ≥ λ(c− 1) log r.

�

EXERCISE: For any increasing function φ : [0,∞) → [0,∞) there is an entire

function f so thatM(r, f) > φ(r) for all sufficiently large r. (Hint: apply Arakelian’s

theorem (Theorem A.5.4) to φ on [0,∞).)

EXERCISE: [Polya’s lemma [106]] Suppose g, h are entire and define an entire

function f = g ◦ h. Then

M(r, f) ≥M(β(
1

2
)M(

1

2
r, h), g),

where β is the constant from Bohr’s lemma.

EXERCISE: Use Polya’s lemma to prove: if g and h are entire functions such

that f = g ◦ h has finite order then either

(1) h is polynomial and g has finite order, or

(2) h transcendental of finite order and g is zero order.
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1.7. The escaping set is non-empty

If f is holomorphic on C, we define the escaping set as

I(f) = {z : fn(z) → ∞}.

Our first ‘dynamical” result is to show this set is non-empty. This important result

is due to Eremenko [47], but here we give a later proof by Dominguez [42] that uses

Bohr’s lemma. (Dominguez’s proof applies to meromorphic functions with finitely

many poles, but we only apply in the case of entire functions.) Eremenko’s proof uses

delicate estimates of Wiman and Valiron about the behavior of an entire function f

near a point where |f(z)| = M(|z|, f), and we will give his proof in Chapter 6 when

we study the rate of escape of iterates of f .

Theorem 1.7.1. If f is a transcendental entire function then I(f) 6= ∅. In fact,

I(f) intersects every circle {|z| = r} for all sufficiently large r.

Proof. Let β = β(1
2
) be the constant from Bohr’s lemma (Lemma 1.5.6). Choose

r so large that M(1
2
s, f) ≥ 2

β
s for s ≥ r. It then follows from Bohr’s lemma (Lemma

1.5.6) that f(Dr) contains a circle ∂Ds for some

s ≥ 1

8
M(

1

2
r, f) ≥ 2r.

Let γ1 = ∂Dr. Let γ2 be the boundary of the unbounded component of C\f(Dr).

We call this the outer boundary of f(Dr). It is a subset of f(∂Dr), soK2 = f−1(γ2)∩γ1
is a non-empty, compact subset of γ1 and |f | > 2r on K2.

Now repeat the argument with Dr replaced by D2r. Bohr’s lemma and our as-

sumptions imply f(D2r) contains a circle Ds for some

s ≥ βM(
1

2
(2r), f) ≥ β · 2

β
· 2r = 4r.

Since D2r is contained in the region D2 bounded by γ2, f(D2) also contains this

circle. Let γ3 be the boundary of the unbounded component of C \ f(D2) and let

K3 = f−2(γ3) ∩ γ1. Thus K3 ⊂ K2 ⊂ γ1 and |f 2| ≥ 4r on K3.

In general, suppose γn bounds a regionDn that contains D2n−1r. By Bohr’s lemma,

f(D2n−1r) contains a circle of radius s ≥ 21r and hence the same is true of the larger

region f(Dn). Thus the outer boundary γn+1 of f(Dn) bounds a region Dn+1 that
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contains the disk D2nr. Thus f−1(γn+1) ∩ γn is a non-empty, compact subset of γn

and |f | > 2n on this subset. Let Kn+1 ⊂ Kn be the fn-preimage of γn+1 in γ1.

Continuing in this way we build a sequence of nested sets γ1 ⊃ K2 ⊃ K3 ⊃ . . .

so that |fn| ≥ 2n−1 on Kn. Clearly ∩nKn is non-empty and contained in I(f). �

Later we will want to use a variation of this argument to show that the Julia set

of a transcendental entire function always contains an escaping point (see Theorem

2.6.10). The lower bound on the rate of escape we have given is rather slow. Ere-

menko’s proof, based on Wiman-Valiron theory, constructs points that escape as fast

as possible, essentially as fast as Mn(R, f) for some R. In particular, it shows show

that every transcendental entire function has points whose iterates satisfy

lim inf
n→∞

1

n
log log |fn(z)| = ∞.

Thus |fn(z)| is eventually larger than exp(exp(Cn)) for any finite C See Lemma 6.8.1.

The fact that I(f) hits {|z| = r} for all sufficiently large r implies that I(f)

always has Hausdorff dimension ≥ 1; proving that this is also true for Julia sets is

one of the main goals of the next chapter. This fact also suggests that

• I(f) may contain unbounded connected components (known true, Theorem 6.7.12),

• I(f) contains paths to ∞ (known false, Theorem 9.3.1), or

• every connected component of I(f) is unbounded.

The latter is still open and known as Eremenko’s question; a great deal of research

effort has been focused on answering his question and we will return to it several

times in these notes.



CHAPTER 2

Normal families

Normal families refer to pre-compact families of holomorphic functions and thus

many arguments using normal families are essentially compactness arguments. Such

techniques are ubiquitous in conformal dynamics, indeed, the standard definitions of

the Fatou and Julia sets are simply the sets where the sequence of iterates either

form a normal family or do not.

We start with a review of the basic definitions and properties of normal families

and introduce the idea of a conformally invariant normal family. These can be char-

acterized by certain boundedness conditions on the derivatives of members of the

family. We shall also discuss Zalcman’s lemma, a remarkable result that turns the

failure of normality into a very useful property: we can always extract a sequence

from a non-normal family that, after normalization, converges to limiting function

with certain nice properties.

We then turn to the definitions and basic properties of the Fatou and Julia sets,

showing, for example, that the Julia set is the boundary of the escaping set and that

it is the closure of the pre-periodic points that it contains (in the next chapter we will

show that it is the closure of the repelling fixed points). We then discuss multiply

connected Fatou components and prove Baker’s theorem that any such component

must be bounded and must be wandering (all of its iterates are disjoint); we also

give examples to show that this can actually occur. This fact is one of the main

distinctions between the dynamics of polynomials and the dynamics of transcendental

entire functions.

2.1. Zalcman’s lemma

A family F of functions from one metric space (X, d) to another (Y, ρ) is called

equicontinuous if for each ǫ > there is a δ > 0 so that d(x, y) < δ ⇒ ρ(f(x)−f(y)) <
ǫ for every f ∈ F . This is the same as the definition of continuity at a point, except

27
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that δ can be chosen independent of the point and of the function f . and it consists of

all transcendental entire functions have have a bounded singular set (defined below).

Such functions have nice behavior when |f | is large; in particular, they have a strong

expansion property near infinity that is extremely useful. For example, we shall use

this expansion property to show that the Julia set of an Eremenko-Lyubich function

is the closure of the escaping set; for general entire functions the Julia set is the

boundary of the escaping set (). A family F of meromorphic functions on a planar

domain Ω is a normal family if every sequence in F contains a subsequence that

converges uniformly on every compact set or converges uniformly to ∞ on every

compact set.

Lemma 2.1.1. If a sequence of meromorphic functions converges uniformly on

compact sets in the sense of spherical distance, then the limit is meromorphic or

identically ∞. If a sequence of homomorphic functions converges in the same sense,

then the limit is either holomorphic or identically ∞.

Proof. �

If a sequence of homomorphic functions converges uniformly on compacta to a

holomorphic limit, then the derivatives also converge uniformly on compacta.

EXERCISE: Show that if F is a normal family, F ′ = {f ′ : f ∈ F} need not be

normal. (Hint: consider fn(z) = n(z2 − n).)

Theorem 2.1.2 (Arzela-Ascoli). A family F of continuous functions from a pla-

nar domain Ω to a metric space (X, d) is normal if and only if

(1) F is equicontinuous on every compact E ⊂ Ω.

(2) For any z ∈ Ω, {f(z) : f ∈ F} is pre-compact (lies in a compact subset).

The following is taken from Ahlfors; book [2], but since it plays such a crucial

role in what follows, we repeat the proof here.

Theorem 2.1.3 (Marty’s theorem). A family F of meromorphic functions on a

hyperbolic planar domain Ω is normal iff

sup
f∈F

sup
z∈K

DS
Ef(z) <∞,

for every compact K ⊂ Ω.
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Proof. One direction is easy; if the spherical gradient is bounded at each point

then F is equicontinuous, hence normal. Conversely, suppose F is normal but there is

compact setK, a sequence {zn} ⊂ K and a sequence {fn} ⊂ F such thatDS
Efn(zn) →

∞. By passing to a subsequence if necessary, we may assume fn converges uniformly

to a meromorphic function f on an open disk around z (f ≡ ∞ is allowed).

First assume the limit function f is finite at z. Then f is bounded on some disk

around z and hence f ′ is bounded on a smaller disk by the Cauchy estimate

|f ′(w)| ≤ 1

r
sup

∂D(w,r)

|f(z)− f(w)|.

Since f ′
n → f ′ on this disk, f ′

n is uniformly bounded. Since DS
Ef ≤ |f ′|, the spherical

gradient is uniformly bounded on a neighborhood of z.

On the other hand, if f(z) = ∞, then consider 1/f . Since z → 1/z corresponds to

a rotation of the Riemann sphere by 180 degrees, its spherical gradient is 1 everywhere

and hence

DS
E

1

f
(z) = DS

S

1

z
·DS

Ef(z) = 1 ·DS
Ef(z).

Thus the argument above, applied to 1/f , again shows that the spherical gradient of

{fn} is uniformly bounded on some neighborhood of K.

Since K is compact, it can be covered by a finite number of these neighbor-

hoods where f has bounded spherical gradient, and we deduce that DS
Ef is uniformly

bounded on K. �

The following lemma, due to Zalcman, is extremely helpful. It turns the failure

of normality into a useful property.

Lemma 2.1.4 (Zalcman’s lemma). Suppose Ω is a planar domain and F is a

family of meromorphic functions on Ω. If F is not normal, then there is a sequence

of points {zk} in Ω converging to a point z0 ∈ Ω, a sequence {ρk} ⊂ (0, 1) converging

to 0 and a sequence {fk} ⊂ F so that fk(zk + ρkz) converges uniformly on compact

sets to a meromorphic function f on C. Moreover,

sup
z∈C

DS
Ef(z) ≤ 1 = DS

Ef(0).

Proof. By Marty’s theorem, there is a sequence {fn} ∈ F and {wn} ∈ Ω so

that wn → w0 ∈ Ω and DS
Efn(wn) ր ∞. Without loss of generality, we assume

w0 = 0 and D ⊂ Ω. Since (1 − |z|)DS
Efn(z) is continuous on D and vanishes on its
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boundary, it attains a maximumMn at some point zn ∈ D. Note thatMn → ∞ since

Mn ≥ (1− |wn|)DS
Efn(wn) → ∞ and since wn → 0. Define

ρn =
1

DS
Efn(zn)

=
1− |zn|
Mn

,

and

gn(z) = fn(zn + ρnz).

Note that

DS
Egn(0) = ρnD

S
Efn(zn) = 1.

Also note that 0 < ρn ≤ 1/Mn → 0 and |zn + ρnz| < 1 if |z| < (1 − |zn|)/ρn = Mn.

Thus gn is defined on DMn
, and for z ∈ DMn

,

DS
Egn(z) = ρnD

S
Efn(zn + ρnz)

=
1− |zn|
Mn

DS
Efn(zn + ρnz)

=
1− |zn|

1− |zn + ρnz|
· (l1− |zn + ρnz|)DS

Efn(zn + ρnz)

Mn

≤ q
1− |zn|

1− |zn + ρnz|
· 1

≤ 1− |zn|
1− |zn| − |ρnz|

=
1

1− ρn|z|
1−|zn|

=
1

1− |z/Mn|

≤ 1

1− |z/Mn|
.

This tends to 1 for z fixed and n→ ∞. By Marty’s theorem, {gn} has a subsequence

that converges uniformly on compact subsets of C to a function f with DS
Ef ≤ 1.

Passing to another subsequence, if necessary, we may assume zk converges to some

point z0 ∈ D ⊂ Ω. Since DS
Egn(0) = 1 for all n, DS

Ef(0) = 1, hence f is non constant

and DS
Ef ≤ 1 everywhere on C. �
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2.2. Normal functions

Let A(D) denote the collection of Möbius transformations of the unit disk to

itself (i.e., its conformal automorphisms). A meromorphic function f on D is called

a normal function if the family

F = {f ◦ σ : σ ∈ A(D), },

is a normal family. A family of functions F on D is called a conformally invariant

normal family if

G = {f ◦ σ : f ∈ F , σ ∈ A(D)},
is a normal family.

Theorem 2.2.1. A meromorphic function f is normal on D iff DS
Hf is bounded

on D.

Proof. Let

σ(z) =
z + a

1 + az
.

This is a Möbius transformation of D to itself that maps 0 to a. Then

DS
H(f ◦ σ)(0)

= DS
Hf(σ(0)) ·DH

Hσ(a) ·DH
E Id(0)

= DS
Hf(0) · 1 · 1.

Thus for any compact set K ⊂ D,

sup
σ

sup
a∈K

DS
H(f ◦ σ)(a) = sup

a∈D
DS
Hf(a).

By Marty’s theorem we see that f is a normal function if and only if DH
S f is uniformly

bounded on the disk. �

The following is given by essentially the same argument.

Corollary 2.2.2. F is a conformally invariant normal family on D iff DS
Hf is

uniformly bounded over D and F .

Next we generalize from the disk to more general domains. A function f on

a hyperbolic plane domain is called normal if f ◦ p is normal on the disk, where

p : D → Ω is the covering map. A family of meromorphic functions on Ω is called
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a conformally invariant normal family on Ω if G = {f ◦ p : f ∈ F} is confor-

mally invariant normal family on the disk. The following is immediate from these

definitions.

Corollary 2.2.3. Suppose Ω is a hyperbolic planar domain. Then f is normal

on Ω iff DS
Hf is bounded on Ω. F is a conformally invariant normal family on Ω iff

DS
Hf is uniformly bounded over Ω and F .

Our next goal is to prove a result of Lehto that says normal functions can’t have

essential singularities at isolated boundary points. The proof uses the following fact.

Lemma 2.2.4. If f is holomorphic on D
c

r = {z : |z| > r} and has an essential

singularity at ∞ then Fλ(z) = f(λz)f(z) also has an essential singularity at ∞ for

some λ with |λ| = 1 (in fact, this holds for all but countably many λ on the unit

circle).

Proof. By scaling, we can assume r < 1, say r = 1/2. f has a Laurent series

f(z) =
∑∞

n=−∞ anz
n that converges in D

c

r. This implies |an| = O(r|n|), and this in

turn implies that if bn,k = akan−k, then

|bn,k| = O(r|k|).(14)

Thus the Laurent series for F satisfies (n = m+ k),

F (z) = f(λz)f(z)

= (
∞∑

k=−∞
ak(λz)

k)(
∞∑

m=−∞
amz

m)

=
∞∑

n=−∞
(

∞∑

k=−∞
akan−kλ

k)zn

=
∞∑

n=−∞
An(λ)z

n

and An(λ) is a holomorphic function of λ on some neighborhood of {|λ| = 1} (since

(14) implies that for each n, the {bn,k}∞k=−∞ define a Laurent series that converges in

r < |λ| < 1/r).

Fix some k so that ak 6= 0. If an−k 6= 0 as well, then akan−k 6= 0. By assumption,

F has an essential singularity at ∞, so an−k is non-zero for arbitrarily large positive
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n, hence the Laurent series for An has some non-zero coefficients for arbitrarily large

n. For such n’s, An(λ) is not the constant zero function, and hence vanishes at

most finitely often on the circle {|λ| = 1}. Thus, except for a countable set of λ’s,

An(λ) 6= 0 for an infinite set of positive n’s. For these λ, Fλ(z) has an essential

singularity at ∞. �

Lemma 2.2.5 (Lehto [86]). If f is meromorphic in D
c

r and has an essential sin-

gularity at ∞, then

lim sup
|z|→∞

|z| ·DS
Ef(z) ≥ 1/2.

Proof. Recall that points w, z are antipodal on Ĉ iff zw = −1. For any |λ| = 1,

F (z) = f(λz)f(z) = (
∞∑

n=−∞
an(λz)

n)(
∞∑

n=−∞
anz

n)

is meromorphic in D
c

r, and for some choice of λ, F has an essential singularity at ∞
by Lemma 2.2.4.

If F (z) = −1 let r = |z| and note that f maps z, λz ∈ ∂Dr to antipodal points on

Ĉ. Hence γ = f(∂Dr) has spherical length at least π. This means that DS
Ef ≥ 1/2r

somewhere on ∂Dr. Similarly, if |F (z) + 1| < ǫ, then we can deduce DS
Ef ≥ 1

(2+δ)r

somewhere on ∂Dr, for some δ that tends to zero with ǫ.

To finish the proof, note that either there is a sequence zn → ∞ so that F (zn) →
−1 or there is not. If there is, then the argument above shows |z| ·DS

Ef → 1
2
along

some sequence tending to ∞. If not, then 1/(1+F ) is bounded in a neighborhood of

∞, which implies it has a removable singularity there and hence F is meromorphic

at ∞, which is a contradiction. �

This immediately gives its contrapositive:

Corollary 2.2.6. If f is meromorphic in D∗
r and

lim sup
|z|→∞

|z| ·DS
Ef(z) < 1/2,

then f is meromorphic at ∞.

Theorem 2.2.7. Suppose f is a normal function on a hyperbolic planar domain

Ω. Then f has a meromorphic extension to any isolated boundary point of Ω.
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Proof. Without loss of generality, we may assume the boundary point is ∞.

Since f is normal

DS
Ef(z) = DH

E Id(z) ·DS
Hf(z)

= O(
1

|z| log |z|) ·O(1)

= o(
1

|z|),

so by Corollary 2.2.6, f has a meromorphic extension at ∞. �

2.3. Picard’s theorems

The following could have been proven in the previous chapter as a corollary of

Theorem 1.2.6.

Theorem 2.3.1 (Picard’s little theorem). If f is a non-constant entire function,

then E = C \ f(C) contains at most one point.

Proof. If E contains two points {a, b}, then using the covering map p : D →
C \ {a, b}, f can be lifted to a holomorphic map f : C → D. By Liouville’s theorem,

the lift is constant and hence so must f . �

Theorem 2.3.2 (Montel’s theorem). If F is a family of holomorphic functions

on a planar domain Ω all taking values in W = C \ {a, b} for some a 6= b, then F is

a normal family.

We offer three proofs of this fundamental result.

First proof. C∗∗ = C \ {0, 1} is covered by a map p from the unit disk, so

each map f : Ω → C∗∗ can be lifted to a map F : Ω → D. The family of lifted

maps is normal by the first version of Montel’s theorem. Thus any sequence {fn}
in F can be lifted to a sequence {Fn} that has a convergent subsequence {Fnk

} and

{fnk
} = {p ◦ Fnk

} is convergent in the original family. �

Second proof. If not, then by Zalcman’s lemma we can form a sequence

gn(z) = fn(ρn + zn)

so that fn ∈ F , ρn ց 0 and zn → z ∈ Ω and gn converges uniformly on compact sets

to a non-constant entire function g. If g ever took the value a, then so would fn for
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n sufficiently large (apply Rouche’s theorem to a small disk around some g-preimage

of a). Thus g omits a, b and is constant, a contradiction. �

Third proof. Use the covering map p : D → W to lift the family F to a family

G of holomorphic functions mapping Ω into D. Then

DS
Ef(z) = DS

Hf(z) = DH
H f̃(z)D

H
Hp(z)D

S
HId(z)D

H
E Id(z) ≤ 1 · 1 ·O(1) ·DH

E Id(z),

where the first three bounds hold by the Schwarz lemma, the definition of the hyper-

bolic metric on Ω, and because the spherical distance between points in W is smaller

that a fixed constant times the hyperbolic distance (the constant depends on a, b).

The final term, DH
E Id is bounded on compact sets of Ω, so this implies DS

Ef is locally

bounded, which implies the normality of F by Marty’s theorem. �

Thus omitting two values has two consequences: it implies normality when ap-

plied to functions on a hyperbolic domain and it implies constancy when applied to

functions on C. This is a common phenomenon and Bloch’s principle says that a

property P implies one of these conclusions iff it implies the other. This is not always

true, but it does hold for a number of interesting cases and can be made into a precise

mathematical statement. See Bergweiler’s paper [16].

Theorem 2.3.3 (Picard’s great theorem). If f is meromorphic on AR = {R <

|z| <∞} and has an essential singularity at ∞, then for every r ≥ R, E = C\f(Ar)
contains at most one point.

Proof. Suppose for r sufficiently large, f(D
c

r) omits two points. Then f is a

normal function on D
c

r and hence has a meromorphic extension to ∞ by Lemma

2.2.7, a contradiction. �

Omitted points are values which have no preimages under f . In the next chapter

we will generalize Picard’s theorem by considering points that have only a finite

number of preimages. See Theorem 3.2.1.

2.4. The Julia and Fatou sets

The Fatou set, F(f), of an entire function f is the union of open disks on which

{fn} forms an open family. It is also clear that f(F(f)) ⊂ F(f) (forward invariance),

but equality need not hold if f has an omitted value. For example, 1
10
ez has a Fatou
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component that contains 0, but 0 6∈ f(F(f)). It turns out that if U is a Fatou

component that is mapped into a component V then V \ U can have at most one

point (see Theorem 5.6.3) and U = V if U is bounded (see Lemma 2.6.2). Similarly,

f−1(F(f)) ⊂ F(f) (backwards invariance. A set that is both forward and backwards

invariant is called totally invariant.

Lemma 2.4.1. For any n ≥ 1, F(f) = F(fn).

Proof. Since {fnk}∞k=1 is a subset of {fk}∞k=1 the first collection is normal wher-

ever the second one is. Thus F(f) ⊂ F(fn). On the other hand, any iterate can be

written as fk = fnj+r where 0 ≤ r < n, so if K is a compact disk in F(f), then

DS
Ef

k(z) = DE
Ef

r(z) ·DS
Ef

k(f r(z)) ≤ sup
z∈K

DE
Ef

r(z) · sup
w∈fr(K)

DS
Ef

k(w).

Since f r(K) is a compact subset of F(f), Marty’s theorem (Theorem 2.1.3) proves

that {fk}k is normal wherever {fnk}k is, showing Thus F(f) ⊃ F(fn). �

The complement J (f) = C \ F(f) is called the Julia set of f and is clearly a

closed, totally invariant set and satisfies J (f) = J (fn) for every n ∈ N.

Our next goal is to prove that J (f) is non-empty by proving that J (f) = ∂I(f).

We already know that I(f) 6= ∅ (Theorem 1.7.1) but we still must prove I(f) 6= C.

We will do this by proving that f must have pre-periodic points (which obviously

can’t escape). We start with:

Lemma 2.4.2 (Rosenbloom, 1952). If g is entire and h(z) = (g(g(z))−z)/(g(z)−
z) is constant then g is constant or linear.

Proof. If h ≡ 0, then g(g((z)) = z implying g is 1-to-1, hence linear. If h ≡ 1,

then g ◦ g = g so g is constant or g(z) = z. So assume h is a constant c 6= 0, 1, i.e,

g2(z)− z = c(g(z)− z),

and differentiate to get

g′(g(z))g′(z)− 1 = c(g′(z)− 1),

or

g′(z)(g′(g(z))− c) = 1− c.
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Since c 6= 1, the left side is never zero, hence both factors are never zero. Thus g′

omits 0. It also omits c, for if g covers the whole plane this is obvious; if g′ = c only

at the single possible omitted value of g, then g′ takes the values 0, c only finitely

often; by the great Picard theorem g′ is a polynomial omitting 0, hence constant.

Thus g is linear. �

EXERCISE: Show that if h is rational, then g must be rational too.

A periodic point z for f is a point such that fn(z) = z for some n ≥ 1. A

point is pre-periodic if some iterate of it is periodic. Note that periodic points are

automatically pre-periodic; we will use the term strictly pre-periodic to mean a

pre-periodic point that is not itself periodic.

Theorem 2.4.3. If g is entire and not constant or linear then it has at least two

pre-periodic points.

Proof. Consider the function

h(z) = (g(g(z))− z)/(g(z)− z),

as in Lemma 2.4.2. Our assumption implies that h is a non-constant meromorphic

function. If h(z) = ∞ then g(z) = z, so every such point is a fixed point of g. If

h(z) = 0 then g2(z) = z so every such point is periodic or period 2. If h(z) = 1, then

g2(z) = g(z) so g(z) is a fixed point of g and hence z is pre-periodic.

If h is a rational of degree d ≥ 1, then each of {0, 1} has at least one preimage and

hence g has at least two pre-periodic points. Otherwise h has an essential singularity

at ∞ and then Picard’s great theorem says that it takes on at least one of the values

{0, 1,∞} infinitely often. Hence g has infinitely many pre-periodic points. �

Corollary 2.4.4. If g is entire and not constant or linear, then C \ I(g) (the

non-escaping set) contains at least two points. If g is transcendental, it contains

infinitely many points.

Proof. The first part was proven above. If f is transcendental, then by the great

Picard theorem, one of the two pre-periodic points has infinitely many preimages

(which are obviously not escaping). �

Theorem 2.4.5. If f is entire, J (f) = ∂I(f) 6= ∅.
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Proof. We will show that J (f) ⊂ I(f), int(I(f)g∩J (f) = ∅ and ∂I(f) ⊂ J (f).

Together, these imply J (f) = ∂I(f).

First, suppose z ∈ J (f) and V is a neighborhood of z. Then {fn} is not normal

on V , so takes every complex value except possibly one (Theorem 2.3.2). For any

w ∈ I(f) we have f(w) 6= w (since fixed points don’t escape), so fn(V ) eventually

contains either w or f(w). Hence V contains escaping points. Thus the Julia set is

contained in the closure of the escaping set.

Second, if D is a disk in I(f), then fn(D) never hits a non-escaping point. We

know that there are at least two pre-periodic points, so {fn} is normal on D, hence

D ⊂ F(f). Thus the Julia set is disjoint from the interior of I(f).

Finally, if D ⊂ F(f) is a disk that contains an escaping point, then the whole

disk escapes by normality. Hence boundary points of I(f) can’t lie in the Fatou set

and so must be in the Julia set. This completes the proof that J (f) = ∂I(f). Since

both I(f) and its complement are non-empty, it is is easy to see that the boundary

of I(f) is non-empty. �

Some important corollaries of this proof are:

Corollary 2.4.6. If Ω is a Fatou component that contains an escaping point,

then all of Ω escapes.

Corollary 2.4.7. If f is entire and V is any neighborhood of any point z ∈ J (f)

then ∪nfn(V ) covers the whole plane with at most one exception.

Later we will prove another version of this that does not require taking a union;

see Lemma 3.5.2.

Corollary 2.4.8. The Julia set is either nowhere dense or is the whole plane.

Proof. If J (f) contains the open set U it also contains all iterates of U . Since

these cover the plane, except possibly for one point, and since J (f) is closed, we see

that J (f) = C in this case. �

Lemma 2.4.9. The Julia set is contained in the accumulation set of the backwards

orbits ∪nf−n(z), except possibly for one exceptional point z.
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Proof. Take z, V as in Theorem 2.4.7 and suppose w is not the exceptional point.

Then V contains some preimage of w, so J (f) is contained in the accumulation set

of the preimages. �

In general, the Julia set need not be the whole accumulation set of a backwards

orbit. For example, there can be simply connected Fatou components where f is

conjugate to an irrational rotation (Siegel disks) and the accumulation set of a point

in such a component contains a closed curve inside the Fatou component.

Corollary 2.4.10. The Julia set is the minimal set among closed backwards

invariant sets with at least two elements. Thus it is contained in the closure of any

backwards invariant set with at least two elements.

Proof. Suppose A is a closed, completely invariant set and z ∈ A has infinitely

many preimages under f (this choice is possible if A has at least two elements). Then

J (f) is contained in the accumulation set of the backwards orbit of z and that set

is contained in A since A is closed and invariant. Thus J (f) ⊂ A, as claimed. The

final claim follows from the following exercise. �

EXERCISE: the closure of a backwards invariant set is also backwards invariant.

For example, the closure of the escaping set is a closed, completely invariant set,

and hence contains the Julia set (we already knew this since J (f) = ∂I(f). Since

we know that there are at least two pre-periodic points in the Julia set and since

preimages of pre-periodic points are pre-periodic, we get:

Corollary 2.4.11. If f is entire, J (f) is the closure of the pre-periodic points

it contains.

Of course, there can be pre-periodic points in the Fatou set as well, e.g., an

attracting fixed point. A stronger result, that the Julia set is the closure of repelling

fixed points will be proved later, Theorem 3.4.2.

Corollary 2.4.12. The Julia set of a transcendental entire function is un-

bounded.

Proof. We have already proved that I(f) and its complement each contain at

least two points and hence J (g) = ∂I(g) has at least two points. By Picard’s great
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theorem, one of these points has infinitely many preimages converging to ∞, and all

of these are in J (g) since the Julia set is totally invariant. �

2.5. Multiply connected Fatou components escape

Lemma 2.5.1. If Ω is multiply connected Fatou component of an entire function

f , then fn ր ∞ uniformly on compact subsets of Ω.

Proof. Suppose γ is closed curve in Ω. By normality, any subsequence of {fn}
contains a subsequence that converges uniformly, either to ∞ or to a bounded func-

tion. In the latter case, the maximum principle implies it converges uniformly to a

bounded function on the whole interior of γ (i.e., the bounded complementary com-

ponent of γ), and therefore the interior of γ is in the Fatou set. Thus if the Fatou

set contains a curve γ surrounding a point in the Julia set, every subsequence of fn

must converge uniformly to ∞ on γ. Normality then implies it converges to ∞ on

every compact subset of component containing γ. �

Herman rings are a type of multiply connected Fatou component that does not

iterate to ∞, but these can only occur for rational or meromorphic functions; they

do not occur for polynomials or entire functions. There do exist entire functions

that have Fatou components that are topological annuli; this is due to Kisaka and

Shishikura [80].

FIGURE OF HOW A SEQUENCE OF CLOSED CURVES CAN TEND TO

INFINITY

Lemma 2.5.2. If Ω is multiply connected Fatou component of an entire function

f , and γ ⊂ Ω surrounds a point of the Julia set, then fn(γ) has positive index with

respect to 0 for all sufficiently large n.

Proof. Suppose the index is zero for an infinite subsequence of γ, and tends to

∞ uniformly on γ. The minimum principle implies fnk tends to ∞ inside γ. This

contradicts the fact that pre-periodic points are dense in the Julia set, Corollary

2.4.11. �

We will say that curve with this property eventually surrounds every point,

i.e., the iterates of γ under f eventually surround arbitrarily large disks centered at

the origin.
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Lemma 2.5.3. If Ω is multiply connected Fatou component of an entire function

f , and γ ⊂ Ω surrounds a point of the Julia set, then the winding number of fn(γ)

around zero tends to ∞ as n→ ∞

Proof. Lemma 2.5.2 implies that γ eventually has winding number ≥ 1 around

zero and lies outside any disk D(0, r) we choose. Thus the winding number around

any point of D(0, r) will be the same. By Picard’s great theorem (Theorem 2.3.3),

either f = 0 or f = 1 infinitely often in C and hence the number of solutions inD(0, r)

for one of these increases to ∞ with r. If γn does not hit D, then the winding of f

around 0 or 1 is the same. By the argument principle and our previous observation,

at least one of these numbers (hence both) tends to infinity with n. �

Next we want to prove that iterates of Ω contain, not just a curve surrounding

zero, but a “fat” circular annulus surrounding zero. First we need another fact about

the hyperbolic metric.

Lemma 2.5.4. There is a C > 0 and ǫ0 > 0 so that the following holds. Suppose

γ is a closed Jordan curve that has hyperbolic length ǫ < ǫ0 in a planar domain Ω.

Suppose further that 0 6∈ Ω and γ winds at least once around 0. Then

γ ⊂ A = {r < |z| < R} ⊂ Ω,

where R/r ≥ exp(C/ǫ).

Proof. The Jordan curve γ separates the boundary of Ω into two sets E0, E∞

that are on the same side of γ as 0 and ∞ respectively. By dilating and rotating we

may assume 1 ∈ γ, and this is the point of γ farthest from the origin. Note that

γ′ = γ ∩D(1, 1/2) has Euclidean length at least 1. Choose z0 ∈ E0 so that |z0| = r

is maximized and and z∞ ∈ E∞ so that |z∞| = R is minimized. Since z0 is inside γ,

r < 1.

Let ǫ0 be the shortest possible hyperbolic length of γ in C\{z0, z∞} for any z0 ∈ D

for any z∞ 6= z0 with |z∞| ≤ 2. This is strictly positive since the length blows up as

|z0| → 1 or min(|z∞|, |z0 − z∞|) → 0.

Thus we may assume R > 2, in which case ρ(γ) & 1/ logR. Hence R/r ≥ R ≥
exp(c/ǫ). �
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Lemma 2.5.5 (Zheng [143]). If Ω is multiply connected Fatou component of an

entire function f , then for large n, fn(Ω) contains an annulus A = {rn < |z| < Rn}
with Rn/rn → ∞.

Proof. Suppose γ ⊂ Ω surrounds a point of the Julia set and has hyperbolic

length L <∞ in Ω. Without loss of generality γ is a closed hyperbolic geodesic and

hence is smooth and does not self-intersect. i By our previous results we can choose

n large so that fn(Ω) surrounds 0, and γn = fn(γ) winds around zero N times, where

N is as large as we wish.

We claim γn can be written as a union of N piecewise smooth curves, each of

which winds once around zero. To see this, consider C \ γn. The boundary of

the unbounded component is one such curve. Removing this curve gives a larger

unbounded components whose boundary is the next curve, and so on. This can be

repeated N times since the winding number around a point only goes down by one

each time we cross γn (except at the finitely many self-intersections).

By the Schwarz lemma the total hyperbolic length of γn is ≤ L, so one of the

sub-curves, call it σ, has hyperbolic length ≤ L/N . The lemma then follows from

Lemma 2.5.4. �

This result has been considerable strengthened by Bergweiler, Rippon and Stallard

[18]. They show that fn(Ω) contains an annulus {rn < |z| < Rn} with

lim inf
n→∞

logRn

log rn
> 1,

(but ratios close to 1 are possible) and provide detailed information about the dynam-

ics inside the Fatou component. Some of their results will be considered in greater

detail in Section ??.

Lemma 2.5.6. The Julia set has no isolated points.

Proof. Suppose D = D(z, ǫ) is a disk such that D ∩J (f) = {z}. Then Lemma

2.5.2 implies that fn(∂D) eventually surrounds every point, and hence surrounds

at least two points of the Julia set. At most one can have n-th preimage equal to

z, so the nth-preimage of the other is a distinct point of J (f) ∩ D, contrary to

assumption. �
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A closed set is called perfect if it has no isolated points. It is a well known fact

from analysis that any perfect set with more than one point is uncountable, in fact,

it is locally uncountable; this means that any neighborhood of a point in the set

contains uncountably many points of the set.

Corollary 2.5.7. If f is entire and not linear or constant, then the Julia set is

locally uncountable.

A closed set K is called uniformly perfect if there is a finite constant C so that

for every r ∈ (0, diam(K)) and every x ∈ K there is y ∈ K such that

1

C
≤ |x− y|

r
≤ C.

Connected sets are uniformly perfect with C = 1. It turns out that a Julia set of a

transcendental entire functions a is either connected (and hence uniformly connected

with C = 1) or it fails to be uniformly connected with any constant. This happens

because if the Julia set is not connected, then there is a multiply connected Fatou

component and we shall see later that the iterates of this component contain round

annuli with arbitrarily large moduli (Theorem 2.5.5), and this contradicts the uniform

perfectness condition. These remarks prove:

Corollary 2.5.8. The Julia set of a transcendental entire function is uniformly

perfect if and only if it is connected.

All Julia sets of polynomials are uniformly perfect and hence this is another

difference between the polynomial and transcendental cases.

2.6. Multiply connected components are bounded

In this section we prove Noel Baker’s result that any multiply connected Fatou

component must be bounded and a number of interesting consequences, such as the

fact that the Julia set of a transcendental entire function must contain a non-trivial

continuum. We start by showing that there can be at most one unbounded, multiply

connected component.

Lemma 2.6.1 (Töpfer). If the Fatou set of a transcendental entire function has

an unbounded component, then all other components are simply connected.
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Proof. Suppose W is the unbounded component and Ω is some multiply con-

nected component. Let γn = fn(γ) ⊂ F(f) be the curve given by Lemma 2.5.2

that eventually surrounds every point. Then for large enough n, γn must hit W and

hence is contained in W . We claim this implies Ω = W . If Ω were bounded then

fn(Ω) ⊂ W is bounded and hence there would be a point w ∈ W ∩ ∂fn(Ω); thus

there are points {zk} ⊂ Ω so that fn(zk) → w. If Ω were bounded we could pass

to a subsequence so that zk → z ∈ Ω. If z ∈ ∂Ω ⊂ J (f), then w = fn(z) ∈ J (f),

a contradiction. If z ∈ Ω, then w = fn(z) ∈ fn(Ω), also a contradiction. Hence Ω

can’t be bounded. Thus fn(γ) is eventually in Ω, for the same reasons as above and

hence Ω = W . �

Part of the previous proof will be useful later, so we state it as a lemma:

Lemma 2.6.2. If Ω is a bounded Fatou component of f , then f(Ω) is contained in

a bounded Fatou component and equals the whole component. The map is a branched

covering.

In fact, if U, V are Fatou components of f so that f(U) ⊂ V , then V \ U can

contain at most one point. This is due to M. Herring and independently Bergweiler

and Rohde. See Theorem 5.6.3.

Theorem 2.6.3 (Baker []). If f is a transcendental entire function, then every

multiply connected component of the Fatou set is bounded.

Proof. Suppose not, i.e., suppose Ω is an unbounded multiply connected Fatou

component and let γ ⊂ Ω is a closed curve surrounding a point of the Julia set. Then

by Lemma 2.5.2 the iterates of γn = fn(γ) hit Ω (and hence are contained in Ω for

all large enough n. Thus Ω is forwards invariant.

Choose a compact, connected set K ⊂ Ω that contains both γ and f(γ) and

choose a domain V so that K ⊂ V ⊂ V ⊂ Ω. Since |fn| → ∞ uniformly on V ,

log |fn| is a sequence of well defined, positive harmonic functions on V and so by

Harnack’s inequality there is a constant C = C(K) so that

log |fn(w)| ≤ C log |fn(z)|,
for all z, w ∈ K, independent of n. Thus

|fn(w)| ≤ |fn(z)|C .
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Since γn−1 ∪ γn ⊃ fn−1(K), we have

sup
γn

|f(z)| ≤ inf
γn−1

|f(z)|C = inf
γn

|z|C .

In particular, |f(z)| ≤ |z|C for every z ∈ γn. Since the curves {γn} eventually

surround every point and from this we can easily deduce f is a polynomial. This

contradiction proves the theorem. �

Corollary 2.6.4. If f is a transcendental entire function then every multiply

connected component of the Fatou set is a wandering domain.

Proof. We already know that multiply connected components are bounded and

iterate to infinity uniformly on compact sets, so they can’t be periodic. If they were

pre-periodic they would have to land on a periodic domain that iterates to infinity,

i.e., a Baker domain. However such a domain is unbounded, whereas f(U) must

be bounded, contradicting Lemma 2.6.2. Thus there are no pre-periodic, multiply

connected Fatou components. �

Corollary 2.6.5. If the Fatou set of a transcendental entire function has an

unbounded component, then all components are simply connected.

Proof. Clear from Lemma 2.6.1 and Theorem 2.6.3. �

Corollary 2.6.6. The Julia set of a transcendental entire function contains a

non-trivial continuum.

Proof. If the Julia set is connected, this is obvious since the Julia set contains at

least two points. If the Julia set is not connected, there is a multiply connected Fatou

component. By Baker’s theorem it is bounded and so the boundary of its unbounded

complementary component is a non-trivial continuum in the Julia set. �

Although we have not discussed Hausdorff dimension in detail yet, let us note

that every non-trivial connected set has Hausdorff dimension ≥ 1 and hence:

Corollary 2.6.7. The Julia set of a transcendental entire function has Hausdorff

dimension at least 1.

In fact, many examples of transcendental Julia sets have Hausdorff dimension 2

(e.g., [95]), but it is somewhat harder to construct examples with dimensions between
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1 and 2 [130], [132]. Constructing an example with dimension equal giving to 1 was

only accomplished recently. Some of these examples will be discussed later in the

book (see Chapter ??.

We can say slightly more than Corollary 2.6.7. Since there are no unbounded

multiply connected components, J (f) either contains an unbounded continuum or

contains a sequence of continua with diameters growing to ∞. In either case the

1-dimensional Hausdorff measure of J (f) is infinite. On the other hand, examples

exist where the 1-dimensional measure of any bounded subset of J (f) is finite [27].

Corollary 2.6.8. If f is a transcendental entire function that is bounded along a

curve σ tending to ∞, then all Fatou components are simply connected. In particular,

this happens if f has a finite asymptotic value.

Proof. If U is a multiply connected component, then by Lemma 2.5.2, it contains

a curve γ whose iterates fn(γ) intersect σ for all sufficiently large n. This contradicts

the assumption that f is bounded on σ since f(fn(U)∩σ) ⊂ fn+1(U) is as far from the

origin as we wish. Thus f can’t have any multiply connected Fatou components. �

Corollary 2.6.9. If f is transcendental, any completely invariant Fatou com-

ponent is simply connected.

Proof. A completely invariant Fatou component Ω must be unbounded (since

by Picard’s great theorem f−1(Ω) contains unbounded sets) and hence is simply

connected by Baker’s theorem (Theorem 2.6.3). �

Theorem 2.6.10. If f is a transcendental entire function then J (f) ∩ I(f) 6= ∅.

Proof. There are two cases depending on whether there are multiply connected

Fatou components or not.

If there is a multiply connected component Ω, then by Lemma 2.5.2 there is a

closed curve γ in Ω that eventually surrounds every point in the plane. Since Ω

wanders and iterates to ∞, Ωm = fm(Ω) is eventually outside γn = fn(γ) and hence

∂Ωm is outside γn. Thus ∂Ω consists of escaping points in the Julia set.

If there are no multiply connected Fatou components, then the Julia set contains

an unbounded continuum. So if we consider the curves γn constructed in the proof of

Theorem 1.7.1, we see that each of them must hit J = J (f) (if r is chosen sufficiently
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large). Thus Jn = f−n(J ∩γn)∩γ1 is a non-empty compact subset of γ and Jn+1 ⊂ Jn

since f−1(J ∩ γn+1) ⊂ J ∩ γn. Thus ∩nJn is non-empty and contains only escaping

points of the Julia set. �

Theorem 2.6.11 (Eremenko, []). The closure of the escaping set has no bounded

components.

Proof. Since J (f) ⊂ I(f), if there is a bounded component of I(f), it is sur-

rounded by a curve in a non-escaping component of the Fatou set. But this component

is then multiply connected component, hence it does escape. �

Eremenko conjectured that all the components of I(f) are unbounded. This is

still open, but the so called “Strong Eremenko Conjecture” that all path components

of I(f) are unbounded has been disproven by Rottenfusser, Rückert, Rempe and

Schleicher; see Theorem 9.3.1. Partial progress towards Eremenko’s conjecture has

been given by Rippon and Stallard who showed that I(f) always contains at least

one unbounded component. See Theorem 6.7.12.

Corollary 2.6.12. If Ω is a multiply connected Fatou component of f , then

f(Ω) is contained in a bounded Fatou component and equals the whole component.

The map is a branched covering.

Proof. Clear from Lemma 2.6.2 and Theorem 2.6.3. �

In particular, the connectivity of V and f(U) are the same. For a multiply

connected Fatou component U , how do the connectivities of {fn(U} behave?

Theorem 2.6.13 (Kisaka-Shishikura). For a bounded wandering domain Ω of

a transcendental function f , the connectivity of Ωn = fn(Ω) is non-increasing and

eventually either 1, 2 or ∞. If it is eventually 1, then Ω is itself simply connected. If

the eventual connectivity is 2 then f : Ωn → Ωn+1 is a covering of annuli for all large

enough n.

Proof. Since Ω is bounded, f : Ω → f(Ω) is a finitely branched covering map.

Thus if Ω is simply connected, any closed curve in f(Ω) pulls back to a closed curve

in Ω, hence is deformable to point in Ω. The image of this deformation under f shows

that f(Ω) is also simply connected.
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If f(Ω) is finitely connected, then so is any finite branched covering. Thus if Ω is

infinitely connected, so is f(Ω).

Finally, assume Ω and f(Ω) have finite connectivity, both ≥ 2. Let c(Ω), c(f(Ω))

be the connectivities of Ω and f(Ω), d the degree of f as a map from Ω to f(Ω) and

N the number of critical points of f in Ω, counted according to multiplicity. By the

Riemann-Hurwitz theorem

c(Ω)− 2 = d(c(f(Ω)− 2)−N.

Since d ≥ 1 and N ≥ 0, we see that c(Ω) ≥ c(f(Ω)), hence c(fn(Ω)) is eventually

constant. Suppose p is this eventual value. If p > 2, then we must eventually have

d = 1 and N = 0. By the argument principle, f must also be 1-to-1 on the bounded

complementary components of Ωn and hence on the whole plane (since Ωn eventually

surrounds every point). This is impossible for a transcendental entire function, so

p = 2. We still must have N = 0, but d can be any value d ≥ 1, i.e., f : Ωn → Ωn+1

can be a d-to-1 covering map between annuli. �

Corollary 2.6.14. If U, V are Fatou components, f(U) ⊂ V and U is simply

connected, then V is simply connected too.

Proof. If either U or V is unbounded then V is simply connected by Lemma

2.6.5. If they are both bounded then V is simply connected by Theorem 2.6.13. �

Corollary 2.6.15 (Kisaka and Shishikura). The eventual connectivity of a mul-

tiply connected Fatou component is 2 or ∞.

The argument that eliminated p > 2 as a possibly eventual connectivity shows

that f : Ωn → Ωn+1 cannot have degree 1 infinitely often, since otherwise f would

be injective on the whole plane. Similarly, the degree can’t be bounded by a finite

value d infinitely often, or f would be finite-to-1 on the whole plane and hence a

polynomial.

Thus in the case when Ω is finitely connected, the f : Ωn → Ωn+1 is eventually a

covering map with degree tending to ∞ and hence the modulus of the the topological

annuli Ωn also tends to ∞. A stronger result is:

Theorem 2.6.16 (Bergweiler, Rippon and Stallard [18]). If f is a transcendental

entire function with multiply connected Fatou component U .
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(1) c(Un) = 2 iff ∪∞
m=nUn contains no critical point of f .

(2) 2 < c(Un) <∞ iff ∪∞
m=nUn contains a finite number of critical points.

(3) If c(Un) = ∞ iff ∪∞
m=nUn contains infinitely many critical points.

OPEN PROBLEM: Is there a bounded wandering domain whose iterates are all

uniformly bounded? Such a domain would have to be simply connected and perhaps

could “orbit” around an irrational neutral fixed point (e.g. a Cremer point).

2.7. Some wandering domains

Theorem 2.7.1 (Baker). There exists an entire function with a multiply connected

Fatou component, hence with a wandering domain.

Proof. The function will be

f(z) = z2
∞∏

k=1

(1 +
z

Rk

),

where Rk ր ∞ is a sequence of positive real numbers that we define inductively.

Suppose R0 > 0 is large and S ⊂ N = {1, 2, 3, . . . } (one can take S = N at a first

reading) and set f0(z) = F0(z) = z2.

In general, let

Rn = max
|z|=Rn−1

|fn−1(z)|.

If n ∈ S, let

Fn(z) = (1 +
z

Rn

),

and if z 6∈ S let Fn(z) ≡ 1. Set

fn(z) =
n∏

k=0

Fk(z),

and

f(z) = lim
n→∞

fn(z) = z2
∏

k∈S
(1 +

z

Rk

).

The first step is to check that the product defining f converges and for this we

need to know that Rk ր ∞ fast enough. However, each Fk (and hence each fk) takes
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its maximum modulus on {|z| = r} where this circle intersects the positive real axis,

so

Rn = max
|z|=Rn−1

|fn−1(z)|

≥ Rn−1
2
∏

k∈S,k<n
(1 +

Rn−1

Rk

)

≥ Rn−1
2,

since every term in the product is ≥ 1. Thus Rn ≥ R2n

0 and, more generally, Rn ≥
R2n−k

k for 1 ≤ k ≤ n. From this it easily follows that the product defining f converges

uniformly on compact sets.

Next, for n ∈ N, define the annulus

An = {z : 1
4
Rn ≤ |z| ≤ 4Rn},

and let Bn be the annulus separating An and An+1, i.e.,

Bn = {z : 4Rn < |z| ≤ 1

4
Rn+1}.

We claim that f(Bn) ⊂ Bn+1. If this is true, then the iterates of Bn clearly converge

uniformly to ∞, so that Bn ⊂ F(f). On the other hand, if n ∈ S, then An contains

a zero of f and 0 is a super-attracting fixed point of f . Thus An contains a Fatou

component that does not iterate to ∞ and hence must contain some point of the

Julia set (in fact a continuum of such points). Thus Bn surrounds a point of J (f)

and the Fatou component containing it must be multiply connected.

FIGURE OF ANNULI

Thus we must prove f(Bn) ⊂ Bn+1. The idea is that An is bounded by two circles

and that after applying f these two circles are further apart; enough so that the

region between them contains An+1.

We break the product for f into three pieces

f(z) = (z2
∏

k∈S,k<n
(1 +

z

Rk

)) · Fn(z) · (
∏

k∈S,k>n
(1 +

z

Rk

)) = I(z) · II(z) · III(z)(15)

For z ∈ An, the third term is bounded between

∏

k∈S,k>n
(1 +

−Rn

Rk

)) ≤ III ≤
∏

k∈S,k>n
(1 +

Rn

Rk

))
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Now use the estimate Rk ≥ R2k−n

n for k > n,
∏

k∈S,k>n
(1−Rn

1−2n−k

) ≤ III ≤
∏

k∈S,k>n
(1 +Rn

1−2k−n

)

1−O(R−1
n ) ≤ III ≤ 1 +O(R−1

n )

and this gives
9

10
≤ III ≤ 10

9
,

if R0 is large enough.

The second term in (15) satisfies II = 1 if n 6∈ S, and if n ∈ S, then

|II(z)| ≤ 3, |z| = 2Rn,

|II(z)| ≥ 1

2
, |z| = Rn/2,

and

|II(z)| ≤ 2, |z| = Rn.

Let sn = |S ∩ [1, k]| be the number of elements in S less than or equal to k and

let

Cn =
∏

k∈S,k<n
R−1
k .

Then the first term in (15) satisfies

z2
∏

k∈S,k<n
(1 +

z

Rk

) = z2
∏

k∈S,k<n

z

Rk

(1 +
Rk

z
)

= Cnz
2+sn

∏

k∈S,k<n
(1 +

Rk

z
)

= Cnz
2+sn

∏

k∈S,k<n
(1 +O(

Rk

Rn

)

= Cnz
2+sn(1 +O(Rn

−1/2)).

Thus if R0 is large enough,

I = (1 + o(1))Cnz
2+sn .

Thus we can deduce that

Rn+1 = (1 + o(1))2CnR
2+sn
n

|f(z)| ≤ 2(1 + o(1))2−2−sn <
1

4
Rn+1, |z| = Rn/2,
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|f(z)| ≥ 2(1 + o(1))22+sn > 4Rn+1, |z| = 2Rn.

Thus the two boundaries of Bn both land inside Bn+1, and since, by construction, f

has no zeros in Bn (they all lie in the An’s) the minimum and maximum principles

imply f(Bn) ⊂ Bn+1. �

By taking the set S very sparse, we can make f grow as slowly as we wish, i.e.,

Corollary 2.7.2. For any ϕ(t) that grows faster than any polynomial, there is

an entire function with a wandering domain so that |f(t)| ≤ ϕ(t) for t sufficiently

large.

It is not immediately clear whether the wandering domains constructed above are

finitely or infinitely connected, but it is easy to make a small change which forces

infinite connectivity. With the same inductive definition of {Rn}, place the zeros

slightly outside the circles of radius Rn, i.e.,

f(z) =
∏

k∈S
(1− z

3Rk

).

Everything goes through as above to show that f(Bn) ⊂ Bn+1 and hence f has

multiply connected wandering domains, but now we also can show that for z ∈ γ,

γ = {z : |z + 3Rn| = Rn},
|f(z)| ≥ 4Rn+1,

Hence γ iterates into Bn+1, so is in the Fatou set. Moreover, γ is clearly not homotopic

to {|z| = 4Rn} in the Fatou set since DRn
contains points of the Julia set. Thus the

Fatou component containing Bn always has connectivity at least 3 and hence by

Corollary 2.6.15 has infinite connectivity.

Theorem 2.7.3 (Herman). f(z) = z − 1 + e−z + 2πi has a wandering domain.

Proof. This is due to Michel Herman around 1985 (see [125]). The map N(z) =

z − 1 + e−z is the Newton’s method map for g(z) = ez − 1. The basin of attraction

for z = 0 is invariant under N and the basins for z = 2πin are each translates

of this basin (and are disjoint since they iterate to different points). Note that

N(z + 2πi) = N(z) + 2πi so the Julia and Fatou sets of N are 2πi periodic. Since

f(z) = N(z) + 2πi = N(z + 2πi), if z is a repelling fixed point of N of period k and
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multiplier λ, then fnk(z) = z + 2πink and

DS
Ef

nk(z) ≥ |λ|n
1 + (|z|+ |2πnk|)2 → ∞,

so {fn} is not normal at z by Marty’s theorem. Since the repelling fixed points of

N are dense in J (N) (this will be proved later, Theorem 3.4.2), we deduce J (N) ⊂
J (f). On the other hand, since f preserves the Fatou components of N , it is normal

on these components, hence F(N) ⊂ F(f). Thus equality holds. Thus each basin

for 2πin moves by up by 2πi under f and hence are wandering domains. �

Theorem 2.7.4 (Baker, [7]). f(z) = z+sin z+2π has a bounded, simply connected

wandering domain.

Proof. For g(z) = z+sin z, all points (2n+1)π are super-attracting fixed points,

hence in different Fatou components. Since g(z + 2π) = g(z) + 2π, the Julia set is

2π-periodic and arguing as in the previous proof, J (f) = J (g). Thus f maps the

g-basin for (2n+1)π to the g-basin for (2n+3)π and so these are wandering domains

for f . All the critical points of g are super-attracting fixed points, so their basins of

attraction are simply connected (otherwise they are in the escaping set, but a fixed

point can’t be).

To see that these components are bounded, note that the imaginary axis is pre-

served by g, as are its translates by 2πZ and that all points on these lines iterate to

∞, except for those on the real line. Thus these vertical lines cannot be in the basins

of attraction of {(2n+ 1)π}, so these basins are separated by these lines.

We claim these basins are bounded. Suppose Ωn is the basin of attraction of

(2n + 1)π. We know it is trapped between the vertical lines L0 = {x = 2nπ} and

L1 = {x = (2n + 2)π}. Suppose Ω intersects the horizontal segment S = {2nπ <

x < (2n+2)π, y = π
2
} and let γ be the shortest hyperbolic curve connecting the fixed

point (2n+1)π to S. Suppose the endpoint on S is x+ iy (y = π/2). By the Schwarz

lemma, f(γ) has at most the hyperbolic length of γ. Since y = π/2,

ℑg(x+ iy) = y+ℑ sin(x+ iy) = y+
1

2
(ex sin(y)−e−x sin(−y)) = y+

1

2
(ex+e−x) > y,

so g(γ) connects the fixed point to a point above S. By the Schwarz lemma the

hyperbolic length of g(γ) is less or equal the hyperbolic length of γ. Thus a subset

of g(γ) connects the fixed point to S and has strictly shorter hyperbolic length than
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γ, a contradiction. Thus the attracting basins do not intersect the lines |y| = π/2,

and hence the basins are bounded sets. �



CHAPTER 3

Ahlfors islands and repelling fixed points

One of the most important results of the previous chapter was that a family of

holomorphic functions that omits two values must be normal. In other words, if

there are two complex values whose preimages are empty under every member of

the family, then the family is normal. This result is generalized in this chapter to a

normality criterion that involves the points with preimage sets of finite size. This in

turn gives the famous Ahlfors’ Islands theorem that says (rather imprecisely) that a

family of holomorphic functions that all fail to be coverings maps in a certain way

form a normal family. The power of the result comes from the converse: if the iterates

of f fail to be normal (e.g., consider them in a disk centered on the Julia set), then

at least one of the iterates must be a covering map in a certain way. In particular,

this allows us to show that every disk centered on the Julia contains a connected

component of some preimage of itself, and this implies the disk contains a repelling

fixed point. Thus repelling fixed points are dense in the Julia set.

3.1. Schwarz lemma for functions with multiple zeros

It is a useful curiosity that the hyperbolic gradient of f can be well defined even

if f itself is not well defined. Consider f(z) = z1/2 on D. There is a not a well defined

branch of f on the whole unit dist, but if z 6= 0, and we take a small disk D around z,

then f(z) does have two well defined branches in this disk. If we use either branch to

compute the hyperbolic gradient at z we get the same answer since we take absolute

values in the definition and the branches differ by ±1.

Lemma 3.1.1 (Product Rule). If F,G are multi-valued maps D → D, but |F |, |G|
are single valued, then

DH
HFG(z) ≤ max(DH

HF (z), D
H
HG(z)) ·

|F (z)|+ |G(z)|
1 + |F (z)G(z)|(16)

≤ max(DH
HF (z), D

H
HG(z)).(17)

55
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If both F and G are holomorphic, then

DH
HFG(z) ≤

|F (z)|+ |G(z)|
1 + |F (z)G(z)| = T (|F (z)|,−|G(z)|) < 1.(18)

Proof. We copy the usual proof of the product rule to get

DH
HFG(z) = DH

HF (z) ·
|G(z)|(1− |z|2)
1− |F (z)G(z)|2 +DH

HG(z) ·
|F (z)|(1− |z|2)
1− |F (z)G(z)|2

The first claim follows from the equality

x
1− y2

1− x2y2
+ y

1− x2

1− x2y2
=

x+ y

1 + xy
,

which can be proved by simple algebra. The second claim is then immediate from

Schwarz’s lemma. �

Lemma 3.1.2. If F : D → D is holomorphic and every zero has order at least m,

then DH
HF

1/m(z) ≤ 1.

Proof. This is simple if every zero has order divisible by m, for then F 1/m is a

well defined holomorphic function. In general, we may assume that F is holomorphic

on a neighborhood of D; otherwise we replace F (z) by F (rz) and let r ր 1 at the

end of the proof. We can write F = GB where G = Hm has a holomorphic m-root

and B is a finite Blaschke product

B(z) =
∏

k

Bk(z) =
∏

k

(
z − zn
1− zkz

)ak

where ak ≥ m for all k. Then by (16)

DH
HF

1/m(z) ≤ DH
HHB

1/m(z) ≤ DH
HB

1/m(z).

Using (18) and induction gives

DH
HF

1/m(z) ≤ max
k
DH
HB

1/m
k (z).

However, Bk is the composition of two maps: z → z−z−k
1−zkz , and z → zak/m. The first

is an isometry and second is a contraction by (4). �

Corollary 3.1.3 (Schwarz’s lemma for multiple roots). If F : D → D is holo-

morphic and every zero of F has order at least m, then

|F ′(0)|m ≤ mm|F (0)|m−1.



3.2. PERFECTLY BRANCHED POINTS 57

Proof. The stated inequality follows by noting

DH
HF

1/m(z) =
|F (z)| 1

m
−1|F ′(z)|(1− |z|2)

m(1− |F (z)|2/m) ≤ 1.

Thus setting z = 0 we get

|F (0)| 1

m
−1|F ′(0)| ≤ m(1− |F (z)|2/m).

Finally, raise both sides to the mth power and use the fact that 1−|F (z)|2/m ≤ 1. �

3.2. Perfectly branched points

Our next goal is a result that contain both Picard theorems and Montel’s theorem

as special cases, as well as various results of Ahlfors, Nevanlinna and others.

Recall from Corollary 2.2.3 that a family is conformally invariant normal if and

only if

sup
z∈Ω

sup
f∈F

DS
Hf(z) <∞.

and that if Ω is not hyperbolic, then F contains only constants. Also recall that every

function in an conformally invariant normal family is normal and has a meromorphic

extension to any isolated boundary point of Ω.

Theorem 3.2.1. Suppose E = {a1, . . . , aq} are distinct points and suppose m =

{m1, . . . ,mq} ⊂ N satisfies

m ≡
q∑

k=1

(1− 1

mk

) > 2.(19)

If Ω ⊂ Ĉ is a hyperbolic domain let F = F(E ,m) be the collection of meromorphic

functions f on Ω so that each preimage f−1(ak) has degree at least mk for k = 1, . . . , q.

Then F is a conformally invariant normal family.

If a is an omitted value of f then f−1(a) has no pre-images, so trivially every pre-

image has degree m for any m. Thus the hypothesis is trivially fulfilled for omitted

points with any mj. In this case we may take mj = ∞ in (19). Thus a meromorphic

function on a hyperbolic domain Ω with 3 omitted values is normal, and if Ω is

not hyperbolic, then the function is constant. Similarly, holomorphic function on a

hyperbolic domain with two omitted values is normal, and an entire functions with

two omitted values is constant. Thus this result contains Picard’s little theorem. It
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also contains Picard’s great theorem, for if an entire function f omits two values on

some neighborhood D
c

r = {|z| > r} of ∞, then it has a meromorphic extension to ∞
and hence is a polynomial.

An a-point of f is any point z ∈ f−1(a). It is called simple if f ′(z) 6= 0 and

a is called perfectly branched if there are no simple a points (hence f(z) = a ⇒
f ′(z) = 0). The result above implies that a meromorphic function can have at most

4 perfectly branched values and an entire function can have at most 2 such values

(sin z shows this is sharp).

Proof of Theorem 3.2.1. It is easy to see that F is conformally invariant;

if we replace f : Ω → Ĉ by pre-composing with a covering map ϕ : D → Ω then a

component W (f ◦ϕ)−1({Ej}) is compact iff ϕ(W ) is compact and the critical points

of f in W correspond 1-to-1 with the critical points of f ◦ ϕ in ϕ(W ) and have the

same degrees.

Assume that Ω is hyperbolic (i.e., has at least three boundary points on S); we

will deal with the other cases at the end of the proof.

If F is not a normal family, then we can use Zalcman’s lemma (Lemma 2.1.4) to

build a sequence

fn(ρnz + wn),

that converges to a non-constant, meromorphic f on the whole plane that has bounded

spherical gradient

DS
Ef(z) =

|f ′(z)|
1 + |f(z)|2 ≤ 1 = DS

Ef(0),

and still satisfies (19). (VERIFY?)

If we can prove any such f must be constant, we get a contradiction and can

deduce F is, indeed, a normal family. Our hypothesis says that each aj ∈ E is either

an omitted value, (in which case we may take mj in (19) as large as we wish) or every

preimage of aj is a critical point of degree at least mj.

Let M be the least common multiple of {m1, . . . ,mq} and define

g(z) =
(f ′(z))M∏q

j=1(f(z)− aj)(mj−1)M/mj
.

We claim that g is an entire function. The only way this might fail is at points

where the denominator is zero or where the numerator is infinite. To deal with the
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first case, consider a preimage w of aj. By definition f has degree p ≥ mj at w, so

for z near w we have

|f(z)− aj| ≃ |z − w|p,
and

|f ′(z)| ≃ |z − w|p−1.

Hence the denominator of g satisfies

|f(z)− aj|(mj−1)M/mj ∼ |z − w|(p−p/mj)M ,

and its numerator satisfies

|f ′(z)| ≃ |z − w|(p−1)M .

Since p− p/mj ≤ p− 1, g is bounded near such points (and is zero at w if p > mj).

In the second case, the numerator is infinite, so f and f ′ have a pole at w. Recall

m =

q∑

k=1

(1− 1

mk

),

and note that

|g(z)|1/M ≤ |f ′(z)|
|f(z)|m .

If f has a pole w, then it tends to ∞ at w and so is bigger than max(1, 2A) where

A = maxj |aj| in some neighborhood W of w. If |f(z)| ≥ 2A, then

|f(z)− aj| ≥ |f(z)|/2,

and because of the spherical derivative bound,

|f ′(z)| ≤ 1 + |f(z)|2 ≤ 2|f(z)|2,

if |f(z)| ≥ 1. Thus for z ∈ U ,

|g(z)| ≤ 2|f(z)|2M
2−mM |f(z)|mM ,

or

|g(z)|1/M ≤ 2|f(z)|2
2−m|f(z)|m .

Since m > 2, we deduce that |g| → 0 where |f | → ∞, so g is bounded near any pole

of f ′. Thus g is entire.

Next we claim that g is non-constant. The function f is non-constant by con-

struction (it has spherical derivative 1 at some point) and hence it tends to ∞ along
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some sequence. By our remarks above g tends to zero along this same sequence, so if

g were constant, it would have to be the constant zero. However, this would imply f ′

is constant zero, and hence f is constant, a contradiction. Thus g is a non-constant

entire function.

Since g is entire and not constant, it is unbounded along some sequence {zn}.
Because f has bounded spherical gradient, Marty’s theorem says we can find a con-

vergent subsequence of hk(z) = f(z + zk) that converges to a meromorphic h.

We claim h must be constant and equal to one of the aj. Otherwise, there would

be a circle around 0 on which h is never equal to any of the aj’s and h
′ is never equal

to ∞. This implies

g(z + zk) →
(h′(z))M∏q

j=1(h(z)− aj)(mj−1)M/mj
,

is bounded on the circle. By the maximum principle, g(z+zk) would have a bounded

limit at z = 0, contradicting the fact that we chose {zn} so that g(zn) → ∞.

So h is one of the ak’s. Suppose h = ak. The function F (z) = f(z+ zn)− ak only

has zeros of order at least mk so we can apply the Schwarz Lemma for mkth roots

(Corollary 3.1.3). This gives

|f ′(zn)|mk = |F ′(0)|mk ≤ mmk

k |F (0)|mk−1 = mmk

k |f(zn)− ak|mk−1,

or, raising to the M/mk power,

|f ′(zn)|M ≤ mM
k |f(zn)− ak|(mk−1)M/mk .

Thus

|g(z)| ≤ mM
k∏

j 6=k(f(z)− aj)(mj−1)M/mj
.

However, this is impossible since f(zn) → h(0) = ak and g(zn) → ∞. The contradic-

tion proves that F is a normal family. �

Corollary 3.2.2. If the hypotheses of Theorem 3.2.1 hold, but Ω ⊂ S is not

hyperbolic, then F consists of constant functions.

Proof. If Ω is not hyperbolic we can assume its boundary points are contained

in {0,∞} and consider the family F restricted to the annulus Aǫ = {z : ǫ < |z| <
1/ǫ}. The annulus is a hyperbolic domain, so the previous argument implies that the
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restricted family is normal, and hence

DS
ρ(ǫ)f ≤ Cǫ,

on Aǫ where ρ(ǫ) is the hyperbolic metric on Aǫ. For ǫց 0, D
ρ(1/2)
ρ(ǫ) Id → ∞. Thus

Cǫ ≥ DS
ρ(ǫ)f = D

ρ(1/2)
ρ(ǫ) Id ·DS

ρ(1/2)f(z),

implies DS
ρ(1/2)f = 0, i.e., f is constant on the open set A1/2 and hence on all of

Ω. �

3.3. The Ahlfors islands theorem

A map f : Ω → Ĉ is said to have a simple island over an Jordan domain D

if there is a component W of f−1(D) that has compact closure in Ω and so that

f : W → D is conformal (1-to-1). If W is compact in Ω, then this occurs iff f has

no critical points in W .

In some sources, the requirement that an island have compact closure is dropped.

Saying there are no islands over D then becomes a stronger conditions, since more

components of f−1(D) have to be checked for critical points. However, the weaker

version that checks only pre-compact components is sufficient to prove normality.

For our dynamical applications of Theorem 3.2.1, we will only need to consider

islands over small disks, and a self-contained proof of this case is given below. The

more general case of Jordan domains requires the use of quasiconformal methods; we

will state and sketch the result below, but its proof uses the measurable Riemann

mapping theorem that will not be discussed until later.

Theorem 3.3.1 (Ahlfors’ Island theorem for small disks). There is an ǫ0 > 0 so

that that the following holds. Suppose E = {D1, . . . , Dq} are disjoint disks Dk(ak, rk)

with rk ≤ ǫ0 and and suppose m = {m1, . . . ,mq} are positive integers that satisfy

m =

q∑

k=1

(1− 1

mk

) > 2.(20)

If Ω ⊂ Ĉ is a domain let F = F(Ω, E ,m) be the collection of meromorphic functions

f on Ω so that every connected component of f−1(Dk) that is compact in Ω contains

critical points whose degrees sum to at least mk, for each k = 1, . . . q. If Ω is hyper-

bolic, then F is a conformally invariant normal family and otherwise F consists of
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constants. If ak is an omitted value of f then f−1(Dk) has no compact components,

so trivially every such component contains critical points of arbitrarily high degree,

i.e., we can take mk = ∞ in the definition of m.

Proof. As before, we start by checking that F is conformally invariant; if we

replace f : Ω → Ĉ by pre-composing with a covering map ϕ : D → Ω then a connected

component W of the set (f ◦ϕ)−1({Dj}) is compact iff ϕ(W ) is compact. Moreover,

the critical points of f in W correspond 1-to-1 with the critical points of f ◦ ϕ in

ϕ−1(W ) and have the same degrees. Thus F is a conformally invariant family of

functions.

First suppose Ω is hyperbolic. To show F is a normal family, choose any q distinct

points {a1, . . . aq} and fix any sequence of ǫk ց 0. We claim that for ǫ small enough,

the family Fǫ = F({D(aj, ǫ)}q1,m) is normal. If not, then by Zalcman’s lemma we

can form a sequence ǫk ց 0 and fk ∈ Fǫk that converges uniformly on compact sets

to a non-constant, meromorphic function f ∈ F({a1, . . . aq},m). By Corollary 3.2.2,

such a f must be constant, and the contradiction shows that Fǫ must be normal for

ǫ small enough. When Ω is not hyperbolic, the argument is exactly as in the proof

of Corollary 3.2.2. �

Taking the case m1 = . . .m5 = 1 in the theorem above gives:

Corollary 3.3.2. Suppose Ω is a hyperbolic domain and {a1, . . . , a5} are distinct

points on the sphere. Suppose D1, . . . , D5 are sufficiently small disks around these

points and {F} is a family of meromorphic functions on Ω so that no element of F
has a simple island over any of the five disks. Then F is a normal family.

Taking m1 = m2 = m3 = 1 and m4 = ∞ (for the omitted value ∞) gives:

Corollary 3.3.3. Suppose Ω is a hyperbolic domain and {a1, a2, a3, } are distinct

points on the sphere. Suppose D1, D2, D3 are sufficiently small disks around these

points and {F} is a family of holomorphic functions on Ω so that no element of F
has a simple island over any of the three disks. Then F is a normal family.

The final version replaces disks by Jordan domains. As noted earlier, we do not

use this version in our applications to dynamics, but include it for completeness.
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Theorem 3.3.4. Suppose E = {E1, . . . , Eq} are disjoint smooth Jordan domains

that have pairwise disjoint closures. Suppose m = {m1, . . . ,mq} ⊂ N satisfy

q∑

k=1

(1− 1

mk

) > 2.(21)

If Ω ⊂ Ĉ is a hyperbolic domain let F = F(Ω, E ,m) be the collection of meromorphic

functions f on Ω so that every compact connected component of f−1(Ek) contains

critical points whose degrees sum to at least mk, for each k = 1, . . . q. If Ω is hyper-

bolic, then F is a conformally invariant normal family and otherwise F consists of

constants.

Proof. We sketch the proof here, but use several facts about quasiconformal

maps that will be discussed in more detail later. The first fact is that a smooth diffeo-

morphism of the plane that is the identity off a compact set must beK-quasiconformal

for some K. The next fact we need is the measurable Riemann mapping theorem.

This theorem implies that if f is a meromorphic function and ψ is K-quasiconformal,

then there is a K-quasiconformal map φ so that

g = ψ ◦ f ◦ φ

is meromorphic.

Assuming these facts, we can finish the proof of the theorem. Again by Zalcman’s

lemma it suffices to show that F = F(C, {Ej}q1) consists of constant functions. Sup-
pose F contains a non-constant function f . Choose any five distinct points {a1, . . . a5}
and choose ǫ so small that the disks Dj = D(aj, ǫ) have pairwise disjoint closures

and the family Fǫ defined above is normal. There is a diffeomorphism ψ defined on

C that maps each Ej into Dj for j = 1, . . . , q. By the measurable Riemann mapping

theorem (Theorem 12.4.1), there is another quasiconformal map φ so that

g = ψ ◦ f ◦ φ,

is meromorphic and in Fǫ. But then g is constant and therefore f is constant as

well. �

Some special cases of the results above include:

Corollary 3.3.5. Suppose Ω ⊂ Ĉ and F is one of the following families:
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H1: Meromorphic functions on Ω with no simple islands over five Jordan do-

mains with disjoint closures.

H2: Meromorphic f with five perfectly branched values.

H3: Meromorphic functions with three omitted values.

H4: Holomorphic functions on Ω with no simple islands over three Jordan

domains with disjoint closures.

H4: Holomorphic functions with three perfectly branched values.

H6: Holomorphic functions with two omitted values.

Then all the following hold

C1: F is a conformally invariant normal family if Ω is hyperbolic.

C2: F contains only constants if Ω is not hyperbolic.

C3: Each f ∈ F is meromorphic at any isolated boundary point of Ω.

The implication “H6 ⇒ C1” is Montel’s theorem, “H6 ⇒ C2” is Picard’s little

theorem, and “H6 ⇒ C3” is Picard’s great theorem. The case “H1 ⇒ C1” is called

the Ahlfors 5-Island theorem. “H2 ⇒ C2” is due to Nevanlinna page 102 0f [105],

Section X.3 of [104], while “H2 ⇒ C1” appears in the work of Bloch, Theorem XILV,

[32] and Valiron Theorem XXVI, [140].

3.4. Repelling points are dense

Lemma 3.4.1. There is an ǫ > 0 so that for any meromorphic f and any five

disjoint disks D1, . . . D5, each of radius ≤ ǫ hitting J (f), there is a j ∈ {1, . . . , 5}
and a simple island for some iterate of f over Dj contained inside Dj. For entire

functions we can replace “5” by “3”.

Proof. For a disk hitting the Julia set of f , the iterates of f form a non-normal

family and the Ahlfors island theorem may be applied. Inside each of the five disks

Dk, k = 1, . . . 5, choose 5 disks {Dkj}5j=1 centered on J and with disjoint closures

(we can do this because the Julia set has no isolated points, Lemma 2.5.6). By 25

applications of Theorem 3.3.1, each of these 25 disks contains a simple island for some

iterate of f over one of the Dj’s. Thus one of the Dj’s occurs at least 5 times, i.e.,

there is a Dj that has a simple island in Dkn for at least five distinct disks. Choose

such a Dj and choose five of the smaller disks containing an island over Dj. Apply the
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Ahlfors islands theorem again with domain Dj to deduce that Dj contains a simple

island over one of these disks, say Dki. Thus there are subdomains W1 ⊂ Dj and

W2 ⊂ Dki and iterates of f so that fn : W → Dki is conformal and fm : W2 → Dj

is conformal. Thus if W3 = f−n(W2) ⊂ W1 ⊂ Dj, then f
n+m : W3 → Dj is simple

island over Dj that is contained in Dj. For entire functions, the same argument works

with three in place of five. �

FIGURE OF 25 ISLANDS

Recall that a point z is periodic for f if there is a positive integer n so that

fn(z) = z. The multiplier at z for fn is λ = (fn)′(z). The periodic point is called

attracting if |λ| < 0; such points are clearly in the Fatou set. The point is called

neutral if |λ| = 1. This case is split into two sub-cases, rational and irrational,

depending on whether λ = eiθ with θ a rational multiple of π. We shall see later

that rational neutral points are always in the Julia set; irrational neutral points may

be in either the Fatou set (Siegel disk) or the Julia set (Cremer points). The final

possibility is when |λ| > 1; these are called repelling points are are clearly always in

the Julia set.

We already know that the Julia set is the closure of the pre-periodic points that

it contains (Corollary 2.4.11). Here we prove a refinement of this:

Theorem 3.4.2. Suppose f is an entire function and J (f) contains at least three

points. Then J (f) is the closure of its repelling periodic points.

Proof. Repelling periodic points are clearly in J so we only need show every disk

D hitting J contains such a point. Choose ǫ > 0 so small that we can choose three

disks Dj = D(aj, ǫ) centered on at points of the Julia set that have disjoint closures

and so that Lemma 3.4.1 applies. Thus there is a domain U properly contained in

one of the Dj that is mapped univalently to Dj by some fn. The inverse branch is a

mapping of Dj into itself and must have an attracting fixed point This fixed point is

clearly a repelling periodic point for f . �

The hypothesis holds whenever f is entire and not constant or linear, since in this

case J (f) is a perfect set, and hence uncountable.

Let K(f) denote the set of points such that {fn(z)} is a bounded set; this gener-

alizes the “filled Julia set” of a polynomial.
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Theorem 3.4.3. If f is entire but not linear, then dim(K(f) ∩ J (f)) > 0.

Proof. A minor variation of the proof of Lemma 3.4.1 shows that given distinct

a1, a2, a3 in the Julia set there is a disk D around one of them that contains two

islands U1, U1 over itself with disjoint closures. Then fn : U1 ∪U2 → D is an iterated

function system that has a Cantor repeller of positive Hausdorff dimension, and all

points in the Cantor set have orbits that return to D every n steps, and hence are

bounded. �

It is easy to construct polynomials whose Julia set is a Cantor set with dimension

close to zero. However, we earlier (Theorem 2.6.7) that a transcendental Julia set

always has dimension at least 1. The result above is still sharp since it it possible to

construct examples where the set of points with bounded orbits has dimension close

to zero. This is due to Bergweiler [].

3.5. The blowing-up property

Recall that J ∗(f) denotes the Julia set of f minus the exceptional point (if one

exists; an exceptional point is one whose preimages do not accumulate on the entire

Julia set).

Lemma 3.5.1. A point z is exceptional for a transcendental f if and only if it is

exceptional for every iterate of f .

Proof. Note that if z is exceptional for f , then f−1(z) ⊂ {z}, for every preimage

would have to be exceptional too, and there is at most one exceptional point. Thus

exceptional points for f are obviously exceptional for every iterate of f . On the other

hand, if f has no exceptional point, then f−1(z) contains infinitely many points and

thus f−n contains infinitely many points for every ≥ 1. Thus no iterate of f has an

exceptional point. �

The following is the “blowing-up property” of the Julia set. We had proved a

weaker version of this earlier (see Lemma 2.4.7). Recall that J ∗(f) is the Julia set

of f with the exceptional point for f removed (if there is an exceptional point).

Lemma 3.5.2. If U is an open set that intersects the Julia set and K ⊂ J ∗(f) is

compact, then K ⊂ fn(U) for all sufficiently large n.
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Proof. Choose a repelling periodic point z0 ∈ U , let p denote its period and let

g = f p. Without loss of generality we may assume p ≥ 2, and this case no point in

the orbit of z is the exceptional point of f (for then they would all be exceptional,

contradicting the fact there is at most one exceptional point).

Then z is a repelling fixed point of g. Choose ǫ > 0 so small that D = D(z0, ǫ) ⊂
g(D). Let V = g(D) Clearly V ⊂ g(V ) ⊂ g2(V ) · · · . Since the sequence of iterates of
g is not normal on D, the images of D under these iterates cannot omit two points

by Montel’s theorem. Thus the union of images covers the whole plane with at most

one exception. Thus a finite union of these sets covers any compact set K disjoint

from this exceptional point. Since the sets are nested, one them covers K and every

following iterate also covers K.

Take K0 to be the closure of the first p iterates of D under f . Note that K0 ⊂
f(K0) ⊂ f 2(K0) ⊂ . . . . If D is small enough this does not contain the exceptional

point for g. Thus there is a q so that K0 ⊂ gq(D). Any integer n ≥ qp can be written

as n = qp+ kp+ r for some integers k ≥ 0, 0 ≤ r < p, so for such an n,

fn(D) = f qp+kp+r(D) ⊃ gk(f r(gq(D)) ⊃ gk(f r(K0)) ⊃ gk(K0) ⊃ gk(D).

Thus for all sufficiently large n, fn(D) covers any compact set that gk(D) can cover.

Since gk(V ) = f pk(V ), this proves the theorem.

Note that �

Another useful formulation is:

Corollary 3.5.3. Suppose U is a bounded open set that hits the Julia set. Then

the outer boundary of fn(U) eventually surrounds every point of the plane.

Proof. The previous lemma implies that for each r > 0, either {|z| = r} or

{|z| = r + 1} is covered by some iterate of U (only one of these can contain the

exceptional value). In either case, the outer boundary of fn(U) separates {|z| = r}
from ∞. �

Corollary 3.5.4. Suppose U is a bounded open set that hits the Julia set. Then

diam(fn(U)) → ∞.

Proof. Obvious from the previous result. �
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Corollary 3.5.5. If f is a transcendental entire function and U is an open set

that intersects the Julia set, then no subsequence of iterates of f converges uniformly

on compact subsets of U .

Proof. If not, there would be a compact disk D in U that hits J(f) and a

sequence of iterates of f that converged to a bounded function of f . However, in the

previous result we can choose K to have arbitrarily large diameter, so iterates of D

must have diameters tending to ∞. �

3.6. Neutral periodic points

Let PS(f) = ∪k=0f
k(S(f)) denote the union of the singular set of f and all of

its iterates under f . As usual, PS(f) denotes its closure. Given a disk D that does

not intersect PS(f), we can define branches of f−n and each branch is holomorphic,

1-to-1 and does not hit PS(f). If PS(f) has only one point then f is a self-mapping

of a punctured plane. Otherwise, PS(f) has at least two points and by Montel’s

theorem the inverse branches of f−n on D form a normal family.

A point z is periodic for f if f p(z) = z and the minimal p ≥ 1 for which this

holds is called the period of z. Thus z has period p iff z is a fixed point of f p. The

power series for f p has the form

f p(z) = z0 + λ(z − z0) + a(z − z0)
m + . . . .

Here λ is the called the multiplier of z0 and m is called the multiplicity. If |λ| < 1

then z0 is an attracting fixed point and is in the Fatou set. If |λ| > 1 then z0 is a

repelling fixed point and is in the Julia set. If λ = exp(i2π p
q
) for p, q ∈ N, q 6= 0, then

z0 is called a rationally neutral and is in the Julia set. Later we will need to know

that “most” points near a rationally neutral fixed point are attracted to it:

Lemma 3.6.1. If z0 is on a rationally neutral cycle for f then

X = {z : |z − z0| < δ arg(zm)| ≤ ǫ} ⊂ F(f),

for any ǫ > 0 and some choice of m and δ. In particular, every point of X converges

to z0.

Proof. The proof is a computation that shows that X maps into itself. �
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If λ = exp(i2πα) for an irrational real number α, then z0 is called an irrationally

neutral foxed point. Such a point can either be in the Julia set or in the Fatou set.

In the first case, z0 is called a Cremer point and in the second case the component

of F(f) is called a Siegel disk.

Lemma 3.6.2. If z0 is a irrationally neutral periodic point in the Julia set, then

z0 ∈ PS(f) \ {z0}.

Proof. If not, then we can choose a punctured disk U around z0 that misses the

post-singular set and hence find holomorphic branches of f−1 on U that fix z0. These

form a normal family since the images miss any periodic orbit disjoint from U and

hence there is a subsequence converging a holomorphic limit h so that |h′(z0)| = 1.

Then V = h(U) is a neighborhood of z0 and there is a sub-sequence of {fn} that

converges to h−1 on V . This contradicts Corollary 3.5.5, proving the result. �

Lemma 3.6.3. If z0 is a irrationally neutral periodic point in a component Ω of

the Fatou set, then ∂Ω ⊂ PS(f).

Proof. If Ω were multiply connected, then it would be escaping (Theorem 2.5.1)

and hence could not contain a periodic point. Thus Ω must be simply connected (and

not the whole plane since the Julia set must be non-empty, Theorem 2.4.5). Using

the Riemann mapping theorem, we see that f : Ω → Ω lifts to a map F : D → D that

also has an irrationally neutral fixed point. Thus there is a sequence of iterates if F

that tend to the identity and the same sequence of iterates of f tends to the identity

uniformly on compact subsets of Ω.

Suppose U is an open set that hits ∂Ω and suppose U ∩ PS(f) = ∅. We can

find holomorphic branches of f−n on U and these avoid values on a neighborhood of

z0, so they form a normal family. Choose a compact disk D ⊂ U ∩ Ω and choose

a subsequence that converges to the identity on D and a further subsequence that

converges uniformly on all compact subsets of U . The limit function is necessarily

the identity on all of U since it is the identity on D. For the same subsequence, fn

converges to the identity on U , contrary to Corollary 3.5.5. �

Lemma 3.6.4. A rationally neutral fixed point only attracts points in the Fatou

set.
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Proof. Standard result as in Corollary 7.4 of Milnor’s book. Must show that

the attracting petal is in Fatou set, so the Julia set near 0 must

�



CHAPTER 4

The Eremenko-Lyubich class

In this chapter we consider a class of transcendental entire functions that share

some properties with polynomials and that make them easier to study than general

entire functions. The class is named for Alexandre Eremenko and Misha Lyubich

defined and studied this class in [49] and it consists of all transcendental entire

functions have have a bounded singular set (defined below). Such functions have nice

behavior when |f | is large; in particular, they have a strong expansion property near

infinity that is extremely useful. For example, we shall use this expansion property

to show that the Julia set of an Eremenko-Lyubich function is the closure of the

escaping set; for general entire functions the Julia set is the boundary of the escaping

set (Theorem 2.4.5).

4.1. The singular set

Suppose f is a transcendental entire function. A critical point of f is a zero of f ′

and a critical value is f(z) where z is a critical point. A asymptotic value is a w ∈ Ĉ

so that lim f(z) = w along a curve γ : [0,∞) that tends to ∞.

The assumption that γ tends to ∞ is stronger than we need. If f has a limit

along a path γ that is unbounded, but returns to some compact set infinitely often,

then there is some annulus A = {z : r < |z| < 2r} that γ crosses infinitely often and

hence subarcs γn ⊂ A with endpoints on different boundary components such that

|f − a| < 1/n on γn. This implies f = a at some point on every circle {|z| = t} for

r < t < 2t and hence f is constant. Thus to check that a is an asymptotic value of

f , we only need verity f has limit a along some unbounded path. We will use this

observation below.

The singular values of f , denoted S(f), is defined as the closure or the union of

critical values and finite asymptotic values. This is not completely standard; some

71
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authors do not take the closure in this definition, or take the following lemma as the

definition.

Using the notation in the book of Ahlfors and Sario, a map f : X → Y is a

smooth covering map if every point x ∈ X has a neighborhood V that is mapped

homeomorphically by f onto a neighborhood of f(x).

Lemma 4.1.1. Suppose f is entire and U contain no critical values. Then f is a

smooth covering map from V = f−1(Ω) to Ω.

Proof. If z ∈ V then f(p) 6= S(f), so f ′(z) exists and is non-zero. Thus a small

enough disk around z maps homeomorphically to a neighborhood of f(z). �

The map is called a regular covering map if given any y ∈ Y and any x ∈ X

any such that f(x) = y, then any arc in Y starting at y can be lifted to an arc in

X starting at x. It is a standard result (e.g., Theorem 14C of [4]) that any two

liftings of the same arc with the same initial point must agree, but the existence of a

lifting is not always true. The monodromy theorem say that if two arcs in Y have the

same endpoints and are homotopic by a homotopy that keeps the endpoints fixed ,

then any lifts of these arcs that have the same initial point, must also have the same

terminal point. This is proved by noting that the homotopy lifts to a homotopy whose

terminal point must always lie in f−1(b); since this is a discrete set, any continuous

motion within it must be constant.

Lemma 4.1.2. Suppose f is entire and U contain no singular points. Then f is

a regular covering map from V = f−1(Ω)

Proof. From the previous lemma we know f is smooth covering map on V .

Choose points z ∈ V , w ∈ U such that f(z) = w and let D = D(w, ǫ) be so small

that D ∩ S(f) = ∅. Define a branch g of f−1 so that g(w) = z and extend it along

a radius of D as far as possible. Because f is a smooth covering map, this extension

is possible along some maximal open interval [0, t). If t < ǫ, consider the lifted arc

corresponding to this radial segment. We claim it leaves every compact set, for if it

stayed within some compact set then we could take a sequence of points on the lifted

path that converged to a point that, by continuity of f , must map to w + teiθ. This

contradicts the maximality of t. Thus the lift leaves every compact set, but f has a
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limit along the lift, showing f has an asymptotic value in D, a contradiction. Thus g

can be defined on all of D. Thus the connected component W of f−1(D) containing

z is mapped onto D by f . If two points of this component map to the same point

of D, then an arc connecting these points maps to a closed loop in D. Since D is

simply connected, this loop i s homotopic to constant path, hence the arc in W must

have been constant, hence the two points were actually a single point. Thus f is a

bijection from W to D. This proves that f is a regular covering map over U . �

Corollary 4.1.3. Suppose f is entire and S(f) ⊂ DR = {z : |a| < R}. Then f

is covering map from Ω = f (D
c

R) = {z : |f(z)| > R} to D
c

R = {z : |z| > R}. Each

connected component of Ω (called a tract of f) is an unbounded, simply connected

domain whose boundary is an analytic Jordan curve that tends to ∞ in both directions.

Singular values are further classified by the behavior of f . For a ∈ Ĉ and r > 0,

let Dr be a disk of radius r around a in the spherical metric. Let {Ur}r>0 be a

family of connected components of f−1(Dr) chosen so that Ur ⊂ Us if r < s. Then

E = ∩r>0U(r) is a connected set and f = a on E, so either E = ∅ or E is a single

point (otherwise f would be constant on a non-trivial connected set, hence constant

everywhere). If E is a single point z and f ′(z) 6= 0 then z is called a regular a-

point. If E = {z} and f ′(z) = 0 then z is a critical a-point. If E = ∅ then a is

an asymptotic value of f (argue as in Lemma 4.1.2). In this case, the tract {Ur} is

called an asymptotic tract of f .

Suppose f is a transcendental entire function. If S(f) is finite, we say f is finite

type or in the Speiser class, denoted S. If S(f) is bounded, we say f is bounded

type or in the Eremenko-Lyubich class, denoted B. A little care needs to be taken

with the terms “finite type” and “bounded type” since these are also used to mean

something different in Nevanlinna theory.

Lemma 4.1.4. If f ∈ B, then every component of F(f) is simply connected.

Proof. Suppose f ∈ B and choose R > 0 so that S(f) ⊂ DR. Let Ω = f−1(D∗
R).

By Lemma 4.1.2, f is a regular covering map from each component of Ω to D∗
R. Since

D∗
R is unbounded, each component of Ω is unbounded, but |f | = R on the boundary.

Thus by Corollary 2.6.8 we get �
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4.2. Logarithmic coordinates and expansion near infinity

The right half-plane Hr = {x + iy : x > 0} is a simply connected covering space

of D∗
R with the map z → R exp(z) = exp(z + logR). Thus if W is a component of Ω

we can lift f : W → D∗
R to a conformal map τ : W → Hr, so that f(z) = R exp(τ(z))

on W .

Choose a point a 6∈ W and let U = log(W − a). Since W is simply connected,

this is well defined and single valued and the domain U intersects each vertical line

in length ≤ 2Π. In particular, no point of U is more than distance π from some

boundary point. If R > |f(0)| then we can take a = 0; we shall make this assumption

from here on.

Define F : U → Hr by F (z) = τ(a + exp(z)). Then F is conjugate to f in the

sense that

exp(F (z)) = f(a+ exp(z)),

and

exp(F n(z)) = fn(exp(z)),

if the orbit of z stays inside Ω. We refer to F as “f in logarithmic coordinates”.

Lemma 4.2.1. With notation as above, |F ′(z)| ≥ 1
4π
(ℜ(F (z))− logR).

Proof. If we apply the Koebe 1
4
-theorem to f at z, we get

π|F ′(z)| ≥ dist(z, ∂U)|F ′(z)| ≥ 1

4
dist(F (z), ∂Hr) =

1

4
ℜF (z).

�

Theorem 4.2.2. If f ∈ B then I(f) ⊂ J (f).

Proof. Suppose not, i.e., suppose there is a point z ∈ F(f)∩ I(f) and let D be

a closed disk centered at z and inside F(f). Then fn converges uniformly to ∞ on

D and hence fn+1(D) ⊂ D∗
R for n large enough. This means fn(D) ⊂ Ω = f−1(D∗

R)

for all n ≥ m, for some m. By replacing D by a disk centered at zm, we may assume

m = 0.

Let w = log(z) ∈ U and let V = logD ⊂ U . Then the iterates of V under F

stay in U forever, Then wn = F n(w) = log(fn(z)). Since |fn(z)| → ∞, we have
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F

f

exp exp

|f| > R

|f| > R

|z| > R

x > log R

Figure 1. Logarithmic coordinates. On the lower left are the tracts
of f (two in this case). At upper right are the logarithmic tracts; there
are countable many log-tracts for each tract of f , and each is a vertical
translate of any other by an integer multiple of 2π.

ℜF (wn) → +∞, and hence

(F n(w))′ =
n∏

k=1

F ′(wk) ≥
n∏

k=1

ℜ(wk+1)

4π
.

Since wk is never a critical point of F and since ℜwk → ∞, the product on the right

tends to ∞. However, by Koebe’s 1
4
-theorem

|(F n(w))′| ≤ 4dist(wn, U)/dist(w, V ) ≤ 4π/dist(w, V ),

is bounded independent of n. �
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Note that although Fatou points don’t escape, they can have unbounded orbits

(but these orbits return to some compact set infinitely often).

Corollary 4.2.3. If f ∈ B then J (f) = I(f).

Proof. For any transcendental entire function we have J(f) = ∂I(f) ⊂ I(f).

We have just proved I(f) ⊂ J (f), hence I(f) ⊂ J (f). Thus equality holds. �

The proof of Theorem 4.2.2 only uses that the sequence {wk} has sufficiently large

real parts, not that it tends to ∞. Thus the proof actually shows

Corollary 4.2.4. If f ∈ B, then there is R > 0 so that {z : |fn(z)| ≥ R∀n} ⊂
J (f).

Since no Fatou point can escape, we see immediately that

Corollary 4.2.5. If f ∈ B has a wandering domain, then it either has a bounded

orbit or the orbit hits some compact set infinitely often.

The latter case is known to occur. As of this writing, it is still an open problem

whether a function in B (or any entire function) can have a wandering domain with

bounded orbits.

4.3. The Julia set of ez is the whole plane

The following is due to by Misiurewicz [99], but we will give a proof due to Rempe

and Mihaljević-Brandt [97]

Theorem 4.3.1. J (ez) = C.

Proof. Since f(z) = ez has no critical points and one finite asymptotic value,

it is in the Speiser class and hence the Julia set contains the escaping set (Corollary

4.2.3). Moreover, it is easy to check that R ⊂ I(f), so R ⊂ J (f). Similarly, every

preimage of R must be in the Julia sets and this consists of all the horizontal lines

{z = x+ iy : y = πn, n ∈ Z}.

These lines cut the plane into strips

Sn = {x+ iy : nπ < y < (n+ 1)π},
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and f is a univalent map from each strip onto either the upper half-plane, H, or the

lower half-plane, L. Thus

DU
Sn
f ≡ 1,(22)

where U = H ∪ L = {x+ iy : |y| > 0}.

exp

Figure 2. The action of the exponential map. Each horizontal strip of
width π is mapped conformally to either the upper or lower half-plane.

Suppose J (f) 6= C and let W be a component of the Fatou set. Then W lies in

some Sn, and hence f restricted to W is 1-to-1. In particular it is an isometry from

the hyperbolic metric on W to the hyperbolic metric on f(W ). Thus

D
f(W )
W f ≡ 1.(23)

The inclusion map Sn into its corresponding half-plane is a contraction of hyper-

bolic metrics; a strict contraction if |y| > ǫ. Thus

DU
Uf(x+ iy) = DSn

U f(x+ iy)DU
Sn
Id ∗ x+ iy) ≥ 1 ·DU

Sn
Id ∗ x+ iy) ≥ 1 + η(|y|) > 1,

where η is strictly increasing and η(0) = 1.
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Now suppose z0 ∈ W and zk = fk(z0) is its orbit under f . Then since fn : W →
fn(W ) is conformal,

1 = D
fn(W )
W fn(z) = DU

W Id(z) ·DU
Uf

n(z) ·Dfn(W )
U Id(zn)

≥ DU
W Id(z) · (

n−1∏

k=0

DU
Uf(zk)) · 1

≥ DU
W Id(z) ·

n−1∏

k=0

(1 + η(yk)).

The first term in the last line is a positive constant that is independent of n, and the

product in the last term tends to ∞ unless η(yk) → 0, which happens if and only if

yk → 0. Thus limk yk = 0.

However, |ℑ(z)| ≤ π/4 implies

ℜ(f(z)) = ex cos y ≥ ex/
√
x ≥ x+ (1− ln 2) > x+

3

10
,

(use calculus to minimize (ex/
√
2)−1). Thus if |yk| < π/4 for all large k we must have

xk = ℜfk(z) ր +∞. This implies z0 ∈ I(f) ⊂ J (f), contrary to our assumption

that z ∈ F(f). Thus F(f) = ∅ and J (f) = C. �

4.4. Julia sets with zero area

Next we consider some examples of slightly smaller Julia sets:

Theorem 4.4.1. area(J (λez)) = 0 if 0 < λ < 1/e.

We will prove this by way of a more general result. First we will give a condition

that implies the escaping set, I(f) has zero area and then another condition that

implies J (f) \ I(f) has zero area. Both conditions will apply to

The Julia set of the ez is the whole plane, but the following result implies its

escaping set has zero area.

The following is Theorem 7 from [49].

Theorem 4.4.2. Suppose f ∈ B satisfies

lim inf
r→∞

|{θ : |f(reiθ)| < R}| > 0(24)
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for some R <∞. Then area(I(f)) = 0. Moreover, there is a M <∞ so that for a.e.

z ∈ C,

lim inf
n→∞

|fn(z)| < M.

Proof. If (24) holds for some R, it also holds for all larger values, so we assume

that R is so large that (24) holds, |f(0)| < R and S(f) ⊂ D(0, R/2). Estimate (24)

implies that if U is the logarithmic tract of f , then

area(D(x+ iy,
x

4
) ∩ U) ≤ (1− ǫ)area(D(x+ iy,

x

4
)),(25)

for some uniform ǫ > 0, as long as x is sufficiently large. For the proof of this, see

Figure 3.

x x/4

2π

2π

Figure 3. In a disk D of radius r = x/4 the concentric disk of
radius r − 2π

√
2 is covered by squares of side length 2π. In each such

square, a fixed fraction of the length of each vertical line lies outside
the logarithmic tracts by assumption, hence a fixed fraction of the area
of the square outside the logarithmic tracts. Thus if x > 8r = 16π

√
2,

then a fixed fraction of the area of D lies outside these tracts.

Fix M large enough so that z = x + iy ∈ U and x ≥ M imply |F ′(x + iy)| ≥ 8.

This is possible by Lemma 4.2.1. Define

Y = {z : ℜ(F n(z)) > M ∀n ∈ N}.

We claim that area(Y ) = 0 if M is large enough. To prove this, suppose z0 ∈ Y . We

will construct a sequence of disks Dn = D(z0, rn) that shrink down to z0 with the

property

lim sup
n

area(Dn ∩ Y )

area(Dn)
< 1− δ < 0.

The Lebesgue density theorem then implies that Y has zero area.
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Let zn = F n(z0) and for k = 1, . . . , n let F−1
k denote the branch of F−1 taking zk

to zk−1. A direct computation shows that the Euclidean disk D(zn, xn/4) is contained

in a hyperbolic ball (for the right half-plane) ball centered at x of radius
∫ xn

3xn/4

dt

t
= log

4

3
≈ 0.287682.

Thus F−1(D) is contained in a hyperbolic ball of the same radius centered at zn−1. We

claim this hyperbolic ball is contained in the Euclidean D′ = D(zn−1, 4π). To prove

this we use the comparison between the hyperbolic and quasi-hyperbolic metrics,

Lemma 1.4.1,

dρΩ ≤ dρ̃Ω ≤ 4dρΩ.

If w is a point outside D′, then any path γ connecting it and zn−1 has Euclidean

length at least 4π, so its hyperbolic length is at least

ρ(γ) ≥ 1

4
ρ̃(γ) =

1

4

∫

z∈γ

1

dist(z, ∂U)
ds ≥ 1

4
· ℓ(γ) 1

π
= 1 > log

4

3
.

This proves the claim.

Similarly, the Euclidean disk D(zk, r) is contained in a hyperbolic disk centered

at zk of radius at most −log(1− r
x
) and this is ≤ 2r/x if r ≤ x/2. Thus its preimage

under F is contained in a hyperbolic disk of the same radius centered at zk−1 and

this, in turn, in contained in a Euclidean disk of radius R where

1

4
·R · 1

π
= 2r/x,

or

R =
8πr

x
.

If x ≥M ≥ 16π we can take R = r/2, i.e.,

F−1
k (D(zk, r)) ⊂ D(zk−1, r/2), k = 1, . . . , n− 1.

Using induction we see that D(z0, 2
3−nπ) contains a neighborhood W of z0 that

is mapped univalently by Fm to D(zn, xn/4). Thus there is subdomain W ′ ⊂ W that

is mapped univalently to D(zn, zx/8) and this W ′ is a bounded distortion of a disk

centered at z0. Thus there is a disk D centered at z0 that contains W
′ and such that

area(D) ≃ area(W ′).
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Moreover by the distortion theorem for univalent maps (Theorem 1.3.4),

area(W ′ \ Y )

area(W ′)
≃ area(D(zn, xn/8) \ Y )

area(D(zn, xn/8))
≥ area(D(zn, xn/8) \ U)

area(D(zn, xn/8))
> ǫ > 0.

Putting these together gives
area(D ∩ Y )

area(D)
< 1,

uniformly on a sequence of disks shrinking down to z0, proving that z0 is not a point

of density of Y . Since z0 was any point of Y , the Lebesgue density theorem implies

Y has zero area. �

We shall see later that the escaping set of a function in B can have dimension

equal 1 (it is at least dimension one by Theorem 1.7.1), but that the Julia set of such

a function is always strictly larger than 1.

Theorem 4.4.3. Assume that f ∈ S (finitely many singular values) and that

the orbit of every singular value converges to an attractive fixed point. Then either

J (f) = C or area(J (f) \ I(f)) = 0.

Proof. Assume that J (f) 6= C and let

d(z) = dist(z,PS(f)).

Then F(f) is an open dense set, so

a(z) =
area(D(z, d(z)) ∩ F(f))

πd2(z)
,

is a positive continuous function on U = C \ PS(f)).
There is aM <∞ so that for almost every z in the Julia set, |fn(z)| ≤M infinitely

often. Choose a n when this occurs and pull back the the disk D(fn(z), d(fn(z)))

under a univalent branch of f−n to a neighborhood U of z. By the distortion theorem

for univalent maps, U is approximately circular and F(f) takes up a fixed fraction of

the area of U . The diameter of U must be small if n is large (Corollary 3.5.4). Thus

the Lebesgue differentiation theorem applies to prove the theorem. �

For any λ 6= 0, the tract of λez is a half-plane and therefore satisfies Theorem

4.4.2. Thus area(I(λez)) = 0, even in the case λ = 1 when the Julia set is the whole

plane (Theorem 4.3.1). If 0 < λ < 1/e, then f(z) = λez has an attractive fixed points

that attracts the only singular point, 0. Thus area(J (λez)) = 0 if 0 < λ < 1/e by
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Theorem 4.4.3. We shall see later that the Hausdorff dimension is always 2 for these

functions (Theorem ??, due to McMullen [95]).

Theorem ?? can be generalized as follows:

Theorem 4.4.4. Assume that f ∈ S (finitely many singular values) and that the

orbit of every singular value is either

(1) pre-periodic

(2) converges to an attractive fixed point, or

(3) converges to a neutral rational cycle.

Then either J (f) = C or area(J (f) \ I(f)) = 0.

We leave the proof as a exercise. Hint: ...?

The version stated in [49] is slightly more general; it only requires the set where

|f | is small to be large on average, instead of uniformly. This is also left as an exercise.

Hint:...?

Theorem 4.4.5. Suppose f ∈ B satisfies

lim inf
r→∞

1

log r

∫ r

1

|{θ : |f(reiθ)| < R}|dt
t
> 0(26)

for some R <∞. Then area(I(f)) = 0. Moreover, there is a M <∞ so that for a.e.

z ∈ C,

lim inf
n→∞

|fn(z)| < M.

4.5. A Julia set with positive area

Theorem 4.5.1. For any λ 6= 0, the escaping set (and hence the Julia set) of

f(z) = λ cosh(z) = λ
2
(ez + e−z) has positive area.

Proof. We will prove this for λ = 2, f(z) = ez+ e−z. The general case is almost

identical and left to the reader.

We will say Q is a “grid square” if it has sides of length 2π parallel to the coor-

dinate axes and corners in the set 2π(Z + iZ). We let Q(n,m) be the grid square

with lower left corner at 2π(n + im). The map → ez maps this square to the annu-

lus An = {e2πn ≤ |z| ≤ e2π(n+1)} with a derivative that bounded between these
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same two bounds. If n is large and positive, then f(z) maps Q(n,m) to a re-

gion Bn that approximates An to within O(1). Let Cn ⊂ Bn be the subregion of

Bn \ {x+ iy : |y| < 2π(n+ 1)} covered by grid squares. See Figure 4.

en

en+1

(n,m)

2(n+1)

exp

Figure 4. A grid square is mapped univalently to a (slit) annulus
by the exponential map. The map f maps the same square to a region
closely approximates this annulus. Most of the area this region is filled
by grid squares, even is we remove a vertical slit of width O(n) along
the imaginary axis. Note that the figure is not to scale; in reality,
n≪ en.

The area of Cn is the area of An minus the area of the region of the plane that

is either within O(1) of ∂An or within O(n + 1) of the imaginary axis. The area

of An = π(e4π(n+1) − e4πn) ≃ πe4πn. The area of the region within O(1) of ∂An

has area comparable to the length of ∂An, which is O(e2πn. The area of Bn that is

within distance O(n+1) of the imaginary axis is O(e2πnn. Thus Bn \Cn has area at

most O(ne2πn. By our derivative estimate on f , f−1(Bn \ Cn) ⊂ Q has area at most

O(ne−2πn). Thus 1 − O(ne−2πn) of the area of Q(n,m) maps under f into a square

Q(p, q) with p ≥ n+ 1.

Start with some square Q0 = Q(n0,m0) where n0 is sufficiently large. By the

argument above, we can find a collection of subregions {Wk} ⊂ Q0 which are mapped

to grid squares Q(p, q) with p ≥ n0 + 1 and so that the leftover regions has area less
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than O(ne2πn0 . Now apply the argument to each image square to decompose eachWk

into subregions that are mapped univalently to grid squares Q(p, q) with p ≥ n0 + 2

by two iterations of f . By Koebe’s theorem, the derivative of f 2 is comparable to

a constant on each of the second generation subregions, so the uncovered portion

of the first generation regions is O((n0 + 1)e2π(n0+1), with a absolute constant. We

proceed in this way, defining generations of subregions which cover all of the previous

generation except for area O((n0 + k)e−2π(n+k) (the constant does not depend on

k since the derivative of the iterated map on each kth generation piece is close to

a constant by Koebe’s theorem, and this constant does not depend on k). The

intersection of all the generations is thus a set of area at least

∞∏

k=1

1−O((n0 + k)e−2π(n0+k)) > 0,

and contains only escaping points. Since f is in the Eremenko-Lyubich class, these

points are also in the Julia set. �

The proof above shows that there is a set of positive area where |fn(z)| & n,

but this is very weak. Instead of throwing out a strip of width O(n) around the

imaginary axis, we could have omitted a strip of width O(an · e2πn) for any sequence

with
∑
an < ∞ and have obtained a set of positive area. For example, taking

an = e−ǫn gives a set of positive area where {|fn(z)|} grows faster than iterating

e(2π−ǫ)x.

4.6. A Julia set with dimension 2

The exponential family consists of functions of the form

f(z) = λez, λ 6= 0.

Theorem 4.6.1 (McMullen, [95]). The escaping set of any member of the expo-

nential family has Hausdorff dimension 2.

Proof. The proof is similar to the discussion in Section 4.5, except that now

about half the squares will have to be thrown out at each stage.

Recall that ez maps the horizontal strip U = {x+ iy : |y| < π/4} conformally on

the the sector {z : | arg(z)| < π/4} and every vertical translate of the strip is also
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mapped to the same sector. Let W = ∪k∈Z(U + 2πik) be the union of such vertical

translates.

If S = S(n,m) = π
2
[n, n+2]×2π[m− 1

8
,m+ 1

8
] is a “grid square” insideW ∩Hr(hk)

then the image of S under f is a truncated sector

{z : λeπn/2 < |z| < eπ(n+1)/2, | arg z| < π/4},
Then f(S) ∩W ∩Hr(hk+1 contains λ2

C
exp(πn) disjoint squares of the same type for

some fixed C <∞ that is independent of n.

> eπn/4

π/4

π/4

Figure 5. A grid square is mapped univalently to a sector as shown.
If the square is in {x > πn/2}, then the image region has area compa-
rable to exp(πn) and contains at least ≃ exp(πn) π

4
-squares, where the

construction can be iterated.

The preimages of these squares are regions in S(n,m) of size approximately

exp(−πn/2). If we give them equal mass, then the mass of each region W is less

than

Cλ−2 exp(−πn) ≤ exp(−(2− ǫ)πn/2) ≤ diam(W )2−ǫ,

where ǫ is close to zero (depending on C and ǫ) if n is large enough.

By iterating this construction, we obtain a measure µ supported on a Cantor

subset E that satisfies the Frostman condition

µ(D(x, r)) ≤M · r2−ǫ,
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(see Lemma A.1.6). By the mass distribution principle (Theorem A.1.4), the set E

has dimension > 2− ǫ. Moreover, this set is clearly in the escaping set, since each of

our grid squares was exponentially further from the origin than its preimage. Thus

the escaping set has Hausdorff dimension ≥ 2 − ǫ for every ǫ > 0, and hence has

dimension equal to 2.

�

4.7. A Julia set with dimension close to 1

Next we give example in the Eremenko-Lyubich class where the Julia set has

Hausdorff dimension that is close to 1. The existence of such functions is due to

Gwyneth Stallard []. She showed that for function in B, the Julia set always has

Hausdorff dimension strictly greater than one (see Theorem []) and she and Phil

Rippon showed that the packing dimension of such a Julia set is always equal to 2

(see Theorem ??). However, there do exist transcendental Julia sets that have both

Hausdorff and packing dimension equal to 1 ([27]).

The basic requirement is a function f ∈ B which has a single tract

Ω = {z : |f(z)| > 1},
that approximates a half-strip, as illustrated in Figure 6

expτ

Figure 6. A function with small Julia set.

Lemma 4.7.1. Suppose f ∈ B and suppose S(f) ⊂ DR = {z : |z| < R}. Let
Ω0 = Ω = {z : |f(z)| > R} and Ωn+1 = f−1(Ωn). Assume Ω0 ⊂ f(Ω0). Suppose that

for some n ≥ 0, Ωn can be covered by a collection of sets {Dk} so that
n∑

k=1

diam(Dk)
1+δ <∞,(27)
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and suppose that for any set D ⊂ Ωn,
∑

diam(f−1(D)1+δ <
1

2
diam(D)1+δ,(28)

where the sum is over all connected components of f−1(D). Then dim(J (f)) ≤ 1+δ.

Proof. The assumption that Ω0 ⊂ f(Ω0) implies the (open) complement of Ω0

is mapped into itself and thus all iterates avoid Ω0. Thus by Montel’s theorem the

iterates of f are normal here and so the complement of Ω0 are in the Fatou set. Thus

any point that eventually iterates out of Ω0 is in the Fatou set, so the Julia set is

contained in E = ∩nΩn.

If Ωn covered by a collection of sets, then Ωn+1 is covered by the collection of all

pre-images of these sets. The two conditions in the lemma implies 1 + δ Hausdorff

content of Ωn tends to zero and hence E has 1 + δ content zero. Thus dim(J (f)) ≤
dim(E) ≤ 1 + δ. �

We will construct a f ∈ B so that for any disk D = D(z, r) ⊂ Ω0 = {z : |z| > R}
|z| > 2, r < 1 has f -preimages {Dj}∞−∞ in Ω0 that satisfy

diam(Dj) = O

(
diam(D)

|z|(log |z|+ |j|)

)
.(29)

Suppose this is true. Then the pre-image of D under the map fK(z) = f(z)−K

is the same as the preimage of D + K under the map f , and hence its preimages

satisfy

diam(Dj) = O

(
diam(D)

K(1 + |j|)

)
.(30)

Thus if we fix δ > 0 and then choose K large enough,
∑

j

diam(Dj)
1+δ ≤ Cdiam(D)1+δ ·

∑

j

1

(|z|(logK + |j||))1+δ

≤ diam(D)1+δ

δ|z|1+δ(logK)δ

≤ 1

8
diam(D)1+δ,

if |z| is large enough, depending on δ. Thus we can replace each set Dj by a disk

with at most twice the diameter and get a collection of disks that covers f−1
K with a

Hausdorff sum that is at most half of what we started with.
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We start by covering Ω0 by disks {D(m, 2)}. The preimages satisfy
∑

m∈N

∑

j∈Z
diam(Dj,m)

1+δ ≤ C
∑

m

m−1−δ
∑

j

(logm+ j)−1−δ

≤ C
∑

m

m−1−δ 1

δ
(logm)−1−δ

≤ C

δ
(logK)−δ

∑

m

m−1−δ

≤ C

δ2
(logK)−δ.

Thus Ω1 is covered by a collection of domains with finite (1 + δ)-sum. By Lemma

4.7.1, this completes the proof, except for constructing a function f that satisfies

(30).

Let

F (z) = exp(exp(z)),

for z ∈ S = {x + iy : x > 0, |y| < π} and set it to zero outside the half-strip S. On

the vertical side of the half-strip,

F (z) = F (0 + iy) = exp(exp(iy)) = exp(cos y + i sin y)

is bounded. On the top and bottom horizontal sides

F (z) = F (x± iπ) = exp(exp(x± iπ)) = exp(− exp(x))

it tends to zero very quickly as xր ∞. In fact, for 3
4
π < |y| < 5

4
π, we have

|F (z)| = exp(ℜ(exp(x(cos y + i sin y))) = exp(exp(x cos y)) ≤ exp(exp(−x/
√
2)).

Let ϕ be a positive, smooth, radial bump function of total mass 1 and supported

in D(0, π/4). Then the convolution of F and ϕ is a smooth function G that is

zero outside a π/4-neighborhood of S, is equal to F inside the smaller half-strip

S ′ = {x + iy : x > π/4, |y| < 3
4
π}. In particular, G is holomorphic except on a π/4

neighborhood of ∂S and its ∂ derivative decays rapidly near infinity. Thus

H(z) =
1

2πi

∫∫

C

∂G

w − z
dxdy,

is a smooth bounded function such that ∂H = ∂G. Hence f(z) = G(z) − H(z) is

holomorphic on the whole plane and we claim it has the desired properties.
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Fix a constant M so that supS′′ |H|, supS′′ |H ′| ≤ M . Fix a disk D = D(w, r) ⊂
S ∩ D

c

R. If f(z) ∈ D then F (z) = G(z) ∈ D′ = D(w, r +M). Thus each component

W of f−1(D) is contained in a component W ′ of F−1(D′). Moreover, on W ′ the

derivatives |f ′| and |F ′| differ by at most M , and we can choose R so large that

|f ′/F ′| = O(1) on W ′. This implies that diam(W ) ≃ r/|w|. Thus
∑

W∈f−1(D)

diam(W )1+δ ≤ C
∑

jZ

r1+δ

|z|)1+delta(log |z|+ 2πj)1+δ

≤ C

δ
|z|−1−δ(log |z|)−δr1+δ

≤ C

δ

r1+δ

|R|1+δ(logR)δ .

This is ≤ 1
2
r1+δ if R is large enough, depending on C and δ.

Given R, we can choose K so large that fK maps By definition, f maps the left

half-plane into a bounded set, so for K large enough fK = f − K maps the left

half-plane into itself. Thus the left half-plane is in the Fatou set. Similarly, given

R < ∞, we can choose K large enough so that the disk DR is mapped into the left

half-plane (and hence is in the Fatou set too). Thus it suffice to cover Ω0 \ DR. If

we cover this part of Ω0 by disks {D(n, 2)}∞n=R, then the pre-images of Dn = D(n, 2)

satisfy
∑

W∈f−1(Dn)

diam(W )1+δ ≤ C

δ
|n|−1−δ

≤ C

δ
|R|−δ.

4.8. Dimension of bounded orbits

Recall that K(f) denotes the points with bounded orbits.

Theorem 4.8.1 (Stallard). If f ∈ B then dim(K(f) ∩ J (f)) > 1.

In particular, dim(J (f)) > 1 for any f ∈ B. Before beginning the proof we need

to gather some relevant facts. The following is simple and well known fact from real

analysis.

Lemma 4.8.2. If h is increasing on [r,∞) and δ > 0, then

h′(x) ≤ h(x)1+δ,
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except on a set Eδ of Lebesgue measure at most h(r)−δ/δ.

Proof. If E is the set where this fails, then

|E| =
∫

E

dx ≤
∫

E

h′(x)

h(x)1+δ
dx ≤

∫ ∞

r

h′(x)

h(x)1+δ
dx =

1

δh(r)δ
.

�

We will apply the lemma in the following situation. Let f ∈ B, let F : Ω → Hr

be f in logarithmic coordinates and set

h(x) = max{ℜF (x+ iy) : y ∈ R}.

Let zx ∈ Ω be a point where this maximum is attained. Note that h is increasing; we

shall apply the previous lemma to h in order to prove:

Lemma 4.8.3. Fix f ∈ B. If x ∈ R is large enough and

D = D(F (zx),
1

4
h(x)),

then there is a collection of subdisks {Dj} so that

∑

j

diam(Dj) ≥ C
|h(x)|3
h′(x)

,

and F 2 is a conformal map from a domain Wj onto D where 2Dj ⊂ Wj ⊂ 10Dj. In

particular, if δ > 0 and x is not in the exceptional set Eδ from Lemma 4.8.2, then
∑

j

diam(Dj) ≥ C(δ)diam(D)2−δ.

Proof. By Koebe’s 1
4
-theorem, since 2D ⊂ Hr, D has an F -preimage W in Ω

that satisfies

diam(W ) ≃ diam(D)/h′(x) ≃ h(x)/h′(x).

Let Wk = W + 2πik. Then the F -preimages of these are regions Vk in Ω arranged in

a “chain” tending to ∞ in both directions so that

diam(Vk) ≃ dist(Vk, Vk+1)diam(W ) ≃ dist(Vk, Vk+1)h(x)/h
′(x).

We now replace each Vk by a sub-disk Dk of comparable size (we can do this by the

distortion estimates for conformal maps since Vk is an image of a disk under a map

that is conformal on the double of that disk).

FIGURE OF PREIMAGES and CHAIN



4.9. PACKING DIMENSION IS ALWAYS 2 91

Since the chain crosses a square S ⊂ D of comparable size,

∑

Dk⊂ 1

2
D

diam(Dk) ≥ diam(D) · h(x)
h′(x)

≃ h(x)2

h′(x)
.

Translating the collection {Dk ⊂ 1
2
D} vertically by 2πij, |j| ≤ 1

2
diam(D), gives a

collection of disks with the desired properties. �

Proof of Theorem 4.8.1. Take x so large that the disks given by Lemma 4.8.3

satisfy ∑

j

diam(Dj) ≥ C(δ)diam(D)2−δ > 10diam(D).

Then, by continuity, there is some s > 1 so that
∑

j

diam(Dj)
s ≥ diam(D)s.

This defines an iterated function system whose limit set has dimension ≥ s,

consists of points with bounded orbits in the Julia set (by Corollary 4.2.4). �

4.9. Packing dimension is always 2

Suppose f is entire and e is its exceptional point (if one exists). Recall that this

means that the iterates of any neighborhood of J (f) eventually covers J (f) \ {e}.

Lemma 4.9.1. Suppose f a transcendental entire function and there are compact

sets Kn ⊂ J (f) \ {e} with Mdim(Kn) ր α. Then Pdim(J (f) ≥ α.

Proof. If V is a bounded open set that hits the Julia set, then fn(V ) eventually

covers Kn and hence Mdim(J (f)∩V ≥ Mdim(Kn). Thus Pdim(J (f)) ≥ Mdim(Kn)

by Lemma A.3.2 in the Appendix. The result now follows by taking nր ∞. �

The following is due to Rippon and Stallard in []. It has been generalized to larger

classes of functions by Bergweiler [].

Theorem 4.9.2. If f ∈ B then Pdim(J (f)) = 2.

Proof. By Lemma 4.9.1, it suffices to construct a compact subsets of J (f)

that have upper Minkowski dimension as close to 2 as we wish and that avoid the

exceptional point.
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Fix δ > 0. We will build a subset that has upper Minkowski dimension ≥ 2
1+δ

.

As before, let F : Ω → Hr be f in logarithmic coordinates. Let

hn(x) = max{ℜF n(x+ iy) : y ∈ R}.
If we apply Lemma 4.8.2 to each function, we see that the exceptional sets have total

measure
1

δ

∑

n

hn(r)
−δ,

which is finite, since the maximum modulus of fn increases at least like an iterated

polynomial. Thus we can choose an x so that

(hn)
′(x) ≤ (hn(x)))

1+δ,(31)

for every n. Let zn = x + iyn be the point where ℜF n(x + iy) attains it maximum

on the vertical line through x. Let Sn ⊂ Hr be a square centered at F n(zn) with side

length 1
4
hn(x). Then there is a univalent branch of F−N that maps Sn conformally

to a subdomain Wn of Ω that contains zn. Note that

diam(W ) ≃ hn(x)/(F
n)′(zn) & hn(x)/h

′
n(x).

If we subdivide Sn into ≃ hn(x)
2 subsquares of side-length 2π then each of them

hits the escaping set I(F ) (by Theorem 1.7.1, I(f) hits every large circle centered at

the origin, so I(f) hits every vertical line far enough to the right). Thus W contains

hn(x)
2 subdomains each of diameter & 1/h′n(x) and each hitting I(F ). Thus using

the definition of upper Minkowski dimension and (31),

Mdim(I(f) ∩D(z1, 2π) ≥ lim sup
n→∞

log hn(x)
2

log h′n(x)

≥ 2 lim sup
n→∞

log hn(x)

log(hn(x))1+δ

=
2

1 + δ

Thus J (f) ⊃ I(f) has packing dimension at least 2/(1 + δ). Since this holds for any

δ > 0, we see that Pdim(J (f)) = 2. �

Later we shall prove that the fast escaping set A(f) contains an unbounded com-

ponent and hence also hits every large enough circle centered at the origin. Thus the

proof above can be repeated to show that A(f) also has packing dimension 2. This

was the result obtained by Rippon and Stallard in [].
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4.10. Dimension of slowly escaping points

Theorem 4.10.1 (Bergweiler and Peter). Let f ∈ B and suppose h is a guage

function such that

lim
t→0

log h(t)

log t
= 1.

Let {pn} be a sequence of positive numbers tending to ∞ and define

I(f, {pn}) = {z : |fn(z)| ≤ pn∀n}.

Then Hh(I(f, {pn})) = ∞. In particular, Hh(I(f)) = ∞ and dim(I(f, {pn})) ≥ 1.

Proof. So if x1 is large enough so that E ∩ [x1,∞) has measure ≤ 1/2, we can

inductively find xk+1 ∈ [h(xk), h(xk) + 1] \ E so that xk ր ∞ and define disks

Dk = D(zxk ,
1

4
xk).

The argument in the proof of Theorem 4.8.1 shows that each of these disks contains

subdisks that define an iterated function scheme that has an invariant Cantor set of

some dimension sk > 1. Moreover, each Dk contains a subregion that is conformally

mapped by F onto Dk+1 (in fact, taking vertical translations, there are about xk such

subdomains).

Run the iterated function scheme associated to D1 for N1 steps and then switch

to D2 for n2 steps, and so on. In the limit we obtain a limiting Cantor set that has

dimension ≥ 1, and we can arrange for infinite h-measure by waiting long enough

(depending on h) before performing each switch. �

Theorem 4.10.2 (Bergweiler and Peter). Suppose h is a guage function such that

lim
t→0

h(t)

t
= 0.

Then, using the notation of Theorem ??, there exists f ∈ B such that Hh(I(f) \
I(f, {pn})) = 0.

Thus we can find guage functions h between t and t1+ǫ for which every function

in B has an infinite h-measure set of slow escaping points, but some functions have

a zero h-measure set of “quickly escaping” points.
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4.11. I(ez) is connected

The following result of Lasse Rempe-Gillen illustrates a “exotic” planar sets arise

naturally in the of the dynamics of the exponential function.

Theorem 4.11.1 (Rempe-Gillen, [111]). I(ez) is connected.

Proof. �

The connectedness of the escaping set for other exponential functions has been

proven by Rempe-Gillen [112] and Jarque [73]. In [96] Mihaljević-Brandt shows the

escaping set is disconnected for various examples including the map π sinh z.



CHAPTER 5

Extremal Length

Chapter 1 dealt with hyperbolic distance, one of the most important conformal

invariants. In this chapter we introduce another conformal invariant of equal im-

portance: extremal length. The basic idea is to consider a positive function ρ on a

domain Ω. We think of ρ as analogous to |f ′| where f is a conformal map on Ω. Just

as the image area of a set E can be computed by integrating
∫
E
|f ′|2dxdy, we can

use ρ to define areas by
∫
E
ρ2dxdy. Similarly, we can define lengths of curves in Γ by∫

γ
ρds. The modulus of a family of paths Γ is defined by minimizing the ρ-area of

Ω over all ρ’s which give every path in Γ length at least 1. The extremal length of

the path family is the reciprocal of its modulus (it is sometimes more convenient to

consider one of these quantities and sometimes more convenient to use the other).

The importance of modulus and extremal length is that it has a geometric def-

inition and can often be estimated in situations where other conformal invariants

cannot be directly computed. By conformally mapping to a situation (such as the

unit disk) where different conformal invariants can be compared by explicit formulas,

we can obtain geometrically based estimates for other conformal invariants, such as

the Ahlfors distortion theorem for harmonic measure.

After discussing some of the basic properties and examples related to extremal

length, we use it to prove Caratheodory’s boundary extension theorem for conformal

maps, and a more technical looking analog that we will need later when studying

general quasiconformal mappings. In this chapter we introduce the definition of

quasiconformal map, but only prove that “nice” K-quasiconformal maps (e.g., diffeo-

morphisms and certain piecewise linear maps) preserve extremal length up to factor

of K. This suffices for the final result in this chapter: showing that the iterate of a

Fatou component of an entire function is a Fatou component with at most one point

omitted.

95
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5.1. Quadrilaterals and annuli

A conformal invariant is a number which is invariant under conformal mappings.

We are often in the situation where we wish to know the value of some conformal

invariant (e.g., that harmonic measure of the edge of a polygon) and are able to

estimate some other conformal invariant (e.g., the modulus of some path family in

the polygon). Using a known relation between the invariants, we can turn an estimate

for one into an estimate for the other.

Probably the most important example of a conformal invariant is the (conformal)

modulus.

Suppose Γ is a family of locally rectifiable paths in a planar domain Ω and ρ is a

non-negative Borel function on Ω. We say ρ is admissible for Γ if

ℓ(Γ) = ℓρ(Γ) = inf
γ∈Γ

∫

γ

ρds ≥ 1,

and define the modulus of Γ as

Mod(Γ) = inf
ρ

∫

M

ρ2dxdy,

where the infimum is over all admissible ρ for Γ. This is a well known conformal

invariant whose basic properties are discussed in many sources such as Ahlfors’ book

[3]. Its reciprocal is called the extremal length of the path family and is denoted

λ(Γ) = 1/M(Γ).

Modulus and extremal length satisfy several properties that are helpful in estimating

these quantities.

Lemma 5.1.1 (Conformal invariance). If F is a family of curves in a domain Ω

and f is a one-to-one analytic mapping from Ω to Ω′ then M(F) =M(f(F)).

Proof. This is just the change of variables formulas
∫

γ

ρ ◦ f |f ′|ds =
∫

f(γ)

ρds,

∫

Ω

(ρ ◦ f)2|f ′|2dxdy =

∫

f(Ω)

ρdxdy.

These imply that if ρ ∈ A(f(F)) then |f ′| · ρ ◦ f−1 ∈ A(f(F)), and thus M(f(F)) ≤
M(F). We get the other direction by considering f−1. �
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Lemma 5.1.2 (Monotonicity). If F1 and F2 are collections such that every γ ∈ F1

contains some curve in F2 then M(F1) ≤M(F2) and λ(F1) ≥ λ(F2).

The proof is immediate since A(F1) ⊃ A(F2).

Lemma 5.1.3 (Grötsch Principle). If F1 and F2 are families of curves in disjoint

domains then M(F1 ∪ F2) =M(F1) +M(F2).

Proof. Suppose ρ1 and ρ2 are admissible for F1 and F2. Take ρ = ρ1 and ρ = ρ2

in their respective domains. Then it is easy to check that ρ is admissible for F1 ∪F2

and
∫
ρ2 = ρ21+

∫
ρ22 so domains then M(F1 ∪F2) ≤M(F1)+M(F2). By restricting

an admissible metric ρ to each domain, a similar argument proves the other direction.

�

Lemma 5.1.4. [Series Rule] If F1 and F2 are families of curves in disjoint domains

and every curve of F contains both a curve from F1 and F2, then λ(F) ≥ λ(F1) +

λ(F2).

Proof. If ρ1 ∈ A(Fi) for i = 1, 2, then ρ = tρ1 + (1 − t)ρ2 is admissible for F .

Since the domains are disjoint we may assume ρ1ρ2 = 0 everywhere so taking For

0 ≤ t ≤ 1, take

= t2ρ1 + (1− t2)ρ2.

it is easy so see that this is admissible and since the domains are disjoint we may

assume ρ1ρ2 = 0. Integrating ρ2 then shows

M(F) ≤ t2M(F1) + (1− t2)M(F2),

for each t. To find the optimal t set a = M(F1), b = M(F2), differentiate the right

hand side above, and set it equal to zero

2at− 2b(1− t) = 0.

Solving gives t = b/(a+ b) and plugging this in above gives

M(F) ≤ t2a+ (1− t2)b =
b2aa2b

(a+ b)2

=
ab(a+ b)

(a+ b)2
=

ab

a+ b
=

1
1
a
+ 1

b
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or
1

M(F)
≥ 1

M(F1)
+

1

M(F2)
,

which, by definition, is the same as

λ(F) ≥ λ(F1) + λ(F2),

�

Given a Jordan domain Ω and two disjoint closed sets E,F ⊂ ∂Ω, the extremal

distance between E and F (in Ω) is the extremal length of the path family in Ω

connecting E to F (paths in Ω that have one endpoint in E and one endpoint in F ).

The series result is a sort of “reverse triangle inequality” for extremal distance. See

Figure 1.

Ω1 Ω 2X Y Z

Figure 1. The series rule says that the extremal distance from X
to Z in the rectangle is greater than the sum the extremal distance
from X to Y in Ω1 plus the extremal distance from Y to Z in Ω2. The
bottom figure show a more extreme case where the extremal distance
between opposite sides of the rectangle is much larger than either of
the other two terms (that these terms are small will follow from later
estimates, e.g. Lemma 5.1.13)

Next we actually compute the modulus of some path family. The fundamental

example is to compute the modulus of the path family connecting opposite sides of a
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a× b rectangle; this serves as the model of almost all modulus estimates. So suppose

R = [0, b] × [0, a] is a b wide and a high rectangle and Γ consists of all rectifiable

curves in R with one endpoint on each of the sides of length a. Then each such curve

has length at least b, so if we let ρ be the constant 1/b function on R we have
∫

γ

ρds ≥ 1,

for all γ ∈ Γ. Thus this metric is admissible and so

Mod(Γ) ≤
∫∫

T

ρ2dxdy =
1

b2
ab =

a

b
.

a

b
Figure 2. The modulus of the path family connecting the two verti-
cal sides of length a is a/b. Thus if a≪ b the family has small modulus
and large extremal length.

To prove a lower bound, we use the well known Cauchy-Schwarz inequality:

(

∫
fgdx)2 ≤ (

∫
f 2dx)(

∫
g2dx).

To apply this, suppose ρ is an admissible metric on R for γ. Every horizontal segment

in R connecting the two sides of length a is in Γ, so since γ is admissible,
∫ b

0

ρ(x, y)dx ≥ 1,

and so by Cauchy-Schwarz

1 ≤
∫ b

0

(1 · ρ(x, y))dx ≤
∫ b

0

12dx ·
∫ b

0

ρ2(x, y)dx.

Now integrate with respect to y to get
∫ a

0

1dy ≤ b

∫ a

0

∫ b

0

ρ2(x, y)dxdy,
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or
a

b
≤
∫∫

R

ρ2dxdy,

which implies Mod(Γ) ≥ b
a
. Thus we must have equality.

Another useful computation is the modulus of the family of path connecting the

inner and out boundaries of the annulus A = {z : r < |z| < R}. An argument similar

to the one above shows that the modulus of this family is 1
2π

log R
r
.

Lemma 5.1.5. If A = {z : r < |z| < R} then the modulus of the path family

connecting the two boundary components is 1
2π

log R
r
. More generally, if F is the

family of paths connecting rT to a set E ⊂ RT, then M(F) ≥ |E| log R
r
.

Proof. By conformal invariance, we can rescale and assume r = 1. Suppose ρ is

admissible for F . Then for each z ∈ E ⊂ T,

1 ≤ (

∫ R

1

ρdr)2 ≤ (

∫ R

1

dr

r
)(

∫ R

1

ρ2rdr) = logR

∫ R

1

ρ2rdr

so
∫ 2π

0

∫ R

1

ρ2rdrdθ ≥
∫

E

∫ R

r

ρ2rdrdθ

≥ |E|
∫ R

1

ρ2rdr

≥ |E| logR

�

Given a Jordan domain Ω and two disjoint closed sets E,F ⊂ ∂Ω, the extremal

distance between E and F (in Ω) is the extremal length of the path family in Ω

connecting E to F (paths in Ω that have one endpoint in E and one endpoint in

F ). The previous result says that the extremal distance between the two boundary

components of a round annulus is 1
2π

log R
r
.

When we discuss the modulus of an annulus there are two obvious possible path

families we might mean: the family connecting the two boundary components or the

family separating the components. See Figures 3 and 4.
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Figure 3. Path families that connect boundary components of an
annulus and separate the boundary components. We define the mod-
ulus of an annulus to be the modulus of separating family (this equals
the extremal length of the connecting family).

Figure 4. The annulus on the left has “big” modulus and one on the
right has “small” modulus (these are moduli of the path families sep-
arating the boundaries). Equivalently, the extremal distance between
the boundary components on the left is large and is small on the right
(these are extremal lengths of path families connecting the boundaries).

By M(A) we shall mean the modulus of the family separating the components.

Thus a “thick” annulus geometrically will have large modulus. See Figure ??. Sim-

ilarly, the modulus M(Q) of a quadrilateral Q with a designated pair of opposite

sides will be the modulus of the path family that separates the two sides. This in a

quadrilateral of large modulus, the designated sides are “far apart” from each other

relative to their diameters.

If E,F ⊂ ∂Ω and F is the family of path connecting E to F (i.e., all paths in

Ω with one endpoint in E and the other endpoint in F ), there is a reciprocal family

F∗ consisting of generalized paths that separate E and F . By a “generalized path”

we mean a finite union γ of rectifiable curves {γj} so that each component γj has its
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endpoints on ∂Ω \ (E ∪ F ) and so that any path connecting E and F must intersect

γ. See Figure 5.

E

F

F

F

F

E

F

F

F

F

Figure 5. Definition of separating paths. Such a path can have a
single component (left) or multiple components (right).

Suppose Ω is a Jordan domain, E,F ⊂ ∂Ω, are each finite unions of closed

intervals and E ⊂ I and F ⊂ J where I, J are disjoint arcs of ∂Ω (we will assume

below that I and J were chosen to be minimal with this property). Using the Riemann

map, we can assume Ω = D and define u(z) on C \ (E ∪ F ) to the solution of the

Dirichlet problem with boundary values 0 on E and 1 on F . Then u is constant on

E and F and by symmetry has normal derivative zero on T \ (E ∪ F ) so that its

harmonic conjugate v has tangential derivative zero there, hence is constant one each

component of T \ (E ∪ F ). Thus f = u + iv is a holomorphic map of D to a 1 ×m

rectangle with horizontal slits removed, each corresponding to components of I \ E
and J \F . See Figure 6. By conformal invariance, the modulus of the path family F
that connects E and F is therefore m (review the proof given for a rectangle above

and note that it also works for a rectangle with horizontal slits removed). Similarly,

the modulus of the reciprocal family F∗ of generalized paths that separate E and F

is 1/m.

Obtaining an upper bound for the modulus of a path family usually involves

choosing a metric; every metric gives an upper bound. Giving a lower bound usually

involves a Cauchy-Schwarz type argument, which can be harder to do in general

cases. However, in the special case of a path family connecting sets E,F ⊂ ∂Ω, a

lower bound for the modulus can also be computed by giving a upper bound for the

reciprocal separating family. Thus estimates of both types can be given by producing

metrics (for different families) and this is often the easiest thing to do.
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E

F

F

F

F

E

F

F

F

F

E

F

F

F

F

Figure 6. A Jordan region with separated sets E,F can be conformal
mapped to slit rectangle in which E and F map to opposite sides. Such
a path can have a single component (left) or multiple components
(right).

It is clear that if Ω ⊂ C is doubly connected and A = {1 < |z| < r} ⊂ Ω, then

M(Ω) ≥M(A) = 1
2π

log r. The following useful result is almost a converse of this:

Lemma 5.1.6. For each m > 0 there is a φ(m) > 0 so that if Ω is a topological

annulus surrounding 0 with modulus ≥ φ(m), then it contains a round annulus with

modulus m.

Proof. We prove the converse: if one complementary component of Ω contains

0 and 1 and the other contains a point z with |z| = r = e2πm ≥ 1, then the modulus

of Ω is less than some number φ(r).

r

r−1/2

r+1/2

0 1

Figure 7. Proof of Lemma 5.1.6.

Define a metric by ρ = 1 on A1 = {z : 1
2
< |z| < r + 1

2
} and let Γ be the

path family in Ω separating the two boundary components. We want to show ρ is

admissible for Γ. Every such path in Γ contains a point in A0 = {z : 1 < |z| < r}. If
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γ contains a point in {|z| ≤ 1/2} then γ ∩A1 has length at least 1, so it has ρ-length

at least 1. Similarly if γ contains a point in {|z| ≥ r+ 1
2
}. Finally, if γ remains inside

A1 and it must have length ≥ π and hence has length (and ρ-length) greater than

1 Thus ρ is admissible. Since
∫
ρ2dxdxy ≤ area(A1) ≤ π(r + 1

2
)2. Thus the lemma

holds with φ(m) = π(e2πm + 1
2
)2 (this is not sharp). �

Lemma 5.1.7. Suppose A = U\K ⊂ C is a topological annulus. Then 4diam(K)2 ≤
area(U)/M(A).

Proof. Take ρ ≡ 1/2diam(K). This is an admissible metric for the path family

separating K from ∂U , so

M(A) ≤ 1

4
diam(K)−2area(A) ≤ 1

4
diam(K)−2area(U),

as desired. �

The following result is taken from Milnor’s book ([98], Corollary B.9) where he

credits the result to McMullen.

Lemma 5.1.8. Suppose A = U \K ⊂ C is a topological annulus. Then area(K) ≤
area(U)/(1 + 4πM(A)).

Proof. This uses the isoperimetric inequality that says a curve of length L can

enclose area at most L2/4π. Thus every curve that separates K from ∂U has length

at least C =
√

4πarea(K) and so ρ ≡ 1/C is an admissible metric for this path

family. Thus

M(A) ≤
∫

A

C−2dxdy =
area(A)

4πarea(K)
,

or

area(K) ≤ area(A)

4πM(A)
M =

area(U)− area(K)

4πM(A)
,

or

area(K) ≤ area(U)

1 + 4πM(A)
.

�

Corollary 5.1.9. With notation as above, area(K) ≤ area(U) exp(−4πM(A)).
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Proof. Using the conformal map to a round annulus we can cut A into n nested

annuli Aj = Uj \Kj, each with moduli M(A)/n. Applying the previous result we get

area(Kj) ≤ area(Kj−1)/(1 + 4πM(A)/n),

and hence

area(K) ≤ area(U)(1 + 4πM(A)/n)−n,

which implies the desired result when we take n→ ∞. �

Lemma 5.1.10. Suppose Ω ⊂ C is a topological annulus of modulus M whose

boundary consists of two Jordan curves γ1, γ2 with γ2 separating γ1 from ∞. Then

diam(γ1) ≤ (1− ǫ)diam(γ2) where ǫ > 0 depends only on M .

Proof. Rescale so diam(γ2) = diam(Ω) = 1 and suppose diam(γ1) > 1−ǫ. Then
there are points a ∈ γ1 and b ∈ γ2 with |a− b| ≤ ǫ. Let ρ be the metric on Ω defined

by ρ(z) = 1
|z−a| log(1/2ǫ) for ǫ < |z− a| < 1/2. Then any curve γ ⊂ Ω that separates γ1

and γ2 satisfies
∫
γ
ρds ≥ 1 and

∫
ρ2dxdy ≤ π

4
log−2 1

2ǫ
.

Thus the modulus of the path family separating the boundary components is bounded

above by the right hand side, and the modulus of the reciprocal family connecting the

boundary components is bounded below by π
4
log2 1

2ǫ
. Thus ǫ ≥ 1

2
exp(−

√
πM/4). �

Figure 8. Proof of Lemma 5.1.10.
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Lemma 5.1.11. Suppose Q ⊂ H is a quadrilateral with a pair of opposite sides

being intervals I, J ⊂ R. Let A be the topological annulus formed by taking Q ∪ I ∪
J ∪Q∗ (where Q∗ is the reflection of Q across R. Then M(A) = 1

2
M(Q).

Proof. If f : Q → R = [0, 1] × [0,m] is conformal with I, J mapping to the

horizontal sides of R, then g(z) = exp(πf(z)/m)) maps Q conformally to an half-

annulus in H with I, J mapping to intervals on R. By Schwarz reflection, this extends

to a conformal map of A to a round annulus with inner radius 1 and outer radius

exp(π/m), so M(A) = 1
2π

π
m

= 1
2m

= 1
2
M(Q). See Figure 9. �

Q
A

Figure 9. Reflecting the quadrilateral Q across the line gives an
annulus with half the modulus.

Corollary 5.1.12. If {Qk} are disjoint quadrilaterals in D \ {0}, such that

(1) 1
M

≤M(Qk) ≤M ,

(2) Qk separates Qk+1 from 0,

(3) a pair of opposite sides of Qk consist of arcs on T.

Then diam(Qk) = O(λk) for some λ < 1 that only depends on M .

Proof. Use reflection across the circle to turn each quadrilateral into an annulus

of comparable modulus and then apply Lemma 5.1.10. �

Lemma 5.1.13. Suppose Q is a quadrilateral with opposite pairs of sides E,F and

C,D. Assume

(1) E and F can be connected in Q by a curve of diameter ≤ ǫ,

(2) any curve connecting C and D in Q has diameter at least 1.

Then the modulus of the path family connecting E and F in Q is larger than M(ǫ)

where M(ǫ) → ∞ as ǫ→ 0.
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Q1

Q2

Q
3

0

Figure 10. Proof of Lemma 5.1.12 .

Proof. This is very similar to the proof of Lemma 5.1.10, so we only sketch it.

There is a segment (a, b) ⊂ Q with |a− b| ≤ ǫ and a ∈ E and b ∈ F . Define a metric

on Q by ρ(z) = 1
2
|z−a|−1/ log(1/2ǫ) for ǫ < |z−a| < 1/2. Any curve γ connecting C

and D must cross S and since γ has diameter ≥ 1 it must leave the annulus where ρ

is non-zero. As before this shows that the modulus of the path family in Q separating

E and F is small, hence the modulus of the family connecting them is large. �

E

F

C

D

Figure 11. Proof of Lemma 5.1.13.

In [60] Gehring and Hayman proved the following fundamental inequality that

says that the hyperbolic geodesic is (up to a constant factor) the most efficient way

to connect two points in a simply connected plane domain. The result has been

generalized in many directions (e.g., [35], [12], [67], [68], [71], [82], [139] ).
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Theorem 5.1.14 (Gehring-Hayman inequality). There is an absolute constant

C <∞ to that the following holds. Suppose Ω ⊂ C is hyperbolic and simply connected.

Given two points in Ω, let γ be the hyperbolic geodesic connecting these two points

and let γ′ be any other curve in Ω connecting them. Then ℓ(γ) ≤ Cℓ(γ′).

Proof. Let f : D → Ω be conformal, normalized so that γ is the image of

I = [0, r] ⊂ D for some 0 < r < 1. Without loss of generality we may assume

r = zN+1 for some N (if not we truncate a segment of the form J = [zN+1, r] and use

Koebe’s theorem to compare the lengths of f(J) and γ′ ∩ f(QN+1)). Let

Qn = {z ∈ D : 2−n−1 < |z − 1| < 2−n},

and let

γn = {z ∈ D : |z − 1| = 2−n},
zn = γn ∩ [0, 1).

Let Q′
n ⊂ Qn be the sub-quadrilateral of points with | arg(z − 1)| < π/6. Each

of these has bounded hyperbolic diameter and hence by Koebe’s theorem its image

is bounded by four arcs of diameter ≃ dn and opposite sides are ≃ dn apart. In

particular, this means that any curve in f(Qn) separating γn and γn+1 must cross

f(Q′
n) and hence has diameter & dn. Since Qn has bounded modulus, so does f(Qn)

and so Lemma 5.1.13 says that the shortest curve in f(Qn) connecting γn and γn+1

has length ℓn ≃ dn. Thus any curve γ in Q connecting γn and γn+1 has length at

least ℓn, and so

ℓ(γ) = O(
∑

dn) = O(
∑

ℓn) ≤ O(ℓ(γ′)).

�

5.2. Logarithmic capacity and Pfluger’s theorem

Suppose µ is a positive, finite Borel measure on R2 and define its potential function

as

Uµ(z) =

∫
log

2

|z − w|dµ(w).

and its energy integral by

I(µ) =

∫∫
log

2

|z − w|dµ(z)dµ(w) =
∫
Uµ(z)dµ(z).
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Figure 12. Proof of the Gehring-Hayman inequality.

We put the “2” in the numerator so that the integrand is non-negative when z, w ∈ T,

however, this is a non-standard usage.

Lemma 5.2.1. Uµ is lower semi-continuous, i.e.,

lim inf
z→w

Uµ(z) ≥ Uµ(w).

Proof. Fatou’s lemma. �

Lemma 5.2.2. If µn → µ weak*, then lim inf Uµn(z) ≥ Uµ(z).

Proof. If we replace ϕ = log 1
|z−w| by ϕr = max(r, ϕ) in the definition of U to

get U r, then weak convergence implies

lim
n
U r
µn(z) = U r

µ(z).

So for any ǫ > 0 we can choose N so that n > N implies

U r
µn(z) ≥ U r

µ(z)− ǫ.

As r → ∞ U r → U (by the monotone convergence theorem), so for r large enough

and n > N we have

Uµn(z) ≥ U r
µn(z) ≥ Uµ(z)− 2ǫ.

which proves the result. �

Lemma 5.2.3. If µn → µ weak*, then lim inf I(µn) ≥ I(µ).
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Proof. The proof is almost the same as for the previous lemma, except that

we have to know that if {µn} converges weak*, then so does the product measure

µn × µn. However, weak convergence of {µn} implies convergence of integrals of the

form ∫∫
f(x)g(y)dµn(x)dµn(y).

and Stone-Weierstrass theorem implies that the finite sums of such product functions

are dense in all continuous function on the product space. �

Suppose E is Borel and µ has its closed support inside E. We say µ is admissible

for E if Uµ ≤ 1 on E and we define the logarithmic capacity of E as

cap(E) = sup{‖µ‖ : µ is admissible for E}

and we write µ ∈ A(E). We define the outer capacity (or exterior capacity) as

cap∗(E) = inf{cap(V ) : E ⊂ V, V open}.

We say that a set E is capacitable if cap(E) = cap∗(E).

The logarithmic kernel can be replaced by other functions, e.g., |z − w|−α, and
there is a different capacity associated to each one. To be precise, we should denote

logarithmic capacity as caplog or logcap, but to simplify notation we simply use “cap”

and will often refer to logarithmic capacity as just “capacity”. Since we do not use

any other capacities in these notes, this abuse should not cause confusion.

Lemma 5.2.4. Compact sets are capacitable.

Proof. Since cap(E) ≤ cap∗(E) is obvious, we only have to prove the opposite

direction. Set Un = {z : dist(z, E) < 1/n} and choose a measure µn supported in Un

with ‖µn‖ ≥ cap(Un)− 1/n. Let µ be a weak accumulation point of {µn} and note

Uµ(z) =

∫
log

2

|z − w|dµ(w) ≤
∫

log
2

|z − w|dµn(w) ≤ 1

so µ is admissible in the definition of cap(E). Thus

cap(E) ≥ lim sup ‖µn‖ = lim cap(Un) = lim cap(Un) = cap∗(E).

�

We prove in Section A.7 that all Borel (indeed all analytic) sets are capacitable.

Sets of zero logarithmic capacity must be quite small.
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Lemma 5.2.5. Suppose E is compact and supports a positive measure µ so that

µ(D(x, r)) ≤ ϕ(r), where
∞∑

n=0

nϕ(2−n) <∞,

Then E has positive capacity.

Proof. The condition easily implies Uµ is bounded, hence supp(µ) has positive

capacity. �

Corollary 5.2.6. If E ⊂ T is compact and has positive Hausdorff dimension,

then it has positive capacity.

Proof. This follows from Frostman’s theorem (Theorem ??) since if dim(E) > 0

then E supports a measure that satisfies µ(D(x, r)) = O(rǫ) for some ǫ > 0 and∑
n 2

−ǫn <∞. �

Corollary 5.2.7. If E ⊂ T has positive Lebesgue measure, then it has positive

capacity. Moreover,

cap(E) ≤ 1

2 log 2 + 2 log 1
|E|
.

Proof. This is the case d = 1 of the previous corollary. The estimate follows

because if µ is Lebesgue measure restricted to E, then

Uµ(x) ≤ 2

∫ |E|/2

0

log
1

t
dt = 2(log

2

|E| −
1

2
|E|) ≤ 2 log 2 + 2 log

1

|E| .

�

It is clear from the definitions that it is monotone

E ⊂ F ⇒ cap(E) ≤ cap(F ).(32)

and satisfies the regularity condition

cap(E) = sup{cap(K) : K ⊂ E,Kcompact}.(33)

Lemma 5.2.8 (Sub-additive). For any sets {En},

cap(∪En) ≤
∑

cap(En).(34)
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Proof. We can write µ =
∑
µn as a sum of singular measures so that µn gives

full mass to En. We can then restrict each µn to a compact subset kn of En so that

µn(Kn) ≥ (1− ǫ)µ(En). These restrictions are admissible for each En and hence
∑

cap(En) ≥
∑

µn(Kn) ≥ (1− ǫ)
∑

µn(En) = (1− ǫ)‖µ‖.
Taking ǫ→ 0 proves the result. �

Corollary 5.2.9. A countable union of zero capacity sets has zero capacity.

Corollary 5.2.10. Outer capacity is also sub-additive.

Proof. Given sets {En} chose open sets Vn ⊃ En so that cap(Vn) ≤ cap∗(En) +

ǫ2−n. By the sub-additivity of capacity

cap∗(∪En) ≤ cap(∪Vn) ≤
∑

cap(Vn) ≤ ǫ+
∑

cap∗(En).

Taking ǫ→ proves the result. �

Although capacity informally “measures” the size of a set, it is not additive, and

hence not a measure.

EXERCISE: Show that if E,F ⊂ T are disjoint compact sets, each with positive

logarithmic capacity, then cap(E) + cap(F ) > cap(E ∪ F ).

Lemma 5.2.11. If E is compact, there exists an admissible µ that attains the

maximum mass in the definition of capacity and Uµ(z) = 1 everywhere on E, except

possible a set of capacity zero.

Proof. Let µn be a sequence of measures on E so that ‖µn‖ → cap(E) and

Un = Uµn is bounded above by 1 on E (such a sequence exists by the definition

of logarithmic capacity). By Lemma 5.2.2 Uµ is also bounded above by 1. Also,

by a standard property of weak* convergence ‖µ‖ ≤ lim inf ‖µn‖ = cap(E), and by

Lemma 5.2.3,

I(µ) ≤ lim inf I(µn) ≤ lim inf ‖µn‖ = cap(E),

so we must have I(µ) = cap(E).

First we claim that Uµ ≥ 1 except possibly on a set of zero capacity. Otherwise

let T ⊂ E be a set of positive capacity on which Uµ < 1− ǫ and let σ be a non-zero,

positive measure on T which potential bounded by 1. Define

µt = (1− t)µ+ tσ.
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This is a measure on E so that

I(µt) ≤
∫

log
1

|z − w|((1− t)dµ+ tdσ)((1− t)dµ+ tdσ)

≤ (1− t)2I(µ) + 2t

∫
Uµdσ + t2I(σ)

≤ I(µ)− 2tI(µ) + 2t

∫
Uµdσ +O(t2)

≤ I(µ)− 2tI(µ) + 2t(1− ǫ)‖σ‖+O(t2)

< I(µ),

if t > 0 is small enough. This contradicts minimality of µ.

Next we show that Uµ ≤ 1 everywhere on the closed support of µ. By the

previous step we know Uµ ≥ 1 except on capacity zero, hence except on a set of

µ-measure zero. If there is a point z in the support of µ such that Uµ(z) > 1, then

by lower semi-continuity of potentials, Uµ is > 1 + ǫ on some neighborhood of z and

this neighborhood has positive µ measure (since z is in the support of µ) and thus

I(µ) =
∫
Uµdµ > ‖µ‖, a contradiction. �

5.3. Pfluger’s theorem

Theorem 5.3.1 (Pfluger’s theorem). If 0 ∈ K ⊂ D is a compact connected set

with smooth boundary then there are constants C1, C2 depending only on K so that

following holds. For any E ⊂ T that is a finite union of closed intervals, t

1

cap(E)
+ C1 ≤ πλ(FE)) ≤

1

cap(E)
+ C2,

where FE is the path family connecting K to E.

Proof. Let K∗ be the reflection of K across T and let Ω be the connected

component of C \ (E ∪ K ∪ K∗) that has E on its boundary. Let h(z) be the

harmonic function in Ω with boundary values 0 on K and K∗ and boundary value 1

on E. By the usual theory of the Dirichlet problem, all boundary points are regular

(since all boundary components are non-degenerate continua) and hence h extends

continuously to the boundary with the correct boundary values. Moreover, h is

symmetric with respect to T, and this implies its normal derivative on T \ E is 0.



114 5. EXTREMAL LENGTH

Clearly |∇h| is an admissible metric for F , so

M(F) ≤ D(h) ≡
∫

D\K
|∇h|2dxdy.

We wish to show equality holds.

By Green’s theorem and the fact that h = 1 on E,
∫

∂K

∂h

∂n
ds = −

∫

T

∂h

∂n
ds = −

∫

E

∂h

∂n
ds = −

∫

E

h
∂h

∂n
ds.

and this∫

∂K

∂h

∂n
ds = −1

2

∫

E

∂(h2)

∂n
ds

=
1

2

∫

T\E

∂(H2)

∂n
ds+

1

2

∫

∂K

∂(h2)

∂n
ds+

1

2

∫

D\K
∆(h2)dxdy.

The first term is zero because h has normal derivative zero onT \ E, and hence

the same is true for h2. The second term is zero because h is zero on K and so
∂(h2)
∂n

h2 = 2h∂h
∂n

= 0. To evaluate the third term, we use the identity

∆(h2) = 2hx·hx+2h·hxx+2hy·hy+2h·hyy = 2h∆h+2∇h·∇h = 2h·0+2|∇h|2 = 2|∇h|2,

to deduce
1

2

∫

D\K
∆(h2)dxdy =

∫

D\K
∆(h2)dxdy.

Therefore,
∫

∂K

∂h

∂n
ds =

∫

D\K
∆(h2)dxdy.

Thus the tangential derivative of h’s harmonic conjugate has integral D(h) around

∂K and therefore 2πh/D(h) is the real part of a holomorphic function g on D \K.

Then f = exp(g) maps D\K into the annulus A = {z : 1 < |z| < exp(2π/D(h)) with

the components of E mapping to arcs of the outer circle and the components of T\E
mapping to radial slits. The path family F maps the the path family connecting the

inner and outer circles without hitting the radial slits, and our earlier computations

show the modulus of this family is 1/D(h).

Now we have to relate D(h) to the logarithmic capacity of E. Let µ be the

equilibrium probability measure for E. We know in general that Uµ = γ where

γ = 1/cap(E) almost everywhere on E (since sets of zero capacity have zero measure)

and is continuous off E, but since Uµ is harmonic in D and equals the Poisson integral
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of its boundary values, we can deduce Uµ = γ everywhere on E. Let v(z) = 1
2
(Uµ(z)+

Uµ(1/z). Then since ∂K has positive distance from 0 we there are constants C1, C2

so that

v + C1 ≤ 0, v + C2 ≥ 0,

on ∂K. Note that C1 ≥ −γ by the maximum principle and c2 ≥ 0 trivially. Thus by

the maximum principle,

v(z) + C1

γ + C1

≤ h(z) ≤ v(z) + C2

γ + C2

.

Since we have equality on E, we get on E

∂

∂n
(
v(z) + C1

γ + C1

) ≤ ∂h

∂n
≤ ∂

∂n
(
v(z) + C2

γ + C2

).

When we integrate over E, the middle term is −D(h) (we computed this above) and

by Green’s theorem

−
∫

E

∂

∂n

v(z) + C1

γ + C1

ds =
1

γ + C1

∫

D

∆(v)dxdy

=
π

γ + C1

because v is harmonic except for a 1
2
log 1

|z| pole at the origin. A similar computation

holds for the other term and hence

π

γ + C1

≤ D(h) =M(F) ≤ π

γ + C2

,

since D(h) =
∫
E
∂h
∂n
ds. Hence

γ + C1 ≤ πλ(F) ≤ γ + C2.

This completes the proof of Pfluger’s theorem for finite unions of intervals. �

Next we will prove Pfluger’s theorem holds for all compact subsets of T. First we

need a technical result that implies a continuity property of extremal length.

Lemma 5.3.2. Suppose E ∩ T is compact, K ⊂ D is compact, connected and

contains the origin and F is the path family connecting K and E in D \ K. Fix

an admissible metric ρ for F and for each z ∈ T, define f(z) = inf
∫
γ
ρds where the

infimum is over all paths in F that connect K to z. Then f is lower semi-continuous.
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Proof. Suppose z0 ∈ T and use Cauchy-Schwarz to get
∫ 2−n

2−n−1

[

∫

|z|=r
ρds]2dr ≤

∫ 2−n

2−n−1

∫ 2π

0

r2ρdrdθ

≤ π2−n
∫

2−n−1<|z−z0|<2−n

ρ2dxdy

= o(2−n).

Therefore we can choose circular cross-cuts {γn} ⊂ {z : 2−n−1 < |z − z0| < 2−n of D

centered at z0 and with ρ-length ǫn tending to 0. By taking s subsequence we may

assume
∑
ǫn <∞.

Now choose zn → z0 with

f(zn) → α ≡ lim inf
z→z0

f(z).

We want to show that there is a path connecting K to z0 whose ρ-length is as close to

α as we wish. Passing to a subsequence we may assume zn is separated from K by δn.

Let cn be the infimum of ρ-lengths of paths connecting γn and γn+1. By considering a

path connecting K to zn, we see that
∑n

1 ck ≤ f(zn), for all n and hence
∑∞

1 cn ≤ α.

Now choose ǫ > 0 and choose n so that we can connect K to zn (and hence to

γn) by a path of ρ-length less than α+ ǫ. We can then connect γn to z0 by a infinite

concatenation of arcs of γk, k > n and paths connecting γk to γk+1 that have total

length
∑∞

n (ǫn + cn) = o(1). Thus K can be connected to z0 by a path of ρ-length as

close to α as we wish. �

Corollary 5.3.3. Suppose E ⊂ T is compact and ǫ > 0. then there is a finite

collection of closed intervals F so that E ⊂ F and

λ(FE) ≤ λ(FF ) + ǫ.

Proof. By Lemma 5.3.2,

V = {z ∈ T : f(z) > r = (
M(FE) + ǫ

M(FE) + 2ǫ
)1/2},

is open, and therefore we can choose a set F of the desired form inside V . Then ρ/r

is admissible for FF , so

M(FF ) ≤
∫
(
ρ

r
)2dxdy =

M(FE) + ǫ

M(FE) + 2ǫ

∫
ρ2dxdy ≤M(FE) + ǫ.

Thus an inequality in the opposite direction holds for extremal length. �
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Corollary 5.3.4. Pfluger’s theorem holds for all compact subsets of T.

Proof. Suppose Eis compact and choose sets En ց E that are finite unions of

closed intervals. We have proven both

λ(FEn
) → λ(FE),

and

cap(En) → cap(E),

the inequalities in in Pfluger’s theorem extend to E. �

5.4. Estimates of Ahlfors and Beurling

The usefulness of extremal length is its ability to estimate a conformal invariant

in terms of geometry (length and area). Using extremal length we can estimate loga-

rithmic capacity, and logarithmic capacity bounds Lebesgue measure, and Lebesgue

measure on the disk corresponds to harmonic measure on a simply connected domain.

More precisely,

Corollary 5.4.1. Suppose Ω is a Jordan domain, z0 ∈ Ω with dist(z0, ∂Ω) ≥ 1

and E ⊂ ∂Ω. Let F be the family of curves in Ω which separates D(z0, 1/2) from

E. Then ω(z0, E,Ω) ≤ C exp(−πM(F)). If E ⊂ ∂Ω is an arc then the inequality is

actually a similarity.

One of the most famous and most useful applications of this idea is

Corollary 5.4.2 (Ahlfors distortion theorem). Suppose Ω is a Jordan domain,

z0 ∈ Ω with dist(z0, ∂Ω) ≥ 1 and x ∈ ∂Ω. For each 0 < t < 1 let ℓ(t) be the length of

Ω ∩ {|w − x| = t}. Then there is an absolute C <∞, so that

ω(z0, D(x, r),Ω) ≤ C exp(−π
∫ 1

r

dt

ℓ(t)
).

Proof. Let K be the disk of radius 1/2 around z0 and let F be the family of

curves in Ω which separate D(x, r) ∩ ∂Ω from K. Let F1 ⊂ F be the collection of

curves of the form

Lt = Ω ∩ {|w − x| = t}.
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if ρ is admissible for F then it is admissible for F1 and hence

1 ≤
∫

Lt

ρds ≤ (

∫

Lt

ρ2ds)ℓ(t),

so ∫ 1

r

∫

Lt

ρ2dsdt ≥
∫ 1

r

dt

ℓ(t)
.

This proves

M(F) ≥
∫ 1

r

dt

ℓ(t)
,

which proves the result by the previous corollary. �

For an alternate version of this using line segments instead of circular arcs, see

Exercise ??.

Corollary 5.4.3 (Beurling’s estimate). There is a C <∞ so that if Ω is simply

connected, z ∈ Ω and d = dist(z, ∂Ω) then for any 0 < r < 1 and any x ∈ ∂Ω,

ω(z,D(x, rd),Ω) ≤ Cr1/2

Proof. Apply Corollary 5.4.2 at x and use θ(t) ≤ 2πt to get

exp(−π
∫ d

rd

dt

θ(t)t
) ≤ C exp(−1

2
log r) ≤ C

√
r.

�

An important consequence of the this result is that harmonic measure on a simply

connected domain must give zero measure to any set of Hausdorff dimension less than
1
2
. This was the first in a chain of results on planar harmonic measure that eventually

led to Makarov’s stunning result that harmonic measure for a planar simply connected

domain is always one dimensional, i.e., it gives zero measure to any set of dimension

< 1 but always gives full measure to some set on dimension = 1. See Makarov’s

paper[88] (and [?], [59] for surveys of developments since Makarov’s original result).

The following version of Beurling’s theorem will be useful later.

Lemma 5.4.4. Suppose U is simply connected, K is compact, non-trivial and

connected, and f : U → V = C \ V is holomorphic. Fix x ∈ K and r > 0 and set

Er = {w ∈ ∂U : |f(w)− x| < r}. Then

ω(Er, z0, U \ Er) ≤ max(1, Cr1/2),
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where C depends only diam(K) and a lower bound for dist(f(z0), K).

Proof. Let v(z) = ω(D(x, 2r), z, V ) and z1 = f(z0). By Beurling’s theorem

v(z1) ≤ Cr1/2, where C depends only on lower bounds for diam(K) and dist(z1, K).

Also, v > c > 0 on D(z, r), since ω(z,D(x, 2r), V ), is bounded away from zero on

D(x, r) ∩ V . Thus u(z) = u(f(z)) is harmonic in U ,

u(z0) = v(z1) ≤ Cr1/2,

and u(z) > c on Er. Thus

ω(z0, Er, U \ Er) ≤
1

c
Cr1/2.

�

The following is a stronger version of Ahlfors’ estimate, and is proved by different

techniques. We shall not give a proof here; see Appendix G of [59].

Theorem 5.4.5 (Carleman’s estimate). Let Ω ⊂ C be a domain and let

Ωx = Ω ∩ {y : x+ iy ∈ Ω}
be the intersection of Ω with the vertical line through x. Let Eb = ∂Ω∩{x+iy : x ≥ b}.
Suppose each set Ωx has length less than M and let ℓ(x) denote the length of the

longest segment in Ωx. Suppose z = a+ iy ∈ Ω, d = dist(z, ∂Ω) and b > a. Then

ω(a+ iy, Eb,Ω) ≤
2πd

9M2

∫ b

a

exp(2π

∫ t

a

dx

ℓ(x)
)dt)−1/2.

This result is very helpful when considering the harmonic measure of a boundary

set that can be approached in several different ways through the domain Ω, e.g., see

Figure 13. We sketch the proof of Carleman’s inequality as a series of exercises.

EXERCISE: prove Wirtinger’s inequality: if g, g′ are real valued and g(a) =

g(b) = 0, then ∫ b

a

(g′)2dx ≤ (
π

b− a
)2
∫ b

a

g2dx

EXERCISE: Set ω(z) = ω(z, Eb,Ω and

A(t) =

∫ t

0

∫

Ωx

|∇ω|2dydx.

Use Green’s theorem to prove that for 0 < x < b,

A′(x) ≥ 2πA(x)/ℓ(x).
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EXERCISE: Define ϕ(x) =
∫
Ωx
ω2dy. Show

ϕ′′(x)

ϕ′(x)
≤ 2π/ℓ(x).

EXERCISE: Set µ(x) = 2π/ℓ(x) and

ψ(x) =

∫ x

0

exp(

∫ t

0

dµ)dt.

Show that

(logϕ′ − logψ′)′ =
ϕ′′

ϕ′ −
ψ′′

ψ′ ≥ 0,

and deduce by integration that ϕ(x)ψ(t) ≤ ϕ(t)ψ(x) whenever 0 < x < t.

EXERCISE: Prove

ψ(b) = ψ(a) +

∫ b

a

exp(

∫ a

0

µ(s)ds) exp(

∫ t

a

µ(s)ds)dt

≥ ψ(a)(1 +
2π

M

∫ b

a

exp(

∫ b

a

µ(s)ds)dt).

EXERCISE: Prove

ω(z)2 ≤ ϕ(z)

d
(1 +

2π

M

∫ b

a

exp(

∫ b

a

µ(s)ds)dt).

Deduce Carleman’s inequality.

Figure 13. When estimating the harmonic measure of the right-
hand vertical side, Ahlfors’ estimate ignores the slits, but Carleman’s
estimate does not and gives a smaller upper bound

5.5. Boundary values of conformal maps

Suppose ∂Ω is bounded in R2 and f : D → Ω is conformal. For 0 < r < 1, let

af (r) = area(Ω \ f(D(0, r))).
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Since ∂Ω is compact it is easy to see that this tends to zero as r → 1.

Lemma 5.5.1. Suppose f : D → Ω is conformal and for R ≥ 1,

E = {x ∈ T : |f(x)| ≥ R dist(f(0), ∂Ω)}.

Then E has capacity ≤ 2π/ logR. Then |E| ≤ CR−1/2 (with C independent of Ω).

Proof. Assume f(0) = 0 and dist(0, ∂Ω) = 1 and let ρ(z) = |z|−1/ logR for

z ∈ Ω ∩ {1 < |z| < R}. Then ρ is admissible for the path family connecting

D(0, 1/2) to ∂Ω \ D(0, R) and
∫∫

ρ2dxdy ≤ 2π/ logR. By the Koebe distortion

theorem f−1(D(0, 1/2)) is contained in a compact subset of D, independent of Ω.

The result follows by Theorem ??. �

Corollary 5.5.2. Suppose f : D → Ω is conformal and a ∈ C∪ {∞}. Then the

set where f has radial limit a has zero capacity.

Proof. When a = ∞, this is immediate from the previous result. If a ∈ ∂Ω \
{∞}, we can reduce to the case a = ∞ by applying the conformal transformation

z → 1/(a− z). The cases a 6∈ ∂Ω are trivial. �

Lemma 5.5.1 also follows from a stronger result of Balogh and Bonk in [11].

Lemma 5.5.3. There is a C <∞ so that the following holds. Suppose f : D → Ω

and 1
2
≤ r < 1. Let E = {x ∈ T : |f(sx) − f(rx)| ≥ δ for some r < s < 1}. Then

the extremal length of the path family P connecting D(0, r) to E is bounded below by

δ2/Ca(r).
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Proof. Suppose z, w ∈ Ω, suppose γ is the hyperbolic geodesic connecting z and

w and suppose γ̃ is any path in Ω connecting these points. By the Gehring-Hayman

inequality (Theorem 5.1.14) there is a universal C < ∞ such that ℓ(γ) ≤ Cℓ(γ̃)

(here ℓ(γ) denotes the length of γ). In other words, up to a constant, the hyperbolic

geodesic has the shortest Euclidean length amongst all curves in Ω connecting the

two points.

Now suppose we apply this with z = f(sx) and w ∈ f(D(0, r)). Then the length

of any curve from w to z is at least 1/C times the length of the hyperbolic geodesic

γ between them. But this geodesic has a segment γ0 that lies within a uniformly

bounded distance of the geodesic γ1 from f(rx) to z. By the Koebe distortion theorem

γ0 and γ1 have comparable Euclidean lengths, and clearly the length of γ1 is at least

δ. Thus the length of any path from f(D(0, r)) to f(sx) is at least δ/C. Now let

ρ = C/δ in Ω \ f(D(0, r)) and 0 elsewhere. Then ρ is admissible for f(P) and∫∫
ρ2dxdy is bounded by C2a(r)/δ2. Thus λ(P) ≥ δ2

C2a(r)
. �

Corollary 5.5.4. If f : D → Ω is conformal, then f has radial limits except on

a set of zero capacity (and hence has finite radial limits a.e. on T).

Proof. Let Er,δ ⊂ T be the set of x ∈ T so that diam(f(rx, x)) > δ, and let

Eδ = ∩0<r<1Er,δ. If f does not have a radial limit at x ∈ T, then x ∈ Eδ for some

δ > 0, and this has zero capacity by the previous result. Taking the union over a

sequence of δ’s tending to zero proves the result. The set where f has a radial limit

∞ has zero capacity by Lemma 5.5.1, so we deduce f has finite radial limits except

on zero capacity. �

We will need the following corollary of Lemma 5.5.1 in the chapter on quasicon-

formal mappings (it is used in the proof that 1-quasiconformal maps are conformal).

Corollary 5.5.5. There is an absolute C < ∞ so that the following holds.

Suppose ϕ is a conformal map from a ǫ × 1 rectangle R to a Jordan domain that

contains no disk larger than δ. Then for every y ∈ [0, 1] there is a t ∈ (0, 1) with

|t − y| < ǫ and such that the horizontal cross-cut of R at height t maps to a arc of

length Cδ.

Proof. First assume y ∈ ( ǫ
2
, 1 − ǫ

2
) and choose a conformal map ψ : D → R

that sends 0 to ( ǫ
2
, y). Then apply the previous result to Φ = ϕ ◦ ψ to deduce that
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except for a set of small measure in I = [y − ǫ
4
, y + ǫ

4
], all the horizontal cross-cuts

corresponding to this interval have length bounded by |Φ′(0)| ≤ Cδ (by the Koebe

theorem). �

Theorem 5.5.6 (Caratheodory). If f : D → Ω is a conformal map onto a Jordan

domain, then f extends continuously to the boundary.

Proof. Since ∂Ω is a Jordan curve, it is the continuous image of the unit circle

T under a map g. Since T is compact, g is uniformly continuous. This means that

for any ǫ > 0 there is an η > 0 so that |x − y| ≤ η implies |g(x) − g(y)| ≤ ǫ. Let

σ = min{|g(x) − g(y)| : |x − y| = η}. Then if z, w ∈ ∂Ω satisfy |z − w| < σ, then

z = g(x), w = g(y) for points x, y within η of each other. Thus the smaller arc

between z and w has diameter less than ǫ.

Fix δ small. Choose n so large that Ω \ f(D1/n) contains no disk of radius δ.

Choose {zj} to be n equally spaced points on the unit circle and choose interlaced

points {wj} so that |f(wj)− f(rwj)| ≤ Cδ where r = 1− 1/n. Then

|f(wj)−f(wj+1)| ≤ |f(wj)−f(rwj)|+|f(rwj)−f(rwj+1)|+|f(rwj+1)−f(wj+1)| ≤ Cδ,

where the center term is bounded by Koebe’s theorem and the other two by definition.

Thus if δ is so small that Cδ < σ, the shorter arc of ∂Ω with endpoints f(wj)

and f(wj+1) must have diameter ≤ ǫ. Thus the f image of the Carleson square with

base Ij (the arc between wj and wj+1 has diameter at most O(ǫ). This implies f has

a continuous extension to the boundary. �

All we really need in the previous proof is that Ω has the property that for every

ǫ > 0 there is a δ > 0 so that if γ is a cross-cut of Ω with length < δ, then there

is a component of Ω that has diameter < ǫ. The converse, statement is obvious, so

this condition on Ω characterizes the planar domains for which the conformal map

extends continuously to the boundary. This condition can be shown to be equivalent

to ∂Ω being locally connected, which is also equivalent to ∂Ω being the continuous

image of T.

It is an unfortunate fact that just because a sequence on conformal maps {fn} on D

converges uniformly on compact sets to a conformal map f , the boundary values need

not converge on the boundary; see the example illustrated in Figure ??. However,
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the conformal boundary values will converge if there is any parameterization of the

boundaries that converge:

Lemma 5.5.7. Suppose {fn} are conformal maps of D → Ωn that converge uni-

formly on compact subsets of D to a conformal map f : D → Ω. Suppose that the

boundary of each Ωn is the homeomorphic image ∂Ωn = σn(T) and that {σn} con-

verges uniformly on T to a homeomorphism σ : T → ∂Ω. Then fn → f uniformly on

the D.

Proof. Fix ǫ > 0 and choose n so large that if we divide T into n equal sized

intervals Jj, then σ maps each of them to a set Ij of diameter < ǫ. Let Ikj = fk(Jj).

Because σk → σ uniformly, the sets Ij all have diameter < ǫ too, if k is large enough.

Next choose δ > 0 so small that if k,m > 1/δ and σm(Jj) and σk(Ji) contain

points at most distance Cδ apart, then Ji and Jk are the same or adjacent to each

other (the absolute constant C will be determined below). We can do this because

of the uniform convergence and the fact that σ is 1-to-1. By passing to the limit the

same property holds if we replace σm by σ.

Next choose m so large that f(D)\f((1− 1
m
)D) is contained in an δ-neighborhood

of ∂Ω. Choose m points {zj} equally spaced on the circle |z| = 1− 1
m
, and let Kj ⊂ T

be the arc centered at zj/|zj| of length 4π/m. By Lemma 5.5.1 choose a point wj ∈ Kj

so that |wj − zj| ≤ 2/m and |f(jm)− f(jm)| ≤ Cǫ. Similarly, choose points wkj ∈ Kj

so that |f(wkj ) − fk(zj)| ≤ 2Cδ. This is possible since fk → f uniformly on the

compact set {|z| ≤ 1 − 1
m
} and thus ∂fk(D) is contained in an 2δ-neighborhood of

∂Ω for k large enough and ∂Ωk is contained in a δ-neighborhood of ∂Ω because of

the uniform convergence of the parameterizations.

By taking m larger, if necessary, we can also arrange that each Ij contains at

least one of the points f(zm/|zm|). Thus each f(Kj) is mapped into the union of at

most 2 of the Ij and hence its image has diameter at most 2ǫ. Also, the points f(wpm)

and f(wp+1
m ) are at most Cδ apart, so belong to the same or adjacent sets Ij. Thus

fk(Kp) is a union of at most 4 such adjacent sets and hence has diameter O(ǫ).

For each wkp there is an arc Jj so that fk(w
k
p)σk(Jj). Similarly, there is an arc Ji

so that f(wp) ∈ Ii = σ(Ji). Since fk → f uniformly on the finite set {zn}, we have,

for k sufficiently large

|fk(wkn)−f(wn)| ≤ |fk(wkn)−fk(zn)|+|fk(zn)−f(zn)|+|f(zn)−f(wn)| ≤ (2C+1+C)δ.
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Since fk(w
k
i ) ∈ Ij and f(w

k
i ) ∈ Ii, Ij and Ii are within Cδ of each other, and hence Ji

and Jj are either the same or adjacent. Since Ii and Ij each have diameter < ǫ, there

union has diameter < 2ǫ and the union of the intervals adjacent to these is at most 4ǫ.

Similarly for Iki and Jkj . Thus fk(Kp) and f(Kp) are contained in O(ǫ)-neighborhoods

of each other. Thus fk → f uniformly on T. By the maximum principle, this implies

uniform convergence on the closed disk, as desired. �

Even without the convergence of parameterizations, uniform convergence on com-

pact sets implies convergence of a subsequence on on “most” of the boundary. See

[?].

(reminder -Cite Lundberg and David Hamilton)

Another inconvenient fact is that conformal maps do not have to extend con-

tinuously to the boundary. We noted above however, that radial do exist almost

everywhere. Another convenient substitute for full continuity says that every con-

formal map is continuous on a subdomain of D whose boundary hits “most of” ∂D.

The precise statement requires a new definition.

Given a compact set E ⊂ T we will now define the associated “sawtooth” region

WE Suppose {In} are the connected components of T \E and for each n let γn(θ) be

the circular arc in D with the same endpoints as In and which makes angle θ with

In (so γn(0) = In and γn(π/2) is the hyperbolic geodesic with the same endpoints as

In). Let Cn(θ) be the region bounded by In and γn(θ), and let WE(θ) = D\∪nCn(θ).

Figure 14. The sawtooth domain WE

Let WE = WE(π/8) (and let W ∗
E ⊂ D∗ be its reflection across T).
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If f : D → Ω and 0 < r < 1, then define

df (r) = sup{|f(z)− f(w)| : |z| = |w| = r and |z − w| ≤ 1− r}.

If ∂Ω is bounded in the plane, then it is easy to see this goes to zero as r ր 1, since

otherwise any neighborhood of ∂Ω would contain infinitely many disjoint disks of a

fixed, positive size.

Lemma 5.5.8. Suppose f : D → Ω ⊂ S2 is conformal. Then for any ǫ > 0 there

is a compact set E ⊂ T with cap(T \ E) < ǫ such that f is continuous on WE.

Proof. By applying a square root and a Möbius transformation, we may assume

that ∂Ω is bounded in the plane. Given r < 1 let

E(ǫ, r) = {x ∈ T : |f(sx)− f(tx)| > ǫ for some r < s < t < 1}

and note that by Lemmas ?? and 5.5.3

|E(ǫ, r)| ≤ exp(−πǫ2/Ca(r)).

Moreover, this set is open since f is continuous at the points sx and tx. So if we

take ǫn = 2−n, we can choose rn so close to 1 that |E(ǫn, rn)| ≤ ǫ2−n. If we define

E = T \ ∪n>1En, then E is closed and T \ E has length ≤ ǫ by subadditivity .

To show f is continuous at every x ∈ WE, we want to show that |x − y| small

implies |f(x) − f(y)| is small. We only have to consider points x ∈ ∂WE ∩ T. First

suppose y ∈ ∂WE ∩ T. Choose the maximal n so that s = |x − y| ≤ 1 − rn. Then

x, y /∈ En, so

|f(x)− f(y)| ≤ |f(x)− f(sx)|+ |f(sx)− f(sy)|+ |f(sy)− f(y)|.

The first and last terms on the right are ≤ ǫn−1 by the definition of E. The middle

term is at most df (1− s) (which tends to 0 as s→ 0). Thus |f(x)− f(y)| is small if

|x− y| is.
Now suppose x ∈ ∂WE ∩T, y ∈ ∂WE \T. From the definition of WE it is easy to

see there is a point w ∈ ∂WE ∩ T such that |w − y| ≤ 2(1− |y|) ≤ 2|x− y|. For the
point w we know by the argument above that |f(x) − f(w)| is small. On the other

hand, if t = 1− |y|, then

|f(y)− f(w)| ≤ |f(y)− f(tw)|+ |f(tw)− f(w)|.
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The first term is bounded by Cdf (1− t) and the second is small since w 6∈ En. Thus

|f(x)− f(y)| is small depending only on |x− y|. Hence f is continuous on WE. �

reminder - check this:

Lemma 5.5.9. If {fn} is a sequence of K-quasiconformal maps that converges

uniformly to a homeomorphism f and µfn → 0 almost everywhere, then f is confor-

mal.

Proof. �

5.6. Maps between Fatou components

We showed earlier (Lemma 2.6.2) that a multiply connected Fatou component of

f is always mapped onto a Fatou component by f . Our next result says that this

is almost true for simply connected components; there is at most one omitted point.

This result is due to Herring [70] and independently, Bergweiler and Rohde [20]. See

also [33], [34]. We first need a fact about covering maps and capacity.

Lemma 5.6.1. If p : D → C∗∗ is the covering map of the twice puncture sphere,

then there is a set E ⊂ T of positive capacity and a subdomain Ω ⊂ D with ∂Ω∩∂D =

E so that p is bounded and bounded away from 0 and 1 as z approaches E through Ω.

Proof. Lift “figure 8” subdomain to disk and show by explicit construction that

its cover is quasiconformally equivalent to a slit rectangle. �

Corollary 5.6.2. If g : D → D is holomorphic and D \ g(D) contains at least

two points {a, b} , then there is a set of positive logarithmic capacity in ∂D where |g|
does not have radial limit 1.

Proof. Factor g has h◦p, where p : D → D\{a, b} is the universal covering map

and h : D → D is holomorphic.

By the previous lemma there is a domain Ω ⊂ D and path family F of finite

extremal length in Ω connecting an arc K ⊂ ∂Ω to a set E ⊂ T∩ ∂Ω, so that p stays

bounded away from T, a and b in Ω.

Consider h−1(Ω). Consider defining h−1 on different paths γ ∈ F starting at the

endpoint on K. The inverse is well defined and conformal in a neighborhood of each
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Figure 15. The slit rectangle on the top can be QC mapped to
the “tuning fork” below it, which in turn can be QC mapped to the
Riemann surface where each tine of the fork wraps around the two
shown points in different ways but both attach to the starting segment.
By adjoining maps in this way we can construct a map of the region Ω
on the bottom into the twice punctured disk so that the path family of
horizontal lines in Ω is mapped to a family of paths that wrap around
the two omitted points in the disk infinitely often. This path family
has positive extremal length. Thus lifting it to the disk gives a path
family that hits the unit circle in positive capacity.

point w unless w is a singular value of h or the inverse image of γ up to w tends

to the unit circle. The first case can only happen countable often and removing the

remainder of γ from Ω leaves a new domain Ω′ and path family that still has finite
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extremal length. In the second case, the inverse image of γ up to w is a path that hits

the unit circle and along which f approached p(w) ∈ D. If the set of curves where

this happens has finite extremal length we are done. It is does not, then the set of

paths where h−1 is well defined had finite extremal length, and along these paths |f |
is bounded away from 1.

Thus the lemma holds in either case. �

Theorem 5.6.3. If U, V are Fatou components of f such that f(U) ⊂ V then

V \ f(U) contains at most one point.

Proof. If w ∈ V \ f(U), then f has w as a asymptotic value along a curve

in U and thus U, V are both simply connected by Corollary 2.6.8. Thus there are

conformal maps ϕ : D → U and ψ : D → V so that ψ−1 ◦ ϕ is a holomorphic map

g : D → D.

By Theorem ?? ϕ has a finite radial limit everywhere except a set of zero capacity

and the limits lie on ∂U = ∂ϕ(D). Thus, except for a set of capacity zero, f ◦ ϕ has

limits in f(∂U). The latter set is contained in both the Julia set of f and the

closure of V , so must be contained in ∂V . Thus, except for capacity zero, |g(reiθ)| =
|ψ−1 ◦ f ◦ ϕ(reiθ)| tends to 1 as r ր 1 limit on the same set. But Lemma ?? shows

that if D \ g(D) contains two points, then there is a set of positive capacity on which

g does not tend to 1, a contradiction. �

A holomorphic function f on D is called a an inner function if |f | ≤ 1 on D

and |f | has non-tangential limit 1 almost everywhere on ∂D. Such functions play a

crucial role in function theory on D, e.g., see [58]

Lemma 5.6.4. If U, V are simply connected Fatou components, f(U) ⊂ V and

ϕ : D → U and ψ : D → V are conformal maps, then g = ψ−1 ◦ f ◦ ϕ is an inner

function.

Proof. If not, then there is a set E ⊂ ∂D of positive measure where |g| has non-
tangential limit < 1−ǫ < 1 and ϕ has well defined limits. This means ϕ(E) ⊂ ∂U is a

set of positive harmonic measure that maps under f into V (not onto ∂V ). However,

these would be Julia set points mapping into the Fatou set, which is impossible. �
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Lemma 5.6.5. If U is a forward invariant Fatou component of f , f is not univalent

on U and E ⊂ ∂U is invariant, i.e., f−1(E) ∩ ∂U = E then E either has harmonic

measure zero or 1. Under the same hypotheses, ϕ(E) either has zero capacity or full

capacity (where ϕ is a conformal map of U to D.)

Proof. Follows from ergodicity of inner functions. Neuwrith 1978 ergodicity of

some mappings of the circle and line, [103] Pommerenke 1981 Ergodic properties of

inner functions [107]. �

5.7. I(f) ∪ {∞} is connected

In this section we give some results of Rippon and Stallard from “Boundaries of

escaping Fatou components” [117].

Theorem 5.7.1. Suppose f is a transcendental entire function and Ω is a wan-

dering component of the Fatou set that escapes. Then almost every point of ∂Ω with

respect to harmonic measure escapes.

Proof. If Ω is multiply connected, then every boundary point is escaping (Lemma??),

so we may assume that Ω is simply connected. Set Ωn = fn(Ω). Choose z0 ∈ Ω = Ω0,

set zn = fn(z0) and let ϕ : D → Ω be a conformal map with ϕ(0) = z0 and let

ϕn = fn ◦ ϕ. Let
Em
n = {w ∈ T : |ϕn(w)| < m},

Em = ∩k ∪n>k Em
n ,

E = ∪mEm.

The set E maps under ϕ to the boundary points that do not escape, so it suffices to

show this set has zero measure. Therefore it suffices to show that each En has zero

measure. To prove this, it suffices to show that for each fixed m,
∑

n

|Em
n | <∞.

Since zn escapes, we can choose N so large that n ≥ N implies |zn| > 2m.

For each such n, let γn be the union of crosscuts in Ωn ∩ {|z|} that separate zn

from Ωn ∩ {|z| < m}. Since the Ωn’s are disjoint, so are the crosscuts γn. Let

Um = {|z| > m} ∪ {∞}. Clearly
|Em

n | ≤ ω(zn, γn,Ωn) ≤ ω(zn, γn, Un),
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and by Harnack’s inequality,

ω(zn, γn, Um) ≃ ω(∞, γn, Um),

and the latter is sums to at most 1. Thus almost every point of ∂Ω (with respect to

harmonic measure in Ω) is escaping. �

Corollary 5.7.2. If f is a transcendental entire function, then any bounded

component of I(f) meets J (f).

Proof. If E is bounded component of I(f) that does not meet J (f) then it is

contained in a Fatou component, and hence is an escaping Fatou component with

no escaping boundary points. Since I is escaping and bounded, it must also be

wandering, so this is impossible by Theorem 5.7.1. �

Lemma 5.7.3. Suppose f is a transcendental entire function. If U is a bounded

simply connected domain that hits the Julia set, then ∂U contains an escaping point.

Proof. Let γn be the outer boundary of fn(U). Since U hits the Julia set,

iterates of U cover every compact set in the plane (Lemma ??), so γn eventually

surrounds 0 and dist(γn, 0) → ∞. The compact sets Kn = {z ∈ ∂U : fn(z) ∈ γn}
thus form a nested sequence of non-empty compact sets and hence has non-empty

intersection. Any point in the intersection is escaping, which proves the result. �

Theorem 5.7.4. If f is a transcendental entire function, then I(f) ∪ {∞} is

connected.

Proof. If K = I(f) ∪ {∞} is disconnected, then there are disjoint open sets

U, V that cover K and both hit K. One of these contains ∞, say V . Then U is

bounded, and by adding in the bounded complementary components we may assume

U is simply connected and that ∂U ∩ I(f) = ∅. By Lemma 5.7.3, U can’t hit

the Julia set, so it is contained in a Fatou component, and this component must be

escaping (since U hits I(f)). If U were not the whole component, its boundary would

intersect the component and hence contain an escaping point, a contradiction.. Thus

U must be a bounded, escaping component of the Fatou set. Hence it is a wandering

component, so by Theorem 5.7.1 ∂U ∩I(f) 6= ∅, another contradiction. Thus K must

be connected. �
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Lemma 5.7.5. If V is a Fatou component with ∂V ⊂ I(f) then V ⊂ I(f).

Lemma 5.7.6. If V is a Fatou component and ∂V ∩ I(f) has positive harmonic

measure. Then V ⊂ I(f).

Proof. Suppose V is not escaping. Then V is simply connected and by Egorov’s

theorem (Theorem ??), there is a compact set E ⊂ V of positive harmonic measure on

which |fn| → ∞ uniformly. By Lemma ??, Julia(f) contains a non-trivial continuum

K. Choose a ∈ K and define

un(z) = log |fn(z)− a|,
Fm
n = {z ∈ ∂V : |fn(z)− a| < 2−m}.

The {un} are harmonic functions on V . Fix some z0 ∈ V . By Beurling’s projection

theorem (see Lemma 5.4.4),

ω(z0, F
m
n , V ) ≤ max(1, C2−m/2),

where the constant C depends on diam(K) and dist(z0, ∂V ), but nothing else. There-

fore on the set where un is negative.∫

F0

un(w)dω(w, z0, V ) ≥ −C
∑

m≥0

m2−m/2 ≥ −C > −∞.

On the other hand ∫

E

un(w)ω(w, z0, V ) → +∞,

so un(z0) → ∞. Thus every point of V is escaping. �

Lemma 5.7.7. Suppose U is a bounded domain with ∂U ⊂ I(f). Then U\I(f) 6= ∅
iff U \ J (f) 6= ∅.

Proof. If U hits the Julia set, it contains non-escaping points since J (f) = ∂I(f)

(Lemma??). Conversely, if U does not hit the Julia set, then it is contained in a Fatou

component V . If U 6= V , then V ∩ ∂U 6= ∅, so V contains an escaping point, hence

all of V (and hence all of U) is escaping. If U = V then then ∂V = ∂U ⊂ I(f), and

this implies V is escaping by Lemma 5.7.5. Thus U \ I(f) = ∅. �

We say E ⊂ C has a hole if there is bounded domain Usuch that ∂U ⊂ E but

U \ E 6= ∅. We say E is an (infinite) spider’s web if there is a sequence {Un} of

bounded, nested, simply connected domains with ∂Un ⊂ E.
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Theorem 5.7.8. If I(f) has a hole, then I(f) is a spider’s web.

Proof. By hypothesis, there is a bounded domain U with ∂U ⊂ I(f) and U \
I(f) 6= ∅. By Lemma 5.7.7 this implies U∩J (f) 6=. Let γn denote the outer boundary

of fn(U). Since γn ⊂ fn(∂U), γn ⊂ I(f), and by the “blowing-up property” of the

Julia set (Corollary 3.5.3), γn eventually surrounds every point of the plane. Taking

Un to the be region bounded by γn, proves I(f) is a spider’s web, once we show that

I(f) is connected.

Suppose I(f) is not connected and let V1, V2 be two disjoint open sets that each

hit I(f) and together cover I(f). In particular, neither ∂V1 nor ∂V2 intersects I(f).

V1 and V2 can never hit the same set γn as above, since γn is a connected subset of

I(f) (if they both hit γn, this would prove γn is disconnected). Thus at least one

of them is bounded. Assume V1 is bounded. By adding its bounded complementary

components, we may assume it is also simply connected. Suppose z0 is an escaping

point in V1 and choose Nm so that n ≥ Nm implies fn(z0) is outside γm (we can do

this since z0 is escaping). For such a n, ∂fn(V1) ⊂ fn(∂V1) ⊂ C \ I(f). Moreover,

since V1 is connected, so is fn(∂V1) and it does not intersect γm (since the latter set

escapes and the former does not). Thus fn(V1) lies outside γm and since this occurs

for every m, we see that V1 ⊂ I(f). This implies ∂V1 ⊂ I(f), contrary to assumption.

�

Corollary 5.7.9. If f has a multiply connected Fatou component, then I(f) is

connected.

An alternate proof will be given in Corollary 6.8.13 Both proofs are due to Rippon

and Stallard, though they credit the idea of the proof given above to Noel Baker. In

2010 they found the above corollary in a notebook Baker used for rough work and

although he did not provide a proof there, his notes led them the proof above. The

alternate proof we give later is based on properties of the fast escaping set and was

given by Rippon and Stallard in 2005.

QUESTION: Suppose f is a transcendental entire function and Ω is a wandering

component of the Fatou set that escapes. Does ∂Ω \ I(f) have zero capacity with

respect to Ω? Since it is invariant it must have zero capacity or full capacity on the

boundary.
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EXERCISE: Suppose f is a transcendental entire function. Then I(f) either is

connected or has infinitely many connected components. (Corollary 5.1, [117]).

This is actually a special case of a more general fact.

EXERCISE: Suppose f is a transcendental entire function. Suppose E is com-

pletely invariant under f and J (f) = E ∩ J (f). The exactly one of the following

holds:

(1) E is connected.

(2) E has two components, one of which is a fixed point of f that is an excep-

tional point and in the Fatou set.

(Theorem 5.2, [117]).

EXERCISE: f(z) = 1
2
z2 exp(2− z) shows case (2) above can occur.

EXERCISE: In case (3) above, each neighborhood of a point in J (f) hits infinitely

many components of E. More generally, if A and B are completely invariant sets for

a transcendental entire function and D is a neighborhood of a point of J (f) so that

A ∩D meets only finitely many components of B, then A meets only finitely many

components of B (Theorem 5.3, [117]).

OPEN PROBLEM: If I(f) has infinitely many components, must it have un-

countably many components? The Julia set has this property.



CHAPTER 6

The fast escaping set

In both polynomial and transcendental dynamics, the Julia set is the boundary

of the escaping set, but this fact seems to play a more crucial role in transcendental

dynamics. For polynomials, all escaping points escape at essentially the same rate,

but for transcendental functions, there can be a wide range of escape rates, and the

escaping set can be partitioned in various interesting ways according to these escape

rates. This additional structure is interesting in it own right, but can also provide

insight into problems not originally formulated in terms of rates of escape. For exam-

ple, we shall see that that one can prove the escaping set always has an unbounded

component, by showing the so-called “fast escaping points” have an unbounded com-

ponent.

Given an entire function f , recall that M(r, f) = max{|f(z)| : |z| = r}. This is

a function from [0,∞) into itself, and so can be iterated. Let Mn(r, f), be the nth

such iterate. It is easy to see that if |z| = r, then

|fn(z)| ≤Mn(r, f),

since the left-hand side corresponds to following the orbit of a single point z, whereas

the right hand side can replace each orbit point by another point on the same circle

around the origin before applying f again. The extra freedom would seem to allow

the right-hand side to grow much more quickly than the left-hand side. Indeed, the

only way that the left-hand side could “keep up” was of every iterate of z landed on a

circle where |f | was approximately constant, so that moving to a different point of the

circle does not help. Remarkably, it is always possible to choose an initial z that does

this. This argument is due to Eremenko, and was the original proof that escaping

points exist. He used a result of Wiman and Valiron that for an entire function f , |f |
is close to constant on “most” large circles centered at the origin and that f closely

resembles a polynomial on these circles. This approach is based on power series and

135
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is described in Section A.11 of the appendix. We shall take alternative approach due

to Bergweiler, Rippon and Stallard that applies to functions holomorphic in simply

connected, unbounded Jordan subdomains of C. There method shows that if f is

entire and {z : |f(z)| > R} has more than one component, we can find escaping

orbits that stay inside any of these components, or that switch between components

on any prescribed schedule.

As an application of fast escaping points to a non-escaping type problem, we finish

the chapter with a result of Bergweiler about the Julia sets of maps from the once

punctured plane to itself.

6.1. Subharmonic functions

The proof of existence of fast escaping points depends crucially on estimates of the

growth entire functions, or on the growth of holomorphic functions defined on certain

unbounded subdomains called tracts. These estimates reduce to growth estimates for

the subharmonic function v = log |f |, so we start the chapter with a review of some

of the basic facts about subharmonic functions.

Recall that a real-valued function f on Ω is upper semi-continuous if {z :

f(z) < α} is open for every α ∈ R.

EXERCISE: Show f is upper semi-continuous iff

lim sup
z→w

f(z) ≤ f(w).

EXERCISE: Show that f is upper semi-continuous on Ω iff for every closed set

E ⊂ Ω, f is the pointwise limit of decreasing sequence of continuous functions.

EXERCISE: Show the maximum of two upper semi-continuous functions is also

upper semi-continuous.

EXERCISE: Show that if f is upper-semi-continuous on a closed set E and f ≥M

on a dense subset of E then f ≥M everywhere on E.

EXERCISE: If f is upper semi-continuous on Ω then f is bounded above on any

compact subset of Ω.

A [−∞,∞)-valued function v is subharmonic on Ω if it is upper semi-continuous

and satisfies the sub-mean-value value inequality

v(z) ≤ 1

2π

∫ 2π

0

v(z + reiθ)dθ,
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whenever r is sufficiently small, depending on z. We will call this the “small circles

inequality. Subharmonic functions actually satisfy the same inequality whenever

D(z, r) ⊂ Ω, but this will require a proof (some texts take this to be the definition).

Lemma 6.1.1 (The Maximum Principle). If v is subharmonic on a connected open

set Ω and it attains a maximum in Ω, then v is constant.

Proof. The proof is the same as for harmonic functions. Suppose v attains a

maximum M at a ∈ Ω and consider a disk D(z, r) small enough so that

M = v(a) ≤ 1

2π

∫ 2π

0

v(a+ reiθ)dθ.

By assumption v(a + reiθ) ≤ M so we must have equality almost everywhere, and

hence on a dense set on the circle and hence everywhere on the circle. Thus v equals

M on an open disk around z and so {z : v(z) =M} is open and non-empty. On the

other hand {z : v(z) = M} = {z : v(z) ≥ M} = {z : v(z) < M}c is closed. Since Ω

is connected, v =M on all of Ω. �

The Poisson kernel on the unit circle with respect to the point a ∈ D is given by

the formula

Pa(θ) =
1− |a|2
|eiθ − a2| =

1− |a|2
1− 2|a| cos(θ − φ) + |a|2 ,

where a = |a|eiφ. Given an L1 function f on the unit circle

u(z) =
1

2π

∫
f(eiθ)Pz(e

iθ)dθ

defines a harmonic function on the unit disk. If f is continous it is standard fact that

u has a continuous extenstion to the closed unit disk.

Lemma 6.1.2. If f is upper semi-continuous on the unit circle and u is the Poisson

extension of f to the unit disk, then together u and f define an upper semi-continuous

function on the closed unit disk.

Proof. Since f is upper semi-continuous on T, there are continuous functions

{fn} that converge pointwise downwards to f . The harmonic extensions {un} of these
functions are continuous and converge downwards to an upper semi-continouous limit

v on the closed disk that equals f on the boundary. If we can show v = u on the
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interior, we are done. However this follows from either the Monotone Convergence

Theorem or the Lebesgue Dominated Convegence Theorem:

v(z) ≤ lim
n
un(z) = lim

n

∫
fn(e

iθ)Pz(e
iθ)dθ

=

∫
lim
n
fn(e

iθ)Pz(e
iθ)dθ

=

∫
f(eiθ(Pz(e

iθ)dθ

= u(z).

�

Lemma 6.1.3. If v is subharmonic on the closure of D(a, r) and u is the Poisson

extension of v on {z : |z − a| = r} to the interior of the disk, then v ≤ u. (This

justifies the name “subharmonic”.)

Proof. Suppose {gn} are continuous functions converging downwards to v and

let un be the harmonic extensions to the disk. Then v − un is subharmonic on the

open disk and limsup is v(x) − gn(x) ≤ 0 as we approach any boundary point, so

v ≤ un on the whole disk. Thus v(z) ≤ limn un(z). The prove that v = u is just as

above. �

Lemma 6.1.4. Suppose v is subharmonic on a domain Ω and D(z, r) ⊂ Ω. If we

replace v in D(x, r) by its Poisson extension, the resulting function u is sub-harmonic

on Ω.

Proof. The upper semi-continuity is an earlier exercise. The “small circles”

mean value inequality is obvious except on the boundary of the circle, but we know

that v ≤ u in the disk, so for a point x on ∂D(a, r),

u(x) = v(x) ≤ 1

2π

∫ 2π

0

v(a+ reiθ) ≤ 1

2π

∫ 2π

0

u(a+ reiθ).

�

EXERCISE: The maximum of two subharmonic functions is subharmonic.

EXERCISE: The supremum of a collection of subharmonic functions is subhar-

monic.
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EXERCISE: If v(x + iy) is subharmonic on C, but only depends on x, then v is

a convex function of x.

The main example of subharmonic functions we will encounter is log |f(z)| where
f is holomorphic on Ω. This is harmonic except where f vanishes, and at these points

it equals −∞, and clearly satisfies the sub-mean-value inequality at such points.

Corollary 6.1.5. If v is subharmonic on Ω, then v satisfies the mean value

inequality on all disks with closure in Ω.

Proof. Suppose D(z, r) ⊂ Ω and let gn, un and u be as the proof of Lemma

6.1.2. Then by its harmonic extension u in D(x, r). Then

v(a) ≤ u(a) = lim
n

∫ 2π

0

gn(a+ reiθ)dθ =

∫ 2π

0

v(a+ reiθ)dθ. �

Lemma 6.1.6. v is subharmonic on D(a, r), then

Iv(t) =

∫ 2π

0

v(a+ teiθ)dθ

is an increasing function of t ∈ (0, r).

Proof. Suppose 0 < t < s < r. If we replace v on D(a, t) by the Poisson exten-

sion of it boundary values we get another subharmonic function u that is harmonic

on D(a, t) and subharmonic on D(0, r). Thus u = v on both{|z| = t} and {|z| = s},
so

Iv(t) = Iu(t) = u(a) ≤ Iu(s) = Iv(s). �

Corollary 6.1.7. If v is subharmonic and smooth on Ω, then
∫ 2π

0

∂v

∂n
(a+ teiθ)dθ ≥ 0

whenever D(a, t) ⊂ Ω; here n denotes the outward pointing normal for the circle..

Lemma 6.1.8. If ψ is a smooth, radial function supported in D(0, ǫ) and v is

subharmonic on Ω then the convolution of ψ and v

u(z) =

∫∫
ψ(z − w)v(w)dxdy,

is subharmonic on Ωǫ = {z ∈ Ω : dist(z, ∂Ω) > ǫ}, is smooth and u ≥ v.
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Proof. If is a standard fact that the convolution is smooth if ψ is smooht. Next,

for a ∈ Ωǫ, that fact that ψ is radial and has mass one implies

1

2π

∫ 2π

0

u(a+ teiφdφ) =
1

2π

∫ 2π

0

[
1

2π

∫ ǫ

0

∫
ψ(reiθ)v(a+ teiφ + reiθ)rdrdθ]dφ

=
1

2π

∫ 2π

0

∫ ǫ

0

[
1

2π
ψ(reiθ)

1

2π

∫ 2π

0

v(a+ teiφ + reiθ)dφ]rdrdθ]

≥ 1

2π

∫ 2π

0

∫ ǫ

0

v(a+ reiθ)ψ(reiθ)dθ]rdr

= u(a)

=

∫ ǫ

0

ψ(reiθ)[
1

2π

∫ 2π

0

v(a+ reiθ)dθ]rdr

≥ v(a) ·
∫ ǫ

0

ψ(reiθ)

= v(a) · 1.

This shows both that u is subharmonic and the u ≥ v. �

Just as harmonic function are a 2-dimensional analog of linear functions, subhar-

monic functions are an analog of convex functions, and like convex functions, they

have positive measures as their (distributional) Laplacians.

Lemma 6.1.9. If v is subharmonic on C then ∆v is a positive measure.

Proof. If v is a smooth subharmonic function on the closure of smooth domain

Ω, then Green’s theorem says
∫∫

Ω

u∆v − v∆udxdy =

∫

∂Ω

u
∂v

∂n
− v

∂u

∂n
ds.

Taking Ω = D(x, r) a disk u ≡ 1, gives
∫∫

|z−a|<r
∆v =

∫

|z−a|=r

∂v

∂n
≥ 0,

so ∆v ≥ 0. In general, we can smooth v by convolving by a smooth radial bump

function of small support and to get approximations vn that converge downward to v

(downwards because v is subharmonic). If u is a non-negative compactly supported

test function in Ω then the boundary integrals in Green’s theorem vanish and

0 ≤
∫∫

Ω

u∆vndxdy = −
∫∫

Ω

vn∆udxdy → −
∫∫

Ω

v∆udxdy,
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which means ∆v ≥ 0 in the sense of distributions. A positive distribution is a positive

measure (e.g., see Folland’s book [?], Theorem ??). �

The positive measure associated to v will be denoted µv or ∆v. This is called the

Riesz measure associated to v.

EXERCISE: If µ is a finite positive measure supported on a compact set E, then

Uµ(z) =

∫
log |z − w|dµ(w),

is a subharmonic function on the plane with ∆Uµ = µ.

The subharmonic functions we will consider are mostly of the form

v(z) = max(logR, log |f(z)|),
where f is entire. In this case, ∆v is just |f ′(z)|ds where ds is arc-length measure on

{z : |f(z)| = R}. We will generalize this idea further down below.

Lemma 6.1.10 (Jensen’s formula for subharmonic functions). Let v be subhar-

monic a,∈ C, r > 0. Then

v(a) =
1

2π

∫ 2π

0

v(a+ reiθ)dθ −
∫

|z−a|<r
log

r

|z − a|d∆v

=
1

2π

∫ 2π

0

v(a+ reiθ)dθ −
∫ r

0

∆v(D(a, t))
1

t
dt.

Proof. The first equality is Green’s theorem, the second follows by switching to

polar coordinates and integrating by parts. �

It is sometime convenient to rewrite Jensen’s formula as follows. For t > 0 let

n(a, t, u) = µv(D(r, t)).

Then Jensen’s formula becomes

1

2π

∫ 2π

0

v(a+ reiθ)dθ =

∫ r

0

n(z, t, v)
dt

t
+ v(a).

In the special case that v = log |f | and f is holomorphic, then v has a delta-mass

point measure at each zero of f , so, in this case, n(z, t, v) counts the number of zeros

of f (according to multiplicity) inside the disk D(z, t). In particular, this mass is

always a non-negative integer. Surprisingly, this behavior only requires v = log |f |
near the boundary of the disk; f need not holomorphic, or even defined, in the whole

interior of the disk:
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Lemma 6.1.11. Suppose u is subharmonic on C and let γ be a closed, piecewise

smooth Jordan curve with interior domain W . Suppose γ has a neighborhood U

where u = log |f | for some non-vanishing holomorphic function f . Then µu(W )

is a non-negative integer. ∈ N = {1, 2, 3, . . . }. If, in addition, we know |f | = R

on γ and |f | > R on the component of U \ γ disjoint from W the µ(W ) > 0 (so

µ(W ) ∈ N = {1, 2, . . . }.

Proof. We can write

u(z) =

∫

E

log
1

|z − w|dµu(w) + h(z),

where h is harmonic and E is a compact subset of W . By the Cauchy-Riemann

equations, if u = ℜ(log |f |+ i arg f) = Logf locally, then

∇u = ∇ log |f | = (∂x + i∂y) log |f | = ∂x(log |f |+ i arg f) = (Logf)′ = f ′/f.

We may assume U ∪W is simply connected and for z ∈ U ,

f ′(z)

f(z)
=

∫

E

1

z − w
dµu(w) + g(z),

where g is holomorphic in U ∪W . Integrating along γ, the left side gives the change

in argument of log f along γ and hence is purely imaginary integer multiple of 2π.

Integrating the right side gives 2πiµu(E). The first conclusion follows.

If in addition we know |f | = R and |f | > R in U \ W , then log |f | has zero

tangential deriviative along γ and non-negative outward normal along γ. Moreover,

the normal deriviative is non-zero except on a finite set. Thus arg f ′ has a non-

negative tangential deriviative along γ that is positive except on a finite set. Thus

the total change in the argument can’t be zero. Since we know it most be an integer,

it is a positive integer. �

6.2. Direct tracts

Suppose Ω is a planar domain with piecewise smooth boundaries and that it has

an unbounded complement. Suppose that f is a holomorphic function on Ω that

extends continuously to the boundary and |f | = R on the boundary and > R on the

interior. Then Ω is called a direct tract of f . If the map f : Ω → D
c

R is a universal

covering map, then Ω is called a logarithmic tract of f . We have already seen that
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all Eremenko-Lyubich functions have logarithmic tracts, e.g., Section 5.4.2. This is

not true for all entire functions, but following is.

Lemma 6.2.1. Every transcendental entire function has a direct tract.

Proof. Just let Ω be a connected component of {|f(z)| > 1}. This has smooth

boundary, except possibly at critical points of f . It is unbounded, for otherwise Ω

would be compact and |f | would take a maximum > 1, contrary to the maximum

principle. Finally, the complement of Ω is unbounded, since by Picard’s theorem, f

takes most values in D infinitely often in every neighborhood of infty. �

Because of this, the following results on direct tracts all apply to transcendental

entire functions. The following generalize results from Chapter 1.

Recall that a function log g(r) is convex as a function of log r means that log g(et)

is convex as a function of t. For example if rk = exp(tk), k = 1, 2, we get

log g(e(t1+t2)/2) ≤ 1

2
(log g(et1) + log g(et2),

or

g(
√
r1r2) ≤

√
g(r1)g(r2).(35)

Lemma 6.2.2. If f is entire then logM(r, f) = max{log |f(z)| : |z| = r} is an

increasing, convex function of log r.

Proof. ClearlyM(r, f) increases with r by the maximum principle. Since g(z) =

f(ez) is entire,

logM(ex, f) = sup{log |g(x+ iy))| : y ∈ R},
is a subharmonic function of x alone and hence convex (a supremum of subharmonic

functions is subharmonic, and a subharmonic function of x alone is convex). �

Lemma 6.2.3. Suppose Ω is a direct tract for f and

M(f, r) = max
|z|=r

|f(z)|.

Then

lim
r→0

logM(f, r)

log r
= ∞.
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Proof. There are two cases depending on the geometry of the tract Ω. First

suppose C \ Ω has at least one unbounded component K and let Ω′ = C \ L ⊃ Ω.

Then Ω′ is simply connected complement of K (since K is connected). Let r0 =

dist(K, {0}). Then Beurling’s estimate (Corollary 5.4.3) says that for z ∈ Ω∩D(0, r0),

and r > 2r0,

ω(z, ∂Ω ∩ {|w| > r},Ω) ≤ ω(z, ∂Ω′ ∩ {|w| > r},Ω)

≤ C exp(−π
∫ r

r0

dt

2π
)

≤ C(
r0
r
)1/2.

Since v(z) = max(0, log |f(z)|) is subharmonic,

0 < v(z) ≤ (max
|z|=r

log |f(z)|) · ω(z, ∂Ω ∩ {|w| > r},Ω) ≤ (max
|z|=r

log |f(z)|) · C(r0
r
)1/2,

so

max
|z|=r

log |f(z)| > Cr1/2 ≫ log r,

if r is large enough.

In the second case, Ω has no unbounded complementary components, so it has

infinitely many bounded components In this case we use Jensen’s formula

1

2π

∫ 2π

0

v(a+ reiθ)dθ = v(a) +

∫

|z−a|<r
log

r

|z − a|d∆v

≥ v(a) +
1

2

∫

|z−a|<√
r

log rd∆v

≥ v(a) +
1

2
log rd∆v(D(z,

√
r)).

Since v ≥ 0, this gives

max|z|=r v(z)

log r
≥ ∆v(D(z,

√
r)) → ∞,

where we have used Lemma 6.1.11 to say each complementary component of Ω in

D(z,
√
r) contributes at least 1 to the Riesz measure of D(z,

√
r). �

Lemma 6.2.4. Suppose the notation in Lemma 6.2.3 still holds. Then for any

C <∞ there is a r0 (depending on f and C) so that r ≥ r0 implies

M(f, 2r) ≥ CM(f, r).
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Proof. Taking r1 = r/2 and r2 = 2r and using (??) gives

M(r, f) ≤
√
M(2r, f)M(r/2, f).

Squaring this and rearranging,

M(r, f)
M(r, f)

M(r/2, f)
≤M(2r, f).

Since logM(r, f) is an increasing and convex function of log r and logM(r, f)/ log r →
∞, the derivative of logM with respect to log r increases to ∞. Thus

log
M(r, f)

M(r/2, f)
= logM(exp(log r), f)− logM(exp(log r − log 2), f) → ∞.

Hence this is eventually bigger than logC and this proves the lemma. �

6.3. Logarithmic measure

If E ⊂ [1,∞) is a measurable set, we let log(E) denote the image of E under the

map and define logE = log t : t ∈ E} and we call

| logE| ==

∫

E

dt

t

the logarithmic measure of E. We introduce this because many interesting properties

of M(r, f) fail to hold for all r, but do hold except on a set of finite logarithmic

measure.

Lemma 6.3.1. Suppose 0 < rn ր ∞ and 0 < ρn ր L <∞. Then the complement

of ∪n(ρnrn, ρnrn+1) has finite logarithmic measure.

Proof. The complement is covered by intervals of the form [rnρn−1, rn, ρn] that

have logarithmic length log ρn+1 − log ρn. Summing the telescoping series shows the

complement has total logarithmic length ≤ L− ρ0. �

Lemma 6.3.2. Suppose N(x) is an increasing function on I = [r0,∞) and limx→∞N(x) =

∞. Fix numbers 1
2
< β < α < 1. Then there is a set E of finite logarithmic measure

so that |h| < N(r)−α implies

N(r + h) ≤ (1 + cN(r)−β) ·N(r), for r ∈ I \ E,

where c = 2
1

β
−1β−1.
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Proof. Let X ⊂ I be a compact set where the inequality fails and assume N ≥ 1

on X (the part of X that lies in the bounded interval where N ≤ 1 obviously have

finite measure). Each point of X is contained in an interval (a, b) = (r − |h|, r + |h|)
so that N(b) > (1 + cN(r)−β)N(a). By the easy form of Vitali’s covering lemma

(Lemma 12.1.1), there is a finite, disjoint subcollection of these intervals that covers

a fixed fraction of the length of logX. Ordering the intervals as {Ik} = {(ak, bk)}K1
from left to right and setting tk = N(ak) ≥ 1, we get

tk+1 = N(ak+1) ≥ N(bk) ≥ N(ak) + cN(ak)
1−β = tk + ct1−βk .

We claim this implies

tk ≥ k1/β.

To prove the claim, compare the sequence {tk} to the sequence {sk} = {k1/β}. Since
1/β > 1, the function k1/β is increasing and convex up it stays above any of its

tangent lines. Considering the tangent line at k + 1 gives

sk+1 − sk ≤ 1

β
(k + 1)

1

β
−1

≤ ck
1

β
−1

≤ cs1−βk .

By assumption t1 ≥ 1 = s1, so by induction we deduce

sk+1 − sk ≤ ct1−βk ≤ tk+1 − tk,

and hence tk ≥ sk for all k, as claimed.

Since α > β,
∑

|Ik| ≤
∑

k

t−αk ≤
∑

k

k−α/β <∞.

Thus logX has finite linear measure, as desired. �

Lemma 6.3.3. Suppose Φ is increasing and convex up on [x0,∞) and let 1
2
< α <

1. Then there is a set E of finite measure such that

Φ(x+ h) ≤ Φ(x) + Φ′(x)h+ o(1)

for all |h| ≤ Φ′(x)−α and x 6∈ E.
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Proof. We apply the previous lemma to the function N(x) = Φ′(x) (since Φ

is increasing and convex, N is positive and increasing and well defined except at

possibly countable many points where we can define it by making it continuous from

the left).

Choose β with 1
2
< β < α. Suppose 0 < h < Φ′(x)−α. Then by Lemma 6.3.2 and

using β + α > 1,

Φ(x+ h) = Φ(x) +

∫ x+h

x

Φ′(t)dt

≤ Φ(x) + Φ′(x+ h)h

≤ Φ(x) + Φ′(x+ cΦ′(x)−α)h

≤ Φ(x) + (1 + cΦ′(x)−β)Φ′(x)h

≤ Φ(x) + cΦ′(x)1−β)h+ Φ′(x)h

≤ Φ(x) + cΦ′(x)1−α−β + Φ′(x)h

≤ Φ(x) + o(1) + Φ′(x)h.

The case for h < 0 is similar. �

Suppose f is defined on a direct tract and we let v = logmax(R, |f |). Then v is

subharmonic on the plane. Define

B(r, v) = max
|z|=r

v(z).

By Lemma 6.2.2, B is increasing and convex up as a function of log r (i.e., B(ex, v)

is convex as a function of x). Thus B′ is positive and exists except on a countable

set and and we set

a(r, v) =
dB(r, v)

d log r
= rB′(r, v)

whenever the derivative is defined. By Lemma 6.2.3 we know

logB(r)

log r
ր ∞.

Applying Lemma 6.3.3 gives:

Lemma 6.3.4. Suppose v is as above and α > 0. Then there is a set of finite

logarithmic measure so that if | log s/r| ≤ a(r, v)−α, then

B(s, v) ≤ B(r, v) = a(r, v) log
s

r
+ o(1),



148 6. THE FAST ESCAPING SET

uniformly as r → ∞, r 6∈ F .

Proof. We apply Lemma 6.3.3 to Φ(x) = B(ex, v). Setting r = ex and s = exs+h

we get

B(s, v)Φ(x+ s) ≤ Φ(x) + Φ′(x)h+ o(1) ≤ B(r, v) + a(r, v) log
s

r
+ o(1),

if

| log s
r
| = |h| ≤ Φ′(x)−α ≤ a(r, v)−α.

�

6.4. A Wiman-Valiron type estimate in tracts

For transcendental entire functions, Wiman and Valiron proved that for most

r > 0 there are points zr with |zr| = r so that

f(z) ∼ Cza,

on a “large” neighborhood of zr (here C, a are constants that depend on r). Their

original approach is based on power series and is sketched in an appendix. In this

section we prove a similar result for functions defined in a direct tract, following the

proof of Bergweiler, Rippon and Stallard in [19].

We start with the following result that contains most of the hard work.

Theorem 6.4.1. Let Ω be a direct tract of f , let v be as above and let τ > 1/2.

Then there is a set F of finite logarithmic measure such that for r ∈ [1,∞) \ F we

have Dρ ⊂ Ω where Dρ = D(zr, r · a(r, v)−τ ) and zr is a point on {|z| = r}∩Ω where

|f | attains its maximal value.

EXERCISE: Check this lemma holds for ez.

Proof. Fix 1
2
< α < τ and choose ǫ > 0 so that (1−α)(1+ ǫ) < 1. Choose δ > 0

so that 1−δ = (1−α)(1+ǫ). Let F be the union of the exceptional sets from Lemma

6.3.4 applied with α and Lemma 4.8.2 applied with to h = B(r, v) with ǫ replacing δ

in that lemma. Thus for r outside this exceptional set, we have both

B(s, v) ≤ B(r, v) + a(r, v) log
s

r
+ o(1),

for | log s/r| ≤ a(r, v)−α and

a(r, v) ≤ B(r, v)1+ǫ.
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Set ρ = 2ra(r, v)−τ .

Consider

u(z) = v(z)− v(zr)− a(r, v) log
|z|
r

= v(z)−B(r, v)− a(r, v) log
|z|
r
.(36)

For z ∈ D512ρ = {w : |w − zr| ≤ 512ρ},

| log |z|
r
| = | log(1 + |z − zr|

r
)| ≤ 2

|z − zr|
r

= O(a(r, v)−τ ) ≤ a(r, v)−α

if r is large enough. Thus Lemma 6.3.4 applies to such z’s and we deduce that if

s = |z|,

u(z) = v(z)−B(r, v)− a(r, v) log
|z|
r

≤ B(|z|, v)−B(r, v)− a(r, v) log
|z|
r

≤ [B(r, v) + a(r, v) log
|z|
r

+ o(1)]−B(r, v)− a(r, v) log
|z|
r

= o(1)(37)

on D512ρ.

We claim that Dρ ⊂ Ω if r is sufficiently large. If not, there is a point w ∈ Dρ \Ω.
Let K be the connected component of C \Ω that contains w. We consider two cases,

depending on whether or not K is contained in D256ρ.

Case 1: K is not contained in D256ρ. Then K intersects each of circles

centered at zr with radii between ρ and 256ρ. Let V be the component of Ω ∩D256ρ

that contains zr and let E = ∂V ∩ D256ρ. The Beurling projection theorem then

implies that ω(zr, E, V ) ≥ 1/2 (see Corollary 5.4.3). Moreover, v = 0 on the set E,

and, by the definition of U , we have

u(z) = −B(r, v)− a(r, v) log
|z|
r

≤ −B(r, v) + a(r, v)1−α

≤ −B(r, v) + B(r, v)(1−α)(1+ǫ)

≤ −B(r, v) + B(r, v)1−δ

≤ −1

2
B(r, v)
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Hence at the center zr of the disk D256ρ we have

0 = u(zr) ≤ −1

2
B(r, v)ω(zr, E,Ω ∩D256ρ) + max

z∈∂V
u(z) · ω(zr, Ec,Ω ∩D256ρ)

≤ −1

4
B(r, v) + o(1)

since u is bounded by 1 on V if r is large enough. This is impossible since B(r, v)

tends to ∞ as r does. Thus Case 1 cannot occur.

Case 2: K is contained in D256ρ. For large r, D256ρ does not contain the origin,

and this implies that u− v is harmonic in D256ρ. Thus their Riesz measures agree in

this disk. Lemma 6.1.11 implies the Riesz measure of K is a positive integer and so

n(zr, t, u) = n(zr, t, v) ≥ 1

for t ≥ 256ρ. Hence
∫ 512ρ

0

n(zr, t, u)
dt

t
≥
∫ 512ρ

256ρ

n(zr, t, u)
dt

t
≥ log 2.

However, by Jensen’s formula for subharmonic functions (Lemma 6.1.10)
∫ 512ρ

0

n(zr, t, u)
dt

t
≤ 1

1024πρ

∫

|z|=512ρ

u(z)ds = o(1),

as r → ∞, r 6∈ F . This is a contradiction, so case 2 does not occur either, proving

that Dρ is contained in Ω. �

See [14] for related work by Bergweiler that gives a sharper estimate for the size of

theWiman-Valiron disks. He shows that the estimate holds on a diskD(zr, r/
√
ψ(af(r,D)))

if ∫ ∞

T

dt

ψ(t)
<∞

K ≤ tψ′(t)

ψ(t)
≤ L,

for some constants T > 0, K > 0 and L < 2.

Theorem 6.4.2. With notation as in Theorem 6.4.1,

f(z) ∼ f(zr)(
z

zr
)a(r,v),

and

|f(z)| ∼M(|z|, f),
for z ∈ Dρ = D(zr, r · a(r, v)−τ ) as r → ∞, r 6∈ F .
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Proof. Define a holomorphic function g on Dρ by

g(z) = log
f(z)

f(zr)
− a(r, v) log

z

zr
= log(

f(z)

f(zr)
(
zr
z
)a(r,v)),

with the branches of the logarithm chosen so g(zr) = 0. Since u = ℜg, the Borel-

Caratheodory estimate (Lemma 1.1.6) gives

max
|z−zr|=t

|g(z)| ≤ 4 max
|z−zr |=2t

u(z),

for 0 < t < ρ/2. Thus g → 0 on Dρ/2 uniformly as r → ∞, r 6∈ F by (37). This gives

the first claim.

To prove the second claim, note that

M(|z|, f) ≥ |f(z)| ≥ (1− o(1))|f(zr)| · |
z

zr
|a(r,v),

and

M(|z|, f) = exp(B(|z|, v))

≤ exp(B(r, v) + a(r, v) log
|z|
r

+ o(1))

= (1 + o(1))|f(zr)| · |
z

zr
|a(r,v),

for z ∈ D. These two inequalities give

1− o(1)

1 + o(1)
M(|z|, f) ≤ |f(z)| ≤ (1 + o(1))M(|z|, f),

which is the second claim. �

Corollary 6.4.3. For all β > 0, there is an α > 1 and a set F ⊂ [1,∞) of finite

logarithmic measure so that for large enough r 6∈ F ,

{z : |f(zr)|
β

≤ |z| ≤ β|f(zr)|} ⊂ f(D(zr,
α

a(r, v)
)).

Thus log f(D(zr,
α

a(r,v)
)) contains the rectangle

|ℜ(z)− log(zr)| ≤ log β, |ℑ(z)− arg(f(zr))| ≤ γ.

6.5. Fast escaping points exist

Theorem 6.5.1. Let D be a direct tract of f . Then there exists w0 ∈ D such that

wn = fn(w0) ∈ D for all n and wn → ∞.
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Proof. Let F be as in Theorem 6.4.2. Since F has finite logarithmic measure,

we can choose a sequence {rn} increasing to ∞, so that rn+1 ∈ In \ F where

In = [
1

2
|f(zn)|, 2|f(zn)|],

and where zn = zrn is the point on Ω ∩ {|z| = rn} where |f(z)| is maximized. Take

α > 1 as in Corollary 6.4.3 and set Dn = D(zn, αrn/a(rn, v)). Then by Corollary

6.4.3, f(Dn) contains the annulus {z : |z| ∈ 2In+1} and hence f(Dn) contains Dn+1.

Let C0 = D0 and inductively choose Cn to be a component of f−n(Dn) contained in

Cn−1. These are nested compact sets, so have a common point w0 whose iterations

clearly remain in D forever. This prove the theorem. �

For use later, note that the iterates of w0 satisfy |fn+1(w0)| ∈ In+1 and hence

|fn+1(w0)| ≥
1

2
M(|fn(w0)|, f).(38)

where, as before,

M(r, f) = max{|f(z)| : z ∈ Ω, |z| = r}
and Mn

Ω is the nth iteration of this function.

By the proof of Theorem 6.5.1, |wn+1| > 1
2
max{|f(z)| : z ∈ Ω, |z| ≤ |wn|} so this

sequence grows at essentially the fastest possible rate at each step. We can make

this observation a bit more precise by defining the “fast escaping set” and the “fast

escaping through Ω” set as:

A0(f, ρ) = {z : and |fn(z)| ≥Mn(ρ)∀n ∈ N}.
A0(f,Ω, ρ) = {z ∈ D : fn(z) ∈ Ω and |fn(z)| ≥Mn(ρ)∀n ∈ N}.

We use the first set for entire functions when we don’t care which component of

{|f | > R} our orbit lies in; we use the second set when f is only defined on a direct

tract, or when f is entire and we want to restrict attention to orbits that stay in

a single component of {|f | > R}. The “0” in A0 is used because this set will be a

special case of a set AL(f,Ω, ρ) that we will introduce in the next section.

Theorem 6.5.2 (Bergweiler, Rippon, Stallard [19]). A0(f,Ω, ρ) is non-empty.

Proof. By Lemma 6.2.4 we have M(2r) > 4M(r) for r large enough. By the

proof of Theorem 6.5.1 and (38), there is a sequence {wn} = {fn(w0)} in Ω so that

|z0| ≥ 2ρ = 2M0(ρ) and |wn+1| ≥
1

2
M(|wn|).
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Figure 1. The difference betweenM(r, fn) andMn(r, f). The former
is the largest possible value of |fn(z)| where |z| = r. This is obtained
by starting on the circle {|z| = r} and following a single orbit for n
steps. Mn(r, f) is the nth iterate of the real value function M(r, f).
It is obtained by applying f to a the point on {|z| = r} where |f | is
maximized, but instead of applying f to f(z) we can apply f to any
point on the circle {|w| = |f(z)|}. Because we can choose the point
that we iterate at each stage, this grows at least as fast (and often
faster) than following a fixed orbit. Fast point of f are points whose
orbits grow as quickly as the iterates Mn(r, f). The existence of such
points is not obvious, but see Theorem 6.5.2.

We claim that

|wn+1| ≥Mn+1(ρ),

for all n. We prove this by induction. The case n = 0 is stated on the left above.

The induction step is

|wn+1| ≥
1

2
M(|wn|) ≥ 2M(

1

2
|wn|) ≥ 2M(Mn(ρ)) = 2Mn+1(ρ).

Thus w0 ∈ A0(f,Ω, ρ), proving the set is non-empty. �
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Let f be a transcendental entire function and ǫ > 0. Then the argument above

shows that for r sufficiently large there is a point

w ∈ {z : r ≤ |z| ≤ (1 + ǫ)r} ∩ A(f)

with |fn(w)| > Mn(r, f) for all n ∈ N. Moreover, we can choose w so that there are

sequences {zn} ⊂ C and {kn} ⊂ (0,∞) so that if

Dn = {z : |z − zn| <
ǫ

4
|zn|},

An = {z : k−1
n M(|zn|, f) ≤ |z| ≤ knM(|zn|, f),

then,

(1) fn(w) ∈ Dn, An ⊂ f(Dn) and |f(zn)| =M(|zn|, f) ≥Mn+1(|z0|, f).
(2) Dn ⊂ An ∩ {z : |z| ≥M(|zn−1|, f)},
(3) w = ∩Bn where B0 = D0 and Bn is a component of f−n(Dn),

(4) kn ր ∞.

A point satisfying all these properties is called an Eremenko point by Rippon and

Stallard in [118].

6.6. Levels of the fast escaping set

Suppose Ω is a direct tract of f and define

AL(f,Ω, ρ) = {z : fL(z) ∈ A0(f,D, ρ)}
= {z : ∀n ≥ max(0,−L), fn+L(z) ≥Mn(ρ, f)}

and

A(f,Ω, ρ) = {z : ∃L ∈ N s.t. fL(z) ∈ A0(f,D, ρ)

= ∪L∈ZAL(f,Ω, ρ)
= ∪L∈NAL(f,Ω, ρ)

The last equality holds since s < t implies As ⊂ At. Note that each set AL is closed,

and hence A is an increasing union of closed sets.

We can make (but won’t write down) similar definitions for AL(f, ρ) and A(f, ρ).

These are the same as above, except that if f is defined on multiple tracts, then

we don’t require the orbit of a point to stay in a single tract. Because of this extra
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freedom, such orbits can escape more quickly to ∞, e.g., if f is an entire function

and ‖|f | > 1} has connected components {Ωj} it is possible for

A(f, ρ) ∩ A(f,Ωj, ρ) = ∅,

for every j, i.e., unrestricted orbits tend to infinity at a faster rate than orbits re-

stricted to any single tract of f .

EXERCISE: Construct an example where A(f, ρ) ∩ A(f,Ωj , ρ) = ∅, as described
above. This will be easier later the the text when we have developed quasiconformal

methods for constructing entire functions. The basic idea is to build a function with

two tracts that are “wide” and “narrow” at different scale, and thus the growth of

f in each tract is different, growing faster in a tract when that tract is narrow. An

orbit that switches between tracts so as to always land in a “narrow” section will

iterate to ∞ faster than an orbit that is required to stay in one tract and experience

both slow and fast growth of f .

EXERCISE: Show that if f is an entire function so that {z : |f(z)| > R} has N <

∞ connected components {Ωn}N1 , then for any sequence {sn} with sn ∈ {1, . . . , N}
there is a point z0 ∈ A0(f, ρ) so that fn(z0) ∈ Ωsn .

EXERCISE: Show that if f has infinitely many tracts {Ωn} , then not all sequences

occur. (Hint let ωn = min{|z| : z ∈ Ωn} and choose a sequence so that this grows too

quickly to be attained by any orbit).

EXERCISE: Take f(z) = exp(−z) + exp(exp(z)) and R > e + 1. Show there is

one direct tract Ω0 is the left half-plane and infinitely many in the right hand plane,

including one, Ω1 that includes all large enough real numbers. Show A(f,Ω0)∩A(f) =
∅, but A(f,Ω1) ⊂ A(f).

EXERCISE: if g = h−1 ◦ f ◦ h where h is linear, then A(f) = h(A(g)). (Theorem

2.2d of [118]).

EXERCISE: A(f) = A(fm) (Theorem 2.6 of [118]).

EXERCISE: Fix ǫ > 0 and let µ(r) = ǫM(r, f). Then if r > r0 implies µ(r) > r

and |z| > r0 satisfies |fn(z)| ≥ µn(r0) for all n, then z ∈ A(f). (Theorem 2.7 of

[118]).

To simplify notation, it would be nice to get rid of the ρ in A(f, ρ). We can do

this with the following lemma:
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Lemma 6.6.1. A(f,Ω, ρ) is independent of ρ for ρ large enough. Similarly for

A(f, ρ).

Proof. Assume that ρ > ρ0 implies that M(ρ, f) > rho; this insures that

Mn(ρ, f) ր ∞. Given two values ρ0 < s < t, there is some k so that Mk(s, f) >

M(t, f), and hence Mn+k(s, f) > Mn(t, f). This implies

AL+k(f,Ω, t) ⊂ AL+k(f,Ω, s) ⊂ AL(f,Ω, t),

hence, taking the union over all L ∈ Z,

A(f,Ω, s) = A(f,Ω, t).

�

Since A(f,Ω, ρ) is independent of ρ for ρ > ρ0, we denote this set as A(f,Ω).

This is the fast escaping set through Ω. If f is entire, and we don’t care about

which components of {|f | > ρ} the orbits visit, we define A(f) similarly, and call it

the fast escaping set of f .

The definition of A(f) given above is due to Rippon and Stallard [118], but the

original definition, due to Bergweiler and Hinkkanen [17] is slightly different:

CL
R(f) = {z : ∃L ∈ N s.t. |fn+L(z)| ≥M(R, fn), ∀n ∈ N, },

CR(f) = ∪LCL
R,

and in [116] Rippon and Stallard considered another variant

BL
R(f) = {z : ∃L ∈ N s.t. |fn+L(z)| 6∈ hull(fn(DR)), ∀n ∈ N, },

BR(f) = ∪LBL
R,

where D is any disk hitting J (f).

Theorem 6.6.2 (Rippon-Stallard []). A(f) = BR(f) = CR(f).

Proof. We claim that if R is sufficiently large, then

{z : |z| ≤Mn(R/2, f) ⊂ hull(fn(DR))

⊂ {z : |z| ≤M(R, fn)}
⊂ {z : |z| ≤Mn(R, f)}
⊂ {z : |z| ≤Mn+1(R, f)}
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All the inclusions are obvious except the first one. To prove this, note that if R

is sufficiently large then Eremenko’s application of the Wiman-Valiron implies that

there is a point z in the annulus A = {z : R
2
< |w| < R}, with a neighborhood

U ⊂ A so that fn(U) contains the circle {|z| = Mn(R/2, f)}. This proves the first

containment.

These containments imply

ALR/2(f) ⊃ BL
R(f) ⊃ CL

R(f) ⊃ AL−1
R (f).

Taking unions over L gives

A(f) ⊃ BR(f) ⊃ CR(f) ⊃ A(f).

�

EXERCISE: Show directly that C(f) does not depend on the choice of R, as long

at R > minz∈J (f) |z|. Show that B(D) does not depend on the choice of D.

EXERCISE: [?] The quite fast escaping set is defined by Rippon and Stallard as

Qǫ(f) = {z : ∃k ∈ N such that |fn+k(z)| ≤ µnǫ (R) for n ∈ N},

where µǫ(r) = M(r)ǫ. They give examples where this agrees with the fast escaping

set and examples where they differ.

6.7. Connected components of A(f) are unbounded

We start by reviewing some properties of connected sets.

A set is connected if it cannot be written as a disjoint open sets.

Lemma 6.7.1. If K is connected, so is its closure K.

Lemma 6.7.2. If E1 ⊃ E2 ⊃ . . . are non-empty, compact, connected sets, then so

is E = ∩nEn.

Proof. Compactness is clear and non-emptiness is the Cantor intersection theo-

rem. If U, V are any pair of disjoint open sets then {En \ (U ∪V ) is a nested sequence

of compact, non-empty sets, hence has a non-empty intersection. Thus E is not

covered by U and V and so is connected. �
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Lemma 6.7.3. Suppose K a connected component of a compact set E and E(ǫ)

is the closed ǫ-neighborhood of E. Let Kǫ be the connected component of E(ǫ) that

contains K. Then ∩n>0K1/n = K. Moreover, for any δ > 0 there is an n > 0 so that

K1/n ⊂ K(δ).

Proof. K is clearly in the intersection, since it is in each Kǫ. Moreover, the

intersection is closed, connected subset of E that contains K, so must be K, since K

is a component of E. To prove the final claim, note that otherwise there is an δ > 0

so that K1/n \K(δ) forms a nested sequence of non-empty compact sets, hence has

non-empty intersection, contradicting the first part of the lemma. �

The arguments in the previous section shows that A0(f,Ω, ρ) is unbounded. We

want to show every connected component of this set is also unbounded, but first we

need a few topological facts about connected sets.

Lemma 6.7.4. Suppose X is a compact, compact connected subset of the Riemann

sphere that contains ∞. Then each connected component K of E = X ∩ {z ≤ R}
hits {|z| = R}.

Proof. Suppose K is a component of E that does not hit {|z| = R}. Since K

is closed, there is an ǫ > 0, so that Kǫ (as defined above) is contained in D(0, R).

Since no point of E hits ∂Kǫ (such points are distance ǫ from E, E1 = E ∩Kǫ and

E2 = E \Kǫ are disjoint open sets covering E. Thus E1 and E2 ∪X \D(0, R) form

a disjoint, open cover of X, contradicting the connectedness of X. Thus K must hit

{|z| = R}. �

Theorem 6.7.5 (Boundary bumping lemma). Suppose X is a compact, compact

connected subset of the Riemann sphere that contains ∞. Then each connected com-

ponent of E = X \ {∞} is unbounded.

Proof. Suppose K ⊂ D(0, R) were a bounded connected component of E. Then

K is closed, bounded and contains K, so K = K must be closed. Let V = E ∩
D(0, 2R) and let B the component of V that contains K. By Lemma 6.7.4, B hits

E ∩ {|z| > R} so is not equal to K. Therefore B is a connected subset of E that

strictly contains K, a contradiction. Hence K cannot be bounded. �
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The preceding result may seem so obvious that the reader may wonder if any proof

is really needed (or, at least, if the proof was longer than needed). To illustrate the

problem involved we remind the reader of an old result of Knaster and Kuratowski:

Lemma 6.7.6. There is a connected set X on the 2-sphere so X \ {∞} is totally

disconnected.

Proof. Let C be the standard middle thirds Cantor set, E ⊂ C the countable

set of endpoints of components of R \ C and F = C \ E. Let

Y = {x+ iy : x ∈ E, y ∈ Q, y ≥ 0} ∪ {x+ iy : x ∈ F, y ∈ R \Q, y > 0}.

and X = Y ∪ {∞}. We claim that X is connected and Y is totally disconnected.

The latter claim is easy: any two vertical lines through C are contained in disjoint

open half-planes, so any connected component of Y would have to be contained in

one such line L. However, Y ∩ L has only point components, so the same is true for

Y .

Next we show X is connected. Suppose U, V are disjoint open sets in the sphere

such that X ⊂ U ∪ V . Without loss of generality we assume ∞ ∈ U . For each

Rx ∈ C let f(x) = sup{y : x + iy ∈ V } (set f(x) = 0 is there are no such points

y). This is clearly bounded (since U covers a neighborhood of ∞) and x ∈ F implies

f(x) ∈ Q (since V is open). For each rational r > 0 let

Tr = {x ∈ C : f(x) = r} = V ∩ {y = r},

and let S = {x : f(x) = 0}. Then {Tr} is a countable collection of closed sets.

Moreover, each of these sets is disjoint from E since f(x) must be irrational for

x ∈ E. Thus each Tr is nowhere dense in C; otherwise, being closed, they would

contain points of E (which is dense in C).

Since C = S ∪ E ∪ ∪rTr, Baires’ theorem implies S is dense. The vertical lines

through S therefore intersect every open sets that hits Y , so U intersects every open

set that hits Y . Therefore V is the empty and we conclude X is connected. �

It might seem that this is an artificial example, but similar sets arise naturally in

dynamics:
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Theorem 6.7.7 (Mayer, [93]). For every exponential map z → λez with an at-

tracting fixed point, the landing points of dynamic rays in C are totally disconnected,

but become a connected set on the sphere when we add {∞}.

PROOF ????

A useful consequence of the boundary bumping lemma is

Lemma 6.7.8. If K is a bounded connected component of a closed set X ⊂ C then

there is a Jordan curve γ ⊂ C \X that surround K.

Proof. Consider the usual grid of 1
n
× 1

n
closed squares in the plane and let Xn

be the union of these squares that hit X and let Kn be the connected component

of Xn that hits K. If Kn is bounded, then there is a component of the curve {z :

dist(z,Kn) = (10n)−1} that surrounds K and is disjoint from X.

If the result fails, then E = ∩n{Kn ∪{∞}} is a closed connected set on the sphere

that contains K. By the boundary bumping lemma the component F of E \ {∞}
that contains K must be unbounded. Thus the component of X that contains K

must be unbounded. But K is itself this component, so K is unbounded. �

Now we apply these topological observations to the fast escaping set.

Theorem 6.7.9. Every connected component of AL(f, ρ) is unbounded.

First proof. Fix L ∈ Z and z0 ∈ AL(f, ρ). If n+L ≥ 0, then let Rn =Mn(f, ρ)

and Xn = {z : |z| ≥ Rn} and note that z0 ∈ f−n−L(Xn). Thus z0 is in a connected

component Ln of this closed set. Clearly Ln is closed in C. If it were bounded, then

|fn+L| would have to be bounded on Ln and since it equals R on ∂Ln the maximum

principle implies it is constant; a contradiction. Thus Ln is closed and unbounded.

Since |fn+L(z)| ≤ Rn implies |fn+1+L(z)| ≤ Rn+1, we also have |fn+1+L(z)| ≥ Rn

implies |fn+L(z)| ≥ Rn. Hence Ln+1 ⊂ Ln. Thus

K = ∩n∈N,n+L≥0(Ln ∪ {∞}),

is a closed connected set on the sphere that contains both z0 and∞. By the boundary

bumping lemma (Lemma ??), each component of K \ {∞} is unbounded.

Each finite point z of K is in every Ln with n + L ≥ 0, so |fn+L(z)| ≥ Rn =

Mn(f, ρ) for all n ≥ max(0,−L). Thus z ∈ AL(f, ρ) and hence K \ {∞} ⊂ AL(f, ρ).
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Since every component of AL(f, ρ) contains a component ofK\{∞}, every component

of AL(f, ρ0) is also unbounded. �

Second proof of Theorem 6.7.9. Suppose AL(f, ρ) has a bounded compo-

nent K. By Lemma 6.7.8, there is a Jordan curve γ that misses AL(f, ρ) and sur-

rounds K. For each n = 1, 2, 3, . . . define

γn = {z ∈ γ : |fn(z)| ≥Mn+L(ρ)}.

Since K is inside γ the maximum principle says that each γn is non-empty, and they

are clearly closed and nested, i.e., γn+1 ⊂ γn. Thus the intersection is non-empty and

consists of points in AL(f, ρ), contradicting the fact that γ is disjoint from this set.

Therefore there are no bounded components of AL(f, ρ). �

Lemma 6.7.10. If E1 ⊂ E2 ⊂ . . . are connected sets, then ∪nEn is connected.

Proof. Suppose U, V are disjoint open sets that disconnect E, i.e., they cover

E and U ∩ E and V ∩ E are both non-empty. By assumption, each En is contained

in either U or V . By passing to a subsequence, we can assume they are all contained

in U , but this implies V ∩ E = ∅. �

Corollary 6.7.11. Every connected component of A(f) is unbounded.

Proof. If z ∈ A(f) then z ∈ AL(f, ρ) ⊂ A(f) for some L and ρ. By Theorem

6.7.9, the component of AL(f, ρ) containing z is closed and unbounded, thus the

component of A(f) containing z is also unbounded. �

Theorem 6.7.12. For any transcendental entire function f , I(f) has an un-

bounded component.

Proof. Every component of A(f) is unbounded and there is at least one such

component K (since A(f) 6= ∅). Thus the connected component of I(f) that contains

K is also unbounded. �

Eremenko’s conjecture asks if every component of I(f) is unbounded. At this

writing, this is still open. A stronger versions asks if every every path component

of I(f) is unbounded. In Chapter 10 we will show this is true in the special case

of hyperbolic Eremenko-Lyubich functions of finite order. In Theorem 9.3.1 we give
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a hyperbolic example of infinite order where the strong Eremenko conjecture fails

within the Eremenko-Lyubich class.

6.8. Fast escaping Fatou components

We define that set of orbits that tend to infinity faster than iterating any poly-

nomial:

Z(f) = {z ∈ I(f) : lim
n→∞

1

n
log log |fn(z)| = ∞}.

(The “Z” is for “zipping” to infinity.)

Lemma 6.8.1. A(f,Ω) ⊂ Z(f).

Proof. This follows from Lemma 6.2.3. EXPLAIN FURTHER �

Lemma 6.8.2. A Fatou component U that hits Z(f) must be wandering.

Proof. We may assume U is simply connected (since otherwise it is wandering

by Corollary 2.6.4). Suppose it is not wandering, i.e., fn(U) ⊂ U . Replacing f by

g = fn we assume g(U) ⊂ U . Take any point in U and connect z to g(z) by a curve

γ. Then gn(z0 is connected to gn+1(z) by γn = gn(γ), and the hyperbolic diameter

of γn is no greater than that of γ. Since U is simply connected there is a constant

C <∞ so that

|gn+1(z)| ≤ C|gn(z)|,
when |gn(z)| is large enough. Thus

|gn+k(z)| ≤ Ck|gn(z)|,

when |gn(z)| is large enough, which implies z 6∈ Z(g). This easily implies z 6∈ Z(f)

as well, and hence U must have been wandering. �

Corollary 6.8.3. A Fatou component that hits A(f) must be wandering.

Theorem 6.8.4. If U is a Fatou component that hits A(f) then U ⊂ A(f)

Proof. Suppose f is a transcendental entire function andR > 0 satisfiesM(r, f) >

r for all r > R. If U hits A(f) then it hits ALR(f) for some L, and it suffices to show

U ⊂ AL−1
R (f). Let z0 ∈ U ∩ ALR(f). Then, by definition,

|fn(z0)| ≥Mn+L(R, f),
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for all n ∈ N such that n + K ≥ 0. Suppose z1 ∈ U , by normality z1 ∈ I(f), but

we need a stronger statement. Since the Julia set contain at least two distinct points

and fn never takes these values on U , Schottky’s Lemma (Lemma 1.5.7 says that

there is a C so that

|fn(z1)| ≥ |fn(z0)|1/C ≥ (Mn+L(R, f))1/C ≥Mn+L−1(R, f),

if R is large enough (the last inequality follows from Lemma 1.6.2 that says that the

slope of logM(r, f)/ log r ր ∞). Thus U ⊂ AL−1
R . Since the latter is a closed set, it

also contains the closure of U . �

It is not true that if a Fatou component hits I(f) then it closure lies in I(f). We

shall prove later (see Example 7.5.1) that

f(z) = 1 + z + e−z,

has a single Fatou component U and this component is in I(f). However, in this case

∂U = J (f) and hence contains periodic points, which are clearly not escaping.

If f has a multiply connected Fatou component, then such components eventually

surround every point, so must hit any unbounded connected set. In particular, they

must hit A(f), and hence:

Corollary 6.8.5. Suppose f is a transcendental entire function. Then the clo-

sure of every multiply connected Fatou component is in A(f).

Corollary 6.8.6. A(f) ∩ J (f) 6= ∅.

Proof. If not, then A(f) is a non-empty subset of F(f), and by Theorem 6.8.4

there is a Fatou component U so that ∂U ⊂ U ⊂ A(f). But ∂U ⊂ J (f). �

Corollary 6.8.7 (Rippon-Stallard [116]). Suppose f is a transcendental entire

function that has a multiply connected Fatou component. Then A(f) is connected.

Proof. In this case, any two components of A(f) hit some common Fatou com-

ponent and thus are the same component. �

The following generalizes Corollary 2.6.8.

Lemma 6.8.8. If f is entire and |f(z)| = O(|z|C) along some curve γ tending to

infinity, then all the Fatou components of f are simply connected.
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Proof. If there is a multiply connected Fatou component U , then it is the fast

escaping set A(f) and hence in the Z(f) and hence for any c <∞, we have |f(z)| >
|z|c in all large enough iterates of U . However, every large enough iterate of U hits

γ, which is a contradiction. �

Lemma 6.8.9. If f is transcendental entire, then J (f) = ∂A(f).

Proof. If ∂A(f) contains a point z ∈ F(f), then A(f) also hits U and hence

U ⊂ A(f), which implies z is not a boundary point of A(f). Thus ∂A(f) ⊂ J (f).

On the other hand, by Lemma 2.4.9, the Julia set is contained in the accumulation

set of f−n(z) for every z, except possibly one. Since A(f) is non-empty and contains

an escaping orbit, it contains a non-exceptional z. Since the inverse images of this

point are all in A(f), we deduce J (f) ⊂ A(f). If D is a disk in A(f) then fn(D)

omits every pre-periodic point of f ; since there are always at least two such points,

fn is normal on D and hence D ⊂ F(f). Thus the interior of A(f) is in F(f) and

hence J (f) ⊂ ∂A(f). �

Corollary 6.8.10. If f is transcendental entire, then J (f) = J (f) ∩ A(f).

Proof. Since J (f) ∩ A(f) is completely invariant and contains infinitely many

points J (f) ⊂ J (f) ∩ A(f). The reverse containment is obvious since J(f) is closed.

�

Lemma 6.8.11. If f has no wandering domains, then J (f) = A(f).

Proof. By the previous lemma, the Julia set is contained in the closure of A(f).

If we did not have equality, then A(f) hits some Fatou component, which then must

be wandering by Corollary 6.8.3. �

Lemma 6.8.12. If E is connected and E ⊂ F ⊂ E, then F is connected.

Proof. Suppose U, V are disjoint open sets that cover F . Then E hits only one

of them, say U . Then E ∩ V = ∅ and hence F ∩ V = ∅. �

We can now give a second proof Corollary 5.7.9

Corollary 6.8.13 (Rippon-Stallard [116]). Suppose f is a transcendental entire

function that has a multiply connected Fatou component. Then I(f) is connected.
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Proof. Since J (f) = ∂A(f),

A(f) ⊂ A(f) ∪ (J (f) ∩ I(f)) ⊂ A(f).

We proved in Corollary 6.8.7 A(f) is connected in this case, so this implies A(f) ∪
(J (f) ∩ I(f)) is also connected by Lemma 6.8.12.

On the other hand, if V is a Fatou component in I(f) and z0 ∈ V then eventually

fn(z0) lies outside any bounded set and hence outside any fixed multiply connected

Fatou component. Thus all of V (and V ) lie outside this component and hence

V ⊂ I(f). Thus V is in the same component of I(f) as the connected set A(f) ∪
(J (f) ∩ I(f)) and hence I(f) is connected. �

EXERCISE: Show, in contrast to Theorem 6.8.4, that if a Fatou component hits

I(f), its closure need not be in I(f) (consider f(z) = z + 1 + e−z which has a Baker

domain).

EXERCISE: In the proof of Theorem 6.8.4, show that U ⊂ ALR(f) if f is simply

connected. (Hint: replace Schottky’s lemma by the fact that |fn(z0)| and |fn(z1)|
must be comparable.)

EXERCISE: If all components of F(f) are simply connected, then ∂ALR(f) ⊂
J (f).

OPEN PROBLEM: Can there be unbounded Fatou components in A(f)?

Theorem 6.8.14. Suppose f is a transcendental entire function and R > 0 sat-

isfies M(r, f) > r for all r > R. All the components of A(f) ∩ J (f) are unbounded

iff f has no multiply connected Fatou components.

Proof. One direction is easy: if there are multiply connected Fatou components

then such components eventually surround every point of the plane, and hence J (f)

has no unbounded components.

For the other direction, suppose all Fatou components are simply connected.

It suffices to prove that all components of ALR(f) ∩ J (f) are unbounded. Let z0 ∈
ALR(f)∩J (f). Then by the proof of Theorem 6.7.9 z0 lies in an unbounded component

K of ALR(f). By the previous EXERCISE, ∂K ⊂ J (f), so z0 lies in some connected

component S of ∂K.

We claim S is unbounded. Suppose not. Then there is an bounded open set U

such that S ⊂ U but ∂U ∩ ∂K = ∅. Since K contains S and is unbounded it must
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hit ∂U . Thus ∂U must be contained in the interior of K, hence in the interior of

the escaping set and hence in the Fatou set. But U contains a point of the Julia set

and hence ∂U belongs to a multiply connected Fatou component. The contradiction

implies no component of ALR(f) ∩ J (f) is bounded. �



CHAPTER 7

Baker domains

In polynomial dynamics a Fatou component can have a rationally neutral periodic

point on its boundary so that points of the component iterate towards the (finite)

orbit of the periodic point. This can also happen for transcendental functions, but in

this case, it is also possible to have periodic Fatou components consisting of escaping

points. These are called Baker domains. As we saw in Section ??, these cannot

occur in the Eremenko-Lyubich class, but they can occur in general. In this chapter

we shall describe a number of examples, and prove some basic properties of Baker

domains. One of the most interesting is that although a Baker domain need not

contain singular values, there must always be singular values at “all scales”; making

this precise provides another proof that functions with bounded singular sets (i.e.,

the Eremenko-Lyubich class) do not have Baker domains.

Since several interesting examples of Baker domains arise using from maps of the

punctured plane, we start by considering such maps. This also provides an application

of the some of our results about fast escaping points from the last chapter.

7.1. Iteration in C∗

If we consider holomorphic maps f : Ω → Ω where Ω is a subset of the Riemann

sphere, Montel’s theorem implies the iterates of f will be normal on all of Ω if this

domain omits three points of the sphere. Thus the most interesting cases are the

sphere, the plane and the punctured plane. The first corresponds to iteration of

rational maps, the second to iteration of entire functions (the subject of these notes),

and the third to the iteration of maps f : C∗ → C∗, where C∗ = C \ {0}. This

case was first considered by Radström [109] in 1953 and in a number of more recent

papers (e.g., [8], [9], [13], [15], [26], [54], [53], [52], [51], [79], [78], [84], [83], [90],

[89], [101].

167
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Let Π(z) = exp(az) for some a 6= 0. This is a holomorphic covering map Π : C →
C∗, so if g : C∗ → C∗ is holomorphic, it can be lifted to an entire function f so that

exp(af(z)) = g(exp(az)).

Lemma 7.1.1 (Bergweiler [15]). J (f) = Π−1(J (g)).

Proof. Since g(exp(z)) = exp(f(z)), applying g to both sides gives

g(g(exp(z)) = g(exp(f(z)) = exp(f(f(z)))),

or g2(exp(z)) = exp(f 2(z)). Induction gives gn(exp(z)) = exp(fn(z)). Suppose

U ⊂ C is an open set such that V = Π(U) is a subset of a a Fatou component of

g. Then {gn} has a convergent subsequence gnk on V . If it converges to ∞ then

ℜ(fnk) → ∞ on U and hence fnk → ∞ on U and hence U ⊂ F(f). Similarly

if gnk → 0. Otherwise gnk → ϕ where ϕ is holomorphic and non-zero on U(by

Hurwitz’s theorem). Thus there is a sequence of integers mk so that

|fnk − 2πi

a
mk − logϕ| → 0.

If only finitely many different values of mk occur, then one value m occurs infinitely

often and this gives a convergent subsequence of iterates converging to 2πi
a
m− logϕ.

Otherwise we can choose a subsequence where |mk| → ∞, and this gives subsequence

of iterates converging to ∞. Thus Π−1(F(g)) ⊂ F(f) (or, if you prefer, J (F ) ⊂
Π−1(J (g))).

Suppose equality does not hold. Then there is a point z ∈ F(f) with w ∈ Π(z) ∈
J (g). For any neighborhood U of z, Π(U) is a neighborhood of w and by Theorem

3.4.2 it contains a periodic point w1. (Theorem 3.4.2 was stated for transcendental

entire functions, but its proof applies whenever there are at least five points where

the iterates of f are not normal; this holds for transcendental self-maps of C∗.)

By Theorem 6.8.1, it also contains a point w2 ∈ Z(g). If U ⊂ F(f), we shall show

that U cannot contains lifts of both types of points. Theorem 6.8.1 was stated for

functions with a direct tract, but it is easy to see that a transcendental self-map of

C∗ has a direct tract at either 0 or ∞, and by conjugating with 1/z, if necessary, we

can assume the direct tract is at ∞. Thus Theorem 6.8.1 applies.

First note that since

exp(f(z + 2πi))g(exp(z + 2πi)) = g(exp(z)) = exp(f(z)),
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we must have

f(z + 2πi) = f(z) + k2πi+ f(z),

and since the choice of k is both discrete and continuous in z, it must be the same

for all z.

f(z + 2nπi) = f(z) + kn2πi+ f(z).

From this we see that

f(z + it) = f(z) +O(|t|),
and hence all the components of F(f) must be simply connected by Lemma 6.8.8.

Now consider z1 ∈ U so that Π(z1) = w1. There is an m so that gm(w1) = w1, so

there is a k so that fm(z1) = km2πi+ f(z1). Hence the f iterates of z1 either remain

bounded (if k = 0) or tend to infinity in a vertical strip (wide enough to include

z1, . . . , f
m−1(z1)) at a rate O(m). Since z2 is in the same simply connected Fatou

component as z1, this implies the f -iterates of z2 are also O(m) by Lemma 1.4.4. On

the other hand, since w2 ∈ Z(g), the iterates of z2 have real parts that tend to +∞
faster than exp(cn), for any c > 0. The contradiction proves not part of F(f) can

project onto J (g), which completes the proof. �

7.2. Rate of escape

Theorem 7.2.1. If f is a transcendental entire function and z ∈ Ω, a Baker

domain for f , then there is a 1 ≤ C <∞ so that

C

|z| ≤ |f(z)| ≤ C|z|

. Thus

log |fn(z)| = O(n).

7.3. Classification of Baker domains

Baker domains are simply connected. (otherwise would be wandering).

Invariant domain; f corresponds to iteration of inner function converging to

boundary.

Denjoy-Wolff theorem

Classification based on conjugacy.
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Theorem 7.3.1 (Baker-Domı́nguez). Let Ω be a Baker domain on which f is not

univalent. Then Ω has uncountably many different ends to ∞ and ∂Ω has infinitely

many components.

7.4. Singular points

We have already seen (Theorem ??) that if S(f) is bounded, then f has no Baker

domains. In fact, if there are Baker domains, then there large singular points must

be fairly common in the following sense.

Theorem 7.4.1 (Bargmann). If f is a transcendental entire function that has a

Baker domain, then S(f) ∩ {z : r < |z| < Cr} 6= ∅ for all sufficiently large r > 0.

Lemma 7.4.2. There is a f transcendental entire function that has a Baker do-

main Ω that contains no singular values.

Theorem 7.4.3 (Bergweiler). If f is a transcendental entire function that has

a Baker domain Ω such that Ω ∩ S(f) = ∅, then there is a sequence of complex

numbers pn → ∞ such that pn ∈ P (f) (the post-singular set of f), |Pn+1/pn| → 1

and dist(pn,Ω) = o(|pn|).

Theorem 7.4.4 (Bergweiler). Let f be transcendental entire of finite order such

that

f(z) = z + a+ o(1),

as z → ∞, | arg z| ≤ η for some a, η > 0. Then f has an invariant Baker domain Ω

which contains

{z = x+ iy : | arg z| ≤ η,> x > R},
for some R > 0 and Ω ∩ S(f) is unbounded.

7.5. Examples

Example 7.5.1. [55], Example 1. f(z) = z + 1 + e−z. If z = x+ iy we have

ℜ(f(z)) = x+ 1 + cos(y)e−x ≥ x+ 1− e−x > x = ℜ(z),

whenever ℜ(z) = x > 0, so the right half=plane is contained in a Baker domain.

Fatou showed this was the only Baker domain for this example.
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Example 7.5.2. Baker [6] showed that

f(z) = z +
sin(

√
z)√
z

+ a

has a Baker domain for a ∈ R large enough and Fleischmann [56] showed this is true

for all a > 0. For large a, points of the real axis iterate to ∞ and one can show that

there is a parabolic shaped region

V = {x+ iy : y2 < 4(x+ 1), x > a2}

that is mapped into itself; thus it must be contained in a Baker domain.

To see this, note that the square root map sends the parabolic region into a half-

strip centered on the positive axis and | sin(z)/z| is bounded by some b/x on this

half-strip. Hence

ℜ(f(z)) ≥ x+ a− b/x,

and

|ℑ(f(z))| ≤ |y|+ b/x

so

|ℑ(f(z))|2 ≤ 2|y|2 + 2b2/x2 ≤ 4(x+ 1) + 3 ≤ 4(ℜ(z) + 1)

if x2 > 2b2 and a− b/x > 1.

Baker [6], that there are no Baker domains if f has order 1
2
, minimal type, and

this example shows this is very close to sharp. Here, the order of a function is

ρ(f) = lim sup
|z|→∞

log log |f(z)|
log |z| .

If 0 < ρ(f) = ρ <∞, we define the type as

τ(f) = lim sup
z→∞

log |f(z)|
|z|ρ .

The function is called minimal type if τ(f) = 0, maximal type if τ(f) = ∞
and mean type otherwise. The function f above is order /12, mean type. Baker

[6] noted there are examples with Baker domains of arbitrarily small positive types.

Baker’s conjecture asks if this sharp: if f is order 1/2, minimal type, then every

Fatou component is bounded.

EXAMPLE Rippon and Stallard [115] showed

f(z) = az(1 + exp(−zp),
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with a > 1, p ∈ N has p invariant Baker domains, one in each sector {z : | arg(z) −
2π k

p
| < π

p
} for k = 0, . . . , p − 1. Moreover, g(z) = e2πi/pf(z) has a p-cycle of Baker

domains. See also [100] for a similar example by Morosawa.

7.6. Logarithmic examples

Let Π(z) = exp(az) for some a 6= 0. This is a holomorphic covering map from

C∗ = C \ {0} to C, so if g : C∗ → C∗ is holomorphic, it can be lifted to an entire

function f so that exp(af(z)) = g(exp(az)).

Lemma 7.6.1 (Bergweiler [15]). J (f) = Π−1(J (g)).

Proof. �

EXAMPLE Apply this to g(z) = cz exp(−z), Π(z) = exp(−z) to obtain f(z) =

z − log c + e−z (this contains Fatou’s example when c− = 1/e. If |c| < 1 then g has

an attracting fixed point at 0, so f has an invariant half-plane in the right half-plane

where fn → ∞.

EXAMPLE

Baker and Dominguez [9] take g(z) = z exp(−z) and Π(z) = exp(−z) which gives

Theorem 7.6.2 (Baker Dominguez 1999 [10] ). If U is an invariant Baker domain

and f is not univalent, then ∞ is dense in ∂U (more precisely U is simply connected

and there is a dense set of radial segments in the disk that the conformal map to

U take to curves limiting on ∞).
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Models for Eremenko-Lyubich functions

In this section we describe a method of constructing many examples in the

Eremenko-Lyubich class B with particular geometrical and dynamical properties .

The main idea is to reduce to constructing certain “model functions” that are only

defined on certain unbounded subsets of the plane. There is a great deal of freedom

in building the models, so it is often easier to make the iterations of a model function

behave as desired then to do the same directly with an entire function. To pass from

the model to the entire functions two steps are needed, both non-obvious. First, we

must prove that every model function can be approximated in an appropriate sense

by an Eremenko-Lyubich function. Second, we must prove that this approximations

implies that the model and its approximating entire function have similar dynamics.

Indeed, in many cases of interest, we will show that the functions are conjugate on

their Julia sets; in these cases the two Julia sets are images of each other under a

quasiconformal mapping of the plane. One particular example we shall work out in

detail is the construction of a function in B where the strong version of Eremenko’s

conjecture fails: I(f) ∪ {∞} is not path connected.

8.1. Model domains

Let Ω ⊂ C be a union of disjoint, unbounded simply connected domains such that

(1) each Ω is bounded by a Jordan curve,

(2) Ω ∩ D = ∅, and
(3) sequences of components of Ω accumulate only at ∞.

Such an Ω will be called a model domain.

If Ω is a model domain, suppose that τ on Ω is a holomorphic map τ : Ω → Hr =

{ℜz > 0}, such that

173
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(1) the restriction τj to a component Ωj of Ω is a conformal map between Ωj

and Hr,

(2) if τ(z) → ∞ then z → ∞.

Then f(z) = exp(τ(z)) is a model function.

Given a model function, when is there an entire function in B or S with the

same dynamics as the model? We have more flexibility building a model function (it

doesn’t have to be defined everywhere), so it may be easier to build counterexamples

using models than using entire functions. If we knew that every model could be

approximated by an entire function in an appropriate sense, then we could transfer

the counterexample from the model setting to an entire function. This does work,

but to state a theorem, we need to be more precise about the sense in which the

entire function approximates the model.

One possibility is uniform approximation on the set Ω; here both the model

and the entire function are defined. Moreover, Arakelian’s theorem (Theorem ??)

is available to make such approximations and many interesting examples have been

created in this way, e.g., by Eremenko and Lyubich in [48].

However, we choose to use a different form of approximation that is more appro-

priate for constructing functions in B. We say that two entire functions are qua-

siconformally equivalent if there are quasiconformal maps ϕ, ψ of the plane so

that

ψ(f(z)) = g(ϕ(z)).(39)

If the maps ψ and ϕ are the same then we have

ψ(f(z)) = g(ψ(z)),

or

f = ψ−1 ◦ gψ,

which immediately implies

fn = ψ−1 ◦ gnψ.

In this case we say the functions are quasiconformally conjugate and we have

J (g) = ψ(J (f)); conjugate the dynamical point of view. ne



8.1. MODEL DOMAINS 175

However, functions that are merely equivalent but not conjugate can behave quite

differently under iteration. For example if we take

g(z) = ez, f(z) =
1

10
ez, ϕ(z) = z − log 10, ψ(z) = z,

then we have ψ ◦ f = g ◦ ϕ, so f and g are quasiconformally equivalent (in fact,

they are conformally equivalent in the sense that ϕ, ψ are both conformal). However

J (g) = C by Theorem 4.3.1, and J (f) 6= C since f has an attracting fixed at the

smaller solution of 10x = ex.

An even weaker version of quasiconformal equivalence is to require that (39)

only hold on a subset of the plane. We say the functions are quasiconformally

equivalent near ∞ if there are quasiconformal maps ψ, ϕ of the plane and a 0 <

R < ∞ so that this holds on the {z : |f(z)| > R} ∪ {z : |g(z)| > R}. Note that we

need to include both sets, since it possible that one of these sets could be equivalent

to a subset of the other, e.g., one of these sets has one component and the other

has two or more. We are assuming that the tract-system for each function can be

mapped to the other a quasiconformal homeomorphism of the plane, and hence they

have the same number of components and have the same “shape” in a rough sense.

The relation “quasiconformally equivalent near ∞” clearly makes sense for com-

paring an entire function g with a model function f . If f ∈ B and R is chosen

so large that the singular set of f is inside D(0, R0, then the restriction of f to

{z : |f(z)| ≥ R} is clearly a model function (i.e., “forgetting” the small part of f

creates a model of f near ∞). Can we reverse this? Given a model of what f should

look like near ∞, is there an entire function that, in fact, look like this? The answer

is yes.

Theorem 8.1.1 (All models occur). Suppose (Ω, F ) is a model and 0 < ρ ≤ 1.

Then there is f ∈ B and a quasiconformal ϕ : C → C so that F = f ◦ ϕ on Ω(2ρ).

In addition,

(1) |f ◦ ϕ| ≤ e2ρ off Ω(2ρ) and |f ◦ ϕ| ≤ eρ off Ω(ρ). Thus the components of

{z : |f(z)| > eρ} are in 1-to-1 correspondence to the components of Ω via ϕ.

(2) S(f) ⊂ D(0, eρ).

(3) the quasiconstant of ϕ is O(ρ−2) with a constant independent of F and Ω,

(4) ϕ−1 is conformal except on the set Ω(ρ
2
, 2ρ).
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This result is somewhat surprising: the model function F can be defined on

an open set Ω with many (even infinitely many) connected components, and the

definition of F on each component involves scaling parameters that can be chosen

independently on different components. Nevertheless, it is always possible to extend

F into the gaps between its components (no matter how narrow the gaps) to create

a quasiregular function that can then be made holomorphic by a quasiconformal

change of variable. Moreover, we shall later state a stronger version of Theorem ??

that bounds the quasi-constant of the map φ in the equivalence, and shows that φ

may be taken to be conformal on most of Ω.

We sketch the proof of Theorem 8.1.1 quickly here to give the basic idea. Let

W = C \ Ω(ρ). It is simply connected, non-empty and not the whole plane, so there

is a conformal map Ψ : W → D. Since Ψ maps ∂W to the unit circle, if we knew

that F = f |Ω for some entire function f , then B = e−ρ · F ◦ Ψ−1 would be an inner

function on D (i.e., a holomorphic function on D so that |B| = 1 almost everywhere

on the boundary).

The proof of Theorem 8.1.1 reverses this observation. Given the model and the

corresponding domain W and conformal map Ψ we construct a Blaschke product B

(a special type of inner function) on the disk so that G = B ◦Ψ approximates F = eτ

on ∂Ω(ρ) (the precise nature of the approximation will be described later). This step

is fairly straightforward using standard estimates of the Poisson kernel on the disk.

We then “glue” G to F across ∂W to get a quasi-regular function g that agrees with

F on Ω(2ρ) and agrees with G on W . This takes several (individually easy) steps

to accomplish. We then use the measurable Riemann mapping theorem to define a

quasiconformal mapping φ : C → C so that f = g ◦ φ is holomorphic on the whole

plane. The only critical points of g correspond to critical points of B, and critical

points introduced into Ω(ρ, 2ρ) by the gluing process. We will show that both types

of critical values have absolute value ≤ eρ. A different argument shows that any

finite asymptotic value of f must correspond to a limit of B along a curve in D, so

all finite asymptotic values of f are also bounded by eρ. Thus f ∈ B. Since g is

only non-holomorphic in Ω(ρ, 2ρ), we will also get that φ−1 is conformal everywhere

except in Ω(ρ, 2ρ).
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8.2. Reduction of Theorem 8.1.1 to the case ρ = 1

We start the proof of Theorem 8.1.1 with the observation that it suffices to prove

the result for ρ = 1.

To do this we define two quasiconformal maps, ψρ and ϕρ. Define

L(x) =





x, 0 < x < ρ/2,

(2−ρ
ρ
)(x− ρ/2) + ρ/2 ρ/2 ≤ x ≤ ρ,

x/ρ ρ ≤ x ≤ 2ρ.

This is a piecewise linear map that sends [ρ/2, ρ] to [ρ/2, 1] and sends [ρ, 2ρ] to [1, 2].

The slope on both intervals is less than 2/ρ. For z = x+ iy ∈ Hr, define

σρ(z) =

{
L(x) + iy 0 < x ≤ 2ρ,

z + 2− 2ρ x > 2ρ.

This is quasiconformal Hr → Hr with quasiconstant K ≤ 2/ρ. Then set

ψρ(z) =

{
z, z 6∈ Ω

τ−1
j ◦ σρ ◦ τj(z), z ∈ Ωj.

Note that ψρ is the identity near ∂Ω, so ψρ is quasiconformal on the whole plane by

the Royden gluing lemma, e.g., Lemma 2 of [21], Lemma I.2 of [44] on page 303, or

[114]. (Actually, since ψρ is the identity off Ω(ρ/2) which has a smooth boundary,

one can use a weaker version of the gluing lemma.)

Next, define

ϕρ(z) =

{
z, |z| < eρ/2

exp(σρ(log(z))), |z| ≥ eρ/2
.

Note that even though log(z) is multi-valued, the function σρ does not change the

imaginary part of its argument, so the exponential of σρ(log(z)) is well defined. This

is clearly a quasiconformal map of the plane with quasiconstant 2/ρ. Note also that

these functions were chosen so that if F = exp ◦τ is the model function associated to

Ω and τ , then on Ωj

F ◦ ψρ = exp ◦ τj ◦ τ−1
j ◦ σρ ◦ τj

= exp ◦σρ ◦ log ◦ exp ◦τj(40)

= ϕρ ◦ F.
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Now apply Theorem 8.1.1 to the model (Ω, F ) with ρ = 1 to get a f ∈ B and

a quasiconformal map Φ : C → C so that f ◦ Φ = F on Ω(2) and S(f) ⊂ D(0, e1).

Let gρ = ϕ−1
ρ ◦ f ◦ Φ ◦ ψρ. This is an entire function pre and post-composed with

quasiconformal maps of the plane, so it is quasiregular. By the measurable Riemann

mapping theorem, there is a quasiconformal Φρ : C → C so that fρ = gρ ◦ Φ−1
ρ is

entire and clearly

S(fρ) = S(gρ) ⊂ ϕ−1
ρ (S(f)) ⊂ ϕ−1

ρ (D(0, e)) = D(0, eρ).

For z ∈ Ω(2ρ), ψρ(z) ∈ Ω(2), so using this and (40)

fρ ◦ Φρ(z) = gρ(z)

= ϕ−1
ρ (f(Φ((ψρ(z))))

= ϕ−1
ρ (F (ψρ(z)))

= F (z).

Similarly, |fρ ◦Φρ| = |gρ| is bounded by e2ρ off Ω(2ρ). The quasiconstant of Φρ is, at

worst, the product of the constants for Φ, ψρ and ϕρ, which is K1 · 4ρ−2, where K1 is

the upper bound for the quasiconstant in Theorem 8.1.1 in the case ρ = 1.

Finally, our construction in the next section will show that Φ is conformal except

on Ω(1, 2) and that F has a quasiregular extension to the plane that is holomorphic

except on Ω(1, 2) and is bounded by e off Ω(1) and by e2 off Ω(2). This implies that

gρ is holomorphic except on Ω(ρ/2, 2ρ) (since ψρ is holomorphic off Ω(ρ/2, 2ρ) and

ϕ−1
ρ is holomorphic off {eρ/2 < |z| < e2}.) This, in turn, implies that Φρ is conformal

except on Ω(ρ/2, 2ρ), as desired. Thus fρ satisfies Theorem 8.1.1 for the model (Ω, F )

and the given ρ > 0.

8.3. The proof of Theorem 8.1.1

In this section we give the proof of Theorem 8.1.1 for ρ = 1, stating certain facts

as lemmas to be proven in later sections.

Let W = C \ Ω(1). This is an open, connected, simply connected domain that

is bounded by analytic arcs {γj} that are each unbounded in both directions. See

Figure 1. The same comments hold for the larger domain W2 = C \ Ω(2).
Let L1 = {x + iy : x = 1} and L2 = {x + iy : x = 2}. The vertical strip

between these two lines will be denoted S. Note that L1 is partitioned into intervals
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Ψ

L1

L2

τ

Ω(2)

Ω(1)
Ω(1)

Ω(1)

Ω(2)

Ω(2)

W

Figure 1. W is the complement of Ω(1); it is simply connected and
bounded by smooth curves. We are given the holomorphic function
F = eτ on Ω(2) and we will define a holomorphic function on W using
the Riemann map Ψ of W to the unit disk, and a specially chosen in-
finite Blaschke product B on the disk. We will then interpolate these
functions in Ω(2)\Ω(1) by a quasiregular function. Each component of
this set is mapped to a vertical strip by τ , and it is in these strips that
we construct the interpolating functions. Note that the integer parti-
tion on the boundary of the half-plane pulls back under τ to a partition
of each component of ∂Ω(1), and that Ψ maps these to a partition of
the unit circle (minus the singular set of Ψ). The Blaschke product B
will be constructed so that B−1(1) approximates this partition of the
circle.

of length 2π by the points 1+2πiZ. This partition of L1 will be denoted J . Note that

τj(γj) = L1, so each curve γj is partitioned by the image of J under τ−1
j . We denote

this partition of γj by Jj. Because elements of Jj are all images of a fixed interval

J ∈ L1 ⊂ Hr under some conformal map of Hr, the distortion theorem (e.g., Theorem

I.4.5 of [59]) implies they all lie in a compact family of smooth arcs and that adjacent

elements of Jj have comparable lengths with a uniform constant, independent of j,

Ω and F .

Let Ψ : W → D be a conformal map given by the Riemann mapping theorem.

We claim that Ψ can be analytically continued from W to W2 across γj. Let R1

denote reflection across L1 and for z ∈ Ωj ∩ W = τ−1
j ({x + iy : 0 < x < 1}) let

T = τ−1
j ◦ R1 ◦ τj; this defines an anti-holomorphic 1-to-1 map from Ωj(0, 1) to
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Ωj(1, 2) that fixes each point of γj. We can then extend Ψ by the formula

Ψ(T (z)) = 1/Ψ(z),

(where the right hand side denotes reflection of Ψ(z) across the unit circle). The

Schwarz reflection principle says this is an analytic continuation of Ψ to W2.

Thus Ψ is a smooth map of each γj onto an arc Ij of the unit circle T = ∂D =

{|z| = 1}. The complement of these arcs is a closed set E ⊂ T. It is a standard fact

of conformal mappings that since E is the set where a conformal map fails to have a

finite limit, it has zero Lebesgue, indeed, zero logarithmic capacity. We will not need

this fact, although we will use the easier fact that E can’t contain an interval (i.e., a

conformal map can’t have infinite limits on an interval).

The partition Jj of γj transfers, via Ψ to a partition of Ij ⊂ T into infinitely many

intervals {J jk}, k ∈ Z. We will let K = ∪j,kJ jk denote the collection of all intervals

that occur this way. Thus T = E
⋃∪K∈KK.

Because Ψ conformally extends fromW toW2, |Ψ′| has comparable minimum and

maximum on each partition element of γj (with uniform constants). Thus the cor-

responding intervals {J jk} have the property that adjacent intervals have comparable

lengths (again with a uniform bound).

The hyperbolic distance between two points z1, z2 ∈ D is defined as

ρ(z1, z2) = inf
γ

∫

γ

|dz|
1− |z|2 .

See Chapter 1 of [59] for the basic properties of the hyperbolic metric. Here we will

mostly need the facts that it is invariant under Möbius self-maps of the disk, that

hyperbolic geodesics are circular arcs in D that are perpendicular to T, and that

points hyperbolic distance r from 0 are Euclidean distance

2

exp(2r) + 1
= O(exp(−r)),

from the unit circle.

For any proper sub-interval I ⊂ T, let γI be the hyperbolic geodesic with the

same endpoints as I and let aI be the point on γi that is closest to the origin (closest

in either the Euclidean or hyperbolic metrics; it is the same point).
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Since K are disjoint intervals on the circle,
∑

K∈K
(1− |aK |) <∞,

and so

B(z) =
∏

K

|aK |
aK

aK − z

1− aKz
,

defines a convergent Blaschke product (see Theorem II.2.2 of [58]). Thus B is a

bounded, non-constant, holomorphic function on D that vanishes exactly on the set

{an}. Also, |B| has radial limits 1 almost everywhere. Moreover, B extends mero-

morphically to C \ E, where E is the accumulation set of its zeros on T; this is the

same set E as defined above using the map Ψ (the zeros accumulate at both endpoints

of every component of T\E, and since these points are dense in E, the accumulation

set of the zeros is the whole singular set E). The poles of the extension are precisely

the points in the exterior of the unit disk that are the reflections across T of the zeros.

Any subset M of K also defines a convergent Blaschke product. Fix such a

subset. The corresponding Blaschke product BM induces a partition of each Ij with

endpoints given by the set {eiθ : BM(eiθ) = 1} and this induces a partition Hj of

each γj via the map Ψ. This in turn, induces a partition Lj of L1 via τj.

We would like to say that the partitions Lj and J are “almost the same”. The

first step to making this precise is a lemma that we will prove in Section 8.4:

Lemma 8.3.1. There is a subset M ⊂ K so that if B is the Blaschke product

corresponding to M and Lj is the partition of L1 corresponding to B via τj ◦ Ψ−1,

then each element of J hits at least 2 elements of Lj and at most M elements of Lj,
where M is uniform. In particular, no element of J can hit both endpoints of any

element of Lj (elements of each partition are considered as closed intervals).

In Section 8.5 we will prove

Lemma 8.3.2. Suppose K = [1 + ia, 1 + ib] ∈ Lj and define

α(1 + iy) =
1

2π
arg(B ◦Ψ ◦ τ−1

j (1 + iy)),

where we choose a branch of α so α(1 + ia) = 0 (recall that B(Ψ(τ−1
j (1 + ia))) = 1 ∈

R). Set

ψ1(z) = 1 + i(a(1− α(z)) + bα(z)) = 1 + i(a+ (b− a)α(z)).
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Then ψ1 is a homeomorphism from K to itself so that α ◦ ψ−1
1 : K → [0, 1] is linear

and ψ1 can be extended to a quasiconformal homeomorphism of R = K × [1, 2] to

itself that is the identity on the ∂R \K (i.e., it fixes points on the top, bottom and

right side of R).

The main point of the proof is to show that arg(B ◦ Ψ ◦ τ−1
j ) : K → [0, 2π] is

biLipschitz with uniform bounds.

Roughly, Lemma 8.3.1 says there are more elements of J than there are of Lj.
This is made a little more precise by the following:

Lemma 8.3.3. There is a 1-to-1, order preserving map of Lj into (but not neces-

sarily onto) J so that each interval K ∈ Lj is sent to an interval J with dist(K, J) ≤
2π. Moreover, adjacent elements of Lj map to elements of J that are either adjacent

or are separated by an even number of elements of J .

This will be proven in Section 8.6. Again, the proof is quite elementary.

Partition J = J j
1 ∪ J j

2 according to whether the interval is associated to some

element of Lj by Lemma 8.3.3 (i.e., J j
1 is the image of Lj under the map in the

lemma). The maximal chains of adjacent elements of J j
2 will be called blocks. By

the lemma, each block has an even number of elements. We will say that the block

associated to an element J ∈ J j
1 is the block immediately above J .

Thus each interval K in Lj is associated to an interval J ′ that consists of the

corresponding J given by Lemma 8.3.3 and its associated block. K and J ′ have

comparable lengths and are close to each other, so the orientation preserving linear

map from J ′ to K defines a piecewise linear map ψ̃2 : R → R that is biLipschitz with

a uniform constant. Using linear interpolation we can extend this to a biLipschitz

map ψ2 of the strip S = {x + iy : 1 < x < 2} to itself that equals ψ̃2 on L1 (the left

boundary) and is the identity on L2 (the right side).

Each element J ∈ J j
2 is paired with a distinct element J∗ ∈ J j

2 that belongs to

the same block. The two outer-most elements of the block are paired, as are the pair

adjacent to these, and so on. Similarly, each point z is paired with the other point

z∗ in the block that has the same distance to the boundary (the center of the block

is an endpoint of J and is paired with itself).
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For each K ∈ Lj, let JK be the corresponding element of J j
1 and let IK be the

union of JK and its corresponding block. Let RK = [1, 2]× IK . Let UK = RK \XK ,

where XK is the closed segment connecting the upper left corner of RK to the center

of RK . See Figure 2.

UK

RK

Figure 2. Definition of UK

Lemma 8.3.4 (Simple folding). There is a quasiconformal map ψ3 : UK → RK so

that (ψ3 depends on j and on K, but we drop these parameters from the notation)

(1) ψ3 is the identity on ∂RK \ L1 (i.e., it is the identity on the the top, bottom

and right side of RK),

(2) ψ−1
3 extends continuously to the boundary and is linear on each element of

J lying in IK,

(3) ψ3 maps IK (linearly) to JK,

(4) for each z ∈ IK, ψ
−1
3 (z) = ψ−1

3 (z∗) ∈ Xk (i.e., ψ3 maps opposite sides of Xk

to paired points in Ik),

(5) the quasiconstant of ψ3 depends only on |IK |/|JK |, i.e., on the number of

elements in the block associated to K. It is independent of the original model

and of the choice of j and K.

We call this “simple folding” because it is a simple analog of a more complicated

folding procedure given in [31]. In the lemma above, the image domain is a rectangle

with a slit removed and the quasiconstant of ψ3 is allowed to grow with n, the

number of block elements. This growth is not important in this paper because here

we only apply the folding construction in cases where this number n is uniformly
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bounded (this will occur in our application because of Lemma 8.3.1). In [31], the

corresponding values may be arbitrarily large but the folding construction there must

give a map with uniformly bounded quasiconstant regardless. The construction in

[31] removes a collection of finite trees from Rk and does so in a way that keeps the

quasiconstant of ψ3 bounded independent of n (there are also complications involving

how the construction on adjacent rectangles are merged).

We want to treat the boundary intervals in J1 and J2 slightly differently. The

precise mechanism for doing this is:

Lemma 8.3.5 (exp-cosh interpolation). There is a quasiregular map σj : S →
D(0, e2) so that

σj(z) =





exp(z), z ∈ J ∈ J j
1 ,

e · cosh(z − 1), z ∈ J ∈ J j
2 ,

exp(z), z ∈ Hr + 2.

The quasiconstant of φj is uniformly bounded, independent of all our choices.

This lemma will be proven in Section 8.8 and is completely elementary.

We now have all the individual pieces needed to construct the interpolation gj

between ez on L2 and B ◦ Ψ ◦ τ−1
j on L1. Let Uj be S minus all the segments XK

where K ∈ Lj as in Lemma 8.3.4. Define a quasiconformal map ψ : Uj → S by

ψ = ψ1 ◦ ψ2 ◦ ψ3,

and let gj = σj ◦ ψ map Uj into D(0, e2). By definition, each ψi, i = 1, 2, 3 is the

identity on L2, so gj(z) = ez on L2. For any K ∈ Lj, the map ψ sends the boundary

segments of ∂UK that lie on some XK linearly onto elements of J j
2 , so boundary

points on opposite sides of XK get mapped to points that are equidistant from 2πiZ

and cosh agrees at any two such points. Thus gj extends continuously across each

slit XK . Finally, the map ψ was designed so that gj is continuous on S and agrees

with B ◦Ψ ◦ τ−1
j on L1. Thus gj ◦ τj continuously interpolates between B ◦Ψ on W

and F on Ω(2) and so defines a quasiregular g on the whole plane with a uniformly

bounded constant. Thus by the measurable Riemann mapping theorem there is a

quasiconformal ϕ : C → C so that f = g ◦ ϕ is entire.

The singular values of f are the same as for g. On Ω(2), g = F = eτ , so g has no

critical points in this region. In Uj , g = gj is locally 1-to-1, so has no critical points
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there either. Thus the only critical points of g in Ω(1) are on the slits XK , then these

are mapped by g onto the circle of radius e around the origin. Thus every critical

value of g (and hence f) must lie in D(0, e).

If g has a finite asymptotic value outside D(0, e), then it must be the limit of

g along some curve Γ contained in a single component of Ω. Then ez has a finite

limit along τ(Γ) ⊂ Hr; this is impossible, so f has no finite asymptotic values outside

D(0, e). Thus S(f) ⊂ D(0, e), and so f ∈ B.
This proves Theorem 8.1.1 except for the proof of the lemmas.

8.4. Blaschke partitions

In this section we prove Lemma 8.3.1. We start by recalling some basic properties

of the Poisson kernel and harmonic measure in the unit disk D.

The Poisson kernel on the unit circle with respect to the point a ∈ D is given by

the formula

Pa(θ) =
1− |a|2
|eiθ − a2| =

1− |a|2
1− 2|a| cos(θ − φ) + |a|2 ,

where a = |a|eiφ. This is the same as |σ′| where σ is any Möbius transformation of

the disk to itself that sends a to zero. If E ⊂ T, we write

ω(E, a,D) =
1

2π

∫

E

Pa(e
iθ)dθ,

and call this the harmonic measure of E with respect to a. This is the same as

the (normalized) Lebesgue measure of σ(E) ⊂ T where σ : D → D is any Möbius

transformation sending a to 0. It is also the same as the first hitting distribution on

T of a Brownian motion started at a (although we will not use this characterization).

Suppose I ⊂ T is any proper arc, and, as before, let γI be the hyperbolic geodesic

in D with the same endpoints as I; then γI is a circular arc in D that is perpendicular

to T at its endpoints. Let aI denote the point of γI that is closest to the origin.

Lemma 8.4.1. ω(I, aI ,D) =
1
2
.

Proof. Apply a Möbius transformation of D that sends aI to the origin. Then

γI must map to a diameter of the disk and I maps to a semi-circle. �
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Given two disjoint arcs I, J in T, let γI , γJ be the two corresponding hyperbolic

geodesics and let aJI be the point on γI that is closest to J and let aIJ be the point

on γJ that is closest to I.

Lemma 8.4.2. ω(I, aIJ ,D) = ω(J, aJI ,D)

Proof. Everything is invariant under Möbius maps of the unit disk to itself, so

use such a map to send I, J to antipodal arcs. Then the conclusion is obvious. �

Lemma 8.4.3. If z, w ∈ D and I ⊂ T, then

ω(I, z,D)

ω(I, w,D)
≤ C

where the constant C depends only on the hyperbolic distance between z and w.

Proof. Suppose σ(z) = (z−w)/(1−wz) maps w to 0. Then u(z) = ω(I, σ(z),D)

is a positive harmonic function on D, so the lemma is just Harnack’s inequality applied

to u. �

Suppose I, J,⊂ T are disjoint closed arcs and dist(I, J) ≥ ǫmax(|I|, |J |). Then we

call I and J ǫ-separated. This implies the hyperbolic geodesics γI , γJ are separated in

the hyperbolic metric (with a lower bounded depending only on ǫ), but the converse

is not true.

Lemma 8.4.4. If I, J ⊂ T are ǫ-separated, then the hyperbolic distance between

aI and aJI is bounded, depending only on ǫ.

Proof. Assume I is the longer arc and consider hyperbolic geodesic S that con-

nects aJI and aIJ . Then S is perpendicular to γI at a
J
I , so if 1− |aJI | ≪ 1− |aI |, S will

hit the unit circle without hitting γj. See Figure 3. �

Lemma 8.4.5. Suppose that I, J are ǫ-separated. Then

ω(I, aJ ,D) ≃ ω(J, aI ,D),

where the constant depends only on ǫ.

Proof. This follows immediately from our earlier results. �



8.4. BLASCHKE PARTITIONS 187

aJ
γ

J

J

a
J
I

aI
γ

I

I

aJ
I

S

Figure 3. If the intervals I and J are ǫ-separated, then a shortest
path between γI and γJ must hit each geodesic near the “top” points.
A perpendicular geodesic that starts too “low” on γJ will hit the unit
circle without hitting γI .

Lemma 8.4.6. Suppose that I and J are ǫ-separated and that aJ , aI are at least

distance R apart in the hyperbolic metric. Then

ω(J, aI ,D) ≤ C(ǫ)e−R.

Proof. Since the intervals are ǫ-separated, the hyperbolic distance between aI

and aJ is the same as the distance between aJI and aIJ , up to a bounded additive

factor. Thus if we apply a Möbius transformation of D so that aJ = 0, aI is mapped

to a point w with 1 − |w| = O(e−R), which implies ω(I, aJ ,D) = O(e−R). Since the

intervals are ǫ-separated, the reverse inequality also holds by Lemma 8.4.5. �

Fix M < ∞ and suppose K is a collection of disjoint (except possibly for end-

points) closed intervals on T so that any two adjacent intervals have length ratio at

most M . We say that two intervals I, J are S steps apart if there is a chain of S + 1

adjacent intervals J0, . . . , JS so that I = J0 and J = JS.

Note that if I, J ∈ K are adjacent, then aI , aJ are at bounded hyperbolic distance

T apart (and T depends only on M). Also, if I, J ∈ K are not adjacent, then they

are ǫ-separated for some ǫ > 0 that depends only on M .

Lemma 8.4.7. For any R > 0 there is a collection N ⊂ K so that

(1) for any I ∈ K, there is a J ∈ N with ρ(aJ , aI) ≤ R

(2) for any I, J ∈ N , ρ(aJ , aI) ≥ R.

Proof. Just let N correspond to a maximal collection of the points {aK} with

the property that any two of them are hyperbolic distance ≥ R apart. �
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Fix a positive integer S. For each J ∈ N choose the shortest element of K that

is at most S steps away from J . Let M ⊂ K be the corresponding collection of

intervals.

Lemma 8.4.8. Suppose R, S, T are as above and R ≥ 4ST . If K and M are as

above, then for all K ∈ K,

ǫ ≤
∑

J∈M
ω(K, aJ ,D) ≤ µ,

where ǫ > 0 depends only on R and µ→ 1/2 as S → ∞.

Proof. The left-hand inequality is easier and we do it first. Fix K ∈ K. There

is a I ∈ N with ρ(aI , aK) ≤ R, and since adjacent elements of K have points that are

only T apart in the hyperbolic metric, there is an element J ∈ M with ρ(aK , aJ) ≤
R + ST ≤ 5

4
R. This implies |J | ≃ |K| ≃ dist(J,K) and these imply ω(K, aJ ,D) ≥ ǫ

with ǫ depending only on ρ. Thus every element of K has harmonic measure bounded

below with respect to some point corresponding to a single element of M and hence

the sum of harmonic measures over all elements of M is also bounded away from

zero uniformly.

Now we prove the right-hand inequality. By our choice of R, points aJ corre-

sponding to distinct intervals in M are at least distance R/2 apart. Fix K ∈ K.

There is at most one point within hyperbolic distance R/4 of aK and the harmonic

measure it assigns K is at most 1/2 since the point lies on or outside the geodesic

γK .

All other points associated to elements ofM are Euclidean distance≥ exp(R/8)|K|
away from K or are within this distance of K, and are within Euclidean distance

exp(−R/8)|K| of the unit circle (this is because of the Euclidean geometry of hyper-

bolic balls in the half-space). We call these two disjoint sets M1 and M2 respectively.

Using Lemma 8.4.5 we see that the
∑

J∈M1

ω(K, aJ ,D) = O(
∑

J∈M1

ω(J, aK ,D)) = O(exp(−R/8)).

To bound the sum over M2, we note that each interval in M2, is the endpoint of

a chain of S adjacent intervals that are each at least as long as J . Since

|J | ≤ exp(−R/8)|K|,
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and

dist(J,K) & |K|,
we can deduce

ω(J, aK ,D) ≤ O(
1

S
)ω(aK , J,D),

so since the J ’s are all disjoint intervals,
∑

J∈M2

ω(K, aJ ,D) = O(
1

S

∑

J∈M2

ω(J, aK ,D)) = O(
1

S
).

Choosing first S large, and then R large (depending on S and separation constant of

K), both sums are as small as we wish, which proves the lemma. �

Corollary 8.4.9. Suppose B is as above and K ∈ K. Then

ǫ ≤ 1

|K|
∂B

∂θ
≤ C.

Proof. If I, J are ǫ-separated, then it is easy to verify that

sup
z∈J

PaI (z), inf
z∈J

PaI (z),

are comparable up to a bounded multiplicative factor that depends only on ǫ. The

lemma then follows from our earlier estimates. �

We have now essentially proven Lemma 8.3.1; it just remains to reinterpret the

terminology a little. For the reader’s convenience we restate the lemma.

Lemma 8.4.10 (The Blaschke partition). There is a subset M ⊂ K so that if B is

the Blaschke product corresponding to M and Lj is the partition of L1 corresponding

to B via τj ◦Ψ−1, then each element of J hits at least 2 elements of Lj and at most

M elements of Lj, where M is uniform. In particular, no element of J can hit both

endpoints of any element of Lj (elements of each partition are considered as closed

intervals).

Proof. A computation shows that for the Blaschke product

B(z) =
∏

n

|an|
an

z − an
1− ānz

,

the derivative satisfies

|∂B
∂θ

(eiθ)| =
∑

n

Pan(e
iθ),
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and the convergence is absolute and uniform on any compact set K disjoint from

the singular set E of B (since B is a product of Möbius transformations, and the

derivative of a Möbius transformation is a Poisson kernel, this formula is simply the

limit of the n-term product formula for derivatives).

Lemma 8.4.8 now says we can choose M so that

2πǫ ≤
∫

J

| ∂
∂θ
B|dθ ≤ 3

4
· 2π =

3π

2
.

Since the integral over an element of L has integral exactly 2π, the lower bound

means that an element of L can contain at most 1/ǫ elements of J and hence can

intersect at most 2+ 1
ǫ
elements of J . The upper bound says that each element K of

L must hit at least 2 elements of J . Hence it is not contained in any single element

of J , and so no single element of J can hit both endpoints of K. �

8.5. Straightening a biLipschitz map

Lemma 8.5.1. Suppose K = [1 + ia, 1 + ib] ∈ Lj and define

α(1 + iy) =
1

2π
arg(B ◦Ψ ◦ τ−1

j (1 + iy)),

where we choose a branch of α so α(1 + ia) = 0 (recall that B(Ψ(τ−1
j (1 + ia))) = 1 ∈

R). Set

ψ1(z) = 1 + i(a(1− α(z)) + bα(z)) = 1 + i(a+ (b− a)α(z)).

Then ψ1 is a homeomorphism from K to itself so that α ◦ ψ−1
1 : K → [0, 1] is linear

and ψ1 can be extended to a quasiconformal homeomorphism of R = K × [1, 2] to

itself that is the identity on the ∂R \K (i.e., it fixes points on the top, bottom and

right side of R).

Proof. The linearizing property of ψ1 is clear from its definition, so we need

only verify the quasiconformal extensions property.

Corollary 8.4.9 implies α′ is bounded above and below by absolute constants. Let

R = K × [1, 2] and define an extension of ψ1 by

ψ1(x+ iy) = u(x, y) + iv(x, y) = x+ i[(2− x)ψ1(1 + iy) + (x− 1)y)].
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i.e., take the linear interpolation between ψ1 on L1 and the identity on L2. We can

easily compute
(
ux uy
vx vy

)
=

(
1 0

y − ψ(y) (2− x)(b− a)α′(y) + (x− 1)

)
.

Note that |y − h(y)| ≤ |K| is absolutely bounded. Also, since |b− a||α′| is bounded
above and away from 0, so is vy. Thus the derivative matrix lies in a compact subset

of the invertible 2 × 2 matrices and hence ψ1 is quasiconformal (with only a little

more work we could compute an explicit bound for the quasiconstant, and even prove

that the extension is actually biLipschitz). �

8.6. Aligning partitions

Now we prove Lemma 8.3.3, which we restate for convenience.

Lemma 8.6.1. There is a 1-to-1, order preserving map of Lj into (but not neces-

sarily onto) J so that each interval K ∈ Lj is sent to an interval J with dist(K, J) ≤
2π. Moreover, adjacent elements of Lj map to elements of J that are either adjacent

or are separated by an even number of elements of J .

Proof. For each K ∈ K choose J ∈ J so that J contains the lower endpoint

of K (if two such intervals contain the endpoint, choose the upper one). No interval

J is chosen twice, since Lemma 8.3.1 says that no J can hit both endpoints of any

element of L.
Fix an order preserving labeling of the chosen J by Z and denote it {Jn}. By

the gap between Jn and Jn+1 we mean the number of unselected elements of J that

separate these two intervals. The position of J0 is fixed. If the gap between J0 and J1

is even (including no gap), we leave J1 where it is. If the gap is odd, there is a least

one separating interval and we replace J1 by the adjacent interval in J that is closer

to J0. If the gap between (the new) J1 and J2 is even, we leave J2 alone; otherwise,

we move it one interval closer to J0. Continuing in this way, we can guarantee that

for all n ≥ 0, gaps are even and each Jn is either in its original position or adjacent

to its original position. Thus its distance to the associated element of K is at most

2π. The argument for negative indices is identical. �
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8.7. Foldings

Now we prove Lemma 8.3.4. This is the step that makes the gluing procedure a

little different from a standard quasiconformal surgery.

Lemma 8.7.1 (Simple folding). There is a quasiconformal map ψ3 : UK → RK so

that (ψ3 depends on j and on K, but we drop these parameters from the notation)

(1) ψ3 is the identity on ∂RK \ L1 (i.e., it is the identity on the the top, bottom

and right side of RK),

(2) ψ−1
3 extends continuously to the boundary and is linear on each element of

J lying in IK,

(3) ψ3 maps IK (linearly) to JK,

(4) for each z ∈ IK, ψ
−1
3 (z) = ψ−1

3 (z∗) ∈ Xk (i.e., ψ3 maps opposite sides of Xk

to paired points in Ik),

(5) the quasiconstant of ψ3 depends only on |IK |/|JK |, i.e., on the number of

elements in the block associated to K. It is independent of the original model

and of the choice of j and K.

Proof. The proof is a picture, namely Figure 4. The map is defined by giving

compatible finite triangulations of Rk and Uk (compatible means that there is 1-to-1

map between vertices of the triangulations that preserves adjacencies along edges).

Such a map defines linear maps between corresponding triangles that are continuous

across edges. Since each such map is non-degenerate, it is quasiconformal and hence

the piecewise linear map defined between Uk and RK is quasiconformal (with quasi-

constant given by the worst quasiconstant of the finitely many triangles). The other

properties are evident. �

8.8. Interpolating between exp and cosh

Lemma 8.8.1 (exp-cosh interpolation). There is a quasiregular map σj : S →
D(0, e2) so that

σj(z) =





exp(z), z ∈ J ∈ J j
1 ,

e · cosh(z − 1), z ∈ J ∈ J j
2 ,

exp(z), z ∈ Hr + 2.

The quasiconstant of σj is uniformly bounded, independent of all our choices.
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Figure 4. The pictorial proof of Lemma 8.7.1 for n = 5.

Proof. As with the previous lemma, the proof is basically a picture; see Figure

5. Suppose J ∈ J and let R = J × [1, 2]. The exponential map sends R to the

annulus A = {e < |z| < e2}, with the left side of R mapping to the inner circle and

the top and bottom edges of R mapping to the real segment [e, e2].

Now define a quasiconformal map φ : A→ D(0, e2) that is the identity on {|z| =
e2} and on [e, e2], but that maps {|z| = e} onto [−e, e] by z → 1

2
(z + e2

z
) (this is just

a rescaled version of the Joukowsky map 1
2
(z+ 1

z
) that maps the unit circle to [−1, 1],

identifying complex conjugate points).

In Hr+2 and in rectangles of the form J× [1, 2] for J ∈ J1 we set σj(z) = exp(z).

In the rectangles corresponding to elements of J2 we let σj(z) = φ(exp(z)). This

clearly has the desired properties. �

Actually, the cosh function in the lemma can be replaced by any function h : J →
[−1, 1] that has the property that h(z) only depends on the distance from z to the

endpoint of J . This will ensure that after applying a folding map, points that started

on opposite sides of some slit Xk will end up being identified by h, which is all we

need.

This completes the proof of Theorem 8.1.1.
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exp φ

Figure 5. The exponential function maps the rectangle [1, 2] × J
conformally to the slit annulus {e < |z| < e2} \ [e, e2]. The map
φ is chosen to map the annulus A={e < |z| < e2} to the slit disk
{|z| < e2} \ [−e, e] so that it equals the identity on {|z| = e2} and

equals 1
2
(z + e2

z
) on {|z| = e}.



CHAPTER 9

Exotic examples in the Eremenko-Lyubich class

9.1. Rempe Rigidity

We saw above that even quasiconformal equivalence on the whole plane does not

imply that two functions have homeomorphic Julia sets, so seems to be little reason

to expect that equivalence near ∞ allows us to compare the dynamics of a model

and its approximating entire function. The second surprise is a remarkable result of

Lasse Rempe that, in fact, they are closely related:

Theorem 9.1.1 (Rempe rigidity). Suppose f ∈ B and g is a model function that

are quasiconformally equivalent near ∞. Then there is an R > 0 and a quasiconfor-

mal map φ : C → C so that f ◦ φ = φ ◦ g on

JR(f) = ∩∞
n=1{z : |fn(z)| ≥ R}.

Theorem 9.1.2 (Rempe rigidity for disjoint type). Suppose f ∈ B and g is a

model function with tract Ω and f = g ◦ ϕ, on Ω, where ψ is quasiconformal on C

and conformal off Ω. Suppose that f and g are disjoint type, i.e., the closures of both

tracts are disjoint from D. Then there quasiconformal map Φ of the plane so that

Φ ◦ f = g ◦ Φ,

on Ω. In particular J (g) = Φ(J (f)).

Proof. Replace Ω by {z : |f(z)| > 1 + ǫ}. Then ∂Ω is smooth and the other

assumptions are still valid. Let W = ϕ(Ω). Since W ∩ D = ∅, ϕ is conformal on a

neighborhood U of D and hence smooth there. Thus we can replace ϕ by another

QC map φ that equals ϕ outside U and is the identity on D.

Now define a sequence of quasiconformal maps {Φn} on C by setting Φ0 to be the

identity and, in general,

Φn+1 = g−1 ◦ Φn ◦ f,
195
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on each tract of f and Φn+1 = φ on C \ Ω.
We can show that each Φn is quasiconformal (with the same constant as φ) and

Φn = Φn+1 outside f−n(D(0, 1 + ǫ)) so the sequence stabilizes off J (f). Since this

set is dense, the sequence of maps converge, uniformly on compact sets to a quasi-

conformal map Φ such that

g ◦ Φ = Φ ◦ f,

on Ω. �

Clearly JR(f) is an intersection of closed sets and is hence closed. If Ω = {z :

|f(z) > R} and Ω ∩D(0, R) = ∅, then an orbit that leaves Ω stays bounded forever.

Thus C \ JR(f) is in the Fatou set and JR(f) ⊂ J (f). Moreover, I(f) ⊂ JR(f),
hence

J (f) ⊂ I(f) ⊂ JR(f) = JR(f) ⊂ J (f),

so JR(f) = J (f). Thus Rempe’s theorem says that if an element of B is quasicon-

formally equivalent near ∞ to model function, g, J (f) is the quasiconformal image

(under a map of the whole plane) of the Julia set of g. Thus J (f) and J (g) share

any properties that are preserved by quasiconformal maps. Similarly for I(f) and

I(g).

Consider, for example, Eremenko’s question: can any point of the escaping set

be connected to ∞ by a path inside the escaping set? The quasiconformal image

of a path to ∞ is another path to ∞, so if there is a model function that is a

counterexample, then there is also an entire function that is a counterexample.

In the next section we will use the approximation and rigidity results stated above

to build a counterexample in B to the strong Eremenko conjecture, to illustrate that

these results are simple to use in practice. We will then turn to the more difficult

task of proving each of them.

9.2. An escaping set of dimension 1

We claim that the examples fK constructed in the previous section all have es-

caping sets of dimension 1. We know that this is the minimal possible dimension

for the escaping set of any entire function, because the escaping set hits every circle

around the origin of sufficiently large radius, Theorem 1.7.1.
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Rempe and Stallard showed that if f, g ∈ B are affinely equivalent, i.e.,

A ◦ f = g ◦B

for affine maps A,B, then dim(I(f)) = dim(I(g)). The family fK(z) = f(z) + K

forms a family of affinely equivalent entire functions and hence

1 ≥ dim(I(F0)) = inf
K

dim(I(F0 +K)) ≤ inf
K

dim(J (F0 +K)) = 1.

Thus the escaping set of F0 has dimension 1 and is strictly smaller than the dimension

of its Julia set (which must be > 1 by Theorem 4.8.1).

All that remains is to prove the result of Rempe-Gillen and Stallard:

Theorem 9.2.1. Suppose f, g ∈ B are affinely equivalent. Then dim(I(f)) =

dim(I(g)).

Lemma 9.2.2. Suppose f, g ∈ B are affinely equivalent and K > 1. Then there

is R > 0 and a K-quasiconformal map ϕ : C → C such that ϕ ◦ f = g ◦ ϕ for all

z ∈ JR(f).

Because we can take K close to 1, dimension are distorted as little as we wish if

R is large enough. Proof uses version of Rempe Rigidity theorem.

9.3. The strong Eremenko conjecture fails in B

In this section we construct a function f with a bounded singular set, so that no

point of the escaping set I(f) can be connected to ∞ by a path that remains inside

I(f). This counter example to the strong Eremenko conjecture was first bound by

Rottenfusser, Rükert, Rempe and Schleicher in [120], and we follow the presentation

given there.

Let S{x+ iy : x > 4, |y| < 4} be a half-infinite horizontal half-strip and let Ω ⊂ S

be the subdomain illustrated in Figure ??. Suppose we have two increasing sequences

{rk} and {sk} so that r1 < s1 < r2 < s2 < . . . . For each pair {rk, sk} we define a

“switchback” region as shown in Figure 1. It basically consists of a stretched “S”

inside the rectangle [rk − 9, sk + 9]× [−1, 1]. The vertical lines {x = t} each hit the

region in three unit length segments for rk ≤ t ≤ sk, and hit it in one unit segment

centered on the real axis for rk − 9 ≤ t ≤ rk − 8 and sk + 8 ≤ t ≤ sk + 9 as shown.
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We form an unbounded, simple connected region Ω by taking the union of these

switchback regions with the connecting rectangles [sk + 9, rk+1 − 9] × [−1
2
, 1
2
]. Let

τ : Ω → Hr be the conformal map that sends ∞ to ∞ and the points 4± 1
2
i to ±1.

We can take r1 < s1 to be any two large numbers; the rest of the sequences

are defined inductively as follows. There is a cross-cut ρ1 the connects the top and

bottom sides of Ω and that lies between the lines {x = r1 − 9} and {x = r1 − 8}.
We can assume that this cross-cut is actually a hyperbolic geodesic and that τ(ρ1)

is a semi-circle in Hr with its endpoints on the imaginary axis and centered at the

origin. Let x1 be the intersection of this semicircle with the real line (thus also

equals the radius of the semicircle). If we take an arc γ of the semicircle centered at

x1 and of length ≃ 8 exp(−x1), the image of this arc under exp is a smooth curve

that closely approximates the vertical line segment on length 8 centered at exp(x1).

Choose r2+1 = exp(x1)− 1. Then {x = r2+1} ∩ S and exp(γ)∩ S are both cross-cuts

of S and the first is strictly to the left of the second. See Figure 3.

The value S2 is chosen in a similar manner, except that we start with a cross-cut

σ1 of Ω that lies between {x = s1 + 8} and {x = s1 + 9} that maps to a semi-circle

of radius y1 in Hr and then take s2 = exp(y1) + 1. Then the cross-cut corresponding

to {x = s2} lies to the right of the hyperbolic cross-cut passing through exp(y2).

Once we have {r2, s2} we can define the second switchback region, define new

cross-cuts at the entrance and exit of this region and use these to define r3, s3.

This argument is slightly circular since we are using the map τ : Ω → Hr before

Ω has been defined. To be more careful, we should define Ωk to be the part of Ω

involving the the first k switchbacks, followed by an infinite horizontal tube and use

the conformal map τk of this domain onto Hr to define rk+1 and sk+1. Then one needs

to prove that that the image of the crosscuts ρk, σk under τk and τ are very close.

Thus any path in Ω that connects {x = rk+1} to {x = sk+1} has a pre-image that

connects {x = rk − 8} to {x = sk + 8}. Therefore this same preimage curve has two

subarcs that connect {x = rk} to {x = sk} (in that order; there is also a third that

connects them in the opposite order).

This is the critical property of Ω. For by induction, any path in Ω that connects

{x = 12rk+n} to {x = sk+n} has a n-th order preimage that connects {x = rk} to

{x = sk} with 2n different subarcs. Since this is true for a fixed k and arbitrarily
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ρ σ

+8 +9−8 −9 rkrk

k
k

sk sk skrk

Figure 1. The building block of our track. Copies of this are con-
nected by horizontal tubes to define the tract Ω.

exp

τ

Figure 2. The map τ is conformal from Ω to the right half-plane
and is followed by the exponential map onto the outside of the unit
disk. This covers Ω and so f−1(Ω) consists of countable many copies
of Ω inside itself. Repeated inverse images gives a sequence of nested
close sets whose intersection is the Julia set of the model F = eτ . The
building block of our track. Copies of this are connected by horizontal
tubes to define the tract Ω.

large n, we see that a path to ∞ in I(f) would have to alternately cross {x = rk}
and {x = sk} infinitely often. This is impossible for a path, so I(f) does not contain

paths to ∞.

Suppose w0 ∈ J (F ). Then w0 ∈ J ⊂ J (F ) where J is a closed connected set

obtained by intersecting some sequence of components of F−n(Ω). Suppose there is
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a: Command not found.

Figure 3. This is the essential property of the switchbacks: the
crosscuts at the entrance and exits map under F to curves that cross
the next switchback between {x = rk+1} and {x = sk+1}. This implies
that any curve in Ω that connects these two vertical lines, also connects
the F images of the two cross-cuts. Hence the F -preimage of such a
curve connects ρk and σk and hence connects {x = rk} and {x = sk}
at least three times.

a path γ that connects w0 to ∞ in J . Choose k so that |w| < rk − 9. The the path

γ has a sub-arc that connects {x = rk} to {x = sk}, but only a finite number of

disjoint such subarcs, say N of them. Let wn = F n(w0). Then |wn| ≤ rk+n−9 by the

choice of {rk}. Since γk = F k(γ) is a path that connects wk to ∞, it must connect

{x = rk+n} to {x = sk+n}. Thus by the argument above, its nth preimage γ must

connect {x = rk} to {x = sk}, 2n times. If we take 2n > N , this is a contradiction,

proving that no such path γ exists.

Thus the stronger version of Eremenko’s conjecture fails for the model function

f . But Theorems ?? and ?? say there is an Eremenko-Lyubich class function f and

the quasiconformal φ : C → C so that J (f) = φ(J (F )). Thus the conjecture also

fails for f . More formally, we obtain:

Theorem 9.3.1. There is a hyperbolic f ∈ B so that no point of J (f) is connected

to ∞ by a path in J (f).

9.4. Hyperbolic dimension 2

A set K ⊂ J (f) is called hyperbolic if it is compact, f(K) ⊂ K and |(fn)′| ≥ λ

on K for some λ > 1 and all sufficiently large n. The hyperbolic dimension of f is

the supremum of the Hausdorff dimensions of all hyperbolic subsets K ⊂ J (f). This

was introduced by Shishikura in [128]. Clearly the hyperbolic dimension is a lower

bound for dim(J (f)), but they need not be the same in general

Theorem 9.4.1 (Stallard, [131]). There is a hyperbolic f ∈ B with hyperbolic

dimension < dim(J (f)).

Theorem 9.4.2 (Rempe, [113]). There is a hyperbolic f ∈ B with hyperbolic

dimension 2.



CHAPTER 10

Escaping rays for Eremenko-Lyubich functions

One of the main conjectures in transcendental dynamics has been Eremenko’s

question of whether every connected component of the escaping set is unbounded.

The so called “Strong Eremenko” conjecture asked if every point of the escaping set

can be connected to infinity by a path inside the escaping set. A counterexample in

the Eremenko-Lyubich class to the stronger conjecture was found by Rottenfusser,

Rückert, Rempe and Schleicher in [120], where they also prove the strong Eremenko

conjecture is true for Eremenko-Lyubich function of finite order. In this chapter we

give their positive result; the counterexample will be constructed in a later chapter,

after we have developed more of the theory of quasiconformal mappings.

10.1. A characterization of arcs

Theorem 10.1.1. If E is a compact subset of the Riemann sphere that is totally

ordered and the order topology agrees with the subset topology induced from the sphere,

then E is an arc (a homeomorphic image of [0, 1].

Proof. �

10.2. Tracts and external addresses

Define Brmlog
Define normalize

Define disjoint type

Define external address, Js,

Lemma 10.2.1. f F ∈ Brmlog and z, w ∈ Js, then

lim
k→∞

max(ℜF k(z),ℜF k(w)) = ∞

Proof. �

201
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Figure 1. An example of logarithmic tracts. Each white component
is conformally mapped to the right half-plane by F , which satisfies
F (z) = F (z + 2πi). These tracts have closure contained in Hr, so
define a hyperbolic function of disjoint type.

Lemma 10.2.2. For F ∈ Brmlog there is a K ≥ 0 so that if z ∈ J K(f) and z

is the external address of zthen Js contains a closed, unbounded connected set with

dist(A, z) ≤ 2π.

10.3. The head-start condition implies path connected

Suppose U, V are logarithmic tracts of F and ϕ : RtoR is an increasing continuous

function such that ϕ(x) > x for all x. We say that (U, v) satisfy a head-start

condition for ϕ if for all z, w ∈ U with F (z), F (w) ∈ V

ℜz > ϕ(ℜw) ⇒ ℜF (z) > ϕ(ℜF (w)) ⇒ .

An external address s satisfies the head-start condition for ϕ if

(1) all consecutive pairs of tracts for s satisfy the head-start condition for ϕ and

(2) for all distinct points z, w ∈ Js there is a positive integer m such that either

ℜFm(z) > ℜFm(w),

or

ℜFm(w) > ℜFm(z).
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We say F satisfies the head-start condition if every external address satisfies it for

some ϕ. We say that F satisfies a uniform head-start condition if the same ϕ works

for all external addresses.

If F satisfies a head-start condition, then it is possible to order points with the

same external addresses according to their rates of escape to infinity. For z, w ∈ Js
we say that z ≻ w if there is a positive integer k so that

ℜF k(z) > ϕ(ℜF k(w)).

We also let ∞ ≻ z for all z ∈ Js.
Note that we can never have z ≻ z. If a ≻ b and b >≻ c then, by definition, there

are integers k, n so that

ℜF k(a) > ϕ(ℜF k(b)) > ℜF k(b),

and

ℜF n(b) > ϕ(ℜF n(c)).

If m ≥ max(k, n), these equations also both hold for n, so

ℜF n(a) > ϕ(ℜF n(b)) > ℜF n(b) > ϕ(ℜF n(c)),

so a ≻ c. By condition (2) of the head-start condition for external addresses, any

two points in Js can be compared, thus ≻ defines a total order on Js.

Lemma 10.3.1. For any external address s, the order topology on Js agrees with

the topology as a subset of the Riemann sphere. Every component of Js is homeo-

morphic to an arc.

Proof. �

Theorem 10.3.2 (Rottenfusser, Rückert, Rempe, Schleicher [120]). If F ∈ Brmlog
satisfies a head-start condition, then the orbit of every escaping point z eventually

lands on a ray tail.

Proof. �

10.4. Finite order implies head-start





CHAPTER 11

Quasiconformal mappings: geometric aspects

In this chapter we discuss three definitions of quasiconformal maps: geometric,

piecewise C1 and analytic.

11.1. Angle distortion of linear maps

Conformal maps preserves angles; quasiconformal maps can distort angles, but

only in a controlled way. To make this distinction more precise we must have a way

to measure angle distortion and we start with a discussion of linear maps.

Consider the linear map
(
x
y

)
→M

(
x
y

)
=

(
a b
c d

)(
x
y

)
= (ax+ by, cx+ dy).

Let MT denote the transpose of the real matrix M , i.e., its reflection over the

main diagonal. Then

MT ·M =

(
a c
b d

)
·
(
a b
c d

)
=

(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
≡
(
E F
F G

)

is positive and symmetric and hence has two positive eigenvalues λ1, λ2, assuming M

in non-degenerate. The square roots s1 =
√
λ1, s2 =

√
λ2 are the singular values of

A (without loss of generality we assume s1 ≥ s2). Then

M = U ·
(
s1 0
0 s2

)
· V,

where U, V are rotations. ThusM maps the unit circle to an ellipse whose major and

minor axes have length s1 and s2. Thus M preserves angles iff it maps the unit circle

to a circle iff s1 = s2. Otherwise M distorts angles and we let D = s1/s2 denote the

dilatation of the linear map M . This is the eccentricity of the image ellipse and is

≥ 1, with equality iff M conformal.

205
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The inverse of a linear map with singular values {s1, s2} has singular values

{ 1
s2
, 1
s1
} and hence dilatation D = (1/s2)/(1/s1) = s1/s2. Thus the dilatation of

a linear map and its inverse are the same.

Given two linear mapsM,N with singular values s1 ≥ s2 and t1 ≥ t2 respectively,

the singular values of the composition MN are trapped between s1t1 and s2t2 (this

occurs for the maximum singular values since they give the operator norms of the

matrices and these are multiplicative; a similar argument works for the minimum

singular values and the inverse maps). Thus the dilation is less than (s1t1)/(s2t2) i.e.,

dilatations satisfy

DM◦N ≤ DM ·DN .

The dilatation D can be computed in terms of a, b, c, d as follows. The eigenvalues

λ1, λ2 are roots of the

0 = det(MT ·M − λI),

which is the same as

0 = (E − λ)(G− λ)− F 2 = EG− F 2 − (E +G)λ+ λ2.

Thus

λ1λ2 = EG− F 2

= (a2 + c2)(b2 + d2)− (ab+ cd)2

= a2b2 + a2d2 + c2b2 + d2c2 − (a2b2 + 2abcd+ c2d2)

= a2d2 + c2b2 − 2abcd

= (ad− bc)2

Similarly,

λ1 + λ2 = E +G = a2 + b2 + c2 + d2.

The values of λ1, λ2 can be found using the quadratic formula:

{λ1, λ2} =
1

2
[E +G±

√
(E +G)2 − 4(EG− F 2)]

=
1

2
[E +G±

√
(E −G)2 + 4F 2)].
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Thus

λ1
λ2

=
E +G+

√
(E −G)2 + 4F 2

E +G−
√
(E −G)2 + 4F 2

=
(E +G+

√
(E −G)2 + 4F 2)2

(E +G)2 − (E −G)2 − 4F 2

=
(E +G+

√
(E −G)2 + 4F 2)2

4(EG+ F 2)
.

and hence

D =
s1
s2

=

√
λ1
λ2

=
E +G+

√
(E −G)2 + 4F 2

2
√
EG+ F 2

.

This formula can be made simpler by complexifying. Think of the linear map M

on R2 as a map f on C:

x+ iy → ax+ by + i(cx+ dy) = u(x, y) + iv(x, y) = f(x+ iy)

Then

M =

(
ux uy
vx vy

)

and we define

fz =
1

2
(fx−ify) =

1

2
(ux+vy)+

i

2
(vx−uy), fz̄ =

1

2
(fx+ify) =

1

2
(ux−vy)+

i

2
(vx+uy).

Some tedious arithmetic now shows that

4|fz|2 = (ux + vy)
2 + (vx − uy)

2

= u2x + 2uxvy + v2y + v2x − 2vxuy + u2y

4|fz̄|2 = (ux − vy)
2 + (vx + uy)

2

= u2x − 2uxvy + v2y + v2x + 2vxuy + u2y

so

(|fz|+ |fz̄|)(|fz| − |fz̄|) = |fz|2 − |fz̄|2 = uxvy − vxuy = s1s2 = det(M).
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In particular, if we assumeM is orientation preserving and full rank, then det(M) > 0

and we deduce |fz| > |fz̄|. Similarly,

(|fz|+ |fz̄|)2 + (|fz| − |fz̄|)2 = 2(|fz|2 + |fz̄|2)
= u2x + v2x + u2y + v2x

= E +G

= λ1 + λ2

= s21 + s22.

From these equations and the facts s1 ≥ s2, |fz| > |fz̄| we can deduce

s1 = |fz|+ |fz̄|, s2 = |fz| − |fz̄|,
and hence

D =
s1
s2

=
|fz|+ |fz̄|
|fz| − |fz̄|

.

Note that D ≥ 1 with equality iff f is a conformal linear map. It is often more

convenient to deal with the complex number.

µ =
fz
fz̄
,

which is called the complex dilatation (although sometimes we abuse notation and

just call thus the dilatation, if the meaning is clear from context). Since |fz̄| < |fz|,
we have |µ| < 1 and it is easy to verify that

D =
1 + |µ|
1− |µ| , |µ| = D − 1

D + 1
,

so that either D or |µ| can be used to measure the degree of non-conformality.

We leave it to the reader to check that the map

x+ iy → (ax+ by) + i(cx+ dy)

can also be written as

(z, z̄) → αz + βz̄,

where z = x+ iy, z̄ = x− iy and α = α1 + iα2, β = β1 + iβ2, satisfy

α1 =
a+ d

2
, α2 =

a− d

2
, β1 =

c− b

2
, β2 =

b+ c

2
,

In this notation µ = β/α and

D =
|β|+ |α|
|α| − |β| .
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As noted above, the linear map f sends the unit circle to an ellipse of eccentricity

D. What point on the circle is mapped furthest from the origin? Since

s1 = |fz|+ |fz̄|,

the maximum stretching is attained when fzz and fz̄ z̄ have the same argument, i.e.,

when

0 <
fzz

fz̄ z̄
=

z2

µ|z|2 ,

or

arg(z) =
1

2
arg(µ),

Thus |µ| encodes the eccentricity of the ellipse and arg(µ) encodes the direction of

its major axis.

If we follow f by a conformal map g, then the same infinitesimal ellipse is mapped

to a circle, so we must have µg◦f = µf . If f is preceded by a conformal map g, then

the ellipse that is mapped to a circle is the original one rotated by − arg(gz), so

µf◦g = (|gz|/gz)2µf . To obtain the correct formula in general we need to do a little

linear algebra. Consider the composition g ◦ f and let w = f(z) so that the usual

chain rule gives

(g ◦ f)z = (gw ◦ f)fz + (gw̄ ◦ f)f̄z,

(g ◦ f)z̄ = (gw ◦ f)fz̄ + (gw̄ ◦ f)f̄z̄.

or in vector notation
(
(g ◦ f)z
(g ◦ f)z

)
=

(
fz f̄z
fz̄ f̄z̄

)(
(gw ◦ f)
(gw̄◦)

)

The determinate of the matrix is

fzf̄z̄ − f̄zfz̄ = fzfz − fz̄fz̄ = |fz|2 − |fz̄|2 = J,

which is the Jacobian of f , so by Cramer’s Rule,

(gw ◦ f) = 1

J
[(g ◦ f)zf̄z̄ − (g ◦ f)z̄f̄z],

(gw̄ ◦ f) = 1

J
[(g ◦ f)z̄fz − (g ◦ f)zfz̄],
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so

µg ◦ f =
(g ◦ f)z̄fz − (g ◦ f)zfz̄
(g ◦ f)zf̄z̄ − (g ◦ f)z̄f̄z

=
µg◦ffz − fz̄
f̄z̄ − µg◦f f̄z

=
fz

fz

µg◦f − µf
1− µg◦fµf

.

Now set h = g ◦ f or g = h ◦ f−1 to get

µh◦f−1 ◦ f =
fz

fz

µh − µf
1− µhµf

.

Thus if h and f have the same dilatation µ, then g = h ◦ f−1 is conformal. We will

need this in the case when h is more general than an homeomorphism.

11.2. Piecewise smooth quasiconformal maps

We say that a linear map f is K-quasiconformal if Df ≤ K. The linear map

need not be defined on the whole plane. Given two triangles T1, T2 with vertices

a, b, c and A,B,C, there is a unique affine map T1 → T2 taking a → A, b → B and

c→ C. The map is orientation preserving if both triangles were labeled in the same

orientation.

a b

c C

B

A
Figure 1. A pair of similarly oriented, labeled triangles defines a lin-
ear map and has an associated dilatation.

There is an obvious affine map between these triangles and we can easily compute

its quasiconformal constant of this map as follows. First use a conformal linear map

to send each triangle to one of the form {0, 1, a} and {0, 1, b}. The affine map is then

of the form f(z) → αz + βz̄ where α+ β = 1 and β = (b− a)/(a− ā) and from this

we see that

Kf =
1 + |µf |
1− |µf |

,
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where

µf =
fz̄
fz

=
β

α
=
b− a

b− ā
,

If the triangle T ′ is degenerate, or has the opposite orientation as T , we simply give

∞ as our QC bound K.

Figure 2. Two compatible triangulations of different polygons. The
most distorted triangle is shaded; this determines an upper bound for
the piecewise linear map between the polygons.

Figure 3. Another example of compatible triangulations of different
polygons. The most distorted triangle is shaded; in this case the di-
latation is bounded by 3.12157. (These examples are from [30], where
these bounds on dilatation are used to measure the effective of number
calculation of Schwarz-Christoffel parameter calculations.)

Two triangulations are compatible if the there is a bijection between the trian-

gles that preserves adjacency. The linear maps between each pair of corresponding

triangles defines a continuous, piecewise linear map between the regions covered by

the triangulations and we call this map K-quasiconformal if the dilatation of each

individual triangle map is bounded by K. For finite triangulations, we always get

a K-quasiconformal map for some K, since we only have a finite set of dilatations,
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but for infinite triangulations, K-quasiconformality is a non-trivial assumption. The

class of piecewise linear quasiconformal maps is extremely limited compared to the

full class we shall define later, but even these simple maps suffice for many of the

applications we will later make to dynamics.

Figure 4. A pair of compatible finite triangulations defines a piece-
wise linear quasiconformal map where the quasiconstant of the tri-
angulation is the maximum of the individual dilatations. A pair of
compatible infinite triangulations defines a quasiconformal map if the
dilatations are uniformly bounded above.

The piecewise differentiable definition: h is K-quasiconformal on Ω if there

are countable many analytic curves whose union is a closed set Γ of Ω such that h is

continuously differentiable on each connected component of Ω′ = Ω \ Γ and Dh ≤ K

on Ω′.

The main motivating example is when Ω = C, Γ is a triangulation of the plane

and µh is constant on the interior of each triangle.

A quadrilateral Q is a Jordan domain with two disjoint closed arcs on the bound-

ary. By the Riemann mapping theorem and Caratheodory’s theorem, there is a

conformal map from Q to a 1×m rectangle that extends continuously to the bound-

ary with the two marked arcs mapping to the two sides of length a. The ratio

M = M(Q) = 1/m is called the modulus of the four distinct marked on the bound-

ary and is uniquely determined by Q. The conjugate of Q is the same domain but

with the complementary arcs marked. Its modulus is clearly the reciprocal of Q’s

modulus.
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The geometric definition: A homeomorphism h, defined on a planar domain

Ω, is K-quasiconformal if the

1

K
M(Q) ≤M(h(Q)) ≤ KM(Q),

for every quadrilateral Q ⊂ Ω.

Our first goal is to check that the this includes all the maps we previously defined

as K-quasiconformal in terms of their dilatations. Suppose Q ⊂ Ω and h(Q) are

respectively equivalent to 1× a and 1× b rectangles and h is has dilatation bounded

by K. Since the dilatation is unchanged by composing with conformal maps, it

suffices to show

Lemma 11.2.1. If we have a piecewise differentiable K-quasiconformal map be-

tween a 1× a and 1× b rectangle with dilatation ≤ K, then a
K

≤ b ≤ Ka. Thus the

piecewise differentiable definition implies the geometric definition.

Proof. By integrating over horizontal lines in the first rectangle, we see

b ≤
∫ a

0

(|fz|+ |fz̄|)dx,

and integrating in the other variable,

b ≤
∫ 1

0

∫ a

0

(|fz|+ |fz̄|)dxdy.

Thus by Cauchy-Schwarz

b2 ≤ (

∫ 1

0

∫ a

0

(|fz|+ |fz̄|)(|fz| − |fz̄|)dxdy)(
∫ 1

0

∫ a

0

|fz|+ |fz̄|
|fz| − |fz̄|

dxdy)

≤ (

∫ 1

0

∫ a

0

(|fz|2 − |fz̄|2)dxdy)(
∫ 1

0

∫ a

0

|fz|+ |fz̄|
|fz| − |fz̄|

dxdy)

≤ (

∫ 1

0

∫ a

0

Jfdxdy)(

∫ 1

0

∫ a

0

Dfdxdy)

≤ baK,

so b ≤ Ka. The other direction follows by considering the inverse map. �

In order for the proof to work we need two things: (1) the area of the range to be

bounded above by integrating the Jacobian over the domain and (2) each horizontal

line segment S to have an image whose length is bounded above by the integral of

|fz| + |fz̄| over S. This certainly holds if fz and fz̄ are piecewise continuous on a
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partition of the plane given by countable many analytic curves, as we have assumed,

but it holds much more generally. The geometric definition of quasiconformality

actually implies that the map h has partials almost everywhere and is absolutely

continuous on almost every line. This, in turn, implies the necessary estimates holds.

This will be discussed later in Chapter 12

Next we record the annulus analog of the previous result for rectangles.

Corollary 11.2.2. If we have a piecewise differentiable K-quasiconformal map

f between annuli Ar = {1 < |z| < r} and AR = {1 < |z| < R} rectangle with

dilatation ≤ K, then 1
K
log r logR ≤ K log r.

Proof. Slit Ar with [1, r] for form a quadrilateral Q ⊂ Ar and let Q′ = f(Q) ⊂
AR. See Figure 5 Then M(AR) ≤ M(Q′) ≤ KM(Q) = M(Ar). The first inequality

occurs because of monotonicity of modulus (Lemma 5.1.2); every separating curve for

the annulus connects opposite sides of Q′ (but there are connecting curves that don’t

correspond to closed loops). The other direction follows by considering the inverse

map. See Figure 11.2.2. �

Figure 5. Notation in the proof of 11.2.2.

Lemma 11.2.3. Suppose f is holomorphic on Ω and φ is quasiconformal and C1

on C. Suppose ψ is quasiconformal on Ω and µψ = µφ◦f everywhere that f ′ 6= 0.

Then there is a holomorphic function g on Ω′ = ψ(Ω) so that

g ◦ ψ = φ ◦ f.

Proof. Let g = φ ◦ f ◦ ψ−1. Every point where f ′ is non-zero, there is a disk

where the composition is conformal. Thus g is continuous all of Ω′ and holomorphic
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except on a countable set, hence is holomorphic on all of Ω′ (since isolated points are

removable for bounded holomorphic functions). �

11.3. Compactness and continuity

The Arzela-Ascoli theorem states that a collection of continuous functions is rel-

atively compact if and only if it is equicontinuous and pointwise bounded. In this

section we prove that K-quasiconformal maps of the plane, normalized to fix both 0

and 1 have both these properties, and are also closed under uniform convergence on

compact sets. Thus normalized K-quasiconformal maps are compact.

Some normalization is necessary; the maps fn(z) = nz are 1-quasiconformal, but

are not pointwise bounded or equicontinuous.

Lemma 11.3.1. If {fn} is a sequence of K-quasiconformal maps on Ω that con-

verge uniformly on compact subsets to a homeomorphism f , then f isK-quasiconformal.

Proof. Any quadrilateral Q ⊂ Ω has compact closure in Ω so Q′ limn fn(Q)

is a quadrilateral in f(Ω) and we need only check that if Q is a quadrilateral then

M(limn fn(Q)) = limnM(fn(Q)). However, this follows from Lemma 5.5.7 of Chapter

5. �

Lemma 11.3.2. Suppose f : C → C is a K-quasiconformal map that fixes both 0

and 1. Then |f(x)| is bounded with an estimate depending on |x| and K, but not on

f .

Proof. First suppose ℜ(x) ≤ 1/2 and consider the topological annulus with

boundary component [0, x] and [1,∞). See Figure ??. boundary components is

bounded below depending only on |x|. But if R = |f(x)| then by using the metric

ρ(z) = 1/(|z| logR), we see that the modulus of f(F) is at most 1/ logR. This is a

contradiction if R is too large. �

Theorem 11.3.3. A K-quasiconformal map of the plane that fixes both 0 and 1

is locally Hölder continuous.

Proof. Suppose f is as in the lemma and x, y ∈ D(0, r). By Lemma 11.3.2,

D(0, 2r) is mapped into D(0, R) for some R = R(r,K). Surround {x, y} by N =
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0 1

x

0 1

f(x)

Figure 6. If |f(x)| ≫ |x| then the modulus of the path family sepa-
rating [0, x] and [0,∞) must change by more than a factor of K.

⌊log2 r
|x−y|⌋ annuli {Aj} of modulus log 2. See Figure 7. The image annuli {f(Aj)}

have moduli bounded away from zero, and hence diam(f(Aj+1)) ≤ (1−ǫ)diam(f(Aj))

by Lemma 5.1.10. Therefore

|f(x)− f(y)| ≤ R(1− ǫ)N ≤ R2log2(1−ǫ)(1+log2R−log2 |x−y|) ≤ C(R)|x− y|log2(1−ǫ).

�

Later we will compute the actual Hölder exponent as 1/K.

Theorem 11.3.4. If f is piecewise differentiable and the dilatation µ satisfies

certain estimates of the form

max
|x|≤R,r>1/R

1

r2

∫

D(x,r)

Df (z)dxdy ≤ φ(R),

then f has modulus of continuity that depends only on φ if φր ∞ slowly enough as

R → ∞.

Proof. Repeat the proof of Theorem 11.3.3, only now the moduli of the image

annuli can tend to zero. However, as long as φ grow slowly enough, then

diam(f(Aj)) ≤
N∏

j=1

(1− ǫ(φ(R)))

where ǫ(K) is as in Lemma 5.1.10. �

There have been a number of excellent papers written on explicit bounds for this

kind of result, but we will only need the “soft” version above. See [41], [?], [36], [87],

[138].
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Figure 7. Annuli of fixed modulus map to annuli with modulus
bounded below, and whose diameters shrink geometrically. Thus f
is Hölder continuous.

Lemma 11.3.5. If ϕ : D → D is quasiconformal and onto, then ϕ extends contin-

uously to a homeomorphism of T = ∂D to itself.

Proof. We may assume f(0) = 0; the general case follows after composing with

a Möbius transformation.

Suppose w, z ∈ D. We will show that

|f(z)− f(w)| ≤ C|z − w|α,

for constants C <∞, α > 0 that depend only on the quasiconstant K of f . This im-

plies f is uniformly continuous and hence has a continuous extension to the boundary

of D.

Let d = |z − w| and r = min(1− |z|, 1− |w|). There are several cases depending

on the positions of the points z, w and the relative sizes of d and r. See Figure ??.

To start, note that if |z − w| ≥ 1
10

we can just take C = 20 and α = 1. So from

here on, we assume |z − w| < 1/10.
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Suppose r > 1/4, so z, w ∈ 3
4
D. Surround the segment [z, w] by N ≃ log d annuli

with moduli ≃ 1. Then just as in the proof of Theorem 11.3.3, the image annuli have

moduli ≃ 1 (with a constant depending on K) and hence

|f(z)− f(w)| ≤ (1− ǫ(K))N = O(|z − w|α),

for some α > 0 depending only on K.

Next suppose |z| ≥ 3/4 and d > r. Then separate [z, w] from 0 by N ≃ log d

disjoint quadrilaterals with a pair of opposite sides being arcs of T, and all with

moduli ≃ 1. Since f(0) = 0 and the image quadrilaterals have moduli ≃ 1, there

diameters shrink geometrically, so

|z − w| = (1− ǫ(K))N = O(dα),

as desired.

Figure 8. The proof of Hölder estimates in the disk is similar to the
proof in the plane,except that we need to use quadrilaterals, as well as
annuli, if the pair of points in near the boundary.

Finally, if r ≤ d we combine the two previous ideas: we start by separating [z, w]

from 0 by ≃ log d quadrilaterals with as above. The smallest quadrilateral then

bounds a region of diameter approximately r containing [z, w] and we then construct

≃ log r/d disjoint annuli with moduli ≃ 1 that each separate [z, w] from this smallest

quadrilateral. See Figure ??. The same arguments as before now show

|z − w| = (1− ǫ(K))− log r(1− ǫ(K))log r/d = O(dα) = O(|z − w|α).

�
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Lemma 11.3.6. For any δ > 0 and and any r > 0 there is an ǫ > 0 so that the

following holds. If f : C → C is (1 + ǫ)-quasiconformal and f fixes 0 and 1, then

|z − f(z)| ≤ δ for all |z| < r.

Proof. If not, there is a sequence of (1+ 1
n
)-quasiconformal maps that all fix 0 and

1 and points zn ∈ D(0, r) so that |zn − fn(zn)| > δ. However, there is a subsequence

that converges uniformly on compact subsets of the plane to a 1-quasiconformal

map that fixes 0 and 1 and that moves some point by at least δ. However a 1-

quasiconformal map is conformal on C, hence of form az + b and since it fixes both

0 and 1, it is the identity and hence doesn’t move any points, a contradiction. �

Lemma 11.3.7. Suppose f : C → C is a K-quasiconformal map that fixes both

0 and 1. Then there is a constant 0 < C < ∞, depending only on K so that if

|z| < 1/C, then

C−1|z|K ≤ |f(z)| ≤ C|z|1/K ≤ C|z|1/K .

Proof. Since normalized K-quasiconformal maps form a compact family, there

here is a constant A = A(K) so that

f({|z| = 1}) ⊂ { 1
A
< |z| < A}.

By rescaling we also get that for any 0 < r <∞

f({|z| = r}) ⊂ {|f(r)|
A

< |z| < A|f(r)|}.

Thus if r < A−2,

{A|f(r)| < |z| < 1

A
}} ⊂ f({r < |z| < 1}) ⊂ {|f(r)|

A
< |z| < A}}.

Comparing moduli in the first inclusion we get

1

2π
log

1

A2|f(r)| ≤M(f({r < |z| < 1})) ≤ K

2π
log

1

r
,

which gives

|f(r)| ≥ rK/A2.

The second inclusion similarly gives

1

2π
log

A2

|f(r)| ≥M(f({r < |z| < 1})) ≥ 1

2πK
log

1

r
,

which implies |f(r)| ≤ A2r1/K . Taking C = A2 proves the lemma. �
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Corollary 11.3.8. For each K ≥ 1 there is a C = C(K) < ∞ so that the

following holds. If f : C → C is K-quasiconformal and γ is a circle, then there is

w ∈ C and r > 0 so that f(γ) ⊂ {z : r ≤ |z − w| ≤ Cr}.

Proof. Without loss of generality, we can pre and post-compose so that γ is the

unit circle and f fixes 0, 1. By Lemma 11.3.7, f(γ) is then contained in an annulus

{ 1
C
≤ |z| ≤ C}, and this gives the result. �

11.4. Locally QC implies globally QC

The definition of quasiconformality requires us to check the moduli of all quadri-

laterals. In this section we prove that it is enough to verify the definition just on all

sufficiently small quadrilaterals.

Lemma 11.4.1. If f is a homeomorphism of Ω ⊂ C that is K-quasiconformal in

a neighborhood of each point of Ω, then f is K-quasiconformal on all of Ω.

Proof. Suppose Q ⊂ Ω is a quadrilateral that is conformally equivalent via a

map ϕ to a 1 × m rectangle R and Q′ = f(Q) is conformally equivalent a 1 × m′

rectangle R′. Divide R into M equal vertical strips {Sj} of dimension 1×m/M . We

have to choose M sufficiently large that two things happen.

First choose δ > 0 so that f−1 isK-quasiconformal on any disk of radius δ centered

at any point of Q′ (we can do this since Q′ has compact closure in Ω). Next, note

that the closure of Q′ is a union of Jordan arcs γ corresponding via f ◦ϕ−1 to vertical

line segments in R. By the continuity of f ◦ φ−1 there is an η > 0 so that if z ∈ R

then f(φ−1(D(z, η))) has diameter ≤ δ. By the continuity of the inverse map, there

is an ǫ > 0 so that x, y ∈ Q′ and |x − y| < ǫ implies |ϕ(f−1(x)) − ϕ(f−1(y))| ≤ η.

Thus for any δ > 0 there is an ǫ > 0 so that if x, y ∈ γ ⊂ Q′ are at most distance ǫ

apart, then the arc of γ between then has diameter at most δ (and ǫ is independent

of which γ we use).

Choose M so large that each region Q′
j = f(ϕ−1(Sj)) contains a disk of radius

at most ρ, where ρ will be chosen small depending on ǫ. Map Ωj conformally to a

1×m′
j rectangle R

′
j. By Lemma 5.5.5 there is an absolute constant C so that every

for every y ∈ [0, 1], there is a t ∈ (0, 1) with |t− y| ≤ Cmj and so that the horizontal

cross-cut of R′
j at height t maps via φ−1

j to a Jordan arc of length ≤ Cρ. Thus we
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can divide R′
j by horizontal cross-cuts into rectangles {R′

ij} of modulus m′
ij ≃ 1 so

that the preimages of these rectangles under φj are quadrilaterals with two opposite

sides of length ≤ Cρ and which can be connected inside the quadrilateral by a curve

of length ≤ Cρ.

Taking δ as above, choose ǫ as above corresponding to δ/4 and choose ρ so that

3Cρ < min(ǫ, δ/4). Then all four sides of the quadrilateral Q′
ij have diameter ≤ δ/4

and hence Q′
ij has diameter less than δ and hence lies in a disk where f−1 is K-

quasiconformal. Let mij be the modulus of corresponding preimage quadrilateral

Qij = f−1(Q′
ij). See Figure 9.

φ’

f

φ j

R’j

Rj

Qj
Q’j

Q
Q’

R

Figure 9. Notation in the proof of Theorem 11.4.1.

Then using the rules of extremal length

M

m
≥
∑

i

1

mij

,
1

m′
j

=
∑

i

1

m′
ij

, m′ ≥
∑

j

m′
j,
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and by the definition of K-quasiconformal,

1

K
≤ mij

m′
ij

≤ K.

Hence

M

m
≥
∑

i

1

mij

≥ 1

K

∑

i

1

m′
ij

=
1

Km′
j

or
m

M
≤ Km′

j

for every j. Thus

m ≤
M∑

j=1

m

M
≤
∑

j

Km′
j ≤ Km′.

Applying the same result to the inverse map shows f is K-quasiconformal. �

If K = 1, then m = m′ the last line of the above proof becomes

m′ = m ≤
∑

j

m

M
≤
∑

j

m′
j ≤ m′.

so we deduce
∑

j

m′
j = m′,

whereas in general, we only have
∑

jm
′
j ≤ m′. We want to use this to deduce that

1-quasiconformal map must be conformal. We start with

Lemma 11.4.2. Consider a 1×m rectangle R that is divided into two quadrilaterals

Q1, Q2 of modulus m1 and m2 by a Jordan arc γ the connects the top and bottom edges

of R. Then if m = m1 +m2, the curve γ is a vertical line segment.

Proof. See Figure 10. Let ϕ1, ϕ2 be the conformal maps of Q1, Q2 onto 1×m1

and 1 × m2 rectangles R1, R2 respectively. Set ρ = |f ′
1| on Q1 and ρ = |f ′

2| in Q2

and zero elsewhere. Then each horizontal line is cut by γ into pieces one of which

connects the left vertical edge of R to γ, and another that connect γ to the right edge

of R. The images of these connect the vertical edges of R1 and R2 respectively. Thus

the images have lengths at least m1 and m2 respectively, there length of the image of
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the entire horizontal segment in Q is ≥ m1 +m2. If we integrate over all horizontal

segments in Q, we see
∫

Q

(ρ− 1)dxdy ≥ m1 +m1 −m = 0.

Similarly,
∫

Q

(ρ2 − 1)dxdy = area(f1(Q1) + area(f2(Q2))− area(q) = (m1 +m2)−m = 0.

Thus ∫

Q

(ρ− 1)2dxdy =

∫

Q

(ρ2 − 1)− 2(ρ− 1)dxdy = 0.

Since (ρ − 1)2 ≥ 0, this implies ρ = 1 almost everywhere, i.e., f1 and f2 are most

linear and the curve γ is a vertical line segment. �

m1 m2

1

m

γ

Figure 10. A partition of a rectangle as in the proof of Lemma 11.4.3.

Lemma 11.4.3. If f is 1-quasiconformal on Ω, then it is conformal on Ω.

Proof. If f is 1-quasiconformal in the proof of Theorem 11.4.1, then as noted

before Lemma 11.4.2, we must have

M

m
=
∑

i

1

mij

,
1

m′
j

=
∑

i

1

m′
ij

, m′ =
∑

j

m′
j,

Thus the map ψ = ϕ′ ◦f ◦ϕ−1 between identical rectangles must be the identity map.

Thus f = (ϕ′)−1 ◦ ϕ is a composition of conformal maps, hence conformal. �
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11.5. The Perron process and uniformization of planes

The uniformization theorem states that any simply connected Riemann surface

is conformally equivalent to either the 2-sphere S, the complex plane C or the unit

disk D. If the surface is non-compact, the sphere is eliminated and surface must be

equivalent to either C or D. These two choices can be distinguished using extremal

length: choose a compact connect set K on the surface and consider the set of

rectifiable paths that separate K from ∞. If this family has finite modulus, then the

surface is equivalent to the disk and otherwise the modulus is infinite and the surface

is equivalent to the disk.

For our applications, we only need to use the uniformization theorem in the

case when R is built by attaching Euclidean triangles along their edges in a way

that is combinatorially identical to the usual triangulation of the plane by identical

equilateral triangles. See Figure ??.

Subharmonic function play an important role in the Perron process for solving the

Dirichlet problem on a planer domain or Riemann surface. Suppose Ω is a Riemann

surface and we are given a collection of subregions {Ωj} on which we can solve the

Dirichlet problem (e.g., a collection of disks, where we can use the Poisson formula).

If f ∈ C(∂Ω) and ∂Ω is compact, then f has a lower bound M . Let F be the

collection of subharmonic functions v on Ω that have continuous boundary values

less than f on ∂Ω. The collection is non-empty since the constant M is in it.

Let u = sup{v : v ∈ F}. We claim u is harmonic. It is clearly subharmonic since

it is a supremum of subharmonic functions. IN each Ωn we can solve the Dirichlet

problem in Ωn with boundary data u; if u were not harmonic in Ωn, replacing u with

this solution in Ωn would give a strictly larger element of F .

The final step is to prove that u has the correct boundary values. This requires

some assumption on ∂Ω, since it is not true the Dirichlet problem can be solved for

every domain.

EXERCISE: Show that if Ω = D \ {0} and we set f = 1 on T and f = 0 at 0,

then the function u created by the Perron process is the constant 1, and hence does

not solve the Dirichlet problem. Indeed, there is no harmonic function on Ω with the

given boundary values.
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We say a barrier exists at x ∈ ∂Ω if there is a r > 0 and a non-negative, harmonic

function V on Ω′ = Ω ∩D(x, r) so that

lim sup
z→x

V (x) ≤ 0,

but

lim inf
z→y

V (x) > 0, y ∈ ∂Ω′ \ {x}

and V ≥ 1 on {|z − x| = r} ∩ Ω.

Lemma 11.5.1. If there is a barrier at x then the Perron solution u extends

continuously to x and equals f there.

Proof. First consider the special case when f takes values in [0, 1] and x is

the unique point where f takes the minimal value 0. Suppose v ∈ F . Since v is

subharmonic on Ω′ = Ω ∩ D(x, r) and bounded above by 1, it is bounded above by

V �

11.6. The measurable Riemann mapping theorem, Part I

The main motivating example is when Ω = C, Γ is a triangulation of the plane

and µh is constant on the interior of each triangle. Such maps arise as piecewise

linear maps between compatible triangulations, but there are many other examples,

as the following shows.

Theorem 11.6.1. Suppose Γ is a triangulation of the plane, 0 ≤ k < 1 and µ(z) is

constant on the interior of each triangle with |µ| < k. Then there is a homeomorphism

f of the plane with µf = µ.

Proof. For each triangle T let A be the affine map with dilatation µ(T ) and Tµ

be the image of T under A. Form an Riemann surface by identifying the triangles Tµ

along the same edges as in Γ. This defines a Riemann surface that is quasiconformally

equivalent to the plane via the map Φ : R → C that is affine on each triangle. By

the uniformization theorem, there is also a conformal map Ψ : R → C (since R is

simply connected and not-compact, it is conformally equivalent to either the disk or

the plane and since it quasiconformally equivalent to the plane we know the extremal

length of the path family connected an disk to ∞ on R is infinite, and hence it must
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be conformally equivalent to the plane). Then Ψ ◦ Φ−1 : C → C is quasiconformal

with dilatation µ. �

Theorem 11.6.2. For any measurable µ on the plane with |µ| ≤ k < 1, there

is a quasiconformal map f with f = limn fn and µn = µfn where {µn} satisfy the

conditions of Theorem 11.6.1 and {fn} are the corresponding maps.

Proof. Take the standard triangulation of the plane (see Figure ??) and a series

of refinements by subdividing each triangle into four sub-triangles. Define a piecewise

constant dilatation on the nth triangulation by taking the average of µ on each trian-

gle and let {fn} be the corresponding sequence of quasiconformal maps, normalized

to fix 0, 1,∞. Since these are all quasiconformal with the same bound, they form

an equicontinuous family and we can extract a subsequence that converges uniformly

on compact subsets of the plane. The limit function f is also K-quasiconformal by

Lemma ??.

If µ is continuous on a disk D, then the dilatations µn converge uniformly to µ

on 1
2
D and so

�

Lemma 11.6.3. If the dilatation is symmetric with respect to a circle (or line), the

corresponding quasiconformal function can be chosen to be symmetric with respect to

the same circle (or line).

Corollary 11.6.4. If f is piecewise continuous K-quasiconformal on an open

set Ω ⊂ C then there is a K-quasiconformal map g : C → C so that f ◦g is conformal

on Ω.

Proof. The dilatation µ of f is defined on Ω and set it to be zero on the rest

of the plane. Apply the construction above to generate a sequence {gn} and limit g.

Then gn ◦ f �

Corollary 11.6.5. If f : D → D is K-quasiconformal an onto, and we extend

f to a map C → C by reflection

f(1/z̄) = 1/f(z),

then the extension is K-quasiconformal on the whole plane.
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Corollary 11.6.6. If ϕ is K-quasiconformal on C and g is holomorphic on Ω

then there is a K-quasiconformal map ψ on Ω such that f = ϕ◦g◦ψ−1 is holomorphic

on ψ(Ω).

In this case the functional relation can be rewritten as

f ◦ ψ = ϕ ◦ g.

If Ω = C, such a pair of functions f and g are called quasiconformally equivalent.

We will examine such pairs in more detail in later sections (see Sections ??, ??).

Corollary 11.6.7.

11.7. Removable sets for quasiconformal maps

When f is continuously differentiable, it is relatively easy to check whether it is

quasiconformal; we just compute the complex dilatation µ = fz̄/fz and check that

|µ| < k < 1 everywhere. For some applications in dynamics, functions arise that

that are homeomorphisms f on C, but which are only C1 on an open set Ω = C \K
on an open set Ω = C \ K. If we know the dilatation is bounded on just Ω, can

we still deduce that f is quasiconformal? If we can, then we say K is removable for

quasiconformal mappings.

This depends on the “size” and “shape” of K. If K has interior, then it is easy

to construct counterexamples; choose a disk D ⊂ K and any non-quasiconformal

homeomorphism of the disk to itself that is the identity on the boundary and extend

it to be the identity off D. If K has positive area, there are also counterexamples

corresponding to applications of the measurable Riemann mapping theorem to a

dilatation that is a non-zero constant on K and zero off K. Even if K is quite small,

there can be counter examples. For example, given any guage function h such that

h(t) = o(t) as t ց 0, there is a closed Jordan curve γ and a homeomorphism of the

sphere that is conformal on both components of C \ γ but which is not Möbius (see

e.g., [28], [29], [76]). On the other hand, if K has finite or sigma-finite 1-measure

then it is removable. These examples show that it is the “shape” rather than the

“size” of K that is crucial in most cases of interest.
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In this section we give an elegant sufficient condition for K to be removable that

is due to Peter Jones and Stas Smirnov [75], generalizing an earlier result of Jones

[74].

AWhitney decomposition of an open set Ω consists of a collection of dyadic

squares {Qj} contained in Ω so that

(1) the interiors are disjoint,

(2) the union of the closures is all of Ω,

(3) for each Qj, diam(Qj) ≃ dist(Qj, ∂Ω).

The existence of such a collection is easy to verify be taking the set of dyadic squares

Q so that

diam(Q) ≤ 1

4
dist(Q, ∂Ω),

and that are maximal with respect to this property (i.e., the parent square fails this

condition).

Figure 11. A Whitney decomposition.

Suppose K is compact, δ > 0 and for each x ∈ K let γx be a Jordan arc in

Ω = C \K that connects x to Ωδ = {z ∈ Ω : dist(z,K) ≥ δ}. For a single x, γx may

consist of several arcs that connect x to Ωδ. See Figure 12.

For each Whitney square Q ⊂ Ω, let

S(Q) = {x ∈ K : γx ∩Q 6= ∅}.
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Figure 12. Each boundary point is connected to a point distance δ
from ∂Ω. Some points may be connected by more than one curve.

This is called the “shadow” of Q on K; the name comes from the special case when

K is connected and does not separate the plane and γx is a hyperbolic geodesic

connecting x to ∞. If we think of ∞ as the “sun” and the geodesics as light rays,

then S(Q) is the part of K that blocked from ∞ by Q, i.e., it is Q’s shadow. See

Figure ??.

Figure 13. The shadow of a Whitney square on the boundary.

The immediate shadow I(Q) ⊂ S(Q) is the closure of all x ∈ S(Q) so that Q

is the first Whitney square of that size hit by γx as we traverse it from x to Ωδ.



230 11. QUASICONFORMAL MAPPINGS: GEOMETRIC ASPECTS

Figure 14. The paths connecting a Whitney square to its shadow
can sometimes hit larger Whitney squares. However this path will hit
a largest square, and there after only hit smaller squares.

Given x ∈ I(Q), we let I(x,Q) to be all the dyadic squares for Ω that are hit by γx

between x and Q, i.e., this is an infinite chain of Whitney squares that starts at Q

and accumulates on x and has Q as its unique largest square.

We will assume three things about shadows:

(1) I(Q) is closed.

(2) limn→∞
∑

Q∈Dn(Ω) diam(I(Q))2 = 0 where the sum is over all Whitney squares

for Ω of side length 2−n.

(3) dist(I(q), Q) → 0 as diam(Q) → 0,

These will hold in most situations we are interested in. For example, if Ω is simply

connected and we take γx to be arcs of hyperbolic geodesics connecting some base

point z0 ∈ Ω to x, then (2) always holds, (3) holds if ∂Ω is locally connected, and (1)

holds if Ω is a John domain.

An open, connected set Ω in R2 is called a John domain if any two points

a, b ∈ Ω can be connected by a path γ in Ω with the property that dist(z, ∂Ω) &

min(|z − a|, |z − b|). See Figure 15

Lemma 11.7.1. Suppose Q is a square, λ > 1 and f is K-quasiconformal on λQ.

Then

area(f(Q)) ≥ ǫdiam(f(Q))2,
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Figure 15. The domain on the left is a John domain, but the one
on the left is not; inward pointing cusps are OK, but outward pointing
cusps are not.

where ǫ > 0 depends only on λ and K.

Proof. By rescaling by conformal linear maps we may assume the square Q is

[−2, 2]× [−2, 2] and the map f fixes 0 and 1. Choose x ∈ ∂Q and connect x to 0 and

connect 1 to λ∂Q by disjoint curves γ0, γ1 so that the annular region λQ \ (γ0 ∪ γ1)
has modulus ≃ 1 with a constant that depends on λ (and decreases as λ increases.

See FIGURE ????.

The image of this annular region has modulus bounded away from 0 and ∞ and

this implies f(γ0) is bounded in terms of K (otherwise, as in the proof of Lemma

11.3.2 we could define a metric ρ(z) = 1/|z| on 1 < |z| < R and show that the path

family separating f(γ0) from f(γ1) has very small modulus). Thus diam(f(Q)) is

bounded in terms of K alone.

Now consider the modulus of A = Q \ [0, 1]. Again this is a fixed number ≃ 1,

so the modulus of f(A) is bounded away from zero. But every curve surrounding

f([0, 1]) has length at least 2, so the metric ρ = 1/2 is admissible, so

mod (f(A)) ≤ 1

4
area(f(Q)).

Since the left hand side is bounded away from zero depending only on K, so is right

hand side. See Figure ???. �
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Theorem 11.7.2. Suppose Ω has a Whitney decomposition so that the correspond-

ing shadow sets satisfy conditions (1)-(3) above. Suppose that f is a homeomorphism

of the plane that is K-quasiconformal on each component of R2 \ ∂Ω and that there

is an M <∞ so that

dist(f(Qj), f(Qj+1)) ≤M max(diam(Qj), diam(Qj+1)),(41)

whenever Qj, Qj+1 are consecutive squares in the chain associated to some x ∈ ∂Ω.

Then f is a C-quasiconformal map on the whole plane where C depends only on K

and M .

If the chain associated to each x ∈ ∂Ω consists of adjacent squares (i.e., Qj

touches Qj+1, then the same is true for their images under f , so condition (41) is

automatically satisfied. Thus we obtain:

Corollary 11.7.3. Suppose Ω has a Whitney decomposition so that the cor-

responding shadow sets satisfy conditions (1)-(3) above and all the Whitney chains

are connected. The ∂Ω is removable to quasiconformal homeomorphisms, i.e., any

homeomorphism of the plane that is K-QC off ∂Ω is quasiconformal on the whole

plane.

This is the version given by Jones and Smirnov (restricted to the plane). We have

stated the more general version with (41) in order to include certain maps arising

from groups of circle reflections where we require disconnected Whitney chains, but

for which (41) is automatically fulfilled.

In both the theorem and the corollary if if the map f is conformal off ∂Omega

(i.e., K = 1), then we will show that the extension is conformal everywhere. If the

map f is K-quasiconformal off ∂Ω then we only prove that it is C-quasiconformal

for some C < ∞. However, it follows from this that f is actually K-quasiconformal

on the whole plane. Our hypotheses imply that ∂Ω has zero area and hence |µf‖ ≤
(K − 1)/(K + 1) almost everywhere and this implies f is K-quasiconformal if we

use the analytic definition of quasiconformality (which we are delaying until a later

chapter). The weaker version will be sufficient for our applications.

Proof of Theorem 11.7.2. Suppose that W is any bounded quadrilateral in

the plane, say of modulus m and that W ′ = F (W ) has modulus m′. We want to
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show that m′ ≤ Cm where C <∞ depends only on K and M as in the statement of

the theorem. We will do this by mimicking the proof of Theorem 11.2.1, that showed

that any piecewise differentiable map with bounded dilatation was quasiconformal

(in the geometric sense).

Let ϕ : W → R = [0,m] × [0, 1] and ψ : W ′ → [0,m′] × [0, 1] be conformal

maps of the quadrilaterals Q,Q′ to rectangles R,R′ of the same modulus. Let X =

ϕ(∂Ω ∩W ) ⊂ R. The main difficulty with the proof is that we are going to consider

three different Whitney decompositions: one forW , one for Ω and one for U = R\X.

To try to differentiate the different Whitney cubes we we let {Wj} denote a Whitney

decomposition for W , {Qj} a Whitney decomposition for Ω and {Uj} a Whitney

decomposition for U .

Fix some ǫ > 0. Fix a Whitney cube Wj for W . We assume the decomposition

is chosen so that 2Wj ⊂ W . Suppose δ > 0 is so small (depending on our choice of

Wj) that the following conditions all hold:

(1) If Qk is a Whitney square for Ω with diameter less than δ and the shadow

I(Qk) hits Wj, then I(Qk) ⊂ 2Wj and the entire Whitney chain connecting

any point x ∈ I(Qk) to Qk is contained in 2Wj. This is possible by condition

(3) on shadow sets.

(2) Let S(Wj) denote the collections of all Whitney squares Qk for Ω so that

diam(Qk) ≤ δ and I(Qk)) ∩Wj 6= ∅. Then

∑

Qk∈S(Wj)

diam(I(Qk))
2 ≤ ǫarea(Wj).

This holds for small enough δ, because by condition (2) on shadows, this sum

over all Whitney squares for Ω is finite, so removing all the squares bigger

than δ gives a sum that tends to 0 as δ tends to zero. Thus we can make is

less than ǫarea(Wj) by taking δ small enough (depending on Wj).

Let S = ∪Wj
S(Wj) be the collection of all shadow sets of all Whitney squares for

Ω that are in some S(wj) for some Whitney square of W .

Claim: ∂Ω ∩ Wj is covered by a finite number of the shadow sets I(Qk) with

Qk ∈ S(Wj).
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Proof of Claim. Each point x ∈ ∂Ω ∩ Wj is associated to a Whitney chain

that contains a square with diameter comparable to δ. There are only finitely many

such squares, so their shadows form a finite collection that covers ∂Ω ∩Wj. �

Suppose L = [a + iy, b + iy] is a horizontal segment, compactly contained in the

interior of R at height y. We wish to show that
∫ 1

0

|g(b+ iy)− g(a+ iy)|dy ≤ Cm,

where C depends only on K and M . If we can do this, then by letting a → 0 and

b→ m we get

m′ ≤ lim a→ 0, b→ m|g(b+ iy)− g(a+ iy)|,
and hence

m′ ≤ lim a→ 0, b→ m

∫ 1

0

|g(b+ iy)− g(a+ iy)|dy ≤ Cm,

which is the desired inequality.

Since L is compactly contained in the interior of R and X is relatively closed in

the interior of R, L ∩X is compact. Thus ϕ−1(L ∩X) is a compact set of W , hence

covered by finitely many whitney squares forW and hence is covered by finitely many

shadows sets in S.
Let X be the image of the elements of S under ϕ. Then L ∩ X is covered by

finitely many elements of X , say X1, . . . Xn. For k = 1, . . . , n, let Yk = [ak, bk] be

the smallest closed interval in L that contains Xn (this is the convex hull of Xk, the

interval with the same leftmost and rightmost point as Xk). Then Y1, . . . , Yn also

cover L∩X and we can extract a subcover with the property that Yj ∩Yk 6= ∅ implies

|j − k| ≤ 1.

Since the points ak, bk are both in the same setXk, the preimage points ϕ−1(ak), ϕ
−1(bk)

are both in the same element of S. Thus they are both in the shadow set of some

Whitney square for Ω and are associated to a two sided chain of distinct Whitney

squares {Qm}∞−∞ of Whitney squares for Ω. If two chains arising in this way, say from

Yk and Ym with m > k, have a Whitney square in common, then we can combine the

chains to form a chain connecting ak to bm consisting of distinct squares.

After doing this for all intersections, we end up with a finite collection of closed

intervals Zk in L which covers the same set as the union of the Yk’s and such that
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the two endpoints of each Zk correspond to a two-sided Whitney chain in Ω and that

different intervals use different Whitney squares (no overlapping chains). Moreover,

if Zk has endpoints ck, dk and the corresponding chain is {Qn}, then

|g(ck)− g)dk)| ≤ (M + 1)
∑

n

diam(ψ(f(Qn))).

The set V = L \ ∪kZk consists of finitely many open intervals in U = R \X with

their endpoints in X. We break V into countable many sub-intervals by intersecting

it with the Whitney squares for U (without loss of generality, we can assume the

endpoints of L occur on the boundary of a Whitney square for U). On each Whitney

square Uk for U we define the constant function

Dg =
diam(g(Uk))

diam(Uk)
.

Then if Lj = L ∩ Uj, ∫

Lj

Dgdx = diam(g(Uj))/
√
2.

Thus ∫

L\ZL

Dgdx ≃
∑

j

diam(g(Uj)),

where the sum is over Whitney squares for U that hit L. Thus

|g(b+ iy)− g(a+ iy)| .
∫

L∩U
Dgdx+

∑

n

diam(ψ(f(Qn))).

Now integrate in y to get

∫ 1

0

|g(b+ iy)− g(a+ iy)|dy .

∫∫

U

Dgdx+
∑

n

diam(ψ(f(Qn)))µn,

where µn is the Lebesgue measure in [0, 1] of the set of lines Ly that use the Whitney

square Qn is at least one of the two-sided chains associated to a interval Z ⊂ Ly. The

measure of this set is no more than its diameter, which is no more than the diameter

of Xn = ϕ(I(Qn)). Thus

∫ 1

0

|g(b+ iy)− g(a+ iy)|dy .

∫∫

U

Dgdxdy +
∑

n

diam(ψ(f(Qn)))diam(Xn),
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We now estimate each term using the Cauchy-Schwarz inequality. First,
∑

n

diam(ψ(f(Qn)))diam(Xn) ≤ (
∑

n

diam(ψ(f(Qn)))
2)1/2(

∑

n

diam(Xn)
2)1/2

≤ A(
∑

n

area(ψ(f(Qn))))
1/2(
∑

Wk

∑

Qn∈S(Wk)

[
diam(ϕ(Wk)

diam(Wk)
diam(I(Qn))]

2)

≤ A(
∑

n

area(ψ(f(Qn))))
1/2(
∑

Wk

∑

Qn∈S(Wk)

[
diam(ϕ(Wk)

diam(Wk)
ǫarea(Wk))]

2)1/

≤ A(
∑

n

area(R′)1/2ǫ(area(R)1/2.

where A just depends on the distortion estimate for conformal maps (Theorem ??)

and ǫ is as small as we wish. Thus this term is small.

The other term is also bounded by Cauchy-Schwarz
∫∫

U

Dgdx =
∑

k

∫∫

Uk

Dgdxdy

≤ (
∑

k

∫∫

Uk

Dg2dxdy)1/2(
∑

k

∫∫

Uk

dxdy)1/2

≤ (
∑

k

(diam(g(Uk))
2)1/2(area(R))1/2

≤ A(
∑

k

(area(g(Uk)))
1/2(area(R))1/2

≤ A(area(R′)1/2(area(R))1/2

≤ A
√
m′m.

Thus ∫ 1

0

|g(b+ iy)− g(a+ iy)|dy .
√
m′m+O(ǫ),

Taking ǫ→ gives the desired inequality. �

Corollary 11.7.4. If ∂Ω has a Whitney decomposition and a collection of shadow

sets that satisfy (1)-(3), then any homeomorphism f of the plane that is conformal

off ∂Ω is conformal on the whole plane.

Proof. Theorem 11.7.2 implies that f is quasiconformal on the plane, so the

point is to show that we can take the quasiconformal constant to be 1. If we redo
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the proof assuming f is conformal off ∂Ω, then the piecewise constant function Dg

can be replaced by the usual derivative |g′|. This leads to the inequality

m′ ≤
√
m′m,

or m′ ≤ m, which implies f preserves the modulus of every quadrilateral, hence is

1-quasiconformal, hence is conformal. �

Corollary 11.7.5. If f is a quasiconformal map of the upper half-plane to itself,

mapping the real line to itself, then the extension of f to the whole plane by f(z̄) =

f(z) is quasiconformal in the whole plane.

Proof. Immediate from Theorem 11.7.2 since in the upper upper half-plane we

can define shadows by vertical projection and these clearly satisfy (1)-(3). �

Corollary 11.7.6. Quasicircles are removable.

Proof. If Γ = g(R) is a quasiconformal image of the reals and f is a homeomor-

phism that is quasiconformal on each side of Γ, then h = f ◦ g is a homeomorphism

that is quasiconformal on each side of R, then quasiconformal on the whole plane.

Thus f = h ◦ g−1 is a composition of quasiconformal maps and hence is quasiconfor-

mal. �

Lemma 11.7.7. The Riemann map ϕ from the unit disk to a bounded John domain

satisfies

diam(ϕ(I(Q))) ≤ Cdiam(ϕ(Q)),

dist(ϕ(Q), ϕ(I(Q))) ≤ Cdiam(ϕ(Q)),

for some constant C <∞ and any Whitney square Q and is shadow I(Q).

Proof. The second inequality follows directly from Lemma 5.5.1 by considering

the path family of radial lines connecting Q to I. To prove the first, consider the

Whitney-Carleson boxes Q1 and Q2 that are adjacent to Q and of the same size. By

Lemma 5.5.1 each is connected to its shadow by a radial segment whose image under

f has length comparable to diam(f(Q)). Thus there is a geodesic crosscut γ of the

disk that passes through Q and whose image has length comparable to diam(f(Q)).

Now suppose x is in the shadow of Q. Any curve connecting 0 to x crosses γ,

so any curve Γ connecting f(0) and f(x) crosses f(γ) and hence contains a point
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z ∈ f(γ)∩Γ that is at most distance O(diam(f(Q)) from ∂Ω. Thus by the definition

of John domain, either

dist(f(0), z) = O(diam(f(Q))),

or

dist(f(x), z) = O(diam(f(Q))).

In a bounded domain, the first can only happen for finitely many Qs; for the re-

mainder, the second must hold and hence f(I(Q)) is contained in a O(diam(f(Q))

neighborhood of f(Q). �

Corollary 11.7.8. Boundaries of John domains are removable.

Proof. The conclusions of the Lemma 11.7.7 easily imply (1)-(3) in Theorem

11.7.2. �

11.8. Definition of quasisymmetric maps

An increasing homeomorphism f : R → R isM-quasisymmetric if for all x ∈ R

and t > 0
1

M
≤ f(x+ t)− f(x)

f(x)− f(x− t)
≤M.

This is the same as saying that if I, J are any two intervals with disjoint interiors but

a common endpoint then f(I), f(J) have comparable lengths (within a factor of M).

We summarize this by saying adjacent intervals of equal length map to comparable

intervals. This definition also makes sense for homeomorphisms of the circle to itself,

but here we will only deal with the case of homeomorphisms of the real line.

x−t x+tx f(x) f(x+t)f(x−t)

f

Figure 16. The definition of a quasisymmetric homeomorphism of
the reals.

Lemma 11.8.1. If f : C → C is a quasiconformal mapping so that f(R) = R,

then the restriction of f to the real line is a quasisymmetric homeomorphism.
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Proof. After pre- and post-composing by conformal linear maps it is enough to

assume that f(0) = 0, f(1) = 1 and show that 0 < f(1
2
) < 1 is bounded away from

both 0 and 1. However, if we consider the topological annuli

Ω1 = C \ ([0, 1
2
] ∪ [1,∞)),

f(Ω− 1) = C \ ([0, f(1
2
)] ∪ [1,∞)),

we see they must have comparable moduli. The first is a fixed number (the reader

can check the modulus is equal to 1 by a symmetry argument) and the second tends

to 0 or ∞ if x tends to 1 or 0 respectively. Thus f(x) is bounded away from 0 and 1

in terms of the quasiconstant of f , as desired. See Figure 17. �

Figure 17. A quasiconformal map preserving the line cannot change
the modulus of the path family separating [x− t, x] from [x+ t,∞) by
more than a bounded factor, from which standard modulus estimates
imply that [x− t, x] cannot be either much shorter or much longer than
[x, x+ t].

It will be helpful to consider a version of quasisymmetry where we only consider

comparisons between members of a countable collection of intervals. The most com-

mon case is when this collection consists of dyadic intervals, but we will also want

to consider a more general case. We say a collection of intervals is A-dyadic if it

each interval is divided into two disjoint children with lengths comparable ≥ 1/2A.

When A = 1 this gives the usual dyadic intervals. More general examples are given
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by quasisymmetric images of the dyadic intervals (these are the only examples that

we will use).

We will say that an increasing homeomorphism f of the real line isB-quasisymmetric

with respect to an A-dyadic family if whenever I is a child of J , then

1

B
≤ |f(I)|

|f(J)| ·
|J |
|I| ≤ B.

We want to check that this implies the usual definition of quasisymmetric, particularly

when the constant B is close to 1.

Lemma 11.8.2. For any ǫ > 0 and A < ∞ there is a δ > 0 so that if f : R → R

is (1 + δ)-quasisymmetric with respect to an A-dyadic family of intervals, then it is

1 + ǫ quasisymetric.

Proof. Suppose I, j are adjacent closed intervals of equal length. Without loss

of general we may assume this length is 1. Then I contains maximal interval from

the A-dyadic collection and this must have length comparable to that of I. Thus I

and J are both covered by a bounded number of A-dyadic intervals of comparable

length. Now fix a positive integer k and consider kth generation descendents of these

intervals. Each has length O(2−k/A) so the interval I contains a collection of these

intervals that covers all but length O(2−k/A). Similarly, J is covered by a collection

whose total length is less than 1 + O(2−k/A). The f images of any two of these

intervals are expanded by factors that agree to within (1 + δ)k. Thus

|f(J)|
|f(I) ≤ 1 +O(2−k/A)

1 +O(2−k/A)
· (1 + δ)O(k).

Choosing k so large that the first factor on the right is less than
√
1 + ǫ and then

choosing δ so small that the second factor is equally small proves the lemma (since

the same argument applies with the roles of I and J reversed). �

Lemma 11.8.3. There is a ǫ > 0 so that every (1 + ǫ)-dyadic-quasisymmetric

map f : R → R has a continuous extension to the closed upper half-plane that is

quasiconformal on the open upper half-plane. The quasiconstant K of the extension

only depends on ǫ and tends to 1 as ǫ→ 0.
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Proof. Consider the decomposition of the upper half-plane into dyadic Whitney

boxes

Q = {x+ iy : x ∈ I,
1

2
|I| < y < |I|},

where I ranges over a dyadic decomposition of R. In each such Q we define five

vertices: the four obvious corners and the midpoint of the lower edge (which is a

corner of two boxes in the next “layer” closer to the boundary). Each such Q can be

divided into three triangles by connecting each of its upper corners to the midpoint

of its lower side, as shown in Figure ??.

If (x+ iy) is a vertex, then x is the endpoint of two disjoint dyadic intervals I, J

of length y. For each vertex define

f(x+ iy) = f(x) + min(|f(I)|, |f(J)|),

and extend f linearly to each triangle. Each Q contains three triangles. In the

“left” and “right” triangle the map we have defined is clearly non-degenerate and

preserves orientation. To show this for the center triangle, we need to check that the

bottom vertex maps to a point that is lower than either of the two triangle vertices.

However, the intervals used to define the images of these points map to intervals at

least 2(1+ ǫ)3 times as long as the intervals used for the center point. So if ǫ is small

enough f is a homeomorphism. Indeed, if ǫ < 21/3−1 then the angles of all the image

triangles are bounded away from 0 and π so that f is uniformly Q on every triangle.

As ǫ tends to zero, the image triangles tend to Euclidean similarities of the domain

triangles and hence the quasiconformal constant tends to 1. �

11.9. Factoring quasisymmetric maps

The proof of extension given above breaks down if the quasisymmetric constant

is large. To handle this case we will prove that any quasisymmetric map f can be

written as a composition of quasisymmetric maps

f = fn ◦ · · · ◦ f1,

all with small constant. Extending these maps and composing the extensions then

gives a quasiconformal extension of f . A variety of other proofs are know, e.g., a

formula valid for all quasisymmetric maps was given by Alhfors and Beurling (see [24]

or Chapter IV.B of [3]) and a particularly elegant extension is given by Douady and
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Figure 18. A quasisymmetric map with constant close to 1 can easily
be extended to a piecewise linear quasiconformal map of the upper
half-plane.

Earle in [43]. The latter extension commutes with linear fractions transformations of

the upper half-plane and this makes if particularly useful for the study of Fuchsian

and Kleinian groups.

Lemma 11.9.1. Any M-quasisymmetric map f : R → R can be written as a

composition of (1 + ǫ)-dyadic-quasisymmetric maps.

Proof. The proof is essentially just a sequence of pictures that make the state-

ment obvious. The non-obvious idea behind the pictures is to describe homeomor-

phisms of the real line in terms of hyperbolic earthquakes. This is due to William

Thurston [136], and has been studied by many others e.g., see [124], [122] and their

references.

An earthquake map in the Euclidean plane would consist of a choice of a line and

a map f that is the identity on one side of the line and a translation parallel to the

the line on the other side. In the hyperbolic upper half-space, the corresponding map

consists of a choice of a hyperbolic geodesic and a map that is the identity on one

side of the geodesic and a hyperbolic isometry on the the other side that restricts

to a translation on the geodesic. The easiest case occurs when the geodesic is the

vertical line iR+ and the map equals the identity in the second quadrant and equals
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z → eλz in the first quadrant. Here λ ∈ R is the hyperbolic translation length along

the chosen geodesic.

Instead of considering a single geodesic, we want to consider a tesselation of the

entire upper half-plane into ideal hyperbolic triangles. We start with a decomposition

of the real line into standard dyadic intervals of the form [j · 2k, (j + 1)2k) where j

is any integer and k ≤ 0. Note that all these intervals have length ≤ 1. Each such

dyadic interval is subdivided into two dyadic intervals of half the length that we call

its children. Similarly, each dyadic interval is contained in a dyadic interval of twice

the length called its parent.

We shall take a slightly non-standard way to define dyadic intervals with length

larger than 1. For each k > 0, each interval of generation k is a union of two previously

defined intervals of generation k − 1 chosen so that the origin is in the middle half

of some kth generation interval. This is clearly possible as illustrated in Figure 19.

The point of this is to insure that any two intervals in our collection have a common

ancestor. In the standard dyadic system this is not true since intervals in the positive

and negative reals never have a common ancestor, but in our system the intervals

containing the origin cover the whole line, hence and two bounded intervals are both

contained in one of these.

Figure 19. We use a non-standard version of the dyadic intervals to
insure that any two adjacent intervals have a common ancestor.
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To each dyadic interval I in our collection, we have an ideal triangle T (a,m, b)

with vertices at the endpoints a, b and midpoint m of I. The collection of all such

triangles is partially illustrated in Figure 20.

Figure 20. A tesselation of the upper half-plane by ideal hyperbolic
triangles. The “base” of each triangle on the real line is from the alter-
nating dyadic collection described in the text. Thus any two triangles
can be connected by a curve in the upper half-plane that crosses only
finitely many other triangles.

If f is an increasing homeomorphism of the real line and I is a interval then there is

a hyperbolic isometry τ that sends T (a,m, b) to the ideal triangle T (f(a), f(m), f(b)).

If σ is the linear map that takes f(a) to a and f(b) to b then σ ◦ τ is a hyperbolic

isometry that fixes both a and b and maps m to some point between a and b. If f is

quasisymmetric then this point is bounded away from both a and b in terms of the

quasisymmetric constant. This means that the isometry acts as a bounded hyperbolic

translation along the geodesic connecting a and b. Thus a quasisymmetric map gives

rise to an earthquake map of the upper half-plane that is isometric on every ideal

triangle in our tesselation and so that on two triangles sharing a geodesic edge, the

maps differ by a bounded hyperbolic translation. More concisely, quasisymmetric

maps give bounded earthquakes.

Conversely, it is easy to see that any bounded earthquake gives a dyadic-quasisymmetric

map. Consider two adjacent dyadic intervals, as in Figure 21. By definition, these

two intervals have a common ancestor, so they can be connected by a finite chain of
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adjacent ideal triangles that all have the a common endpoint. If we move this point

to ∞ by inversion, then the ideal triangles all have a vertex at infinity (as in 22) and

the earthquake maps are are all Euclidean similarities in each ideal triangle. Since

I, J have the same length, so do there inverted images, and since f(I) and f(J) have

comparable lengths so do their inverted versions (when the their common endpoint

is mapped to infty.

Figure 21. Any two adjacent dyadic intervals have a common an-
cestor and hence the corresponding ideal triangles are connected by a
curve that crosses only finitely many triangles in the tesselation.

As we move across the inverted triangles, the earthquake map has a jump corre-

sponding to some Euclidean dilation factor eλk between each triangle and the total

change is the product of these numbers. Since f is quasisymmetric this product is

bounded above and away from zero with a bounds depending only on the dyadic-

quasisymmetric constant of f . If we define a new earthquake map by replacing λk by

tλk we obtain a new dyadic-quasiconformal map with smaller constant.

Without loss of generality assume f is dyadic-quasiconformal with earthquake

data λ and that f fixes both 0 and 1. Fix a positive integer n and for 0 ≤ k ≤ n

let let gk be the dyadic earthquake map that fixes both 0 and 1 and has earthquake

data k
n
λ. Let fk = gk+1 ◦ g−1

k . Since fn = f and f0 is the identity, the composition

of the gk’s equals f and each of these maps has small earthquake data and hence is

dyadic-quasisymmetric with small constant. �
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Figure 22. The common endpoint of the chain of triangles in Figure
21 is mapped to infinity. The earthquake maps now correspond to
Euclidean similarities. Multiplying the hyperbolic translation distance
by t corresponds to raising the dilation factor in the similarity to the
tth power. This proves a quasisymmetric map can be factored into a
composition of quasisymmetric maps with dyadic-constant close to 1.

Figure 23. Given two adjacent intervals of equal length we ap-
proximate them using unions of smaller dyadic intervals. If a map is
quasisymmetric with small constant for dyadic intervals, this proves it
is also quasisymmetric with small constant for all intervals.

Theorem 11.9.2. Any quasisymmetric homeomorphism of the real line is a con-

formal welding.

Proof. By the previous result, any quasisymmetric map can be factored as a

composition of quasisymmetric maps all with constant close to 1, and by Lemma ??

each of these can be extended to a quasiconformal map of the upper half-plane. By

reflection (Lemma 11.7.5) each of these maps extends to be quasiconformal on the
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whole plane and the composition of these maps is a quasiconformal map that equals

the given quasisymmetric map on the real line. �

11.10. Conformal Welding

Let D ⊂ R2 be the open unit disk, D∗ = S2 \ D and let T = ∂D = ∂D∗ be the

unit circle. Given a closed Jordan curve Γ, let f : D → Ω and g : D∗ → Ω∗ be

conformal maps onto the bounded and unbounded complementary components of Γ

respectively. Then h = g−1 ◦ f : T → T is a homeomorphism and a homeomorphism

is called a conformal welding if it arises in this way. It is known that not every circle

homeomorphism is a conformal welding (e.g., see Lemma ??), but a precise geometric

characterization of such homeomorphisms seems like a very difficult problem. See [?]

for some partial results that show that every circle homeomorphism is “close to” a

welding map in a strong sense. For practical purposes the following is often sufficient

and is referred to as the “fundamental theorem of conformal welding” (e.g., see [?].

Theorem 11.10.1. If f : T → T is an orientation preserving homeomorphism

that has a quasiconformal extension to the closed unit disk, then f is a conformal

welding map.

The more usual way to state this is “if f is a quasisymmetric circle homeomor-

phism then f is a conformal welding”. Here quasisymmetric means that any two

adjacent intervals of the same length on T are mapped by f to intervals of compa-

rable length (with a constant M that may depend on f , but not on the intervals).

Quasisymmetric circle homeomorphisms are precisely the boundary values of quasi-

conformal self-maps of the disk, although we have not proved this yet. The fact that

the boundary value of quasiconformal map must be quasisymmetric follows from a

straightforward modulus estimate. For the other direction, there is a formula for

extending a circle homeomorphism to the interior of the disk, and it can be shown

that starting with a quasisymmetric map of the circle gives a quasiconformal map of

the disk. Both halves of the argument will be discussed in greater detail in Section

??.

Proof of Theorem 11.10.1. We define a circle chain C to be a finite union of

closed disks {Dk}n1 in R2 which have pairwise disjoint interiors and such that Dk is
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tangent to Dk+1 for k = 1, . . . , n − 1, Dn is tangent to D1 and there are no other

tangencies. We also assume the disks are numbered in counterclockwise order. The

complement, X = S2\∪kDk, of a circle chain consists of two disjoint Jordan domains.

We shall denote the bounded component by Ω and the unbounded component by Ω∗.

Let f : D → Ω and g : D∗ → Ω∗ be Riemann maps. We shall call (f, g) a normalized

circle chain pair if f(0) = 0, g(∞) = ∞ and dist(0, ∂Ω) = 1. Clearly, given a

circle chain, we can always obtain a normalized pair by composing with a Möbius

transformation.

Figure 24. A circle chain

Lemma 11.10.2. Suppose h : T → T is an orientation preserving homeomorphism

and suppose {xk}n1 ⊂ T is a finite collection of distinct points listed in counterclock-

wise order. Let Ik = (xk, xk+1), k = 1, . . . , n (modulo n). Then there is a normalized

circle chain pair so that for each k,

f(Ik) = ∂Dk ∩ ∂Ω,
g(h(Ik)) = ∂Dk ∩ ∂Ω∗.

We will say that any circle chain that satisfies this conclusion corresponds to h.

Another way of stating the lemma is that given any finite positive sequences {ak}
and {bk} such that

∑n
k=1 ak =

∑n
k=1 bn = 1 we can find a circle chain so that the

harmonic measure of each disk in the chain satisfies

ω(Dk, 0,Ω) = ak, k = 1, . . . n,

ω(Dk,∞,Ω∗) = bk, k = 1, . . . n.
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It is a fact that this circle chain is unique up to Möbius transformations, but

we will not need this here. One can prove uniqueness by considering two chains

corresponding to the same data. By taking conformal maps between the complements

of two such chains and repeatedly extending them by reflection, we can show these

maps extend to a homeomorphism of the sphere which is conformal except on a

Jordan curve which is the limit set of the Kleinian group generated by reflections

in the elements of our circle chain. It is known such a curve is a quasicircle (see

Theorem ??) and hence is removable for conformal maps. Thus the maps extend to

be conformal on the whole sphere, i.e., Möbius.

Proof of Lemma 11.10.2. The Koebe circle domain theorem ([?], [?]; also see

[?] and its references) states that given any finitely connected domain Ω there is a

conformal map f : Ω → Ω̃ onto a domain bounded by circles and points. We shall

apply this to a domain Ω = Ωǫ constructed as follows. Given n points {xk} on the

unit circle T, let yk = 2h(xk) ∈ 2T = {z : |z| = 2}. Let γn be disjoint smooth Jordan

arcs which connect xk to yk in the annulus A = {z : 1 ≤ |z| ≤ 2}, e.g., the hyperbolic
geodesics in A connecting these points. Let {Ik} ⊂ T be the arcs bounded by the

points {xk} and let {Jk} be the corresponding arcs on 2T. Thus Jk has harmonic

measure |h(Ik)| with respect to ∞. Let δ = infk |h(Ik)| be the smallest of these

harmonic measures.

Our domain Ω is the union of D, 2D∗ = {z : |z| > 2} and an ǫ-neighborhood of

each γn, where ǫ is assumed to be so small that these neighborhoods are pairwise

disjoint and ∂Ω has n components.

Figure 25. Two disks with connecting tubes
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Let fǫ : Ωǫ → Ω∗
ǫ be the map given by Koebe’s theorem. Normalizing by Möbius

transformation we may assume f(0) = 0, f(∞) = ∞ and dist(0, ∂Ωǫ) = 1.

We claim that the n circles in the complement of Ω∗
ǫ , are all contained in some

disk D(0, R) with R independent of ǫ (but R may depend on h and n). To see this,

suppose the union of closed disks satisfies ∪kDk ⊂ {1 ≤ |z| ≤ R} and that it hits

both boundary components. Let Ω1 be the connected component of fǫ(Ωǫ∩D(0, 3/2))

containing 0. Then for ǫ small enough, each interval Ik has harmonic measure ≥ 1/2n

in Ω1 and hence has capacity in Ω1 which is bounded away from zero depending

only on n. Thus by Lemma ??, every disk must hit {|z| ≤ M1}, for some M1

depending only on n. Similarly for Ω2 (the connected component of fǫ(Ω∩{|z| > 3/2})
containing ∞), i.e., there is a M2 depending only on δ such that every disk must hit

{|z| = R/M2}. If R is so large that R/M2 > 2M1, then every disk in our chain hits

both {|z| = M1} and {|z| = 2M1}. For large n this contradicts the following simple

fact:

Lemma 11.10.3. At most 6 disjoint disks can hit both {|z| = 1} and {|z| = 2}.

Proof. Each such disk has a sub-disk of diameter 1 contained in the annulus

{1 ≤ |z| ≤ 2}. Each of these intersects the circle {|z| =
√
3/2} in an arc of angle

measure π/3, and hence there can be at most 6 of them. �

Now we can pass to the limit as ǫ→ 0, passing to a subsequence where each disk

converges and we are done. �

Now that we have the finite approximations, we want to show they stay bounded

as n → ∞. The argument is similar to what we have just done. We will say a circle

chain has ǫ-links if every disk has harmonic measure ≤ ǫ with respect to both 0 and

∞.

Lemma 11.10.4. Suppose h : T → T is an orientation preserving homeomorphism

such that for every set E of zero logarithmic capacity, h(T\E) has positive logarithmic

capacity. Then there is a R < ∞ and an ǫ > 0 (each depending only on h) so that

for any normalized circle chain corresponding to h with ǫ-links,

X = S2 \ (Ω ∪ Ω∗) ⊂ {z : 1 ≤ |z| ≤ R}.
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Proof. Fix R > 1 and consider a normalized circle chain such that X = S2 \
(Ω ∪ Ω∗) ⊂ A(1, R) and X intersects both boundary components of this annulus.

Divide the (closed) disks in the circle chain into three collections: C1 are the disks

which lie inside D(0,
√
R), C2 are the disks that lie outside D(0, 1

2

√
R) and C3 are all

the rest. By Lemma 11.10.3 there are at most 6 elements in C3. For i = 1, 2, 3, let

Ei = f−1(∪D∈Ci∂Ω1∩D). Then E2 has small logarithmic capacity depending only on

R by Lemma ??, and E3 has small capacity since it is a union of at most 6 intervals

each of length ≤ ǫ. Similarly, h(E1) has small capacity depending only on R.

By choosing ǫ small enough and R large enough we could find such sets where

E1∪E2∪E3 = T and cap(E2∪E3)+cap(h(E1)) is as small as we wish. But by Lemma

??, this contradicts our assumption on h, so R must remain bounded as ǫ→ 0. Thus

Lemma 11.10.4 is true. �

Given a homeomorphism h and n equidistributed points {xk}n1 ⊂ T, let yk = h(xk)

for k = 1, . . . n and consider the corresponding circle chain Cn as given by Lemma

11.10.2. As before, let Ωn, Ω
∗
n denote the bounded and unbounded complementary

domains. By reflecting through each circle we obtain a new chain with n(n−1) circles.

Continuing in this way we obtain, in the limit, a Jordan curve Γn, with complementary

components Dn (bounded) and D∗
n (unbounded). See Figure 26 which shows the

original chain and the domain Ωn on the left, three iterations of the reflections in the

center and the corresponding domain Dn on the right.

Ωn

Figure 26. Reflections in a circle chain give a curve

Similarly, given a circle chain Dn of n circles of equal size, with tangent points

along the unit circle, we can reflect through the circles, getting a nested sequence
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of circle chains which limit on the unit circle, as in Figure 27. We claim that if h

is the boundary extension of a K-quasiconformal selfmap of the disk, then there is

a K-quasiconformal map of the plane sending the circles in Figure 27 to those in

Figure 26. We will prove this by constructing the map separately inside and outside

the unit circle.

Figure 27. A symmetric circle chain with limit T

LetWn = S2\{x1, . . . , xn}. We may assume n ≥ 3, so there is a universal covering

map Π : D → Wn. Let Un be the component of Π−1(D) containing the origin, and

note that by symmetry Un may be chosen to be bounded by hyperbolic geodesics

with endpoints at the xk’s (the arcs T \ ∪{xk} are hyperbolic geodesics in Wn; this

is even clearer if we map T to R by a Möbius transformation). Reflecting these arcs

across T gives the circle chain Dn in Figure 27 with {xk}n1 as the points of tangency.

The conformal map fn ◦Π : Un → Ωn can be extended by repeated Schwarz reflection

to a conformal map Fn : D → Dn. See Figure 28.

Similarly, Koebe’s theorem gives a conformal map gn : D∗ → Ω∗
n. Let W ∗

n =

S2 \ {y1, . . . , yn} and consider Π : D∗ → W ∗
n as the universal cover of W ∗

n . As above,

we can lift gn to map of Π−1(D∗) → Ω∗
n and use Schwarz reflection to extend it to a

map Gn from D∗ → D∗
n. See Figure 29.

By assumption h is the boundary extension of a K-quasiconformal map of the

disk to itself. By reflection we can extend this is a K-quasiconformal map H of

S2 to itself. Then H maps Wn to W ∗
n and lifts to a K-quasiconformal map of the

universal covers. We can represent these by D∗ so we get a K-quasiconformal map

Hn : D∗ → D∗ which conjugates the covering groups. See Figure 29.
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Figure 28. Lifting and extending the Koebe map
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Figure 29. Lifting the maps H and gn.

Thus Gn ◦ Hn is a K-quasiconformal map of D∗ to D∗ whose boundary values

agree with Fn on T, and hence these maps together define a K-quasiconformal map

of S2 (easy to check using the analytic definition of quasiconformal in [3]). This map

takes T to Γn and the circle chain Dn to the chain Cn. Taking n → ∞, using the
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uniform continuity of K-quasiconformal mappings and passing to a subsequence if

necessary, we see that our circle chains converge uniformly to a K-quasicircle and

that h is the corresponding conformal welding, as desired. �

11.11. Quasicircles

A quasicircle is the image of a circle or line under a quasiconformal map of the

plane. If the quasicircle is unbounded (it passes through ∞) then we sometimes call

it a quasiline.

We say a curve γ satisfies Ahlfors three point condition if there is a M < ∞ so

that

|x− z| ≤M |x− y|,
for every x, y ∈ γ and every z ∈ γ between x and y. This is equivalent to saying that

the diameter of the arc between x and y is O(|x− y|).

z

x y

Figure 30. Ahlfors’ three point condition.

Theorem 11.11.1. A Jordan curve γ on the Riemann sphere is a quasiline if and

only if it satisfies Ahlfors three point condition.

Proof. The necessity of the three point condition is quite easy. Suppose γ =

f(R) and f is quasiconformal. By pre- and post-composing by conformal linear maps

we may assume f fixes both 0 and 1 and that we need only check that the arc of γ

connecting 0 to 1 has diameter bounded only in terms of the quasiconformal constant
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of f . But this is immediate from Lemma 11.3.2 (this was the proof that normalized

K-quasiconformal maps are totally bounded, which was part of the proof that they

form a compact family).

The sufficiency of the three point condition is a little more involved. Consider

conformal maps ϕ, ψ from the lower half-plane and the upper half-planes to the two

sides of γ. We claim that the three point condition implies that the conformal welding

map h = ψ−1 ◦ϕ is a quasisymmetric homeomorphism of the real line to itself. If the

claim is true, then by Theorem ?? h can be extended to a quasiconformal mapping

H of the upper half-plane to itself. Then setting f = ϕ in the lower half-plane and

setting f = H ◦ ψ in the upper half-plane defines quasiconformal maps in both half-

planes that both extend continuously to the real line and agree there. Since the line

is removable (Theorem 11.7.3) f is actually quasiconformal on the whole plane and

hence γ = ϕ(R) = f(R) is a quasiline. Thus it suffices to prove the claim.

To prove the claim fix two points x, y ∈ γ and, without loss of generality, assume

there are the images of 0 and 1 under the conformal map ϕ from the lower half-plane

to one side Ω1 of γ. Let z = ϕ(1
2
).

Let Γ1 be the path family in Ω that connects the sub-arc γxz of γ with endpoints

x, z to the disjoint sub-arc γy that connects y to infinity. See Figure 31. This family

is just the image under ϕ of the path family in the lower half-plane that connects

[0, 1
2
] to [1,∞]. This path family is the reciprocal to the family that connects [1

2
, 1]

to (−∞, 0], hence the product of their moduli is 1. On the other hand, these families

correspond under reflection, so they have equal moduli, and hence each has modulus

equal to 1. By conformal invariance Γ1 must also have modulus 1,

Let Γ2 be the path family in Ω2 (the other complementary component of γ) that

connects the sub-arc of γ with endpoints x, z to the disjoint sub-arc that connects

y to infinity. To show that ψ−1 ◦ ϕ is quasisymmetric, it suffices to show that the

modulus of this family is bounded away from both 0 and ∞.

First, we claim that since Γ1 has modulus 1, |x− z|/|x− y| is bounded away from

zero. If not, say |x − z| < ǫ|x − y|, then the three point property implies that the

arc of γ between x and z is contained in a ball of radius O(ǫ) around x. Thus by the

monotonicity property of modulus (Lemma 5.1.2) the modulus of Γ1 is greater than
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γx

γ
xz

Γ1

Γ2

γy

γzy

z

x
y

Figure 31. The definition of Γ1 and Γ2.

the modulus of the path family separating the boundary components of the annulus

{w : O(ǫ)|x− y| < |x− w| < |x− y|},

which we know to be (O(1) + log 1
ǫ
)/2π. This gives a contradiction if ǫ is too small,

so the claim is proved.

Next we claim that the distance between the arc γzy from z to y and the disjoint

arc γx connecting x to ∞ is larger than some constant C1 times |x − z|. Otherwise

there would be points u, v (one from each of these sets) that were within ǫ|x − z|
of each other. By the three point condition the arc γuv between them would have

diameter O(ǫ|x− z|), but this arc contains the arc γxz whose diameter is comparable

to |x− z|. This is a contradiction if ǫ is small, so the second is also proven.

Now define a metric ρ by setting it to 1 on

{w : dist(w, γzy) ≥ C1|x− z|}.

Then the rho-length of any path connecting γzy to γx is at least C1|x− z|, while the

area of ρ is at most the area of a ball of radius diam(γzy) + C1|x − z| and hence is

O(|x− z|). Thus the modulus of Γ2 is bounded uniformly above. The modulus of the

reciprocal family in Ω2 is bounded above by the same argument, so we deduce the

modulus of Γ1 is both bounded and bounded away from zero uniformly. That means

that ψ−1(z) = ψ−1(ϕ(1
2
)) is bounded away from both 0 and 1 in terms of the three
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point constant only. As noted earlier, this implies h = ψ−1 ◦ϕ is quasisymmetric and

that γ is a quasiline. �

11.12. Finitely connected Fatou components

In this section we give an example of finitely connected wandering domains and

show that any connectivity ≥ 2 can occur. Unlike the previous section, where the

example was given by a formula, here we give geometric construction. We will build

a continuous map that has a wandering domain of finite connectivity and then use a

theorem about solutions of the Beltrami equation to deduce that the dynamics this

map are conjugate to an entire function; thus the entire function has a wandering

domain of finite connectivity.

Theorem 11.12.1 (Kisaka and Shishikura). For each p ≥ 2 there is a transcen-

dental entire function with p-connected wandering Fatou component.

Proof. We start with a polynomial P (z) of degree p so that and curve γ1 that

has a single preimage γ0, and such that the interior domain D of γ0 has p distinct

preimages {Dj}p1 inside D with disjoint closures. This implies the Julia set of P is

a Cantor repeller; the inverse images of W = D \ ∪jDj define nested domains of

connectivity p+1 that are mapped conformally by P to the next larger domain until

they reach Ω which is mapped p-to-1 to the topological annulus between γ0 and γ1.

By replacing P by a quasiconformal map in an annular neighborhood of γ0 we

can assume γ1 is a circle of radius R1 centered at 0. See Figure ??.

Let

If k 6∈ S, then Let Wn be the circular annulus A = {Z : RN < |Z| < RN+1}. If

k ∈ S then Wn is this annulus with a subdomain Un removed. Un is a Jordan domain

of diameter 1
n
Rn, that is symmetric with respect to the real line and has a smooth

boundary except at the point {Rn} = ∂Un∩Wn where it has a 90◦ angle . See Figure

??.

Wn can be conformally mapped to a circular annulus A(1, sn) (if k 6∈ S the

identity will do and sn = Rn+1/Rn and then to another circular annulus A(1, sn+1
n )

by composing with the power map z → zn+1.

�





CHAPTER 12

Quasiconformal mappings: analytic aspects

The earlier chapter on geometric aspects of quasiconformal maps suffices for most

applications to dynamics, but omits many natural and powerful results. We saw that

given a complex dilation µ in the open unit ball of L∞, we could define an associated

quasiconformal map f , but we could only deduce that µ = fz̄/fz under some extra

assumptions, such as the the continuity of µ. For a general quasiconformal map, we do

not even know if fz and fz̄ exist, so it is far from clear whether every quasiconformal

map arises from some µ.

In this chapter we will show that these partials do exist almost everywhere and

that f can be recovered from them by integration, i.e., f is absolutely continuous on

(almost all) lines. Thus every quasiconformal map f has a complex dilatation µ, and

we will show that f can be recovered from µ via the measurable Riemann mapping

theorem. We are also interested in showing that f depends differentiably on µ. A

very helpful formula in this regard is Pompeiu’s formula (proven for C1 functions in

Chapter ??):

f(w) =
1

2πi

∫

∂Ω

f(z)

z − w
dz − 1

π

∫∫

Ω

fz̄
z − w

dxdy.(42)

However, it is not even clear whether this formula makes sense for a quasiconformal

map; since f is continuous, the first integral is well defined, but it is not clear whether

the second integral is well defined in general.

We expect (but have not yet proved) that

area(f(Ω)) =

∫

Ω

Jfdxdy =

∫

Ω

|fz|2 − |fz̄|2dxdy =

∫

Ω

|fz|2(1− |µf |2)dxdy,

which would imply fz and fz̄ are in L
2 locally. However, |z−w|−1 is not in L2, so we

can’t be sure that the area integral in the Pompeiu formula is convergent. However,

|z − w|−1 it in Lq locally for every q < 2, so the integral will be bounded if we can

show fz̄ ∈ Lp locally for some p > 2. This is a fundamental result of Bojarski in C []

259
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and of Gehring [] in dimensions ≥ 2 and we will prove it later in this chapter, using

the 2-dimensional version of Gehring’s proof.

Another problem with proving the Pompeiu formula for quasiconformal maps

is a little more subtle. As noted above, we know the formula is valid for smooth

functions and to verify it for general quasiconformal maps, we would like to smooth

these functions (say by convolution with a smooth, radial bump function) and pass to

a limit. In this case, the smoothed functions converge uniformly to the limit, so the

boundary integral term converges as desired, but the integrand of the area integral

only converges pointwise and we need some extra condition to insure this integral

also converges. In this case, we can use Gehring’s result and the Lp boundedness

of the Hardy-Littlewood maximal theorem to deduce that the sequence integrands

coming from the smooth approximations of f is dominated by fixed L1 function, so the

Lebesgue dominated convergence theorem can be applied to verify Pompeiu’s formula.

Pompeiu’s formula can then we applied to prove the differentiable dependence of f

on its dilatation µ.

We start with a review of some basic real analysis and them move towards the

theorem of Bojarski and Gehring and its consequences.

12.1. Covering lemmas and maximal theorems

Theorem 12.1.1 (Vitali covering lemma: easy form). Let B = {Bj} be a finite

collection of balls in Rd. Then there is a finite, disjoint subcollection C ⊂ B so that

∪B∈BB ⊂ ∪B∈C3B.

In particular, the Lebesgue measure of the set covered by the subcollection is at least

3−d times the measure covered by the full collection.

Theorem 12.1.2 (Vitali covering lemma: harder form). Suppose E ⊂ Rd is a

measurable set and B = {Bj} ⊂ Rd is a collection of balls so that each point of E is

contained in elements of B of arbitrarily small diameter. Then there is a subcollection

C ⊂ B so that E \ ∪B∈CB has zero d-measure.

The Lebesgue dominated convergence theorem

Egorov’s theorem.
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(I will always remember Egorov’s theorem because when I was a first year graduate

student at the University of Chicago and I wanted skip taking the first year analysis

course there, I went to Luis Caffarelli’s office for an oral exam and the first thing he

asked me was to state and prove Egorov’s theorem. As is often the case, Egorov’s

theorem is actually due to Carlo Severini [126] who published a proof a year before

Egorov [46].)

Lemma 12.1.3 (The Calderon-Zygmund lemma). ) Suppose Q is a square, u ∈
L1(Q, dxdy) and suppose

α >
1

area(Q)

∫

Q

|u|dxdy.

Then there is a countable collection of pairwise disjoint open dyadic subsquares of Q

so that

α ≤ 1

area(Qj)

∫

Qj

|u|dxdy < 4α,(43)

|u| ≤ α almost everywhere on Q \ ∪jQj,(44)

∑
area(Qj) ≤

1

α

∫

Q

|u|dxdy(45)

Proof. We say a subsquare of Q has property P is the first conclusion above

holds and we define a collection of subsquares by iteratively dividing squares that do

not have property P into four, equal sized disjoint subsquares, and stopping when

property P is achieved. If the average of u over a square is less than α then average

over each of the four subsquares is < 4α, so every stopped square has property P .

Any point not in a stopped square is a limit of squares where the average of u is

< α, so by the Lebesgue differentiation theorem u ≤ α at almost every such point.

Finally, ∫

Q

|u|dxdy ≥
∑

j

αarea(Qj),

which proves the third property. �

Hardy-Littlewood maximal function.

Marcinkiewicz interpolation

Lp boundedness of maximal function
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Maximal function bounds maximal function of convolution with radial L1 bump

function.

12.2. Absolute continuity on lines

The main type of K-quasiconformal maps used in this text are piecewise C1

functions that satisfy

|fz̄| ≤ k|fz|,(46)

where k − (K − 1)/(K + 1). By itself, this equation is not enough to guarantee a

map is quasiconformal. For example, suppose g : [0, 1] → [0, 1] is the usual Cantor

singular function.e., a continuous function that increases from 0 to 1 on [0, 1] and is

constant on each complementary component {Ij} of the Cantor middle-1
3
set E. Then

the map f(x, y) = (x+ g(x), y), is a homeomorphism of [0, 1]× [0, 1] to [0, 2]× [0, 1]

that is a translation (hence conformal) on each rectangle Ij × [0, 1], where Ij is a

complementary interval of the Cantor set. Thus fz̄ = 0 almost everywhere, but there

are several way to check that f is not quasiconformal.

EXERCISE : Find rectangles whose modulus is increased by arbitrarily large

factors by f .

EXERCISE: Find a path family Γ of zero modulus, so that f(Γ) has positive

modulus.

EXERCISE: Show that f map some set of zero area to positive area (later we will

prove quasiconformal maps can’t do this).

The problem with this example is that it is not absolutely continuous on horizontal

lines, and so f cannot be recovered by integrating its partials.

A function f is called absolutely continuous on a line L if for every ǫ > 0 there

is a δ > 0 so that m1(E) < δ implies m1(f(E)) < ǫ where m1 denotes 1-dimensional

Hausdorff measure.

Theorem 12.2.1. If f is quasiconformal, then f is absolutely continuous on al-

most every line in any given direction.

Proof. After a Euclidean similarity, we may consider horizontal lines in Q =

[0, 1]2. Define

A(y) = area(f([0, 1]× [0, y])).
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Then A(0) = 0, A(1) = area(f(Q)) < ∞ and A is increasing. Thus A is continuous

except on a countable set and has a finite derivative almost everywhere. Fix a value

of y where both this things happen, and we will show that f is absolutely continuous

on the horizontal line Ly = [0, 1] × {y}. The main idea is that if this failed, then

modulus estimates relating length to area will force A′(y) = ∞.

Consider the long, narrow rectangle R = [0, 1] × [y, y + 1
n
] and divide it into

m << n disjoint 1
m

× 1
n
sub-rectangles {Rj}. Let R′

j = f(rj) and the the “left”,

“right”, and “bottom” edges of R′
j be the images under f of corresponding edges of

Rj. Let bj be length of f(Ly ∩ ∂Rj), i.e., the length of the bottom edge of R′
j. This

number might be finite or infinite. Fix ǫ > 0. In the first case, by taking n large

enough, we can insure that any curve in f(Rj) than joins the images of the vertical

sides of Rj has length ≥ bj − ǫ. In the second case, we can insure these curves all

have length ≥ 1/ǫ. In both case this follows because as n → ∞, any curve in f(Rj)

joining the opposite “vertical” sides limits on the bottom edge and hence the liminf

of the lengths of such curves is at least the length of the bottom edge of R′
j.

By quasiconformality we know

M(R′
j) ≥M(Rj)/K =

m

Kn
,

and using the metric ρ = 1 on R′
j, shows

M(R′
j) ≤

area(R′
j)

b2j
.
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Thus by Cauchy-Schwarz,

(
m∑

j=1

bj)
2 ≤ (

m∑

j=1

b2jm)(
m∑

j=1

1

m
)

≤ m
m∑

j=1

area(R′
j)

M(R′
j)

≤ m
m∑

j=1

area(R′
j)

m/Kn

≤
m∑

j=1

area(R′
j)Kn

≤ K
A(y + 1

n
)− A(y)

1/n

→ KA′(y).

If any of the bj’s is infinite, so is A′(y), so f(Ly) has finite length for our choice of y.

Given a compact set E ⊂ Ly, suppose E is hit by N of the rectangles Rj and that m

has been chosen so large that N/m ≤ 2m1(E). Then repeating the argument above,

but only summing over the j’s so that the bottom edges of Rj hit E,

(
∑

j

bj)
2 ≤ (

∑

j

b2jm)(
∑

j

1

m
)

≤ N
∑

j

area(R′
j)

M(R′
j)

≤ N
∑

j

area(R′
j)

m/Kn

≤ N

m

m∑

j=1

area(R′
j)Kn

≤ Km1(E)
A(y + 1

n
)− A(y)

1/n

→ Km1(E)A
′(y).

Thus m1(E) small, implies
∑
bj is small, and hence f(E) has small 1-dimensional

measure. Hence f is absolutely continuous on Ly, as desired. �
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Basic theorems of real analysis say that if f is absolutely continuous on a line L

, then its partial derivative along that lines exists almost everywhere and

f((b)− f(a) =

∫ b

a

fnds,

where a, b ∈ L and fn is the partial in the direction from a to b. Since we have shown

that quasiconformal maps are absolutely continuous on almost every horizontal and

almost every vertical line, we see that the partial fx, fy exist almost everywhere and

hence fz, fz̄, µf = fz̄/fz are all well defined almost everywhere. Next we want to say

that at a point w where these all exist, we have

f(z) = f(w) + fz(w)(z − w) + fz̄(w)(z̄ − w̄) + o(|z − w|),

i.e., f is differentiable at w. However, as explained in most calculus texts, the exis-

tence of partial derivatives at at a point does not imply a function is differentiable

there (consider f(x, y) = x2y/(x2 + y2) at the origin).

However, a remarkable theorem of Gehring and Lehto [61], says that is implication

is true almost everywhere for homeomorphisms. Our proof follows that in [3].

Theorem 12.2.2. If f is a homeomorphism of Ω ⊂ C and has partials almost

everywhere, then it is differentiable almost everywhere.

Proof. By Egorov’s theorem the limits

fx(z) = lim
h→0

f(z + h)− f(z)

h
,

fy(z) = lim
h→0

f(z + ih)− f(z)

h
,

are uniform and converge to a continuous functions on a compact set E ⊂ Ω so that

area(Ω \ E) is as small as we wish.

Almost every point of E is a point of density for the intersection of E with both

the vertical and horizontal lines through z0, so if suffices to proof differentiability at

such points. For simplicity we assume 0 is such a point. The proof follows the usual

case in calculus where we assume the partials are continuous, except that here we

have to replace continuous on a neighborhood of 0 with continuous on a set E that

is measure dense around 0.
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Because of the continuity and uniform convergence on E, for any ǫ > 0 there is a

δ > 0 so that

|fx(0)− fx(z)|, |fy(0)− fy(z)| < ǫ,

if z ∈ E ∩D(0, δ)-neighborhood of 0 and

|fx(z)−
f(z + h)− f(z)

h
|, |fy(z)−

f(z + ih)− f(z)

h
| < ǫ,

if z ∈ E ∩D(0, δ) and h ∈ [−δ, δ].
Note that

f(z)− f(0)− xfx(0)− yfy(0) = [f(z)− f(x)− yfy(0)] + [f(x)− f(0)− xfx(0)]

+[yfy(x)− fy(0)]

= I + II + III.

If |z| < δ and x ∈ E, then by the inequalities above, I < ǫ|y|, II < ǫ|x| and III < ǫy,

so the term on the far left is bounded by 3ǫ|z|, which proves differentiability if x ∈ E.

A similar proof works if iy ∈ E.

Fix ǫ > 0 and choose δ so small that if 0 < x < δ, then E ∩ ( x
1+ǫ

, x) 6= ∅ (this

must be possible since E ∩ R has density 1 at 0) and E ∩ ( iy
1+ǫ

, y) 6= ∅. Thus if

0 < |x|, |y| ≤ δ/(1 + ǫ) can find points x1, x2 ∈ E ∩ ( x
1+ǫ

, (1 + ǫ)x) and iy1, iy2 ∈
E ∩ i( y

1+ǫ
, (1 + ǫ)y) and so that x+ iy is inside the rectangle R = (x1, x2)× (y1, y2).

Since f is a homeomorphism (all we need is that it is continuous and open), |f | takes
its maximum on the boundary, so

sup
z=x+iy∈R

|f(z)− f(0)− xfx(0)− yfy(0)|

≤ sup
w=u+iv∈∂R

|f(zw − f(0)− xfx(0)− yfy(0)|

≤ 3ǫ|w|+ sup
w=u+iv∈∂R

|x− u||fx(0)|+ |y − v||fy(0)|

≤ 3ǫ(1 + ǫ)|z|+ ǫ|fx(0)||z|+ ǫ|fy(0)||z|.

�

Lemma 12.2.3. . If f is K-quasiconformal then
∫

Q

Jfdxdy ≤
∫

≤ area(f(Q)) ≤ πdiam(f(Q))2,

for every square Q.
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Proof. We only use the quasiconformal hypothesis to deduce f is differentiable

almost everywhere; the result holds for all such maps. At any point x where f is

differentiable we can choose a small square Qx containing x such that

area(f(Q′)) ≥ (1− ǫ)Jf (x)area(Q
′),

and by the Lebesgue differentiation theorem, for almost every x we have
∫

Q′

Jfdxdy ≤ (1 + ǫ)Jf (x)area(Q
′),

for all small enough squares centered at x. Combining these two estimates and using

the Vitali covering theorem to extract a collection of disjoint squares {Qj} with

centers xj and with these properties that cover almost every point of Q, we get
∫

Q

Jfdxdy ≤
∑

j

∫

Qj

Jfdxdy

≤ (1 + ǫ)Jf (xj)area(Qj)

≤ 1 + ǫ

1− ǫ
area(f(Qj))

≤ 1 + ǫ

1− ǫ
area(f(Q)).

Taking ǫ ց 0, gives area(f(E)) ≥
∫
E
Jfdxdy. The inequality area ≤ πdiam2 is

obvious. �

Since |fz|2 ≤ Jf/(1− k2), we also get

Corollary 12.2.4. If f is K-quasiconformal then
∫

Q

|fz|2dxdy ≤ π

1− k2
diam(f(Q))2,

for every square Q.

Next we turn to

Lemma 12.2.5. If f is K-quasiconformal, then

(
∫
Q
|fz|dxdy)2
area(Q)

& diam(f(Q))2.

with a uniform constant for every square Q.
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Proof. The path family connecting opposite sides of a square Q has modulus 1,

so the image of this family in f(Q) has modulus between K and 1/K. This implies

the shortest path in f(Q) connecting the same sides has length ≃ diam(f(Q)), so the

integral of |fz|+ |fz̄| along any horizontal segment crossing Q is at least Cdiam(f(Q))

for some fixed C > 0 (depending only onK). Since |fz| ≤ |fz|+|fz̄| ≤ 1(1+k)|fz|, the
same is true for the integral of |fz|. Integrating over all horizontal segments crossing

Q gives ∫

Q

|fz|dxdy & diam(Q)diam(f(Q)).

Hence
(
∫
Q
|fz|dxdy)2
area(Q)

&
[diam(Q)diam(f(Q))]2

area(Q)
& diam(f(Q))2.

�

Note that for K-quasiconformal maps, |µf | ≤ k = (K − 1)/(K + 1) and

|fz|(1− k2) ≤ |fz|2(1− |µ|2) ≤ |fz|2 − |fz̄|2 = Jf ≤ |fz|2,

so that Jf and |fz|2 are the same up to a bounded factor. Thus
∫

Q

|fz|2dxdy ≤
∫

. diam(f(Q))2 .
(
∫
Q
|fz|dxdy)2
area(Q)

or ∫

Q

|fz|2dxdy ≤ C
(
∫
Q
|fz|dxdy)2
area(Q)

for some constant C that depends only on the quasiconformal constant of f (and not

on the choice of the square Q). This is called a reverse Hölder inequality and we shall

see in the next section that it has profound implications for the behavior of fz.

12.3. Gehring’s inequality and Bojarski’s theorem

Hölder’s inequality says that
∫
fgdµ ≤ (

∫
f pdµ)1/p(

∫
gqdµ)1/q,

where 1 ≤ p, q ≤ ∞ satisfy 1
p
+ 1

q
= 1. Applying this to a non-negative function on a

square Q we get

(
1

area(Q)

∫

Q

vpdxdy) ≥ (
1

area(Q)

∫

Q

vdxdy)p,
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with equality if and only if v is a.e. constant. Thus the “reverse Hölder inequality ”

(
1

area(Q)

∫

Q

vpdxdy) ≤ (K
1

area(Q)

∫

Q

vdxdy)p,

can only hold if K ≥ 1. If it holds for single Q, this does not say much, except

that v ∈ Lp ∩ L1. However, if it holds (with the same K) for all Q’s we can deduce

that v ∈ Lp+ǫ for some ǫ > 0. This remarkable “self-improvement” estimate is due

to Gehring [], although the proof we give follows the presentation in Garnett’s book

[58].

We start with a technical lemma.

Lemma 12.3.1. Suppose that p > 1, v ≥ 0, Eλ = {z : v(z) > λ}, and
∫

Eλ

vpdxdy ≤ Aλp−1

∫

Eλ

vdxdy,

for all λ ≥ 1. Then there is r > p and C <∞ so that

(

∫

Q

vrdxdy)1/r ≤ C(

∫

Q

vpdxdy)1/p.

Proof. This is basically just arithmetic with distribution functions. Note that

it suffices to assume area(Q) = 1 and
∫
Q
vpdxdy = 1. Then

∫

E1

vrdxdy =

∫

E1

vpvr−pdxdy

= (r − p)

∫

E1

vp(1 +

∫ v

1

λr−p−1dλ)dxdy

= (r − p)

∫

E1

vp + (r − p)

∫ ∞

1

λr−p−1

∫

Eλ

vpdxdydλ

≤ (r − p)

∫

E1

vp + A(r − p)

∫ ∞

1

λr−2

∫

Eλ

vdxdydλ

≤ (r − p)

∫

E1

vp + A(r − p)

∫

E1

v(

∫ v

0

λr−2dλ)dxdy

≤ (r − p)

∫

E1

vp + A
r − p

r − 1

∫

E1

vrdxdy

≤ (r − p)

∫

E1

vp +
1

2

∫

E1

vrdxdy
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where the last inequality holds if r is close enough to p (depending on A and p).

Subtracting the last term of the last step from the first step gives
∫

E1

vrdxdy ≤ 2(r − p)

∫

E1

vpdxdy.

Off E1 we have v ≤ 1 so vr ≤ vp and hence
∫

Q

vrdxdy ≤ (1 + 2(r − p))

∫

Q

vpdxdy.

Because of our normalizations, this proves the lemma. �

Next we show the reverse Hölder inequality implies the distribution function hy-

pothesis of the previous lemma, and hence Gehring’s inequality.

Theorem 12.3.2. Let p > 1. If v(x) ≥ 0 and v ∈ Lp(Q, dxdy), and if the “reverse

Hölder inequality”

(
1

area(Q)

∫

Q

vpdxdy) ≤ (K
1

area(Q)

∫

Q

vdxdy)p,

holds for all subsquares of a square Q0, then there is an r > p so that

(
1

area(Q0)

∫

Q0

vrdxdy)1/r ≤ (C(K, p, r)
1

area(Q0)

∫

Q0

vdxdy),

Proof. We need only verify the hypothesis of Lemma 12.3.1. Fix λ and set

β = 2Kλ. We will split the integral
∫

Eλ

vpdxdy =

∫

Eλ\Eβ

vpdxdy +

∫

Eβ

vpdxdy

into two pieces. The second piece is trivial to bound by the correct estimate because
∫

Eλ\Eβ

vpdxdy ≤ βp−1

∫

Eλ\Eβ

vdxdy ≤ (2Kλ)p−1

∫

Eλ

vdxdy.

To bound the other piece of the integral, we use the Calderon-Zygmund lemma

(Lemma 12.1.3) to find a sequence of disjoint squares {Qj} so that

βp ≤ 1

area(Qj)

∫

Qj

vpdxdy < 2βp,

and v ≤ β almost everywhere off ∪Qj. Thus Eβ \ ∪Qj has measure zero and
∫

Eβ

vpdxdy ≤
∑

j

∫
Qjv

pdxdy ≤ 2βp
∑

area(Qj).



12.3. GEHRING’S INEQUALITY AND BOJARSKI’S THEOREM 271

We now make use of the reverse Hölder hypothesis to write

βp ≤ 1

area(Qj)

∫

Qj

vpdxdy ≤ (
K

area(Qj)

∫

Qj

vdx)p,

hence

area(Qj) ≤ K

β

∫

Qj

vdxdy

≤ K

β
(

∫

Qj∩Eλ

vdxdy + λarea(Qj)

≤ K

β

∫

Qj∩Eλ

vdxdy +
1

2
area(Qj).

Solving for area(Qj) gives

area(Qj) ≤ 2K

β

∫

Qj

vdxdy

≤ 1

λ

∫

Qj

vdxdy.

Thus by the defining property of the Qj’s,∫

Eβ

vpdxdy ≤
∑

j

∫

Qj

vpdxdy

≤ 2βp
∑

j

area(Qj)

≤ 2βpλ−1
∑

j

∫

Qj∩Eλ

vdx

≤ 2p+1Kpλp−1

∫

Eλ

vdx.

Thus the hypothesis of Lemma 12.3.1 holds with A = (2K)p−1 + 2p+1Kp, and we

deduce that v ∈ Lr(Q, dxdy) for some r > p. �

To apply Gehring’s inequality to the partial derivatives of quasiconformal maps,

we have to show that these partial satisfy a reverse Hölder inequality. What we want

is ∫

Q

|fz|2dxdy ≤ C

area(Q)
(

∫

Q

|fz|dxdy)2,

with a uniform C for all squares in the plane. This was proven in the previous section.
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Thus we have proven the theorem of Bojarski and Gehring mentioned earlier:

Theorem 12.3.3. If 1 ≤ K < ∞, there is a p > 2 and A,B < ∞ so that the

following holds. If f : C → C is K-quasiconformal, and Q ⊂ C is a square, then

(
1

area(Q)

∫∫

Q

|fz|pdxdy)1/p ≤ A(
1

area(Q)

∫

Q

|fz|2dxdy)1/2 ≤ B
diam(f(Q))

diam(Q)

Lemma 12.3.4. If f fixes 0, 1,∞, then∫

Q

|Lf (x)− 1|dxdy ≤ ǫdiam(Q),

where Lf = |fz|+ |fz̄| and ǫ→ 0 as ‖µf‖∞ → 0.

Proof. Fix a square Q with sides parallel to the axes, let ℓ(Q) denote its side

length and let S1, S2 denote the two vertical sides of S Use fact that as ‖µ‖∞ → 0,

f tends to the identity and

0 ≤ (
1

area(Q)

∫

Q

|v − 1|dxdy)2 ≤ 1

area(Q)

∫

Q

|v − 1|2dxdy

≤ 1

area(Q)

∫

Q

(v2 − 1)− 2

area(Q)

∫

Q

(v − 1)dxdy

≤ 1

area(Q)

∫

Q

(KJf − 1)− 2

area(Q)

∫

Q

(v − 1)dxdy

=
1

area(Q)

∫

Q

(K − 1)Jfdxdy +
1

area(Q)

∫

Q

(Jf − 1)dxdy

− 2

area(Q)

∫

Q

(v − 1)dxdy

≤ O(‖µ‖∞)
area(f(Q))

area(Q)
+

area(f(Q))− area(Q)

area(Q)
− 2(

dist(S1, S2)

ℓ(Q)
− 1).

Since f converges uniformly to the identity on Q as ‖µ‖∞ → 0, each term in the last

line tends to zero. �

Corollary 12.3.5. If Ω has a piecewise C1 boundary and f is quasiconformal

on Ω, then

f(w) =
1

2πi

∫

∂Ω

f(z)

z − w
dz − 1

π

∫∫

Ω

fz̄
z − w

dxdy.(47)

Proof. Smooth and take a limit using the Lp boundedness of the the Hardy-

Littlewood maximal theorem and the Lebesgue dominated convergence theorem. �
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Corollary 12.3.6. If f is quasiconformal, then f maps sets of zero area to zero

area and

area(f(E)) =

∫

E

Jfdxdy.

Proof. Since ν(E) = area(f(E)) and ν(E) =
∫
E
Jfdxdy are both non-negative

Borel measures, it suffices to show that they are equal for some convenient basis of

sets, say squares with sides parallel to the coordinate axes. Let Q be such a square.

We have already proved the “≥” direction in Lemma 12.2.3. To prove the other

direction, we use the fact that Jf ∈ Lp(Q, dxdy) for some p > 1. Define a smoothed

version fn of f by convolving f with a smooth, non-negative bump function ϕn of

total mass 1 and support in D(0, 1
n
). Since f is continuous on C, fn → f uniformly

on Q. Since convolution is linear, the partials of fn are the partials of f convolved

with ϕn and therefore the supremum over n of these partials is bounded by the

Hardy-Littlewood maximal function of fz, i.e.,

sup
n

|(fn)z(x)| ≤ HL(fz)(x),

and similarly for fz̄. Since the Hardy-Littlewood maximal operator is bounded on Lp

for 1 < p < ∞, and fz, fz̄ ∈ Lp for some p > 1, we see that {((fn)z)}, {((fn)z̄)} are

dominated by an Lp function and hence by an L2 function on Q (since Lp ⊂ L2 on

bounded sets). Thus the sequence of Jacobians {Jfn} is dominated by an L1 function

on Q, so by the Lebesgue dominated convergence theorem,
∫

Q

Jfndxdy →
∫

Q

Jfdxdy.

Moreover, since fn is smooth
∫

Q

Jfndxdy ≥ area(fn(Q)),

(equality may not hold since we don’t known fn is 1-to-1, and the integral computes

area with multiplicity) and since fn → f uniformly, fn(Q) eventually contains any

compact subset of f(Q) and hence

lim sup
n

area(fn(Q)) ≥ area(f(Q)).

Thus area(f(Q)) ≤
∫
Q
Jfdxdy, as desired. �
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Lemma 12.3.7. Suppose {gn} ∈ Lp(R, dxdy) for some p > 2 and

lim
n

∫∫

R

gn(z)

z − w
dxdy = 0

for all w ∈ R. Then limn

∫∫
R
gndxdy = 0.

Proof. Fix rectangles R′′ ⊂ R′ ⊂ R, each compactly contained in the interior of

the next. Using the Cauchy integral formula for the constant function 1 on the curve

∂R′ we see that we can uniformly approximate the constant function 1 on R′′ by a

finite sum s(z) =
∑ ak

z−wk
with wk ∈ ∂R′ and

∑ |ak| is uniformly bounded. Then
∫∫

R

gn(z)dxdy =

∫∫

R

gn(z)s(z)dxdy +

∫∫

R

gn(z)(1− s(z))dxdy

= o(1) +

∫∫

R′′

gn(z)(1− s(z))dxdy +

∫∫

R\R′′

gn(z)(1− s(z))dxdy.

For a fixed n, the first integral can be made as close to zero as we wish by taking s

close to 1 on R′′. The second integral can be made small by taking area(R\R′′) → 0;

this implies the Lp norm of gn on R \ R′′ tends to zero (hence so does its L1 norm)

whereas the Lq norm of s remains uniformly bounded (it is a convex combination of

Lq functions with bounded norm). Thus we can make
∫∫

R
gndxdy as small a we wish

if n is large, proving the lemma. �

Lemma 12.3.8. If {gn} are K-quasiconformal maps that converge uniformly on

compact sets to a quasiconformal map g, then for any rectangle R.
∫∫

R

[(gn)z − gz]dxdy → 0,

∫∫

R

[(gn)z̄ − gz̄]dxdy → 0.

and (gn)z → gz and (gn)z̄ → gz̄ weakly.

Proof. First consider the z̄-derivative. Let hn = (gn)z̄ − gz̄. By the Pompeiu

formula and the fact that gn → g uniformly on R, we deduce that

lim
n→∞

∫∫

R

hn(z)

z − w
dxdy = 0

for any w ∈ R. That ∫∫

R

hndxdy → 0,
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follows from Lemma ??. To prove weak conference, take any continuous f of compact

support and uniformly approximate it to within ǫ by a function f̃ that is constant on

finite union of rectangles. Then∫∫
fhndxdy =

∫∫
(f − f̃)hndxdy +

∫∫
f̃hndxdy.

The first integral is bounded by ǫ
∫∫

|hn|dxdy, which is small since ‖hn‖1 ≤ C‖hn‖p
is uniformly bounded on a large ball containing the support of both f and f̃ . The

second integral tends to zero since is a finite linear combination of integrals of hn

over rectangles.

The result for z-derivatives follows from the same proof applied to the complex

conjugates of g and {gn}, using the fact that (f̄)z̄ = fz. �

12.4. The measurable Riemann mapping theorem, Part II

We proved early using only geometric methods that given any continuous dilata-

tion µ on C with ‖µ‖∞ ≤ k < 1, there was a K = (k+1)/(k−1) quasiconformal map

f with dilatation µ. We can extend this from continuous to measurable functions µ.

Theorem 12.4.1. Given any measurable function µ on the plane with ‖µ‖∞ =

k < 1, there is a K = (k+1)/(k− 1) quasiconformal map f with dilatation µ almost

everywhere.

Proof. Given a measurable µ find a sequence of continuous functions {µn} with

µn → µ pointwise and supC |µn(z)| ≤ k = ‖µ‖∞ < 1. Let fn be the quasiconformal

map with dilatation µn, normalized to fix both 0 and 1. Then since normalized,

K-quasiconformal maps form a compact family (Theorem ??) there is a subsequence

of these maps that converges uniformly on compact sets to a K-quasiconformal map

f . This map has a dilatation µf . We claim that µf = µ. This will follow from the

following lemma. �

Lemma 12.4.2. Suppose {fn}, f are all K-quasiconformal maps on the plane with

dilatations {µn}, µf respectively, that fn → f uniformly on compact sets and that

µn → µ pointwise almost everywhere. Then µf = µ almost everywhere.

Proof. We restrict attention to some domain Ω with compact closure. We know

that fz̄ = µffz almost everywhere and we know that fz is non-zero almost everywhere,
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so it suffices to show that

fz̄(w)− µ(w)fz(w) = 0,

almost everywhere. To prove this it suffices to show that the integral of fz̄(w) −
µ(w)fz(w) over any rectangle R is zero (this is an application of the Lebesgue dif-

ferentiation theorem: at almost every point an integrable function is the limit of its

averages over rectangles shrinking down to that point). We re-write this function as

fz̄(w)− µ(w)fz(w) = [fz̄(w)− (fn)z̄(w)]

+[(fn)z̄(w)− µn(fn)z(w)]

+[µn(w)(fn)z(w)− µ(w)(fn)z(w)]

+[µ(w)(fn)z(w)− µ(w)fz]

= I + II + III + IV.

Term II equals zero almost everywhere, so we need only show that the other three

terms tend to zero as n tends to ∞.

Case I: This is Lemma 12.3.8.

Case III: We use Cauchy-Schwarz to show the integral of the third term is

bounded by

(

∫∫

R

(µ− µn)
2dxdy)1/2(

∫∫

R

|(fn)x|2dxdy)1/2,

The first integrand tends to zero pointwise and is bounded above by 2 almost every-

where, so the integrals tend to zero by the Lebesgue dominated convergence theorem.

On the other hand

(

∫∫

R

|(fn)x|2dxdy)1/2 ≃ diam(fn(R)),

by Lemma 12.2.4, and since {fn} converges uniformly on compact sets, this remains

bounded. Thus the integral of III is bounded above by a term tending to zero times

a term that is uniformly bounded, and hence it tends to zero.

Case IV: The same lemma as in case I, but applied to fz = (f̄)z̄, and using the

fact that (f̄)z̄ = (fz), show that
∫∫

R

(fz − (fn)z)dxdy → 0

for every rectangle R. Now approximate µ in the Lq(R, dxdy) norm by a function ν

that is constant on a finite collection of disjoint squares (such functions are dense in
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Lq) and we deduce
∫

n

∫∫

R

µ((fz−(fn)z)dxdy = lim
n

∫∫

R

(µ−ν)((fz−(fn)z)dxdy ≤ lim
n

‖µ−ν‖q‖(fz−(fn)z)‖p.

The first term is as small as we wish and the second is uniformly bounded, so the

product is as small as we wish. Thus the limit must be zero, as desired. �

This completes the proof of the measurable Riemann mapping theorem in the

general case.

12.5. The Ahlfors formula

The dependence of f on its dilatation µ is non-linear (there is an explicit power

series relationship between the two in terms of certain singular integral operators,

see, e.g., [3]), but it is possible to give a linear approximation that is valid when

‖µ‖∞ is small, namely

f(w) = w − 1

π

∫

R2

µ(z)R(z, w)dxdy +O(‖µ‖2∞),

for all |w| ≤ 1, where

R(z, w) =
1

z − w
− w

z − 1
+
w − 1

z
=

w(w − 1)

z(z − 1)(z − w)
.

The goal of this section is to prove this formula. The proof is basically a manipulation

of the Pompeiu formula

f(w) =
1

2πi

∫

∂Ω

f(z)

z − w
dz − 1

π

∫∫

Ω

fz̄
z − w

dxdy

where we use our Lp estimates on fz, fz̄ to put certain terms into the error term. We

start by showing f is close to the identity in a precise Lp sense when ‖µ‖ is small.

Lemma 12.5.1. If k < 1 is small enough then there is a constant C3 = C3(k) so

that the following holds. Suppose ‖µ‖∞ ≤ k < 1. Then

‖fµz − 1‖p,1 ≡ (

∫

B1

|fµz − 1|pdxdy)1/p ≤ C3‖µ‖∞.

for all 2 ≤ p ≤ p(k).
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Proof. First assume µ is supported in D(0, R) and let ǫ = ‖µ‖∞. It is proven on

page 100 of [3] that ‖F µ
z −1‖p ≤ C‖µ‖p ≤ CǫR2/p if p < p(k). Since fµ = F µ/F µ(1),

Lemma ?? implies

‖fµz − 1‖p,1 = ‖ F µ
z

F µ(1)
− 1‖p,1

= |1− 1

F µ(1)
|+ 1

F µ(1)
‖F µ

z − 1‖p,1

≤ 2C2ǫ+
C(R)

1− Cǫ
ǫ

≤ Cǫ.

Now write f̌(z) = 1/f(1/z). We want to show

‖f̌µz − 1‖p,R ≤ C(R)ǫ,(48)

when µ has support in BR. Just as above, it suffices to show ‖F̌ µ
z − 1‖p,R ≤ Cǫ. Note

that F̌ µ is analytic on {z : |z| < 3r} where r = 1/(3R). For an analytic function f

on a ball B(x, r) it is easy to see by the mean value property and Hölder’s inequality

that

|f(x)| ≤ 1

πr2

∫

B(x,r)

|f | ≤ 1

(πr2)1/p
‖f‖Lp(B(x,r)).

Thus by the maximum principle,

∫

|z|<r
|F̌ µ
z (z)− 1|pdxdy ≤ C(r) sup

|z|=2r

|F̌ µ
z (z)− 1|p

≤ C(r)

∫

r<|z|<3r

|F̌ µ
z (z)− 1|pdxdy.
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On the other hand, changing variables from z to 1/z gives
∫

r<|z|<R
|F̌ µ
z (z)− 1|pdxdy =

∫

1/R<|z|<1/r

|z
2F µ

z (z)

F µ(z)2
− 1|pdxdy|z|4

=

∫

1/R<|z|<1/r

|z
2(F µ

z (z)− 1)

F µ(z)2
+
z2 − F µ(z)2

F µ(z)2
|pdxdy|z|4

≤ C

∫

1/R<|z|<1/r

|z
2(F µ

z (z)− 1)

F µ(z)2
|p + |z

2 − F µ(z)2

F µ(z)2
|pdxdy|z|4

≤ C(R)

∫

1/R<|z|<1/r

|F µ
z (z)− 1|pdxdy

+C(R)

∫

1/R<|z|<1/r

|z − F µ(z)|pdxdy

≤ C(R)ǫp.

Since the integral over {|z| < 3r} was dominated by a constant (depending only on

R) times this estimate, we have proven (48).

The general case now follows just as in [3]. Write f = ǧ ◦ h where µh = µf inside

the unit disk and µh = 0 outside the unit disk. Then

‖fz − 1‖p,1 ≤ ‖[(ǧz − 1) ◦ h]hz‖p,1 + ‖hz − 1‖p,1.

The second term is bounded by Cǫ by the first paragraph and the first term is

bounded using

‖[(ǧz − 1) ◦ h]hz‖pp,1 =

∫

B1

|(ǧz − 1) ◦ h|p|hz|pdxdy

≤ 1

1− k2

∫

h(B1)

|ǧz − 1|p|hz ◦ h−1|p−2dxdy

≤ 1

1− k2
(

∫

h(B1)

|ǧz − 1|2pdxdy
∫

B1

|hz|2p−4dxdy)1/2

Clearly h(B1) ⊂ {|z| < R} for some R depending only on k. Thus using (48), the

first integral is bounded by ∫

BR

|ǧz − 1|2pdxdy ≤ Cǫ2p,

(assuming 2p < p(k); but since p(k) → ∞ as k → 0 this holds for some p > 2 if k is

small enough). On the other hand
∫

B1

|hz|2p−4dxdy ≤ C(

∫

B1

|hz|2pdxdy)1−2/p ≤ ‖µh‖p,1 + ‖1‖p,1 ≤ C,
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since ‖hz − 1‖p ≤ C‖µh‖p. �

Lemma 12.5.2. With notation as above,

f(w) = w − 1

π

∫

B1

fz̄(z)R(z, w)dxdy −
1

π

∫

B1

f̌z̄(z)

f̌(z)2
zS(z, w)dxdy,

where R(z, w) = ( 1
z−w − w

z−1
+ w−1

z
) and S(z, w) = w2

1−wz − w
1−z .

Proof. This is where we use the Pompeiu formula. Assume |w| < 1 and apply

the formula to the unit disk to get

f(w) =
1

2πi

∫

T

f(z)

z − w
dz − 1

π

∫∫

D

fz̄
z − w

dxdy.(49)

Replace z by 1/z in the boundary integral. We claim that

1

2πi

∫

T

f(
1

z
)

dz

z(1− zw)
= A+ Bw +

w2

2πi

∫

T

dz

f̌(z)(1− zw)

= A+ Bw − w2

2π

∫

D

f̌z̄(z)dxdy

f̌(z)2(1− zw)
.

To see this, first suppose that on {|z| = 1} f(z) = zn. Then f(1
z
) = z−n, and

1

z(1− zw)
=

1

z
(1 + zw + (zw)2 + . . . ),

so
1

2πi

∫

T

f(
1

z
)

dz

z(1− zw)

=
1

2πi

∫

T

z−n−1)(1 + zw + z2w2 + . . . )dz

=
1

2πi

∫

T

z−n−1)(z−n−1 + z−nw + zn+1w2 + +̇z−n−1+jwj + . . . )dz.

This integral is only non-zero for the term containing z−1; this corresponds to j = n,

so for n ≥ 0,
1

2πi

∫

T

f(
1

z
)

dz

z(1− zw)
= wn

and the integral is zero for n < 0. By a similar argument, if n ≥ 2,

1

2πi

∫

T

f̌(1
z
)−1zdz

(1− zw)
=

1

2πi

∫

T

z−n+1)(1 + zw + z2w2 + . . . )dz

=
1

2πi

∫

T

z−n−1)(z−n+1 + z−nw + zn+2w2 + +̇z−n+1+jwj + . . . )dz.

= wn−2
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and for n < 2 the integral is zero. So the two integrals differ by a factor of w2 in

general and for n = 0, 1 the integral on the right can gives 1, w but the integral on

the left gives 0. Thus

1

2πi

∫

T

f(
1

z
)

dz

z(1− zw)
= A+ Bw +

w2

2πi

∫

T

dz

f̌(z)(1− zw)
.(50)

We now rewrite the line integral as an area integral using Pompeiu’s formula again

with the change of variable α = wz

1

2πi

∫

|z|=1

f̌(z)−1zdz

1− zw
= − 1

2πiw2

∫

|z|=1

f̌(z)−1wzwdz

zw − 1

= − 1

2πiw2

∫

α=|w|

f̌( α
w
)−1αdα

α− 1

= − 1

w2
[f̌(1) +

1

π

∫

|α|<|w|

[f̌( α
w
)−1α]z̄dadb

α− 1

= − 1

w2
[f̌(1) +

1

π

∫

|z|<1

[f̌(z)−1wz]z̄w
2dxdy

zw − 1

= − 1

w
+

1

π

∫

|z|<1

f̌z̄(z)zdxdy

f̌ 2(z)(zw − 1)

Therefore,

1

2πi

∫

T

f(
1

z
)

dz

z(1− zw)
= A+ Bw + w − w2

2π

∫

D

f̌z̄(z)dxdy

f̌(z)2(1− zw)
(51)

as claimed.

Since we know f(0) = 0 and f(1) = 1 we can solve for the values of A and B.

When we do this we get

f(w) = w − 1

π

∫

|z|<1

fz̄(z)(
1

z − w
− w

z − 1
+
w − 1

z
)dxdy

− 1

π

∫

|z|<1

f̌z̄(z)

f̌(z)2
(
w2z

1− wz
− wz

1− z
)dxdy.

As a check, the reader can set w = 0, 1 and verify that both integrands vanish in

these cases. �

Lemma 12.5.3. There is a 0 < k < 1 and a C4 < ∞ so that the following holds.

Suppose that f is a quasiconformal mapping of the plane to itself which preserves H,



282 12. QUASICONFORMAL MAPPINGS: ANALYTIC ASPECTS

fixing 0, 1 and ∞ and the Beltrami coefficient of f is µ with ‖µ‖∞ ≤ k. Then

|f(w)− [w − 1

π

∫

R2

µ(z)R(z, w)dxdy]| ≤ C4‖µ‖2∞,

for all |w| ≤ 1, where

R(z, w) =
1

z − w
− w

z − 1
+
w − 1

z
=

w(w − 1)

z(z − 1)(z − w)
.

Proof. Consider (51). If the first integral, we use

fz̄ = µfz = µ(fz − 1) + µ.

The first term has Lp norm O(‖µ‖∞) by Lemma ??, so using Hölder’s inequality

shows that the first integral equals

1

π

∫

|z|<1

µ(z)(
1

z − w
− w

z − 1
+
w − 1

z
)dxdy + ‖µ‖2∞

=
1

π

∫

|z|<1

µ(z)
w(w − 1)

z(z − 1)(z − w)
dxdy + ‖µ‖2∞

=
1

π

∫

|z|<1

µ(z)R(z, w)dxdy + ‖µ‖2∞

where

R(z, w) =
w(w − 1)

z(z − 1)(z − w)
.

Using the same estimates, second integral is equal to

1

π

∫

|z|<1

µ(
1

z
)z̄−2(

w2z

1− wz
− wz

1− z
)dxdy + ‖µ‖2∞

where µ̌(z) = µ(1
z
)(z/z̄)2. If we replace z by 1/z in the second integral, the integral

over the disk transforms into the integral over its complement

1

π

∫

|1/z|<1

µ̌(
1

z
)(

w2/z

1− w/z
− w/z

1− 1/z

−dxdy
|z|4

=
1

π

∫

|z|>1

µ(z)(z̄2/z2)(
w2

z − w
− w

z − 1

1

z2z̄2
dxdy

=
1

π

∫

|z|>1

µ(z)(
w2(z − 1)− (z − w)w

(z − w)(z − 1)z2
dxdy

=
1

π

∫

|z|>1

µ(z)(
w(w − 1)

(z − w)(z − 1)z
dxdy.

This integrand has the same form as before which proves the lemma.
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NEEDS CHECKING AND FIXING

By Lemma 12.5.2 we can write

f(w) = w − 1

π

∫

B1

fz̄(z)R(z, w)dxdy −
1

π

∫

B1

f̌z̄(z)

f̌(z)2
zS(z, w)dxdy,

where S(z, w) = w2

1−wz − w
1−z and as before f̌(z) = 1/f(1/z). Using fz̄ = µfz =

µ+ µ(fz − 1), the first integral equals

∫

B1

µ(z)R(z, w)dxdy +

∫

B1

µ(z)(fz(z)− 1)R(z, w)dxdy

=

∫
µ(z)R(z, w)dxdy +O(‖µ‖∞‖fz − 1‖p,1‖R‖q,1)

=

∫
µ(z)R(z, w)dxdy +O(‖µ‖2∞),

by Lemma 12.5.1 and the fact that R ∈ Lq, for every q < 2 (with a bound depending

on q, but not on w for |w| ≤ 1).

The second integral is estimated by writing f̌z̄ = µ̌ + µ̌(f̌z − 1) where µ̌(z) =

(z/z̄)2µ(1/z). Repeating the argument above shows the second integral is equal to

∫

B1

µ̌(z)

f̌(z)2
+
µ̌(z)(f̌z(z)− 1)

f̌(z)2
zS(z, w)dxdy

=

∫

B1

µ(
1

z
)[
1

z̄2
+
z2 − f̌(z)2

z̄2f̌(z)2
]zS(z, w)dxdy

+

∫

B1

µ̌(f̌z − 1)

f̌(z)2
zS(z, w)dxdy

=

∫

B1

µ(
1

z
)
1

z̄2
zS(z, w)dxdy + I + II

Using Lemma ??, we see

1

C
|z|1/α ≤ |f̌(z)| ≤ C|z|α,

|z − f̌(z)| ≤ C‖µ‖∞|z|α,
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so we can estimate I by

I ≤ |
∫

B1

µ(1/z)
z2 − f̌(z)2

z̄2f̌(z)2
zS(z, w)dxdy|

≤ C‖µ‖2∞
∫

B1

|z|2α−1− 2

αS(z, w)dxdy

≤ C‖µ‖2∞C(α),

if 2α− 1− 2
α
> −2 (recall that we may take α as close to 1 as we wish, if k is small

enough). To estimate II, note that for 1
p
+ 1

q
= 1, Lemma 12.5.1 implies

II =

∫

B1

µ̌(z)(f̌z(z)− 1)

f̌(z)2
zS(z, w)dxdy

≤ C‖µ‖∞‖f̌z − 1‖p‖
zS(z, w)

f̌(z)2
‖q

≤ ‖µ‖2∞‖z1− 2

αS(z, w)‖q.

Fix some q < 2, and take k so small that α > 2q/(2 + q), which implies the Lq norm

is finite (with bound depending only on α, hence only of k). Thus,

f(w) = w − 1

π

∫

B1

µ(z)R(z, w)dxdy − 1

π

∫

B1

µ(
1

z
)
1

z̄2
zS(z, w)dxdy +O(‖µ‖2∞).

Changing variables from z to 1/z in the second integral converts the integrand to the

same form as the first (but now over {|z| > 1}). Hence,

f(w) = w − 1

π

∫

R2

µ(z)R(z, w)dxdy +O(‖µ‖2∞),

as desired. �

Corollary 12.5.4. If µ(t) is continuous in the L∞ norm, then fµ(t)(z) is a C1

curve in C.

Proof. Think of the path γ(t) = ftµ(z). The key point is the formula

|γ(t)− (γ(0) + γ′(0)t)| ≤ Ct2,

holds on an interval [−δ, δ] and with a constant C that do not depend on t or z or µ

(except for ‖µ‖∞). Thus using the same estimate at γ(t) and time −t gives

|γ(0)− (γ(t)− γ′(t)t)| ≤ Ct2.



12.6. NON-WANDERING IN THE SPEISER CLASS 285

Thus adding the estimates and dividing by t gives

|γ′(0)− γ′(t)| ≤ Ct

Thus ftµ(z) has a continuous derivative in t when t is real. When t is multi-variable,

the same argument shows we have continuous partial derivatives, and this implies

differentiability by the usual calculus argument (e.g., see Rudin’s book [121]). �

12.6. Non-wandering in the Speiser class

In 1885 Dennis Sullivan proved that a rational map has no wandering domains,

a famous open problem dating back to the origins of the subject. Two sets of re-

searchers, Alex Eremenko and Misha Lyubich [49], and Lisa Goldberg and Linda

Keen [62], soon generalized Sullivan’s proof from rational functions to the Speiser

class:

Theorem 12.6.1. If f is an entire function that has a finite singular set, then f

has no wandering domains.

In this section, we will give a proof of this result, first for polynomials and then

for the Speiser class (and with minor modifications, the proof would also cover the

original case of rational functions).

The main idea is fairly easy to state. If there were a wandering domain U for f ,

then any dilatation µ on U could be extended to a dilatation on the grand orbit of U so

that the corresponding quasiconformal mapping has the property that g = h◦f◦h−1 is

also entire. This gives a continuous map from dilatations on U to entire functions that

are quasiconformally conjugate to f , a finite dimensional space by Theorem 12.6.5.

By an explicit construction, we can choose a subspace of dilatations with larger

dimension on which the map must be 1-to-1 and this violates Brouwer’s invariance

of domain theorem (you can’t map an open subset of Rn continuously and 1-1 into

Rn−1). You can avoid the use of Brouwer’s theorem by proving that the map from

dilatations to entire functions is continuously differentiable and then using the rank

theorem instead.

We say that two entire functions f, g are topologically equivalent if there are

homeomorphisms ϕ, ψ : C → C such that

ψ ◦ g = f ◦ ϕ.
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The maps are quasiconformally conjugate if ψ, ϕ can be taken to be quasiconfor-

mal homeomorphisms.

We say f and g are topologically conjugate if there is a homeomorphism

ϕ : C → C such ϕ ◦ g = f ◦ ϕ. and call the maps quasiconformally conjugate

if ϕ can be taken to be quasiconformal. Note that this a stronger condition than

equivalence and if f and g are conjugate then

fn = (ϕ ◦ g ◦ ϕ−1)n = ϕ ◦ gn ◦ ϕ−1,

so that the dynamical behavior of f and g is essentially identical. Obviously the iden-

tity map conjugates a map f to itself. The next result says that in some situations,

this is the only possible such conjugation.

Lemma 12.6.2. Suppose {ϕt} is a family of quasiconformal maps on C so that

ϕt(z) : X → C is continuous each fixed z as a function of t ∈ X, X a connected

space. Suppose that ϕt0 is the identity for some to ∈ X. Suppose that f ∈ S has the

property that ϕt ◦ f = f ◦ ϕt for all t ∈ X. Then ϕt(z) = z for all t ∈ X and all

z ∈ J (f), i.e., every ϕt is the identity when restricted to the Julia set of f .

Proof. Because ϕt conjugates the action of f to itself, periodic points are mapped

to periodic points with the same period. Since there only countable many such points,

they form a discrete set and so {ϕt(z) : t ∈ X} must be a single point, since X is

connected. Since one of these maps is the identity, every map must fix every periodic

point. Finally, since periodic points are dense in the Julia set (Theorem 3.4.2), and

quasiconformal maps are continuous, each map ϕt must fix every point in J (f). �

Lemma 12.6.3. If f : D → Ω ⊂ C is conformal and ϕ : Ω → Ω is a quasiconformal

map that extends continuously to the identity on ∂Ω, then Φ = f−1 ◦ ϕ ◦ f is a

quasiconformal map of the disk to itself that extends to the identity on ∂D.

Proof. Clearly Φ : D → D is quasiconformal and hence extends continuously to

a homeomorphism of the unit circle (see Theorem 11.3.5). If the extension of Φ to ∂D

is not the identity, then there is an arc I ⊂ T such that I ∩Φ(I) = ∅. Choose a point

w ∈ I so that f has a finite radial limit at both z and Φ(z); we can do this because (1)

conformal maps have finite radial limits except on a set of zero capacity (Corollary

5.5.4), and (2) sets of zero capacity map to zero capacity under quasiconformal maps

(immediate from Pfluger’s theorem).
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Take the union of the two radial line segments [0, w] and [0,Φ(w)]. Because ϕ

extends as the identity to ∂Ω, the images of these radial segments under f have the

same endpoint on ∂Ω and hence their union is a a closed Jordan curve γw. Now, choose

a distinct point z ∈ I with the same properties and form the closed Jordan curve γz.

Choose z so that the intersection of γz with ∂Ω is different that the intersection of

γw with ∂Ω; we can do this because only a set of logarithmic capacity zero on the

circle can have the same radial limit. Then γz ∩ γw = f(0) and γz hits both sides

of γw (since z and Φ(z) are in different components of T \ ([0, w] ∪ [0,Φ(w)]). See

Figure ??. This contradicts the Jordan curve theorem, and thus Φ must extend to

the identity on the boundary. �

FIGURE JordanContradiction

Lemma 12.6.4. A wandering domain for a polynomial must be simply connected.

Proof. The basin of ∞ is periodic, not wandering, so any wandering domain

must be bounded and have a bounded orbit. By the maximum principle, the iterates

of f are bounded in the interior of any closed curve in the component and hence form

a normal family inside the curve. Thus the curve does not surround any Julia points

and the component must be simply connected. �

Polynomials have no wandering domains. Choose a smooth, non-negative

function h on C supported in D with gradient bounded by 1 and such that h(0) > 0.

Define a family of mappings of the upper half-plane to itself by

Φt(z)z + th(z).

It is easy to check that these are quasiconformal self-maps of H if we restrict t to a

small enough interval [0, ǫ] and that Φ0 is the identity. If t > 0, then the mapping is

definitely not the identity since the cross ratio of the points −1, 0, 1,∞ changes.

Now choose N disjoint intervals Ik = {[2k − 3, 2k − 1]}N1 and define an N -

dimensional family of maps by t = (t1, . . . , tN), and

Φt(z) = z +
N∑

k=1

tkh(z − (2k − 2))tkh(z − (2k − 2)).

Suppose Ω were a wandering domain for f . Since f has only finitely many critical

values, we can replace Ω, if necessary, by an iterate of itself so that neither it nor any
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iterate contains a critical point. Therefore we may assume f is univalent on Ω and

on all forward orbits.

By Lemma 12.6.4 Ω is simply connected, so we can map it conformally by f to

H and define a quasiconformal map ϕt = f−1 ◦Φt ◦ f . This defines a dilatation µ on

Ω that we extend to the grand orbit of Ω using the composition rule for dilatation

so that the corresponding quasiconformal map Ψt given by the measurable Riemann

mapping theorem has the property that

gt = Ψ−1
t

◦ f ◦Ψt,

is entire. Doing the extension backwards is always possible; extending to the forward

iterates uses the assumption that f and all its iterates are univalent on Ω.

A consequence of Brouwer’s invariance of domains theorem is that any continuous

map of an open set in Rn into Rk for k < n there is a point z ∈ Rk whose preimage

has topological dimension ≥ 1 and hence contains a connected set X. Choose some

s ∈ X and consider the maps Ψt◦Ψ−1
s
. These conjugate f to itself and one of them is

the identity, so by Lemma 12.6.2, they are all the identity on J (f), hence on ∂Ω and

hence the corresponding maps Φt◦Φ−1
s

are extend to the identity on R. However, this

is manifestly false by construction; the boundary maps are not the identity unless

s = t. Therefore there a polynomial has no wandering domains. �

Next we show how the proof given above for polynomials adapts to entire functions

with finite singular sets. By Lemma 4.1.4 Ω is simply connected. for Eremenko-

Lyubich functions and hence Speiser class functions.

The only non-trivial new step is to prove that the collection of entire functions

with with a given finite singular set is finite dimensional.

By Lemma 4.1.4 Ω is simply connected.

LetMg denote the collection of all entire functions f that are topologically equiv-

alent to g. An important result of Eremenko and Lyubich [] say that for g ∈ S, the
collection Mg of all f that are topologically equivalent to g form a finite dimensional,

complex analytic manifold. We shall just prove a part of this, showing that Mg is

finite dimensional in the following sense.
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Lemma 12.6.5. If f, g ∈ S have the same singular values then there is an ǫ > 0

so that the following holds. If

ψ ◦ g = f ◦ ϕ,
where ψ, ϕ are (1+ǫ)-quasiconformal, then g(z) = f(az+b) for some a, b ∈ C, a 6= 0.

Proof. The proof is essential an exercise about covering spaces, and we will need

the following lifting lemma that is Theorem 14.3 of Munkres’ book [102]:

Theorem 12.6.6 (The general lifting lemma). Let p : E → B be a covering map;

let p(e0) = b0. Let f : Y → B be a continuous map with f(y0) = b0. Suppose

Y is path connected and locally path connected. The map f can be lifted to a map

F : Y → E such that F (y0) = e0 if and only if

f∗(π1(Y, y0)) ⊂ p∗(π1(E, e0)).

Here π1 denotes the fundamental group and f∗ is the map between fundamental

groups induced by the continuous map f .

In our application, we letX = C\S(f) = C\S(g) and let Yf = C\f−1(S(f)), Yg =

C\g−1(S(g)). Choose some point z0 ∈ Yg. By Lemma ?? f : Yf → X and g : Yg → X

are covering maps.

Since S(g) is a finite set, there is a positive lower bound δ > 0 between any

two points in S(g). Since S(g) is bounded, there is an ǫ > 0 so that any (1 + ǫ)-

quasiconformal map fixing 0, 1,∞ moves each point of S(f) by less than δ/10. Thus

if ϕ is (1+ǫ)-quasiconformal, it is isotopic to the identity via a path of quasiconformal

maps that fix each point of S(g). Thus for any closed loop γ in Yg, the image loop

g(γ) = ψ−1◦f ◦ϕ(γ) is homotopic to f ◦ϕ(γ). Thus g∗(π1(Yg, z0)) ⊂ f∗(π1(Yf , ϕ(z0))).

In fact, we have equality, since π1(Yf ) is isometric to π1(Yg) via the homeomorphism

ϕ. By the general lifting lemma we get a homeomorphism h : F : Yg → Yf and this

map is locally a composition of g and a branch of f−1 and hence is holomorphic.

Thus it must be conformal linear, i.e., h(z) = az + b, a 6= 0, as claimed. �

12.7. Dilatations with small support

If the dilatation µ of a quasiconformal map f : R2 → R2 is small, then we expect

f to be close to conformal, hence close to linear. If the map is normalized correctly,

then we expect it to be close to the identity. There are at least two reasonable senses
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in which we can ask µ to be small: that ‖µ‖∞ is small or that {z : µ(z) 6= 0} is

small. In this section we consider the latter possibility. To be more precise, we say a

measurable set E ⊂ R2 is (ǫ, ϕ)-thin if ǫ > 0 and

area(E ∩D(z, 1)) ≤ ǫϕ(|z|)

where ϕ : [0,∞) → [0, π2] is a bounded, decreasing function, such that
∫ ∞

0

ϕ(r)rndr <∞,

for every n > 1. If a > 0, the function ϕ(r) = exp(−ar) satisfies this condition, and
this example suffices for the applications we will make later.

Recall that a quasiconformal map f : R2 → R2 is often normalized in one of two

ways. For general maps, we can always post-compose with a linear conformal map

so that f(0) = 0 and f(1) = 1; we then say f is normalized to fix 0 and 1. If the

dilatation of f is supported on a bounded set, then f is conformal in a neighborhood

of ∞ and then we can choose R large and post-compose with a linear conformal map

so that

|f(z)− z| = O(
1

|z|),

for |z| > R/2. We say that such an f is normalized at ∞. This is also called the

hydrodynamical normalization of f .

Lemma 12.7.1. Suppose F is K-quasiconformal with dilatation µ has bounded

support and F is normalized at ∞. Let E = {z : µ(z) 6= 0} and suppose E is (ǫ, ϕ)-

thin. Then for every z ∈ R2 and r ≥ 1, diam(F (D(z, r)) = O(r), i.e., all unit are

mapped to sets of comparable or smaller size.

Proof. By linking points by chain of unit disks, it suffices to prove this when

r = 1. Choose R > 100 so that |f(z) − z| ≤ 1, for |z| > R/8. The result is clear if

|w| > R/2, so we may assume |w| ≤ R/2. Fix such a w.

Let m = logR, so R = em, and consider the annulus A = {z : 1 < |z −w| < em}.
F (A) is a topological annulus and can be conformally mapped to AM = {1 < |z| <
eM} for some M > 1. Post-composing F by this conformal map does not change the

dilatation, so without loss of generality, we map assume F maps Am to AM . If we

cut Am with a radial slit and let G = log(F ), then G maps Am to a quadrilateral

with its vertical sides on {x = 0} and {x =M}. This quadrilateral has area 2πM .
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If we integrate over the radial segments in Am, we get

M ≤
∫ exp(m)

1

(|Gz|+ |Gz̄|)
dr

r

so integrating over all angles gives

2πM ≤
∫ 2π

0

∫ exp(m)

1

(|Gz|+ |Gz̄|)
dr

r
dθ ≤

∫

Am

(|Gz|+ |Gz̄|)
dxdy

r2
.

Thus by Cauchy-Schwarz,

(2πM)2 ≤ (

∫

Am

(|Gz|+ |Gz̄|)(|Gz| − |Gz̄|)
dxdy

r2
)(

∫

Am

|Gz|+ |Gz̄|
|Gz| − |Gz̄|

dxdy

r2
)

≤ (

∫

Am

JGdxdy)(

∫

Am

DG
dxdy

r2
)

≤ 2πM(

∫

Am

DF
dxdy

r2
)

since G(Am) has area 2πM and DG = DF (since log is conformal). Thus

M ≤ 1

2π

∫

Am

1 + (DF − 1)
dxdy

|z − w|2

= m+
1

2π

∫

Am

(DF − 1)
dxdy

|z − w|2

≤ m+
K − 1

2π

∫

Am

1E(z)
dxdy

|z − w|2
= m+O(1)

where 1E denotes the indicator function of E (the function that is one on E and zero

off E) and we have used the fact that E has finite planar area and |z − w|−1 ≤ 1 on

Am (recall w is the center of the annulus and the inner radius is at least 1.).

By Corollary 11.3.8, the boundary components of f(A) are each closed curves

that are contained in round annuli (with concentric circles) of bounded modulus

(depending on K). Thus f(A) is contained in a topological annulus with circular

boundaries γ1, γ2 (not necessarily concentric) whose diameters are comparable to the

diameters of the boundary components of f(A). By monotonicity of modulus, this

annulus has larger modulus than f(A) ,and thus

log
diam(γ2)

diam(γ1)
≥ logR−O(1).
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Since |f(z)− z| ≤ 1 on {|z| = R} we know diam(γ2) ≃ R and hence

f({|z − w| = 1}) ≃ diam(γ1) = O(1).

This proves the lemma. �

Thus if F is as above, Bojarski’s theorem (Theorem 12.3.3) says there is a p > 2

so that the Lp norm of Fz is uniformly bounded on every unit radius disk. If a region

can be covered by n such disks then the Lp norm is O(n1/p) with a uniform constant,

i.e.,

Corollary 12.7.2. If F satisfies the conditions of Lemma 12.7.1, and p =

p(K) > 2 is the value given by Theorem 12.3.3, then ‖Fz · 1D(z,r)‖p = O(r2/p) uni-

formly for all z ∈ C.

We now get to the main estimate of this section.

Theorem 12.7.3. Suppose F : R2 → R2 is K-quasiconformal, and E = {z :

µ(z) 6= 0} is bounded (so F is conformal near ∞) and F is normalized so

|F (z)− z| ≤M/|z|,

near ∞. Assume E is (ǫ, ϕ)-thin. Then

|F (z)− z| ≤ ǫβ

|z|+ 1
,

where β depends only on K and ϕ. In particular, as ǫ → 0, F converges uniformly

to the identity on the whole plane.

Proof. The main idea is to use the Pompeiu formula

F (w) =
1

2πi

∫

|z|=r

F (z)

z − w
dz − 1

π

∫∫

|z|<r

Fz̄
z − w

dxdy.(52)

when Ω = D(0, r), r > R; we saw before that the Pompeiu formula is valid even for

non-smooth quasiconformal maps because the Lp bounds on Fz given by Gehring’s

lemma allow us to pass from the smooth case to the general case, i.e., Corollary

12.3.5.

Because of our assumptions on F , the first integral is

1

2πi

∫

|z|=r

z +O(1/|z|)
z − w

dz = w +O(1/r).
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The left-hand side of (52) and the second integral are both constant for r > R (since

the support of Fz̄ is contained in D(0, R)), so the first integral must equal w for all

r > r. Thus

F (w) = w − 1

π

∫∫

|z|<r

Fz̄
z − w

dxdy = w − 1

π

∫∫

|z|<r

µFz
z − w

dxdy.

Since |Fz̄| = |µFZ | ≤ k|Fz|, we get

|F (w)− w| ≤ k

π

∫

E

| Fz
z − w

|dxdy.

where k = (K − 1)/(K + 1) is our upper bound for |µ|.
The estimate in the theorem already holds if |w| ≥ R, so assume |w| < R. Let

r = max(1, |w|/2). We will estimate the integral
∫

E

| Fz
z − w

|dxdy,

by cutting D(0, R) into four pieces:

D1 = {z : |z − w| ≤ 1}
A = {z : 1 ≤ |z − w| ≤ r}
X = D(0, R) \ (D1 ∪ A ∪D2),

and showing the integral over each piece is O(ǫβ/|w|) for some β > 0 depending only

on K.

First consider D1. With p as in Corollary 12.3.3, the Lp norm of Fz over D1 is

uniformly bounded, so using Hölder’s inequality with the conjugate exponents, we

get
∫

D1

| Fz
z − w

|dxdy = O(‖1E∩D(w,1)

|z − w| ‖q).

Since E ∩D(w, 1) has area at most ϕ(|w|) ≤ ϕ(r), the Lq norm is bounded above by

the case when E ∩D(w, 1) is a disk of radius s ≃ (ǫϕ(r))1/2 centered at w . In this

case the Lq norm (using polar coordinates and recalling 1 < q < 2) is

O([

∫ s

0

r−qrdr]1/q) = O(s(2−q)/q) = O((ǫϕ(r))
1

q
− 1

2 ).

Since ϕ tends to zero faster than any polynomial, this is = O(ǫ
1

q
− 1

2 1
|w|). This is the

desired estimate with β = 1
q
− 1

2
> 0.
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Next consider the integral over A:
∫

A

| Fz
z − w

|dxdy =

∫

A

1E(z)|Fz|dxdy

= (

∫

A

1E(z)
qdxdy)1/q(

∫

A

|Fz|pdxdy)1/p

= O(area(E ∩ A))1/q‖Fz1A‖p
= O((ǫr2ϕ(r))1/q)r2/p

= O(ǫ1/q
1

|w|),

since ϕ decays faster than any power.

Finally, consider the integral over X:
∫

X

| Fz
z − w

|dxdy = O(
1

|w|

∫

D2

1E(z)|Fz|dxdy.

To estimate the integral, write

X = ∪Rk=1Xk = ∪Rk=1X ∩ Ak = ∪Rk=1X ∩ {z : k − 1 ≤ |z| < k},

Then
∫

Xk

1E(z)|Fz|dxdy = (

∫

Ak

1E(z)
qdxdy)1/q(

∫

Ak

|Fz|pdxdy)1/p

= (area(E ∩ Ak))1/q(
∫

Ak

|Fz|pdxdy)1/p

= (ǫkϕ(k))1/q(O(k))1/p

= O(ǫ1/qϕ(k))1/qk1+1/p)

= O(ǫ1/qk−2),

again since ϕ decays faster than any power. Summing over k gives the desired esti-

mate. This proves the theorem with β = 1
q
− 1

2
> 0. �

The proof given above shows that the conclusion of Theorem 12.7.3 still holds

if
∫∞
0
ϕ(r)rndr < ∞ for some (large) finite n that depends on K (in particular, it

depends on the value p > 2 so that Fz ∈ Lp in Bojarski’s theorem). Similarly, we

can assume less if we simply want a uniform bound on |F (w) − w|, rather than the

O(1/|z|) estimate above. We leave these generalizations to the reader.
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Lemma 12.7.4. Suppose f : R2 → R2 is K-quasiconformal (possibly with a dilata-

tion with unbounded support) and is normalized to fix 0 and 1, and E = {z : µ(z) 6= 0}
is (ǫ, ϕ)-thin. Then

(1− Cǫβ)|z − w| − Cǫβ ≤ |f(z)− f(w)| ≤ (1 + Cǫβ)|z − w|+ Cǫβ,(53)

where C and β only depend on k = ‖µ‖∞ and ϕ.

Proof. First we note that it suffices to prove this with the additional assumption

that µ has bounded support, for a general quasiconformal f is the pointwise limit of

such maps (truncate µf , apply the measurable Riemann mapping theorem and show

the truncated maps converge uniformly on compact subsets to f).

So assume µ = µ has bounded support, say inside the disk D(0, R). Then f is

conformal outside D(0, R), so we can post-compose by a conformal linear map L to

get a quasiconformal map

F (z) = z +O(
1

z
),

or

|F (z)− z| ≤ C/|z|,
outside D(0, 2R) with a constant that does not depend on F (this follows from the

distortion theorem for conformal maps). We apply Theorem 12.7.3 to get

|F (z)− z| ≤ Cǫβ,

for all z with constants C, β that depend only on k. Note that

f(z) =
F (z)− F (0)

F (1)− F (0)
,

and that

|F (1)− F (0)− 1| ≤ Cǫβ,

so,

|f(z)− f(w)| = |F (z)− F (w)

F (1)− F (0)
| = |z − w|+O(ǫβ)

1 +O(ǫβ)
,

and this implies (53). �

These remarks imply the following technical looking result that will be helpful

when we want to construct an entire function in the Eremenko-Lyubich class that

has a wandering domain.
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Lemma 12.7.5. Suppose F : R2 → R2 is K-quasiconformal, it fixes 0 and 1, maps

R to R, and is conformal in the strip {x + iy : |y| < 1}. Let E = {z : µ(z) 6= 0}
and suppose E is (ǫ, ϕ)-thin. If ǫ is sufficiently small (depending on k and ϕ), then

0 < 1
C
≤ |f ′(x)| ≤ C <∞ for all x ∈ R, where C depends on K, ϕ and ǫ is otherwise

independent of f . If we fix K and ϕ and let ǫ→ 0 then C → 1.

Proof. For each x ∈ R, f is conformal on the disk D(x, 1) ⊂ S, so Koebe’s
1
4
-theorem says that

|f ′(x)| ≃ dist(f(x), ∂f(D(x, 1))).

However taking z = x and w ∈ ∂D(x, 1) in (53) shows that

dist(f(x), ∂f(D(x, 1))) ≃ 1.

This gives the first claim. When ǫ is small, then (53) implies that

(1− δ)S ⊂ f(S) ⊂ (1 + δ),

where δ > 0 tends to zero with ǫ (for fixed k and a). Thus as ǫ → 0, f converges

uniformly to the identity on S. In particular, f ′ converges uniformly to 1 on R. �
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CHAPTER 14

Topological dimension

In the proof of Sullivan’s no wandering domains theorem, the main fact that is

needed is that if n > k, and f : Rn → Rk, then there is a point y in the image so

that f−1(y) contains a non-trivial continuum. The particular map in question is of

the form

µ(t) → {fµ(t)(zj)}kj=1,

where µ(t) is a finite dimensional family of dilatations that varies continuously in the

L∞ norm, fµ is the normalized quasiconformal map given by the measurable Riemann

mapping theorem, and {zj} are a finite number of distinct points in the plane.

In Chapter 12 we developed enough of the analytic theory of quasiconformal maps

to prove that fµ(t)(zj) is a differentiable function of t and hence the desired result

about f−1 follows from the rank theorem.

However, even without the analytic theory of quasiconformal maps, it is easy see

that fµ(t)(zj) is a continuous function of t, and in this case the desired conclusion

follows from a purely topological result, Let In = [0, 1]n.

Theorem 14.0.1. If n > k and f : In → Rk is continuous, then there is a point

y ∈ f(In) so that f−1(y) contains a compact connected set with more than one point.

This result is far from obvious and is closely related to Brouwer’s “invariance

of domain” theorem that states that Rn and Rk are not homeomorphic. I will not

attempt to give a complete proof of the result here, but I will give a summary of the

proof given in the classic book “Dimension Theory” by Hurewicz and Wallman.

The book is written about separable metric spaces, although for our purposes, it

suffices to consider subsets of Euclidean space and I will make this extra assumption

to simplify the discussion.

The dimension of a set is defined inductively as follows:

(1) The empty set has dimension −1.

299
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(2) A set X has dimension ≤ n if every point has arbitrarily small open neigh-

borhoods whose boundaries have dimension ≤ n− 1.

(3) The set X has dimension = n if it has dimension ≤ n but does not have

dimension ≤ n− 1.

This says that X has dimension ≤ n if there is a basis for the topology of X made

up of open sets whose boundaries have dimension ≤ n − 1. We shall let Dim(X)

denote the topological dimension of X, to differentiate it from dim(X), which we

have used throughout these notes for the Hausdorff dimension of X. In the course

of this chapter we shall see that the topological dimension has several equivalent

formulations, namely, Dim(X) ≤ n if and only if

(1) X can be written as union of n+ 1 sets of dimension ≤ 0,

(2) any n + 1 pairs of closed subsets of X can be separated by (n + 1) closed

subsets that have empty intersection,

(3) Every continuous map of X into the n-cube has a stable value (a value that is

attained by every continuous function sufficiently close to f in the supremum

norm),

(4) every continuous function from any closed subset of X to the n-sphere can

be continuously extended to all of X,

(5) X is homeomorphic to a zero (n+ 1)-measure subset of R2n+1.

In this language, the theorem we want follows immediately from two results in of

[72] (throughout the chapter we shall label results with their names in [72] for the

convenience of the reader who wishes to consult the original source):

Theorem 14.0.2 (Proposition II.4.D). If X is compact, then X has dimension

zero iff it is totally disconnected (i.e., contains no non-trivial connected components).

Theorem 14.0.3 (Theorem VI.7). If f : Rn → Rk is a closed mapping (it is

continuous and sends closed sets to closed sets), then there is an image point y so

that Dim(f−1(y)) ≥ n− k.

The first result is fairly easy to proof from the definitions, but the second is quite

involved and uses the Brouwer fixed point, Tietze’s extension theorem and Borsuk’s

theorem on the extension of homotopies. Most of this chapter is devoted to the proof

of the second result, given these results from topology.
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It interesting to note that the first result can fail if X is not compact. Knaster

and Kuratowski constructed a set X ⊂ R2 that is totally disconnected, but so

that adding a single point {a} makes it a connected set Y = X ∪ {a}. Corollary

II.3.2 of [72] states that adding a point to a set cannot change its dimension, so

Dim(X) = Dim(Y ). Proposition II.2.D says that any zero dimensional set is totally

disconnected, so Dim(X) = Dim(Y ) ≥ 1. A much harder result (Theorem IV.3)

says that a subset of Rn has dimension n if and only if it contains an open subset,

The Knaster-Kuratowski example does not, so X is a totally disconnected set of

topological dimension 1.

Suppose C ⊂ R is the usual middle thirds Cantor set, let E ⊂ C be the countable

set of endpoints of intervals in R\C and let P = C \E be the remaining points. Let

a = (1
2
, 1
2
) ∈ R2 and for each x ∈ C, let Lx be the line segment connecting x to a.

For x ∈ E, let L∗
x be the points on Lx with rational y-coordinates, and for x ∈ P let

it denote the points on Lx with irrational y-coordinate. Then X = ∪
x∈CL∗

x is the

desired set. See [81] or [133]. The point a is called an explosion point for the set

X.

This phenomenon is particularly interesting in transcendental dynamics, since

similar sets arise naturally there: Mayer has shown that the set of landing points of

dynamic rays for λ(z) s totally disconnected, but becomes connected when we add

{∞} [94], i.e., {∞} is an explosion point.

14.1. Zero dimensional sets

We say that two subsets A1, A2 ⊂ X can be separated if there are disjoint open

subsets U1, U2 that contain A1 and A2 respectively. We can then describe four prop-

erties of X:

(1) X is totally disconnected.

(2) Any two distinct points can be separated.

(3) Any point can be separated from any closed set not containing it.

(4) Any two disjoint closed sets can be separated.

For general X, (4) ⇒ (3) ⇒ (2) ⇒ (1) and (3) is the definition of X having zero

dimension. For compact X all four conditions are equivalent; for general separable

sets, (2) and (3) are equivalent, but (1), (2) and (3) are distinct conditions.
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We say that A1, As are separated by a set B ⊂ X if the open sets U1, U2 can be

chosen to be in different connected components of X \B.

Lemma 14.1.1 (Proposition II.2.E). If a space X is zero dimensional, then any

two closed sets can be separated in X.

Proof. Suppose K,L are disjoint closed sets in X. Every p ∈ X has an open-

closed neighborhood that is disjoint from either K or L (or maybe both) and a

countable union {Uj} of these cover X. Let Vj = Uj \
∑j−1

k=1 Uk; this gives a disjoint

open cover of X and each Vj is disjoint from either K or L. Taking the unions of Vj’s

that hit each of these sets gives disjoint open sets separating them. �

Theorem 14.1.2 (Theorem II.2). If X = ∪Xj is a countable union of closed (in

X), zero dimensional subsets, then X is also zero dimensional.

Proof. It suffices to show that any two closed subsets K,L can be separated

(contained in disjoint open sets). Since X1 is zero dimensional, the sets can be

separated in X1 by Lemma 14.1.1, so X1 can be divide into two disjoint, closed

subsets A1, B1 containing K ∩X1 and L∩X1 respectively. Thus K ∪A1, L∪B1 are

disjoint closed sets in X and hence are contained in disjoint open subsets G1, H1 of

X that have disjoint closures.

Now repeat the argument replacing K and L by G1 and H1. By induction we

obtain nested sequences of open sets so that

Gj ⊂ Gj ⊂ Gj+1, Hj ⊂ Hj ⊂ Hj+1.

Then ∪Gj, ∪Hj are open, disjoint subsets of X that contain K ∩ Xj and L ∩ Xj

respectively for every j and hence contain K and L respectively. �

Corollary 14.1.3. A union of two zero dimensional spaces, one of which is

closed, is zero dimensional.

This follows since if A,B are zero dimensional and B is closed, then X = A\B is

open in A ∪B. But any open set in the separable metric space A ∪B is a countable

union of closed sets, and these sets have dimension zero, since they are subsets of A.

Thus the corollary follows from the theorem. Since points are closed, we also get:
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Corollary 14.1.4. Add a point to a zero dimensional set does not increase its

dimension.

Lemma 14.1.5. Let Rm
n be the set of points in Rn that have exactly m rational

coordinates. Then Rn
m has dimension zero.

Proof. If n = m thenRm
n is a countable union of points and hence has dimension

zero (most small spheres around any point miss a countable set). Ifm = 0, then every

point has small neighborhoods that are cubes whose faces have a rational coordinate,

and again we get dimension 0.

For 0 < m < n, fix a choice of m coordinates and fix m rational values and let H

be the k = n −m dimensional (in terms of linear algebra) subspace determined by

these choices. Then Rm
n ∩H is a linear image of R0

k and hence has dimension 0, and it

is a closed subspace of Rm
n (although not closed in Rn. Thus Rm

n is a countable union

of closed, dimension zero, subspaces of itself, and hence has dimension zero. �

Lemma 14.1.6 (Proposition II.4.B). Suppose X is compact and dimension zero,

p ∈ X and K ⊂ X closed. If p can be separated from each point of K, it can be

separated from K by open-closed sets.

Proof. Fore each q ∈ K there are disjoint neighborhoods U and V of p and q.

Since K is compact, a finite union of V ’s cover K and the corresponding intersection

of the U ’s is open and disjoint from the union. �

Lemma 14.1.7 (Proposition II.4.C). If X is compact and dimension zero, and

p ∈ X, then the set M(p) of points that can’t be separated from p is connected.

Proof. Each point not in M(p) has an open neighborhood disjoint from an

neighborhood of p, so X \M(p) is open, so M(p) is closed and contains p. If M(p)

were disconnected then M(p) = K ∪ L where K,L are open-closed in M(p) hence

closed in X. We may assume p ∈ K. There exists open U in X so K ⊂ U and

U ∩ L = ∅. Then ∂U ∩M(p) = ∅ (since it hits neither K nor L), and each point of

∂U is separated from p. Since ∂U is closed, Lemma 14.1.6 says ∂U can be separated

from p by disjoint open-closed neighborhood V of ∂U and W = U \ V = U \ V of

p. But W is disjoint from L, so p is separated from points in L, contrary to the

definition of M(p). The contradiction shows M(p) is indeed connected. �
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Corollary 14.1.8. For compact sets X conditions (1)-(4) are equivalent. In

particular, compact totally disconnected sets have dimension zero.

Proof. Assume X is totally disconnected, i.e., no connected subset contains

more than one point. Then by Lemma 14.1.7 for each p ∈ X M(p) is connected, hence

equals p. Thus (0) implies (1). Lemma 14.1.6 gives (1) implies (2). The implication

(2) implies (3) is Lemma 14.1.1 and opposite directions are e all trivial. �

14.2. Subsets, unions and products

Lemma 14.2.1. A subset Y of a set X of dimension n has dimension ≤ n.

Proof. We use induction and note it is trivial for n = −1. Suppose p ∈ Y ⊂ X.

By definition, for any δ > 0, there is a neighborhood U of p in X with U ⊂ B(p, δ)

and Dim(∂U) ≤ n − 1. Let V = U ∩ Y . Then V is a neighborhood of p in Y and

∂V ⊂ ∂U ∩ Y and this has dimension ≤ n− 1 by induction. �

Lemma 14.2.2 (Proposition III.2.A). A subset Y ⊂ X has dimension ≤ n, if and

only if every point p ∈ Y has arbitrarily small neighborhoods in X whose boundaries

have intersections with Y of dimension ≤ n− 1.

Proof. Suppose the condition holds. For any δ > 0 choose a neighborhood

U ⊂ B(p, δ) of p in X so that Dim(∂U ∩Y ) ≤ n−1. Then V = U∩ has ∂V ⊂ ∂U ∩Y
so also has dimension ≤ n− 1. This proves Dim(Y ) ≤ n.

Conversely, suppose Dim(Y ) ≤ n and let p ∈ Y . For any δ we can choose

a neighborhood V ⊂ B(p, , δ) of p and Dim(∂V ) ≤ n − 1. Since V and Y \ V are

disjoint open subsets of Y , there is an open setW in X so that V ⊂ W ⊂ B(p, δ) and

W ∩ (Y \V ) = ∅. It follows that ∂W ∩Y ⊂ ∂V and hence Dim(∂W ∩Y ) ≤ n−1. �

Lemma 14.2.3. If A,B ⊂ X, then Dim(A ∪ B) ≤ 1 + Dim(A) + Dim(B). Thus

a union of n zero dimensional sets has dimension at most n− 1.

Proof. We use induction on both the dimension of A and B, noting that the

cases (m,−1) and (−1, n) are all trivial. Assume it is true for the cases (m,n − 1)

and (m− 1, n) and we will deduce it for (m,n); this suffices since we can then fill in

the whole quadrant (m,n),m ≥ 0, n ≥ 0.
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Suppose p ∈ A ∪ B; we may assume p ∈ A. Let U be a neighborhood of p in X.

By Lemma 14.2.2 there is a neighborhood V ⊂ U of p with dim(∂V ∩ A) ≤ m − 1.

Since ∂V ∩ B ⊂ B it also has dimension ≤ n, so by the induction hypothesis,

Dim(∂V ∩ (A ∪ B)) ≤ 1 + (m− 1) + n = m+ n,

and this proves Dim(A ∪ B) ≤ m+ n+ 1 by Lemma 14.2.2. �

Lemma 14.2.4. Let Mm
n be the set of points in Rn that have at most m rational

coordinates. Then Rn
m has dimension ≤ m.

Proof. Since Mm
n = ∪mj=0Rj

n, it is a union of m + 1 sets of dimension 0. The

result follows from the final conclusion of Lemma 14.2.3. �

Lemma 14.2.5 (Theorem III.2, Sum Theorem). A countable union of closed sets

of dimension n has dimension ≤ n.

Proof. We use induction. The case n = 0 is trivial and the case n = 0 was

proven as Theorem 14.1.2. We claim that the case n− 1 implies:

Lemma 14.2.6 (∆n). Any space X of dimension ≤ n is a union of a subset of

dimension ≤ n− 1 and a space of dimension ≤ 0.

Proof. By the definition of dimension, there is a basis of open sets whose bound-

aries have dimension ≤ n−1 and since X is separable, this may be taken to be count-

able, {Uk}. Then by hypothesis B = ∪∂Uk has dimension ≤ n − 1. We claim that

Dim(X \B) ≤ 0. (PROOF ????) The lemma then follows from Lemma 14.2.2. �

By induction we get a fact we will need later.

Corollary 14.2.7 (Theorem III.3). A space has dimension ≤ n iff it can be

written as a union of n+ 1 zero dimensional spaces.

We now resume the proof of Lemma 14.2.5. Suppose X = ∪Kj where each Kj is

a closed set of dimension ≤ n. Let X1 = K1 and

Xk = Kk \ ∪k−1
j=1Kj.

Then these sets are disjoint, cover X, and has dimension ≤ n since Xk ⊂ Kk.

Moreover each Xk is a Fσ, i.e., a countable union of closed sets. This holds since
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X \ ∪k−1
j=1Kj is open and hence Fσ; thus Xk is the intersection of a closed set and a

Fσ and hence is Fσ.

By Lemma 14.2.6, XkMk ∪Nk where Dim(Mk) ≤ n− 1 and Dim(Nk) ≤ 0. Thus

X =M ∪N = (∪kMk) ∪ (∪kNk). Note that Mk is Fσ inside M since

Mk =Mk ∩Xk = (M1 ∪ . . . ) ∩Xk =M ∩Xk,

is the intersection of a the Fσ set Xk and M (which is closed in itself). Thus by the

induction hypothesis, Dim(M) = n − 1. A similar argument shows Dim(N) = 0.

Since X =M ∪N , we have

Dim(X) ≤ 1 + Dim(M) + Dim(N) ≤ 1 + (n− 1) + 0 = n.

�

Using the same arguments as with Theorem 14.1.2 we obtain:

Corollary 14.2.8. The union of two sets of dimension ≤ n, one of which is

closed, has dimension ≤ n

Corollary 14.2.9. Adding a single point to a set does not increase its dimension.

Lemma 14.2.10 (Proposition II.2.F). If K,L are disjoint, closed subsets of X

and Y ⊂ X has dimension ≤ 0 then there is a separating set B for K and L so that

B ∩ A = ∅.

Proof. There are open sets U, V with disjoint closures that contain K and L

respectively. Since U ∩ A and V ∩ A are closed in A, they can be separated in A

using Lemma 14.1.1, since Dim(A) = 0. Thus A = Y ∪ Z where Y, Z are disjoint

open-closed sets in A and U ∩ A ⊂ Y . Then there is an open set W in X such that

K ∪ Y ⊂ W and W ∩ (L ∪ Z) = ∅. Thus B = ∂W separated K from L and B is

disjoint from both Y and Z and hence B ∩ A = ∅. �

Lemma 14.2.11 (Proposition III.5.B). If K,L are disjoint, closed subsets of X

and Y ⊂ X has dimension ≤ n then there is a separating set B for K and L so that

Dim(B ∩ A) ≤ n − 1. If we take A = X, this says that disjoint, closed sets of a

n-dimensional space X can always be separated by a (n− 1)-dimensional set.
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Proof. We use induction. If Dim(A) = −1, then A = ∅ and the result is obvious.

If Dim(A) = 0 then we proved this in Lemma 14.2.10. Suppose n > 0. By Lemma

14.2.6, We can write A = D ∪ E as a union of sets of dimension ≤ n − 1 and ≤ 0

respectively. By the case n = 0 of the induction, there is a separating set C for K

and L that does not intersect E, so A ∩ B ⊂ D has dimension ≤ n− 1. �

Lemma 14.2.12 (Proposition III.5.C). Suppose X is a set of dimension ≤ n− 1,

and suppose {Cj, C ′
j}nj=1 be n pairs of closed sets so that Cj ∩Cj = ∅ for j = 1, . . . n.

Then there are n closed sets {Bj} so that Bj separates Cj from C ′
j and ∩nj=1Bj = ∅.

Proof. By Lemma 14.2.11 C1, C
′
1 can be separated by a set B1 of dimension

≤ n − 2. By Lemma 14.2.11 C2, C
′
2 can be separated by a set B2 so that Dim(B1 ∩

B2) ≤ n− 3. Continuing in this way we get separating sets {Bk} whose intersection

has dimension n− (n+ 1) = −1, i.e., is empty. �

Theorem 14.2.13 (Theorem III.4, Product Theorem). Dim(A×B) ≤ Dim(A)+

Dim(B).

Proof. We use induction. The result is trivial if either A or B is empty, i.e., for

dimensions pairs (m,−1) or (−1, n), so we may assume it for both (m,n − 1) and

(m− 1, n) and deduce it for (m,n).

Each point of A×B has a neighborhood of the form U ×V where the boundaries

of U and V have dimensions ≤ m− 1 and ≤ n− 1 respectively. Since

∂(U × V ) ⊂ U × ∂V ∪ ∂U × V ,

the induction hypothesis and Theorem 14.2.5 imply

Dim(∂(U × V )) ≤ (m− 1) + (n− 1) + 1 = m+ n− 1,

which proves the result. �

Equality holds in Theorem 14.2.13 if Dim(B) = 0, but not in general.

14.3. Dim(Rn) = n

The direction Dim(Rn) ≤ n is a rather obvious induction since points in Rk

have small neighborhoods whose boundaries are k − 1-spheres and one can show
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Dim(Sk) = Dim(Rk) since dimension is unchanged by homeomorphisms and adding

a single point.

The hard part is to show Dim(Rn) ≥ n. We showed in Lemma 14.2.12 that if

X is a set of dimension ≤ n − 1, and {Cj, C ′
j}nj=1 are n pairs of closed sets so that

Cj ∩ Cj = ∅ for j = 1, . . . n, then there are n closed sets {Bj} so that Bj separates

Cj from C ′
j and ∩nj=1Bj = ∅. We will show that Rn does not have this property, and

hence Dim(Rn) ≥ n.

Lemma 14.3.1 (Proposition IV.1.D). Let X = In = [−, 1]n ⊂ Rn and let {C−
j , C

+
j }

be the two components of In ∩ {x = (x1, . . . , xn) : xj = ±1} (i.e., pairs of opposite

faces of the cube). If {Bj} are closed subsets of In so that Bj separates Cj and C ′
j,

then ∩jBj 6= ∅. In particular, we must have Dim(In) ≥ n.

This follows from the famous Brouwer fixed point theorem:

Theorem 14.3.2. Every continuous map of In into itself has a fixed point.

Proof of Lemma 14.3.1. To see how to deduce the lemma from Brouwer’s

theorem, let U−
j , U

+
j be open subsets of distinct components of In \ Bj and define

v : In → Rn by setting the jth component to be

v(x) = ±dist(x,Bj),

with sign being chosen > 0 on the component of In \ Bj containing U+
j and < 0

on the component containing U−
j (and arbitrarily on any other components). Then

f(x) = x+ v(x) is continuous and maps In into itself, because if x is not in U+
j , then

1− xj = dist(x, C+
j ) ≥ dist(x,Bj) = vj(x),

so adding v(x) to x can’t make the jth coordinate larger than 1. Thus by Brouwer’s

theorem f has a fixed point y and so v(y) = 0, which means dist(y,Bj) = 0 for

j = 1, . . . , n, Since each Bj is closed, this means y ∈ ∩jBj, so the latter set in

non-empty, as claimed. �

The proof of Brouwer’s theorem can be found in various places. The proof in

[72] is based on first proving that Sn is not contractile to a point, basically but an

invariance of degree under homotopy argument, but reduced to a parity counting

argument for simplicial triangulations of the n-sphere.
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Now that we know that Rn has topological dimension n, we know that different

Euclidean spaces are not homeomorphic, indeed, Rn cannot be homeomorphic to any

subset of Rk for k < n. This implies that no continuous map f : In → Rk can be

1-to-1 (since In is compact this implies f would be a homeomorphism)). Thus in the

setting of our goal, Theorem 14.0.3, we now know that there must be an image point

so that f−1(y) has more than one point. We need to improve this to a preimage of

dimension ≥ 1.

14.4. Embedding in R2n+1

A cover of a set X is s collection of open sets whose unions contains X. We say it

uses diameter δ if every set in the collection has diameter ≤ δ. The cover has order

n is at most n+ 1 elements can contain a common point.

Lemma 14.4.1. If X is compact and Tdim(X) = 0 then X has a cover of order

1 using diameter ≤ δ (i.e., a pairwise disjoint cover by small elements).

Proof. By definition, each point has a neighborhood of diameter ≤ δ and empty

boundary (hence the set is both open and closed in X) and since X is compact, a

finite number of these cover X. Replacing each open set by itself with the other

removed gives a pairwise disjoint cover with even smaller diameters. �

Lemma 14.4.2 (Corollary to Theorem V.1). If X is compact and Dim(X) ≤ n,

then X has open covers using arbitrarily small diameters and order ≤ n.

Proof. By Theorem 14.2.7X is the union of n+1 dimension zero setsX1, . . . , Xn+1,

and each of these can be covered by collection of disjoint open sets using diameters

≤ δ. We claim the union of these n + 1 collections has order n + 1; if n + 2 of the

sets all contained the point p then be the pigeon hole principle, two come from the

same collection and they can’t both contain p since they are disjoint. �

Lemma 14.4.3 (Theorem V.2). If X is compact and Dim(X) ≤ n then the set of

homeomorphisms from X into I2n+1 is a dense Gδ in the set of all continuous maps

X → I2n+1. (This is non-empty since constant maps are obviously in it.)

Proof. We say g is an ǫ-mapping if diam(g−1(y)) < ǫ for every y (the empty set

has diameter 0). It is easy to check that if X is compact and a continuous map g on X
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is an ǫ-mapping for every ǫ > 0 then g is a homeomorphism. Similarly, compactness

implies the ǫ-mappings form an open set: if h is close enough to g in the supremum

norm and g is an ǫ-mapping, then so is h. We leave this as an exercise for the reader.

So by Baire’s theorem suffices to show that ǫ-maps are dense. Given any contin-

uous f : X → I2n+1 we must approximate it to within η > 0 in the supremum norm

by an ǫ-map g. Choose δ > 0 so that |x − y| < δ implies |f(x) − f(y)| ≤ η/2. Let

{Uj} be a cover of X of order n using diameters ≤ δ and for each Uj choose a point

pj ∈ I2n+2 so that dist(pj, f(Uj)) ≤ η/2 and the pj’s are in general position, i.e., if

we take two disjoint sets of the pj’s each with ≤ n + 1 points then the convex hulls

in I2n+1 do not intersect.

For x ∈ X let wj = dist(x,X \ Uj) and define

g(x) =

∑
wj(x)pj∑
wj(x)

.

This is well defined and continuous since wj(x) > 0 holds for at least one j for each x.

Moreover, g approximates f at x since at most n+ 1 terms in the sum are non-zero,

corresponding to the at most n + 1 elements of the cover containing x. Since these

all have diameter ≤ δ, the values of f at these points differs from f(x) by at most

η/2 and hence the same is true for any weighted average.

Finally, associate to each x ∈ X the linear space spanned by the points pj where

wj(x) > 0. If g(x) = g(y) then the convex hulls of the points pj corresponding

to x and y overlap, so the set of points themselves overlap by out general position

condition. Thus x and y are in a common Uj and hence within δ < ǫ of each other,

as desired. �

14.5. Stable values

If f : X → Y is continuous and y ∈ f(X), we call y a stable value of f if y ∈ g(X)

for every continuous g : X → Y that is sufficiently close to f in the supremum metric.

Otherwise, we can make arbitrarily small perturbations of X that omit the value y.

In this case, y is called an unstable value of f .

Lemma 14.5.1 (Theorem VI.1). If X has dimension ≤ n and f : X → In is

continuous, then f has no stable values.
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Proof. No value in ∂In can be stable since we can approximate f by (1 − δ)f .

If y is an interior point we may apply a homeomorphism of In that maps y to 0 and

so assume y = 0. Fix a small δ > 0 and let C+
j = {x : fj(x) ≥ δ} where fj is

the jth coordinate of f , and similarly define C−
j = {x : fj(x) ≤ −δ}. By Lemma

14.2.12 there are separating sets Bj for these pairs so that ∩Bj = ∅. Define gj = fj

on C+
j ∪ C−

j , gj = 0 on Bj and

gj(x) =
dist(x,Bj)

dist(x, C+
j ) + dist(x,Bj)

,

on U+
j \ C+

j where U+
j is the component of In \ Bj that contains C+

j . Define gj on

U−
j \C−

j analogously. Then g is continuous, approximates f and never take the value

0, since the Bj’s contain no common point. Thus 0 is an unstable value. �

We can now state and prove the converse of Lemma 14.5.1. Note that this gives

a characterization of n-dimensional sets in terms of the existence of stable values: X

has dimension n if and only if there is a continuous map f : X → In that has a stable

value.

Lemma 14.5.2 (Theorem VI.2). If X ⊂ In, n < ∞ has dimension ≥ m, then

there exists a continuous map f : X → In with a stable value.

Proof. We will prove the contrapositive: if f has no stable values, then it is

homeomorphic to a subset of Rm
n , and hence has dimension ≤ m.

Consider the identity f : X → In. If X ⊂ Rm
n then clearly X has dimension

≤ m. If not, choose an image value y that has k ≤ m rational values and let M be

the linear subspace of points that agree with y in these coordinates and let N be the

k-dimensional orthogonal complement. Let fN be the f followed by projection onto

N . Since y is not a stable value of fN , then for any δ > 0, there is a continuous map

gN that approximates fN to within δ. Letting g = (fM , gN), we get a map g : X → In

that approximates f as closely as we wish and so that g(X)∩My = ∅. Moreover, any

map h that is close enough to g will also have this property, i.e., the approximating

maps to f form an open set in the sup-norm topology.

There are a finite number of ways of choosing m coordinates out of n and a

countable number of ways of assigning rational values to these coordinates. For each

such choice the construction above gives an open dense set of maps X → In that
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do not take those particular values at those particular coordinates. By the Baire

category theorem, the intersection of these open dense sets is a dense Gδ set of maps

that never takes rational values at m different coordinates. By Lemma 14.5.2 there is

a dense Gδ of homeomorphisms X → I2n+1 and applying Baire’s theorem again gives

a homeomorphism sending X into Mm−1
n , that has dimension ≤ m − 1 by Lemma

14.2.4. �

Lemma 14.5.3 (Proposition VI.1.B). Suppose f : X → In is continuous and y

is an interior point of In that is unstable. Fix δ > 0. Then f can be approximated

within δ by a map g that omits the value y but agrees with f whenever it takes values

more than δ away from y. Thus stability is a local property.

Proof. Without loss of generality we assume y is the origin and U = B(0, δ).

Since y is unstable there is a h : X → In that approximates f and omits the value y.

Define g = h when |f(x)| ≤ δ/2, g = f when |f(x)| ≥ δ and

g(x) = (1− φ(t))h(x) + φ(t)f(x),

otherwise where t = |f(x)| and φ increases linearly from 0 to 1 as t goes from δ/2 to

δ. It is easy to check g has the desired properties. �

14.6. Continuous extensions

Lemma 14.6.1 (Theorem VI.4). X has dimension ≤ n if and only if for each

closed set K ⊂ X and each continuous mapping f : K → Sn, f has a continuous

extension X → Sn.

Lemma 14.6.1. Sufficiency: By Lemma 14.5.2, it is enough to show that that

no continuous mapping f : X → In+1 has stable values. A stable value can’t occur

on the boundary of In, so assume there is a stable interior value y, and let U be a

small ball around y. Let K = f−1(∂U). This set is closed and by assumption there

is a map F : X → Sn that extends f : K → ∂U = Sn. Define g by setting g = f on

f−1(U) and g = F otherwise. Then g approximates f uniformly and never equals y,

so y is not a stable value of f .

Necessity: Suppose X has dimension ≤ n, K ⊂ X is closed and f : K → Sn is

continuous. With loss of generality we may assume f maps into ∂In+1 instead. By

the Tietze extension theorem, f can be extended to a map F : X → In+1. Lemma
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14.5.1 implies F has no stable values, so in particular, origin in not stable, so we

can approximate F by a map G that never vanishes and agrees with F for values on

∂In+1. Hence G can be composed with radial projection to give a continuous map

onto ∂In+1 that extends f . �

In the next proof we will need

Theorem 14.6.2 (Tietze Extension Theorem). If K is a closed subset if a space

X and f : K → I1 is continuous, then f can be extended to a continuous F : X → I1.

Clearly I1 can be replaced by In by extending the coordinates separately. Also

since Sn is homeomorphic to ∂In+1, the Tietze theorem implies that a map f : K → Sn

can be extended to an open neighborhood of K, by replacing Sn by ∂In+1, extending

to In+1, restricting to the open subset where F avoids the origin and composing by

radial projection back onto ∂In+1.

Lemma 14.6.3 (Corollary to Theorem VI.4). Suppose K is a closed subset of

X. If Dim(X \ K) ≤ n, then every continuous map f : K → Sn has a continuous

extension to X.

Lemma 14.6.3. Suppose f : K → Sn is continuous. Using Tietze’s extension

theorem as before, f has a continuous extension F to an open neighborhood U of K.

Choose an open V with K ⊂ V ⊂ V ⊂ U and note that the restriction maps V \K
to Sn. Thus by the necessity part of Lemma 14.6.1, this map can be extended to a

continuous map G of X \K → Sn and since this agrees with F on V , setting G = f

on K gives a continuous extension of f to all of X. �

Next we need Borsuk’s theorem; as with Brouwer’s and Tietze’s theorem we take

this result as given.

Theorem 14.6.4 (Borsuk’s theorem, Theorem VI.5). Suppose K is closed subset

of X and f, g : KtoSn are homotopic. If there is an extension of f to X, then then

there is an extension of g and the extensions are homotopic.

We say f, g : X → Sn are homotopic if there is a continuous map F : X× [0, 1] →
Sn so that F (x, 0) = f(x) and F (x, 1) = g(x).
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Lemma 14.6.5 (Proposition VI.3.B). Suppose f, g : X → Sn are continuous and

disagree on a set Y of dimension ≤ n− 1. Then f and g are homotopic.

Proof. Y is open. Define a closed set Z ⊂ X × [0, 1] by

Z = (X × {0}) ∪ (X × {1} ∪ (X \ Y )× (0, 1).

Define the homotopy F by F (x, t) = f(x) = g(x) for x 6∈ Y , F (x, 0) = f(x),

F (x, 1) = g(x). The complement of Z is the product Y × (0, 1) which has dimension

≤ n by the product theorem Theorem 14.2.13. By Lemma 14.6.3 we can extend F

to all of X × [0, 1], proving f and g are homotopic. �

Lemma 14.6.6 (Proposition VI.3.C). Suppose X is the union of two closed sub-

spaces K,L and F : K → Sn an G : L→ Sn are continuous and they agree on K ∩L
except possibly on a set of dimension ≤ n− 1. Then F can be extended to all of X.

Proof. The mappings are homotopic by Lemma 14.6.5, so it follows from Bor-

suk’s theorem that F extends from K ∩L to a function H on L. Taking F on K and

H on L gives the extension to X. �

Lemma 14.6.7 (Proposition VI.3.F). Suppose K ⊂ X is closed and {Vλ} is a

collection of open sets that cover X and whose boundaries all have dimension ≤ n−1.

If f : K → Sn can be extended continuously to each Vλ, then it can be extended

continuously to all of X.

Lemma 14.6.7. Since X is separable we may assume {Vλ} is a countable collec-

tion {Vj}. Assume we have already extended f to Fk on Xk = K ∪ V1 ∪ · · · ∪ Vk and

set Yk = (K ∪ Vk+1) \ (V1 ∪ · · · ∪ Vk). By hypothesis f has a continuous extension to

both these sets and these extensions can only disagree in

(Yk ∩ Zk) \K ⊂ ∪kj=1∂Vk

which has dimension ≤ n− 1 by Lemma 14.2.5. Hence we may apply Lemma 14.6.6.

�

14.7. Preimages with large dimension

We can now obtain the goal of this chapter.
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Lemma 14.7.1 (Proposition VI.3.G). Suppose a set X is a union of sets Kλ of

dimension ≤ m and each Kλ has the property that any open neighborhood U of Kλ

contains an open neighborhood V of Kλ whose boundary has dimension ≤ m − 1.

Then X has dimension ≤ m.

Lemma 14.7.1. Suppose K is compact and f : K → Sn is continuous. By

Lemma 14.6.3, f can be extended to K ∪Kλ and hence to an open neighborhood Uλ

of K∪Kλ (by the Tietze extension theorem each coordinate function can be extended

to some fj since it is real-valued and then we restrict to an open neighborhood where
∑
f 2
j > 0). The Tietze theorem is Theorem VI.3 of [72], and can be found in other

texts, such as Munkres’ book [102].

By hypothesis, each Uλ contains a sub-neighborhood Vλ whose boundary has

dimension ≤ m − 1 and hence f extends to K ∪ Vλ ⊂ Uλ. By Lemma 14.6.7, f

extends to all of X, and by Lemma 14.6.1 this proves Lemma 14.7.1 �

Theorem 14.0.3 clearly follows from

Lemma 14.7.2. Suppose X has dimension n, Y has dimension k and f : X → Y

has the property that Dim(f−1(y)) ≤ m for all y ∈ Y . Then n ≤ k +m.

Proof. To prove this, we use induction on k, keeping m fixed. If k = −1, the

set Y is empty and the result is trivially true. Next we assume the result for k − 1

and deduce it for k.

Consider the family of all preimages {Ky} = {f−1(y)} for y ∈ f(X). This is a

decomposition ofX into disjoint compact sets of dimension ≤ m. We claim that these

sets satisfy the hypotheses of Lemma 14.7.1. To see this, take any neighborhood U

of Ky and let C = f(In \ U . This a ball neighborhood V of y that is disjoint from

C and has boundary of dimension k − 1. Then f−1(V ) is an open neighborhood of

Ky inside U and its boundary has dimension ≤ k − 1 +m by induction on k. Thus

Lemma 14.7.1 can be applied to deduce Lemma 14.7.2. �

This completes our “topological” proof of Sullivan’s theorem.





APPENDIX A

Background material

A.1. Hausdorff dimension

Given any set K in a metric space we define the α-dimensional Hausdorff content

as

Hα
∞(K) = inf{

∑

i

|Ui|α},

where {Ui} is a countable cover of K by any sets and |E| denotes the diameter of a

set E.

The Hausdorff dimension of K is defined to be

dim(K) = inf{α : Hα
∞(K) = 0}.

This is equivalent to the original [?], (reprinted in English translation in [45]) defi-

nition, using Hausdorff measure, see Proposition A.1.3.

More generally we define

Hα
ǫ (K) = inf{

∑

i

|Ui|α : K ⊂ ∪iUi, |Ui| < ǫ},

where each Ui is now required to have diameter less than ǫ. The α-dimensional

Hausdorff measure of K is defined as

Hα(K) = lim
ǫ→0

Hα
ǫ (K).

This is an outer measure; an outer measure on a nonempty set X is a function µ∗

from the family of subsets of X to [0,∞] that satisfies

• µ∗(∅) = 0,

• µ∗(A) ≤ µ∗(B) if A ⊂ B,

• µ∗(∪∞
j=1Aj) ≤

∑∞
j=1 µ

∗(Aj).

The α-dimensional Hausdorff measure is even a Borel measure in Rd if α < d (proved

below).

317
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Theorem A.1.1. Let µ be a metric outer measure. Then all Borel sets are µ-

measurable.

For a proof see [?].

The construction of Hausdorff measure can be made a little more general by

considering a positive, increasing function ϕ on [0,∞) with ϕ(0) = 0. This is called

a gauge function and we may associate to it the Hausdorff content

Hϕ
∞(K) = inf{

∑

i

ϕ(|Ui|)},

and Hϕ
ǫ (K), as well as Hϕ(K) = limǫ→0 Hϕ

ǫ (K) just as before. The case ϕ(t) = tα is

just the case considered above. We will not use other gauge functions in the first few

chapters, but they are important in many applications.

Lemma A.1.2. If Hα(K) <∞ then Hβ(K) = 0 for any β > α.

Proof. It follows from the definition of Hα
ǫ that

Hβ
ǫ (K) ≤ ǫ(β−α)Hα

ǫ (K),

which gives the desired result as ǫ→ 0. �

Thus if we think of Hα(K) as a function of α, the graph of Hα(K) versus α shows

that there is a critical value of α where Hα(K) jumps from ∞ to 0. This critical

value is equal to the Hausdorff dimension of the set. Note that Hα
∞(K) = 0 if and

only if Hα(K) = 0. This gives us the following proposition.

Proposition A.1.3.

dim(K) = inf{α : Hα(K) = 0}.

Upper bounds for Hausdorff dimension are computed using explicit covering of

the set. Lower bounds are given by constructing measures supported on the set. The

simplest version of this idea is:

Lemma A.1.4 (Mass Distribution Principle). If E supports a strictly positive

Borel measure µ which satisfies

µ(B(x, r)) ≤ Crα,

for some constant 0 < C < ∞ and for every ball B(x, r), then Hα(E) ≥ Hα
∞(E) ≥

µ(E)/C. In particular, dim(E) ≥ α.
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Proof. Let {Ui} be a cover of E. For {ri}, where ri > |Ui|, we look at the

following cover: choose xi in each Ui, and take open balls B(xi, ri). By assumption,

µ(Ui) ≤ µ(B(xi, ri)) ≤ Cri
α.

We deduce that µ(Ui) ≤ C|Ui|α, i.e.,
∑

i

|Ui|α ≥
∑

i

µ(Ui)

C
≥ µ(E)

C
.

Thus Hα(E) ≥ Hα
∞(E) ≥ µ(E)/C. �

A more refined version of the mass distribution principle is

Lemma A.1.5 (Billingsley’s lemma). Let A ⊂ [0, 1] be Borel and let µ be a finite

Borel measure on [0, 1]. Suppose µ(A) > 0. If

α1 ≤ lim inf
n→∞

log µ(In(x))

log |In(x)|
≤ β1,

for all x ∈ A, then α1 ≤ dim(A) ≤ β1.

For a proof see [?]. Billingsley’s lemma has a further refinement by Rogers and

Taylor which we will not discuss here (see []).

The following result often makes Frostman’s lemma easier to apply by allowing

us to only check the measure estimate on certain sets coming from an iterative con-

struction, instead of all disks.

Lemma A.1.6. Suppose E = ∩∞
n=1En where E1 ⊃ E2 ⊃ E3 . . . . Suppose each

En = ∪kEk
n is a union of closed sets {Ek

n} and that there is a C < ∞ so that

diam(Ek
n) ≥ Cdiam(Ej

n+1) if Ej
n+1 ⊂ Ek

n and so that at most C sets of diameter

≥ r can hit any disk of radius r. If there is a measure µ on E so that µ(Ej
n) ≤

M1diam(Ej
n)
α for all elements of {Ej

n}, then µ is a Frostman measure with the same

exponent α, i.e., µ(D(x, r)) ≤M2r
α for some M2 that depends only on C and M1.

Proof. Without loss of generality we may assume D = D(x, r) has diameter

smaller than the diameter of E. Let D be elements of {Ek
n} that are maximal with

respect to inclusion in D(x, r) (a set is included if it is in D and is not contained in

any other element contained in D). Every set in D has diameter at most 2r and is

therefore contained in an element of E = ∪n ∪k Ek
n with diameter at least 2r and at

most 2Cr and that hits D (we can pass to a sequence of larger sets multiplying the
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diameter by at most C each time). By assumption there are at most C such sets.

Thus µ(D) is less than the mass of at most C sets in our collection, each with mass

at most M1(2Cr)
α. Hence µ(D(x, r) ≤ CM1(2C)

α · rα, as desired. �

Suppose U ⊂ U ⊂ V are Jordan domains and we are given a finite number of

Jordan domains {Vk} with closures contained in U and a collection F of conformal

maps fk : Vk → V . Let Uk = f−1
k (U) ⊂ Vk. Let E1 = ∪kUk, and in general

Ek+1 = ∪kf−1
k (Ek) ⊂ Ek. Define E = ∩kEk. We call E a Cantor repeller for the

iterated function system {U, V F}.

Lemma A.1.7. There is a constant M , depending only on U and V (but not on

F) so that if ∑

k

diam(Uk)
α ≥Mdiam(U)α,

then dim(E) ≥ α.

Proof. We want to show that lemma ?? applies to the sets {Ek} defined above.

Note that each component of Ek is surrounded by an annulus that is a conformal

image of V \U , and hence has a modulus that is independent of k and of the particular

component. This implies that any two component that both have diameter ≥ r are

separated by distance & r. Thus the number of different such components that can

hit the same set of diameter ≤ r is uniformly bounded. By the distortion theorems

for conformal maps, |f ′
k| is comparable to diam(U)/diam(Uk) on all of Uk with a

constant that only depends on U and V (in fact, it only depends on the modulus of

the annulus V \ U). Thus if {Wk}k1 are the components of En+1 contained in some

component W of En, we have

diam(Wj) ≥
1

C
diam(W ) · diam(Uj)

diam(U)
,

for some C depending only on U and V . Hence

k∑

j=1

diam(Wj)
α ≥ diam(W )αC−α

∑k
j=1 diam(Uk)

α

diam(U)α

≥ diam(W )αC−αM

≥ diam(W )α.

This is the second condition in Lemma A.1.6.
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Finally, we define a measure on R by setting inductively setting

µ(Wj) =
diamWj

s

∑k
j=1 diam(Wj)α

µ(W ).

Clearly µ(U) ≤ Cdiam(U) for some finite constant C, and then we argue by induction,

µ(Wj) ≤ diamWj
s

∑k
j=1 diam(Wj)α

Cdiam(W )α

= CdiamWj
s diam(W )α
∑k

j=1 diam(Wj)α

≤ CdiamWj
s · 1.

Thus Lemma A.1.6 applies and so the set E has Hausdorff dimension at least α. �

A.2. Minkowski dimension

Suppose K is a bounded set in Rd (or a totally bounded set in any metric space)

and let N(K, ǫ) be the minimal number of open balls of diameter ǫ needed to cover

K. We define the upper Minkowski dimension as

Mdim(K) = lim sup
ǫ→0

logN(K, ǫ)

log 1/ǫ
,

and the lower Minkowski dimension

Mdim(K) = lim inf
ǫ→0

logN(K, ǫ)

log 1/ǫ
.

If the two values agree, the common value is simply called the Minkowski dimension

of K and denoted by Mdim(K). When the Minkowski dimension of a set K exists,

the number of balls of diameter ǫ needed to cover K grows like ǫ−Mdim(K)+o(1) as ǫ→ 0

. Minkowski dimension is sometimes called the box counting dimension.

In the definitions of Mdim(K) and Mdim(K) it is equivalent to replace N(K, ǫ)

by ND(K, ǫ) where the covering sets of diameter ≤ ǫ are not required to be balls.

This is because N(K, 2ǫ) ≤ ND(K, ǫ) ≤ N(K, ǫ). Also, for a bounded A, Mdim(A) =

Mdim(Ā) and Mdim(A) = Mdim(Ā), where Ā denotes the closure of A. We leave the

proofs to the reader. The Minkowski dimension has several drawbacks. For example,

it need not exist for a general set (see Example ?? and Exercise ??).

EXERCISE: Show that {0} ∪ {1, 1
2
, 1
3
, . . . } has Minkowski dimension 1.

EXERCISE: Construct a compact subset of [0.1] that has different upper and

lower Minkowski dimensions.
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The following relationship between Minkowski and Hausdorff dimension is clear

dim(K) ≤ Mdim(K) ≤ Mdim(K).(54)

Indeed, if Bi = B(xi, ǫ/2) are N(K, ǫ) balls of radius ǫ/2 and centers in xi that cover

K, then consider the sum

Sǫ =

N(K,ǫ)∑

i=1

|Bi|α = N(K, ǫ)ǫα = ǫα−Rǫ ,

where Rǫ =
logN(K,ǫ)
log(1/ǫ)

. For α > lim infǫ→0Rǫ = Mdim(K) we have infǫ>0 Sǫ = 0. Strict

inequalities in (54) are possible.

Also, for E1 ⊂ E2 ⊂ . . . , it is possible that

Mdim(∪nEn) 6= lim
n→∞

Mdim(En)

and the Minkowski dimension of a countable set can be non-zero (see Example ??).

Thus the Minkowski dimension of a countable union of sets is not necessarily the

supremum of the individual dimensions. We shall see in the next section how to

“fix” this by defining packing dimension. First we give some alternate methods for

computing the upper Minkowski dimension.

For any compact set K ⊂ Rd we can define an exponent of convergence

κ = κ(K) = inf{α :
∑

Q∈W
|Q|α <∞},(55)

where the sum is taken over all cubes in some Whitney decomposition W of Ω = Kc

that are within distance 1 of K (we have to drop the “far away” cubes or the series

might never converge). It is easy to check that κ is independent of the choice of

Whitney decomposition (see Exercise ??).

Lemma A.2.1. For any compact set K, κ ≤ Mdim(K). If K also has zero

Lebesgue measure then κ = Mdim(K).

Proof. Let D = Mdim(K). We start with the easy assertion, κ ≤ D. Choose

ǫ > 0 and for for each n ∈ N, let Qn be a covering of K by O(2n(D+ǫ)) dyadic cubes of

side length 2−n. Let W denote the dyadic Whitney cubes that are within distance 1

of K and let Wn ⊂ W be the cubes with side ℓ(Q) = 2−n. For each Q ∈ Wn, choose

a point x ∈ K with dist(x,Q) ≤ 3|Q| and let S(x,Q) ∈ Qn be a cube containing



A.2. MINKOWSKI DIMENSION 323

x. Since |S(x,Q)| = |Q| and dist(Q,S(x,Q)) ≤ 3|Q|, each S ∈ Qn can only be

associated to a uniformly bounded number of Q’s in Wn. Hence

#(Wn) = O(2n(D+ǫ)),

and thus

∑

Q∈W
|Qj|D+2ǫ = O(

∞∑

n=0

#(Wn)2
−n(D+2ǫ))

= O(
∞∑

n=0

2−ǫ))

< ∞,

which proves κ ≤ D + 2ǫ. Taking ǫ→ 0 gives κ ≤ D.

Next we assume K has zero Lebesgue measure and will prove κ ≥ D. Let ǫ > 0.

We have

N(K, 2−n) ≥ 2n(D−ǫ),

for infinitely many n, so suppose n is a value where this occurs and let S = {Sk} be a

covering of K with dyadic cubes of side 2−n. Let Un be cubes in the dyadic Whitney

decomposition of Ω = Kc with side lengths < 2−n. For each Sk ∈ S let Unk ⊂ Un be

the subcollection of cubes that intersect Sk. Because of the nesting property of dyadic

cubes, every dyadic Whitney cube intersecting the interior of some Sk is contained

in that Sk. Since the volume of K is zero, this gives

|Sk|d =
∑

Q∈Unk

|Q|d

(The right side dd/2 times the Lebesgue measure of Sk \K, and the left side is dd/2

times the measure of Sk; these are equal by assumption.) Since −d+D− 2ǫ < 0, we

get
∑

Q∈Unk

|Q|D−2ǫ =
∑

Q∈Unk

|Q|d|Q|−d+D−2ǫ

≥ |Sk|−d+D−2ǫ
∑

Q∈Unk

|Q|d

= |Sk|D−2ǫ
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Hence, when we sum over the entire Whitney decomposition,
∑

Q∈U0

|Q|D−2ǫ ≥
∑

Sk∈S

∑

Q∈Unk

|Q|D−2ǫ

≥
∑

Sk∈S
|Sk|D−2ǫ

≥ N(K, 2−n) · 2−n(D−2ǫ)

= 2nǫ.

Taking n→ ∞, shows κ ≥ D − 2ǫ and taking ǫ→ 0 gives κ ≤ D. �

A.3. Packing dimension

Tricot [137] introduced packing dimension, which is dual to Hausdorff dimension

in several senses and comes with an associated measure.

For any increasing function ϕ : [0,∞) → R such that ϕ(0) = 0 and any set E in

a metric space, define first the packing pre-measure (in gauge ϕ) by

P̃ϕ(E) = lim
ǫ↓0

(
sup

∞∑

j=1

ϕ(diam Bj)

)
,

where the supremum is over all collections of disjoint closed balls {Bj}∞j=1 with centers

in E and diameters diam(Bj) < ǫ. This pre-measure is finitely sub-additive, but not

countably sub-additive, see Exercise ??. Then define the packing measure in gauge

ϕ:

Pϕ(E) = inf

{ ∞∑

i=1

P̃ϕ(Ei) : E ⊂
∞⋃

i=1

Ei

}
.(56)

It is easy to check that Pϕ is a metric outer measure, hence all Borel sets are Pϕ-

measurable, see Theorem A.1.1 in Chapter 1. When ϕ(t) = tθ we write Pθ for Pϕ

(Pθ is called θ-dimensional packing measure).

Finally, define the packing dimension of E:

Pdim(E) = inf
{
θ : Pθ(E) = 0

}
.(57)

We always have

dim(E) ≤ Pdim(E) ≤ Mdim(E).(58)
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The setK = {0} ∪ {1, 1
2
, 1
3
, 1
4
, . . . } is of packing dimension 0, since the packing

dimension of any countable set is 0. Thus

dim(K) = 0 = Pdim(K) < 1/2 = Mdim(K).

(See Example ?? in Chapter ??.)

Packing measures are studied in detail in Taylor and Tricot [135] and in Saint-

Raymond and Tricot [123]; here we only mention the general properties we need.

Proposition A.3.1. The packing dimension of any set A in a metric space may

be expressed in terms of upper Minkowski dimensions:

Pdim(A) = inf

{
sup
j≥1

Mdim(Aj) : A ⊂
∞⋃

j=1

Aj

}
,(59)

where the infimum is over all countable covers of A.

(See Tricot [137], Proposition 2, or Falconer [50], Proposition 3.8.)

For the proof see [?].

Lemma A.3.2. Let A be a separable metric space.

(i) If A is complete and if every non-empty open set V in A satisfies Mdim(V ) ≥
α , then Pdim(A) ≥ α.

(ii) If Pdim(A) > α, then there is a closed nonempty subset Ã of A, such that

Pdim(Ã ∩ V ) > α for any open set V which intersects Ã.

Corollary A.3.3. [Tricot [137], Falconer [50]] Let K be a compact set in a

metric space which satisfies

Mdim(K ∩ V ) = Mdim(K)

for any open set V which intersects K. Then

Pdim(K) = Mdim(K).

A gauge function ϕ is called doubling if

sup
x>0

ϕ(2x)

ϕ(x)
<∞.
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Theorem A.3.4. Assume {f1, . . . , fℓ} are contracting self bi-Lipschitz maps of a

complete metric space, i.e.

ǫjd(x, y) ≤ d(fj(x), fj(y)) ≤ rjd(x, y)

for all 1 ≤ j ≤ ℓ and any x, y, where

0 < ǫj ≤ rj < 1.

Denote by K the compact attractor satisfying (??). Then

(i) Pdim(K) = Mdim(K).

(ii) For any doubling gauge function ϕ such that K is σ-finite for Pϕ we have

P̃ϕ(K) <∞.

A.4. The Riemann-Hurwitz formula

The Riemann-Hurwitz formula gives a relation between the Euler characteristic of

two Riemann surfaces and the number of critical points of holomorphic map between

them. We will only deal with the case of plane domains, where the connectivity c

(the number of boundary components) replaces the Euler characteristic g (for planar

domains g = 2− n).

Theorem A.4.1 (Riemann-Hurwitz formula for planar domains). Let f : V →
W be a k-sheeted, proper, holomorphic map between finitely connected domains on

the Riemann sphere and suppose f has r critical points. Then conn(V ) − 2 =

k(conn(W )− 2) + r.

Proof. We follow the proof given by Norbert Steinmetz in [].

First suppose f has no critical points and W is simply connected. Then f is a

covering map, so V must be simply connected as well, so k = 1. Thus the formula

holds in this case.

Next suppose that f still has no critical points, but conn(W ) = n ≥ 2. We use

induction on n, the case n = 1, having been proven above. Take a cross-cut γ of W

(i.e., a Jordan arc inW with endpoints on ∂W ) that connects different components of

∂W . ThenW ∗ = W \γ is still connected, but conn(W ∗) = conn(W )−1 = n−1. The

inverse images of γ are k cross-cuts of V and cut V into some number of connected
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subdomains V1, . . . , Vq and f is kj sheeted covering Vj → W ∗ where
∑

j kj = k. By

induction, the Riemann-Hurwitz formula is true for maps onto W ∗, so

conn(Vj)− 2 = kj((n− 1)− 2) + 0,

and summing over j gives
q∑

j=1

(conn(Vj)− 2) = k(n− 3) = k(n− 2)− k.

Thus we need to show
q∑

j=1

(conn(Vj)− 2) = conn(V )− 2− k.(60)

To prove this, we use induction by removing cross-cuts from V one at a time. When

no cross-cuts have been removed, (60) is trivial. If the cross-cut has endpoints on the

same boundary component, then it does not divide the domain and the connectivity

is lowered by one; thus both sides in (60) are lowered by 1 and equality is maintained.

If the cross-cut connected points on the same boundary component, then some sub-

domain of connectivity m is divided into two subdomains whose connectivities add

to m + 1. Thus each side in (60) again decreases by 1 and equality is maintained.

This completes the proof of the Riemann-Hurwitz formula in the case when there are

no critical points.

If f has r critical points (with multiplicity) and s critical values, let W ∗ be the

domain obtained by removing the critical values from W and let V ∗ = f−1(W ∗) (we

remove the critical points plus any other points mapping to critical values). Then

f : V ∗ → W ∗ is proper, holomorphic and has no critical points, so the previous case

applies to show

= conn(V ∗)− 2 = k(conn(W ∗)− 2).

Suppose f has r distinct critical points; the orders at these points must sum to k

Suppose the jth critical value wj has kj distinct preimages with multiplicities pj,i,

i = 1, . . . , kj . Since wj has k preimages counted with multiplicity,
∑

i

pj,i = k,

while ∑

i,j

(pi,j − 1) = r,
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since there are r critical points counted with multiplicity. So the number of distinct

preimages of the s critical points is
∑

k

kj =
∑

j,i

1 =
∑

j,i

(pj,i + 1− pj,i) =
∑

j

(
∑

j

pj,i)−
∑

j,i

(pj,i − 1) = sk − r.

Thus

conn(V )−2 = conn(V ∗)−sk+r−2 = k(conn(W ∗)−2)−sk−r = k(conn(W )−2)+r,

which completes the proof of the Riemann-Hurwitz formula in the general case. �

A.5. Approximation theorems

Given a compact set E ⊂ C, the “holes” of E are the bounded complementary

components of E. E does not separate the plane iff there are no holes.

Theorem A.5.1 (Runge’s Theorem). If K ⊂ C does not separate the plane and

f is holomorphic on a neighborhood U of K, then f can be uniformly approximated

on K by holomorphic polynomials.

Proof. SurroundK by a piecewise smooth curve γ in U (e.g., set ǫ = dist(K, ∂U)/10

and cover K by ǫ-boxes and take the boundary of the unbounded complementary

component). Then use the Cauchy integral formula to write

f(z) =
1

2πi

∫

γ

f(w)

w − z
dw.

For any ǫ > 0 we can find a finite set of points {wj} on γ so that

| 1

2πi

∫

γ

f(w)

w − z
dw − 1

2πi

∑

j

f(wj)

wj − z
| < ǫ,

for all z ∈ K. Thus

|f(z)− 1

2πi

∑

j

f(wj)

wj − z
| < ǫ,

gives an approximation of f by rational functions with poles off k.

Next we use a “pole-pushing” argument to show that each pole can be uniformly

approximated on K by a polynomials. Choose a disk Dr large enough to contain K

and choose one of the n poles w = wj as above. Fix ǫ > 0 Connect w wj to ∂Dr by a

piecewise linear path and choose a finite collection of points w = z0, z1, . . . zn ∈ ∂Dr

so that D(zk, 2|zk − zk−1|) ∩ K = ∅. Then any rational function rk−1 with poles
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only at zk−1 has a Laurent expansion at zk that converges on K and by truncating

this series, rk−1 can be approximated to within 2−kǫ/n by a rational function with

poles only at zk. When we reach rk, we can approximate rn by its Taylor series in

Dr to obtain a polynomial approximation to (w − z)−1 that is within ǫ/n. Summing

over all the simple poles on γ and letting ǫ → 0 we obtain a uniform polynomial

approximation to f on K. �

Suppose E is a closed set that does not separated the plane. E is called an

Arakelian set if the holes of E ∪D form a bounded set for every closed disk in C.

This can also be stated by saying that E is locally connected at ∞.

Theorem A.5.2 (Arakelian). If E is an Arakelian set and f is holomorphic on

a neighborhood of E, then for any ǫ > 0 there is an entire function g such that

sup
z∈E

|f(z)− g(z)| < ǫ.

Proof. We follow the proof of Rosay and Rudin [119].

Choose nested closed disks {Dk}∞1 centered at the orgin and filling the plane so

that 1
4
Dk+1 contains Dk and Hk, the closure of the union of holes of E ∪Dk. Let Ek

be the E ∪Dk ∪Hk. Note that Ek has no holes.

Set h0 = f and assume by induction that we have a holomorphic function hk−1

on neighborhood U of Ek−1. Choose a differentiable function ψ such that ψ ≡ 1 on
1
2
Dk+1 ⊂ Dk ∪Hk and ψ ≡ 0 off Dk+1.

Since Ek−1 has no holes, neither does Ek−1 ∩ Dk+1, so Runge’s theorem gives a

polynomial P so that both

|hk−1 − P | ≤ q2−k−1ǫ,

on Ek−1 ∩Dk+1 and

1

π

∫∫

Ek−1

|(hk−1 − P )(w)∂ψ(s)| dxdy|z − w| < 2−k−1ǫ,

for all z ∈ C. The latter holds because ∂ψ = ψx + iψy is zero off Dk+1 and |z −
w|−1 has a uniformly bounded integral over Dk+1, independent of where the pole is.

Because the integrands are bounded, the same inequality holds if Ek−1 is replaced by

a sufficiently small open neighborhood V ⊂ U of Ek−1. Thus

r(z) =
1

π

∫∫

Ek−1

|(hk−1 − P )(w)∂ψ(w)| dxdy|z − w|
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is holomorphic off V , r is bounded by 2−k−1ǫ everywhere and

∂r = (hk−1 − P )∂ψ.

Set

hk = ψP + (1− ψ)hk−1 + r,

in V ∪ 1
2
Dk+1. Then, since ∂P = 0 on C and ∂hk−1 = 0 on V ,

∂hk = P∂ψ − hk−1∂ψ − ∂r = 0,

so hk is holomorphic on V . Since ψ is constant on 1
2
Dk+1, ∂ψ = 0 there, and hence

r is holomorphic there. Since hk = r + P , it is also holomorphic on 1
2
Dk+1.

Thus hk is holomorphic on 1
2
Dk+1 ∪ V , an open neighborhood of Ek and

|hk − hk−1| = |(P − hk)ψ + r| < 2−kǫ

on Ek−1. Since ∪kEk = C, this implies that hk converges uniformly on compact sets

to an entire function g that satisfies the theorem. �

We can improve Runge’s theorem by getting the same conclusion from a weak

hypothesis:

Theorem A.5.3 (Mergelyan’s Theorem). If K ⊂ C does not separate the plane

and f is continuous on K and holomorphic on the interior of K, then f can be

uniformly approximated on K by holomorphic polynomials.

Proof. By Runge’s it suffices to prove that f can be approximated by a holo-

morphic function on some neighborhood of K. First extend f to be continuous on

compact set E containing K in its interior. We also denote the extension by f .

The extension is uniformly continuous on E so given any δ, there is any ǫ so that

|z − w| < 10ǫ implies |f(z) − f(w)| < δ. Convolve f with a smooth, positive bump

function h of total mass 1, supported in an ǫ disk and with all first partial bounded

by O(1/epsilon). Call the result F . By the mean value property F = f at the points

U of the interior of K that are more than distance ǫ from the boundary. Furthermore,

|∂F (z)| = O(δ/ǫ) everywhere (note that ∂F = ∂(F − F (z0)) = (∂h) ∗ (f − f(z0))

which is less than δ on the support of h).

Cover K \U by boxes from an ǫ-grid. For each such box Qj, 4Qj \K contain a of

diameter ǫ and the Riemann map ψj from the complement of this arc to the interior
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of D satisfies

|ψj(z)| > a > 0, z ∈ Q,

|ψj(z)| ≤ bǫ/dist(z,Qj), z ∈ C \ 8Q,
for constants a, b that independent of Q.

Let ϕ(j) be a partition of unity with respect to the doubles of the ǫ-boxes and set

H(z) =
∑

j

ψ3
j (z)[

1

2πi

∫∫
1

z − w
(
ϕj(w)∂F (w)

ψ3
j (w)

)dxdy],

satisfies ∂H = F on the union of the boxes and

|H(z)| ≤
∑

j

O(b3
ǫ3

(1 + dist(z,Qj)3
a−3 · ǫ · δ

/
epsilon) = O(δ),

Since the sum (1 + |z|)−3 over a square lattice is finite. Thus ∂(F − H) = 0 so

F −H is holomorphic and |f −H| ≤ |f −F |+ |F −H| = O(δ) is small. This proves

Mergelyan’s theorem. �

If Runge’s theorem is replaced by in the previous proof of Arakelian’s theorem,

we get:

Theorem A.5.4. If E is an Arakelian set and f is continuous on E and holo-

morphic on the interior of E, then for any ǫ > 0 there is an entire function g such

that

sup
z∈E

|f(z)− g(z)| < ǫ.

We can easily strengthen this to

Corollary A.5.5. If E is an Arakelian set with empty interior and f is contin-

uous on E and holomorphic on the interior of E, then for any continuous, positive

function ǫ(t) on [0,∞) there is an entire function F such that

|f(z)− F (z)| < ǫ(|z|)
for all z ∈ E.

Proof. Apply the second version of Arakelian’s theorem to deduce that there is

an entire function g so that ℜg(z) < log ǫ(|z|) for z ∈ E and an entire function h so

that |h− fe−g| < 1. Then F = heg is entire and

|F − f | = |heg − f | = |eg| · |h− fe−g| < |eg| ≤ ǫ(|z|).
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�

A.6. Logarithmic capacity is a capacity

The title of the section sounds a little odd, but the point is to show that loga-

rithmic capacity as defined in Section ?? satisfies certain properties. A capacity is

a set function f that satisfies

(1) E ⊂ F implies f(E) ≤ f(F ),

(2) f(E) = sup{f(K) : K ⊂ E,Kcompact}.
(3) If E1 ⊂ E2 ⊂ . . . , then f ∗(∪kEk) = lim f ∗(Ek),

where

f ∗(E) ≡ inf{f(U) : E ⊂ U,Uopen}.
It is clear from the definition that logarithmic capacity satisfies the first two condi-

tions, so we now have to prove the third.

Theorem A.6.1. If E1 ⊂ E2 ⊂ . . . , then cap∗(∪kEk) = lim cap∗(Ek),

Our proof closely follows that given in Section III.3 of Carleson’s book [40]. As

there, we give a series of preliminary results before giving the proof of the theorem.

Lemma A.6.2. If Uµ ≤ 1, then for any ǫ > 0 there is an open set U with cap(U) <

ǫ such that Uµ is continuous off U ,

Proof. Consider

U δ
µ(z) =

∫

|w−z|<δ
log

1

|z − w|dxdy.

Since Uµ is bounded, U δ
µ converges to zero pointwise, and so by Egorov’s theorem,

for any δ > 0 there is a compact set K with µ(K) > ‖µ‖ − δ on which it converges

uniformly to zero. Let µ1 be the restriction of µ to this set K and let µ2 = µ − µ1.

Let U1 = Uµ1 and U2 = Uµ2 . Note that U1 is continuous.

Let

Sn = {z : U2(z) >
1

n
}.

Since potentials are lower semi-continuous, this is an open set and by definition

cap∗(Sn) = cap(Sn). If σis an admissible measure for Sn then

δ >

∫
Uσdµ2 =

∫
U2dσ >

1

n
‖σ‖|,
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and so cap(Sn) ≤ nδ.

Choose a sequence δn so that sumnnδn < ǫ and set S = ∪nSn to be the union of

the corresponding sets defined above. Then outside Sn, Uµ is the sum of a continuous

function and a function bounded by 1/n. Hence it is continuous outside S. By

sub-additivity (Lemma ??) cap(S) < ǫ, so the lemma is proven. �

Lemma A.6.3. If µn → µ weak*, and Un = Uµn then

lim inf
n→∞

Un(z) = Uµ(z),

except on a set of outer capacity zero.

Proof. We already know that lim infn→∞ Un(z) ≥ Uµ(z) by Lemma ??, so it

suffices to prove the other direction. By the previous lemma there is an open set

S with small capacity ǫ so that Uµ is continuous off S Consider pairs of rational

numbers p < q and set

Fn,p,q = {z : Uµ(z) ≤ p < q ≤ Un(z)}.
Note that these set are closed and

∪p,q∈Q ∪k ∩n>kFn,p,q
contains the exception set for the lemma. Thus by sub-additivity of outer capacity

(Lemma 34), it suffices to prove

Ek,p,q = ∩n>k{z : Uµ(z) ≤ p < q ≤ Un(z)}
has outer capacity zero.

Since this set is closed, it suffices to prove this for capacity. If this set had positive

capacity, there would be non-zero measure σ supported in it that had a continuous

potential bounded by 1. Thus

0 = lim

∫
Uσd(µ− µn) = lim

∫
(Uµ − Un)dσ ≥ (q − p)‖σ‖ > 0,

which is a contradiction and proves the lemma. �

Lemma A.6.4. For any open set S there is a measure µ so that

(1) Uµ = 1 on S except for a set of zero outer capacity,

(2) Uµ ≤ 1,

(3) ‖µ‖ = cap(S).
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Proof. Write S as a nested union of compact sets F1 ⊂ F2 ⊂ . . . , let µn be the

equilibrium measure on Fn, let Un be its potential function and assume {µn} converges
weak* to a measure µ. Fix δ > 0 and note that En = {z ∈ Fn : Un(z) ≤ 1 − δ}
is a closed set of capacity zero. By the subadditivity of outer capacity (Lemma ??)

Un = 1 everywhere on Fn except a set of outer capacity zero. Lemma A.6.3 and

subadditivity then imply each of the desired properties. �

Proof of Theorem A.6.1. Suppose E1 ⊂ E2 ⊂ . . . and E = ∪En. Let Vn be

open sets containing En with corresponding measure µn given by Lemma A.6.4 so

that

‖µn‖ = cap(Vn) ≤ cap∗(En) +
1

n
.

Passing to subsequence if necessary we can assume µn → µ weak*, and by Lemma

A.6.3 Uµ = 1 on E except possibly on a set S of outer capacity zero. Let Vǫ = {z :

Uµ > 1− ǫ}. Then Vǫ contains E \ S, so

cap∗(E) ≤ cap(E \ S) + cap∗(S) ≤ lc2∗(Vǫ) ≤ ‖µ‖/(1− ǫ) ≤ lim
n

cap∗(En)/(1− ǫ).

Taking ǫ → 0 proves then result and shows that logarithmic capacity is, indeed, a

capacity. �

A.7. Analytic and Borel sets

In this section we prove that every analytic set is capacitable (due to Choquet ??

for Newtonian capacities and to Kishi ?? in general), following the presentation in

Carleson’s book [40]. We start by recalling the relevant definitions.

The Borel sets are the smallest σ-algebra containing the open sets. By a σ-

algebra we mean a collection of sets that is closed under complements and countable

unions. Since

∩An = (∪Acn)c,

a σ-algebra is also closed under countable intersections. The Borel sets are also

divided into subcollections denoted Σ0
α, Π

0
α, indexed by countable ordinals α. These

classes are defined inductively the the conditions

(1) Σ0
1 are the open sets,

(2) Π0
α are the complements of sets in Σ0

α,
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(3) E ∈ Σ0
α iff it is a countable union of sets in Π0

αk
for a collection of ordinals

αk that are strictly less than α.

Details can be found in Kekchris’ book [77]. The main point for us is that any

collection of sets that contains the open sets and the closed sets and that is closed

under countable unions and intersections must contain the Borel sets, even if the

collection itself is not a σ-algebra. The analytic sets form such a collection.

A set A is called analytic, if it can be written as

A = ∪nAn,

where the union is over n ∈ NN, the (uncountable) collection of sequences of natural

numbers n = {n1, n2, . . . }, and

An = An1
∩ An1,n2 ∩ . . . ,

where {An1,...,nk
} is a countable collection of closed sets indexed by finite strings of

natural numbers.

Clearly the analytic sets contain any closed set E since we can simply take

An1,...nk
= E for every index set.

The analytic sets are closed under countable unions because if

Ek = ∪nA
k
n
,

then we can define a new collection of closed sets by

An1,...nk
= An1

n2,...nk
,

so that

∪nAn = ∪k ∪m Ak
m

= ∪kEk,

is analytic.

To see that the analytic sets are closed under countable intersections, suppose we

are given analytic sets

Ek = ∪nA
k
n
,

and define a new collection of closed sets as follows. Divide the natural numbers into

countable many disjoint sequences N = ∪k ∪k skj and choose a sequence of naturals

numbers {tk} that takes every value infinitely often. This choice allows us to merge
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countably many sequences {nkj} into a single sequence by

ni = ntk
s
tk
j

,

where j is the number of times the value tk has occurred in the string t1, . . . , tk,

including tk.

Using this merge operation on sequences we can define an analytic set

E = ∪bAni.

For each fixed infinite string n, x ∈ An if and only if it is in every set of the form

Akn
sk
1

,...,n
sk
j

. This occurs if and only if there are sequences {nk} so that x is in every

set Ank
. Thus E = ∩kEk.

Thus the analytic sets contain the closed sets, are closed under countable unions

(hence contain all open sets) and are closed under countable intersections. By our

remarks above, then must contain all Borel sets. Analytic sets are also called Suslin

sets. Analytic sets can be characterized as the continuous images of Borel sets and

Suslin found an error in an argument of Lebesgue purporting to show projections

of Borel sets are Borel; it turns out that there are analytic sets that are not Borel.

Moreover, the complements of analytic sets need not be analytic; it is a famous

theorem of Suslin [] that if an analytic set has an analytic complement, then it is a

Borel set. Thus the analytic sets do not form a σ-algebra.

Recall that a capacity is a set function f that satisfies

(1) E ⊂ F implies f(E) ≤ f(F ),

(2) f(E) = sup)f(K) : K ⊂ E,Kcompact}.
(3) If E1 ⊂ E2 ⊂ . . . , then f ∗(∪kEk) = lim f ∗(Ek),

and that a set E is called capacitable iff

f(E) = f ∗(E) ≡ inf{f(U) : E ⊂ U,Uopen}.

We showed in Section ??, that logarithmic capacity is a capacity in this sense and

we showed in Section ?? that all closed sets are capacitable for logarithmic capacity.

Now we generalize that result from closed to all analytic sets (hence all Borel sets).

Theorem A.7.1. If all closed sets are capacitable, then all analytic sets are ca-

pacitable.
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Proof. We will not use any particular properties of logarithmic capacity except

for the properties of a general capacity listed above.

Suppose E is analytic. Then it can be written as

E = ∪nAn,

as described above. We can write this union as a countable union

E = ∪kEk = ∪k ∪n:n1<k An,

where n1 denotes the first element of n. By property (3) in the definition of capacity,

f ∗(Ek) ր f ∗(E).

Fix ǫ > 0 and choose k1 so that

f ∗(S1) > f ∗(E)− ǫ/2,

where S1 = Ek1 .

Now repeat the argument with E replaced by Ek1 . We can find a k2 so that

S2 = ∪n:n1<k1,n2<k2An,

satisfies S2 ⊂ S1 and f ∗(s2) > f ∗(S1) − ǫ/4. Continuing by induction we define

analytic sets S1 ⊃ S2 ⊃ . . . so that f ∗(Sn) > f ∗(E)− ǫ for all n.

We claim that ∩nSn ⊂ E. This is a little tricky since it need not be true that

each closed set Sn is in E. To prove the claim define

Fm = ∪n1<k1,...nm<kmAn1,...nm
.

This is a finite union of closed sets, so is closed and hence contains the closure of

Sn. Let F = ∩mFm. It suffices to show F ⊂ E. If x ∈ F , then for every m there

is an An1,...,nm
that contains x. Since each index lies in a finite set, there is at least

one index in each position that occurs infinitely often, and thus there is a sequence

{n1, n2, . . . } so that x ∈ An ⊂ E, proving the claim.

Thus,

f ∗(Sn) ≥ f ∗(Sn) ≥ f ∗(E)− ǫ.

If U is an open set containing S = ∩Sn then U contains Sn if n is large enough. Thus

f(U) ≥ f ∗(Sn) ≥ f ∗(E)− ǫ.
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Taking the infimum over all such U ’s proves

f ∗(S) ≥ f ∗(E)− ǫ.

Since S is closed, it is capacitable, and hence

f(E) ≥ f(S) = f ∗(S) ≥ f ∗(E)− ǫ.

Taking ǫ→ 0 proves the theorem. �

A.8. Boundary continuity of conformal maps and capacity

Given a compact set E ⊂ T we will now define the associated “sawtooth” region

WE and a 2-quasiconformal map between WE and D which keeps E fixed pointwise.

Suppose {In} are the connected components of T \E and for each n let γn(θ) be the

circular arc in D with the same endpoints as In and which makes angle θ with In (so

γn(0) = In and γn(π/2) is the hyperbolic geodesic with the same endpoints as In).

Let Cn(θ) be the region bounded by In and γn(θ), and let WE(θ) = D \ ∪nCn(θ).

Figure 1. The sawtooth domain WE

Let WE = WE(π/8) (and let W ∗
E ⊂ D∗ be its reflection across T). We can map

D to WE by a 2-quasiconformal map f as follows. First let f be the identity on

WE(π/2). Then map Un = Cn(π/2) \ Cn(π/4) (which is a crescent of angle π/4) to

Vn = Cn(π/2)\Cn(3π/8) (which is a crescent of angle π/8) as follows: map Un to the

cone {z : 0 < arg(z) < π/4} by a Möbius transformation, then to {z : 0 < arg(z) <

π/8} by halving the angle and then to Vn by another Möbius transformation. Finally,

map Cn(π/4) to Cn(3π/8) \Cn(π/8) by a Möbius transformation. See Figure 2. It is
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easy to check these maps can be chosen to match up along the common boundaries

and hence define a 2-quasiconformal map.

Figure 2. Mapping the disk to WE

If f : D → Ω and 0 < r < 1, then define

df (r) = sup{|f(z)− f(w)| : |z| = |w| = r and |z − w| ≤ 1− r}.

If ∂Ω is bounded in the plane, then it is easy to see this goes to zero as r ր 1, since

otherwise any neighborhood of ∂Ω would contain infinitely many disjoint disks of a

fixed, positive size.

Lemma A.8.1. Suppose f : D → Ω ⊂ S2 is conformal. Then for any ǫ > 0 there

is a compact set E ⊂ T with cap(T \ E) < ǫ such that f is continuous on WE.

Proof. By applying a square root and a Möbius transformation, we may assume

that ∂Ω is bounded in the plane. Given r < 1 let

E(ǫ, r) = {x ∈ T : |f(sx)− f(tx)| > ǫ for some r < s < t < 1}

and note that by Lemmas ?? and 5.5.3

c̃ap(E(ǫ, r)) ≤ exp(−πǫ2/Ca(r)).

Moreover, this set is open since f is continuous at the points sx and tx. So if we take

ǫn = 2−n, and use the relationship between cap and c̃ap we can choose rn so close

to 1 that cap(En) ≡ cap(E(ǫn, rn)) ≤ ǫ2−n. If we define E = T \ ∪n>1En, then E is

closed and T \ E has capacity ≤ ǫ by subadditivity .

To show f is continuous at every x ∈ WE, we want to show that |x − y| small

implies |f(x) − f(y)| is small. We only have to consider points x ∈ ∂WE ∩ T. First

suppose y ∈ ∂WE ∩ T. Choose the maximal n so that s = |x − y| ≤ 1 − rn. Then

x, y /∈ En, so

|f(x)− f(y)| ≤ |f(x)− f(sx)|+ |f(sx)− f(sy)|+ |f(sy)− f(y)|.
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The first and last terms on the right are ≤ ǫn−1 by the definition of E. The middle

term is at most df (1− s) (which tends to 0 as s→ 0). Thus |f(x)− f(y)| is small if

|x− y| is.
Now suppose x ∈ ∂WE ∩T, y ∈ ∂WE \T. From the definition of WE it is easy to

see there is a point w ∈ ∂WE ∩ T such that |w − y| ≤ 2(1− |y|) ≤ 2|x− y|. For the
point w we know by the argument above that |f(x) − f(w)| is small. On the other

hand, if t = 1− |y|, then

|f(y)− f(w)| ≤ |f(y)− f(tw)|+ |f(tw)− f(w)|.

The first term is bounded by Cdf (1− t) and the second is small since w 6∈ En. Thus

|f(x)− f(y)| is small depending only on |x− y|. Hence f is continuous on WE. �

A.9. Borel sets are analytic

A Polish space is a topological space that can be equipped with a metric that

makes it complete and separable.

If Y is Polish, then a subset E ⊂ Y is called analytic if there exists a Polish

space X and a continuous map f : X → Y such that E = f(X).

Analytic sets are also called Souslin sets in honor of Mikhail Yakovlevich Souslin.

The analytic subsets if Y are often denoted by A(Y ) or Σ1
1(Y ). In any uncountable

Polish space there exist analytic sets which are not Borel sets, see e.g., Proposi-

tion 13.2.5 in [?] or Theorem 14.2 in [?]. By definition, if g : Y → Z is a continuous

mapping between Polish spaces and E ⊂ Y is analytic, then g(E) is also analytic.

In other words, continuous images of analytic sets are themselves analytic, whereas

it is known that continuous images of Borel sets may fail to be Borel sets. This fact

is the main reason why it can be useful to work with analytic sets instead of Borel

sets. The next couple of lemmas prepare for the proof that every Borel set in a Polish

space is analytic.

We first show that analytic sets have a nice representation in terms of sequences.

Let N∞ be the space of all infinite sequences of nonnegative integers equipped with

the metric given by d((an), (bn)) = e−m, where m = max{n ≥ 0: ak = bk for all

1 ≤ k ≤ n} (this space also sometimes denoted NN).
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Lemma A.9.1. For every Polish space X there exists a continuous mapping f : N∞ →
x such that X = f(N∞). Moreover, for all (bn) ∈ N∞, the sequence of diameters of

the sets f({(an) : an = bn for 1 ≤ n ≤ m}) is converging to zero, as m ↑ ∞.

Proof. Given a Polish space x we construct a continuous and surjective map-

ping f : N∞ → X. Fix a metric ̺ making X complete and separable. By separa-

bility, we can cover x by a countable collection of closed balls B(j), j ∈ N of radius

one. We continue the construction inductively. Given closed sets X(a1, . . . , ak),

for (a1, . . . , ak) ∈ Nk, we write X(a1, . . . , ak) as the union of countably many non-

empty closed sets X(a1, . . . , ak, j), j ∈ N of diameter at most 2−k; we can do this

by covering X(a1, . . . , ak) by countable many closed balls of diameter ≤ 2−k with

centers in X(a1, . . . , ak) and then intersecting these balls with X(a1, . . . , ak). Given

(an) ∈ N∞ the set
⋂∞
k=1X(a1, . . . , ak) has diameter zero, hence contains at most one

point. By construction all the sets are non-empty and nested, so if we choose a point

xk ∈ X(a1, . . . , ak) it is easy to see this forms a Cauchy sequence and by completeness

it converges to some point x . Since each X(a1, . . . , ak) is closed it must contain x

and hence
⋂∞
k=1X(a1, . . . , ak) contains x. Define f((an)) = x.

By construction, if (bn) ∈ N∞, the set f({(an) : an = bn for 1 ≤ n ≤ m}) has

diameter at most 2−m+3 → 0, which implies continuity of f . Finally, by the covering

property of the sets, every point x ∈ X is contained in a sequence of setsB(a1, . . . , ak),

k ∈ N, for some infinite sequence (ak) which implies, using the nested property, that

f((an)) = x and hence f(Nn) = X, as required. �

Lemma A.9.2. If E ⊂ X is analytic, then there exists a continuous mapping

f : N∞ → X such that E = f(N∞). Moreover, for any sequence (kn) ∈ N∞,

∞⋂

n=1

f
(
{(an) : an ≤ kn for 1 ≤ n ≤ m}

)
= f

(
{(an) : an ≤ kn for all n ≥ 1}

)
.

Proof. If E ⊂ X is analytic, there exists a Polish space Y and g1 : Y → X

continuous with g1(Y ) = E. From Lemma A.9.1 we have a continuous mapping

g2 : N
∞ → Y such that Y = g2(N

∞). Letting f = g1 ◦g2 : N∞ → X gives f(N∞) = E.

Fix a sequence of positive integers k1, k2, . . . and note that the inclusion ⊃ in the

displayed equality holds trivially. If x is a point in the set on the left hand side, then
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there exist amn with amn ≤ kn for 1 ≤ n ≤ m such that ̺(x, f((amn : n ≥ 1))) < 1
m
.

We successively pick integers a1, a2, . . . with the property that, for every n, the inte-

ger an occurs infinitely often in the collection {amn : am1 = a1, . . . , a
m
n−1 = an−1}. Then

there exists mj ↑ ∞ such that amj

1
= a1, . . . , a

mj

j
= aj and hence (a

mj
n : n ≥ 1) con-

verges, as j → ∞, to (an). Since f is continuous, ̺(x, f((a
mj
n : n ≥ 1))) converges to

̺(x, f((an))) and by construction also to zero, whence x = f((an)). This implies the

x is contained in the set on the right hand side in the displayed equation. �

Our next task is to show that every Borel set is analytic. We will use several

times the simple fact that the finite or countable product of Polish spaces is Polish,

which we leave for the reader to verify.

Lemma A.9.3. Open and closed subsets of a Polish space are Polish, hence ana-

lytic.

Proof. Let X be Polish and ̺ a metric making X a complete and separable

metric space. If C ⊂ X is closed then the metric ̺ makes C complete and separable,

hence C is a Polish space. If O ⊂ X is open, let Y = {(x, y) : y = 1/̺(x,Oc)} ⊂
X×R. Then Y is a closed subset of the Polish space X×R and hence itself a Polish

space. As Y and O are homeomorphic, O is Polish. �

Lemma A.9.4. Let E1, E2, . . . ⊂ X be analytic sets. Then

(1)
∞⋃

i=1

Ei is an analytic set;

(2)
∞⋂

i=1

Ei is an analytic set.

Proof. For every analytic set Ei ⊂ X there exists a continuous fi : N
∞ → X such

that fi(N
∞) = Ei. Then f : N∞ → X given by f((an)) = fa1((an+1)) is continuous

and satisfies f(N∞) =
⋃∞
i=1Ei, as required to show (a).

Now look at continuous mappings fi : Xi → X with fi(Xi) = Ei. Define a

continuous mapping g :
∏∞

i=1Xi → X∞ by g(x1, x2, . . .) = (f1(x1), f2(x2), . . .). The

diagonal ∆ ⊂ X∞ is closed, and so is g−1(∆), by continuity of g. In particular, Y =

g−1(∆) is a Polish space and it is easy to see that f1(Y ) =
⋂∞
i=1Ei, proving (b). �

Lemma A.9.5. If X is Polish, then every Borel set E ⊂ X is analytic.
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Proof. The collection {S ⊂ X : S and Sc are analytic} of sets contains the open

sets by Lemma A.9.3 and is closed under countable unions by Lemma A.9.4. As it is

obviously closed under taking the complement it must contain the Borel sets, which,

by definition, is the smallest collection of sets with these properties. �

A.10. Choquet capacitability

The main step in the extension of Frostman’s Lemma to Borel sets is a technical

device called the Choquet Capacitability Theorem, which we now introduce.

Let X be a Polish space. A set function Ψ defined on all subsets of X is called a

Choquet capacity if

(a) Ψ(E1) ≤ Ψ(E2) whenever E1 ⊂ E2;

(b) Ψ(E) = inf
O⊃Eopen

Ψ(O) for all E ⊂ X;

(c) for all increasing sequences {En : n ∈ N} of sets in X,

Ψ
( ∞⋃

n=1

En
)
= lim

n→∞
Ψ(En).

Given Ψ we can define a set function Ψ∗ on all sets E ⊂ X by

Ψ∗(E) = sup
F⊂Ecompact

Ψ(F ).

A set E is called capacitable if Ψ(E) = Ψ∗(E).

Theorem A.10.1 (Choquet Capacitability Theorem). If Ψ is a Choquet capacity

on a compact metric space X, then all analytic subsets of X are capacitable.

Proof. Let E = f(N∞) ⊂ X be analytic. We define sets

Sk = f
(
{(an) : a1 ≤ k}

)
.

The sequence of sets Sk, k ≥ 1, is increasing and their union is E. Hence, by (c),

given ǫ > 0 we can find k1 ∈ N such that S1 := Sk1 satisfies

Ψ(S1) ≥ Ψ(E)− ǫ

2
.

Having found S1, . . . , Sm−1 and k1, . . . , km−1 we continue the sequence by defining

Skm = f
(
{(an) : ai ≤ ki for i ≤ m− 1, am ≤ k}

)
,



344 A. BACKGROUND MATERIAL

and as the sequence of sets Skm, k ≥ 1, is increasing and their union is Sm−1 we find

km ∈ N with Ψ(Sm) ≥ Ψ(Sm−1)− ǫ2−m. We conclude that

Ψ(Sm) ≥ Ψ(E)− ǫ for all m ∈ N.

Denoting by Sm the closure of Sm we now define a compact set

S =
∞⋂

m=1

Sm.

By Lemma A.9.2 S is a subset of E. Now take an arbitrary open set O ⊃ S. Then

there exists m such that O ⊃ Sm and hence Ψ(O) ≥ Ψ(Sm) ≥ Ψ(E) − ǫ. Using

property (b) infer that Ψ(S) ≥ Ψ(E)− ǫ and, as ǫ > 0 was arbitrary, Ψ∗(E) ≥ Ψ(E).

As Ψ∗(E) ≤ Ψ(E) holds trivially, we get that E is capacitable. �

We now look at the boundary ∂T of a tree. Recall from Lemma ?? that ∂T is a

compact metric space. For any edge e we denote by T (e) ⊂ ∂T the set of rays passing

through e. Then T (e) is a closed ball of diameter 2−|e| (where |e| is tree distance to

the root vertex of the endpoint of e further from the root) and also an open ball of

diameter r, for 2−|e| < r ≤ 2−|e|+1. Moreover, all closed balls in ∂T are of this form.

If E ⊂ ∂T then a set Π of edges is called a cut-set of E if every ray in E contains at

least one edge of Π or, equivalently, if the collection T (e), e ∈ Π, is a covering of E.

Recall from Definition 4.5 that the α-Hausdorff content of a set E ⊂ ∂T is defined as

Hα
∞(E) = inf

{∑∞
i=1 |Ei|α : E1, E2, . . . is a covering of E

}

= inf
{∑

e∈Π 2−α|e| : Π is a cut-set of E
}
,

where the last equality follows from the fact that every closed set in ∂T is contained

in a closed ball of the same diameter.

Lemma A.10.2. The set function Ψ on ∂T given by Ψ(E) = Hα
∞(E) is a Choquet

capacity.

Proof. Property (a) holds trivially. For (b) note that given E and ǫ > 0 there

exists a cut-set Π such that the collection of sets T (e), e ∈ Π, is a covering of E

with Ψ(E) ≥ ∑
e∈Π 2−α|e| − ǫ. As O =

⋃
e∈E T (e) is an open set containing E and

Ψ(O) ≤ ∑
e∈Π 2−α|e| we infer that Ψ(O) ≤ Ψ(E) + ǫ, from which (b) follows. We
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now prove (c). Suppose E1 ⊂ E2 ⊂ . . . and let E =
⋃∞
n=1En. Fix ǫ > 0 and choose

cut-sets Πn of En such that

(61)
∑

e∈Πn

2−α|e| ≤ Ψ(En) +
ǫ

2n+1
.

For each positive integer m we will prove that

(62)
∑

e∈Π1∪···∪Πm

2−α|e| ≤ Ψ(Em) + ǫ.

Taking the limit as m→ ∞ gives

Ψ(E) ≤
∑

e∈Π1∪...
2−α|e| ≤ lim

m→∞
Ψ(Em) + ǫ.

Taking ǫ→ 0 gives Ψ(E) ≤ limm→∞Ψ(Em). Since the opposite inequality is obvious,

we see that (62) implies (c).

For every ray ξ ∈ E we let e(ξ) be the edge of smallest order in ξ ∩⋃nΠn. Note

that Π = {e(ξ) : ξ ∈ E} is a cut-set of E and no pair of edges e1, e2 ∈ Π lie on the

same ray. Fix a positive integerm and let Q1
m ⊂ Em be the set of rays in Em that pass

through some edge in Π ∩Π1. Let Π
1
m be the set of edges in Πm that intersect a ray

in Q1
m. Then Π1

m is a cut-set for Q1
m and hence for Q1

m∩E1, and hence Π1
m∪ (Π1 \Π)

is a cut-set for E1. From our choice of Π1 in (61) and the fact that Ψ(E1) is a lower

bound for any cut-set sum for E1 we get
∑

e∈Π1

2−α|e| ≤ Ψ(E1) +
ǫ

4
≤

∑

e∈Π1
m∪(Π1\Π)

2−α|e| +
ǫ

4
.

Now subtract the contribution from edges in Π1 \ Π on both sides, to get
∑

e∈Π∩Π1

2−α|e| ≤
∑

e∈Π1
m

2−α|e| +
ǫ

4
.

Now iterate this construction. Suppose 1 ≤ n < m and Π1
m, . . . ,Π

n
m are given. Set

Π∗
n+1 = Πn+1 \ (Π1∪ . . .∪Πn) and let Qn+1

m be the set of rays in Em that pass through

some edge in Π∩Π∗
n+1. Let Π

n+1
m be the set of edges in Πm that intersect a ray in Qn+1

m .

Then, as above, Πn+1
m is a cut-set for Qn+1

m ∩En+1, and hence Πn+1
m ∪(Πn+1\(Π∩Π∗

n+1))

is a cut-set for En+1. Using (61) and subtracting equal terms as before gives

∑

e∈Π∩Π∗

n+1

2−α|e| ≤
∑

e∈Πn+1
m

2−α|e| +
m∑

n=1

ǫ

2n+2
.
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∑

e∈Π∩(Π1∪···∪Πm)

2−α|e| ≤
m∑

n=1

(
∑

e∈Πn
m

2−α|e| +
ǫ

2n+1
) ≤

∑

e∈Πm

2−α|e| +
ǫ

4
≤ Ψ(Em) + ǫ.

This is (62) and completes the proof. �

The following is immediate from Lemma A.10.2.

Corollary A.10.3. If an analytic set E ⊂ ∂T has Hα(E) > 0, then there exists

a compact set A ⊂ E with Hα(A) > 0.

Proof. Recall that by Proposition ?? Hausdorff content and Hausdorff measure

vanish simultaneously. Hence, if E is analytic and Hα(E) > 0, then Ψ(E) > 0.

Lemma A.10.2 implies that there exists a compact set A ⊂ E with Ψ(A) > 0, and

therefore Hα(A) > 0. �

All that remains to be done now is to transfer this result from the boundary of a

suitable tree to Euclidean space.

Theorem A.10.4. Let E ⊂ Rd be a Borel set and assume Hα(E) > 0. Then

there exists a closed set A ⊂ E with Hα(A) > 0.

Proof. We find a hypercube Q ⊂ Rd of unit sidelength such thatHα(E∩Q) > 0,

and a continuous mapping Φ: ∂T → Q from the boundary of the 2d-ary tree T to

Q, mapping closed balls T (e) onto compact dyadic subcubes of sidelength 2−|e|. The

α-Hausdorff measure of images and inverse images under Φ changes by no more than

a constant factor. Indeed, for every B ⊂ ∂T , we have |Φ(B)| ≤
√
d|B|. Conversely,

every set B ⊂ Q of diameter 2−k lies in the interior of the union of no more than

3d compact dyadic cubes of sidelength 2−k, whence the edges corresponding to these

dyadic cubes form a cut-set of Φ−1(B). Therefore,Hα(E∩Q) > 0 impliesHα(Φ−1(E∩
Q)) > 0. As Φ−1(E∩Q) is a Borel set and hence analytic we can use Corollary A.10.3

to find a compact subset A with Hα(A) > 0. Now Φ(A) ⊂ E∩Q is a compact subset

of E and Hα(Φ(A)) > 0, as required. �

Given a Borel set E ⊂ Rd with Hα(E) > 0 we can now pick a closed set A ⊂ E

with Hα(A) > 0, apply Frostman’s lemma to A and obtain a probability measure on

A (and, by extension, on E) such that µ(D) ≤ C|D|α for all Borel sets D ⊂ Rd. The

proof of Theorem A.10.4 also holds for Borel sets E with Hausdorff measure Hϕ(E) >

0 taken with respect to a gauge function ϕ.
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We have adapted the proof of Theorem A.10.4 from [?]. For a brief account

of Polish spaces and analytic sets see [?] For a more comprehensive treatment of

analytic sets and the general area of descriptive set theory, see the book of [?]. There

are several variants of Choquet’s Capacitability Theorem, see, for example, [?] for

an alternative treatment and for other applications of the result, e.g., the infimum of

the hitting times of Brownian motion in a Borel set define a stopping time.

A.11. Wiman-Valiron theory via power series

In this and the following section we outline an alternate method for proving the

existence of escaping (and of fast points). This was the method originally used

by Eremenko, although in the text we have presented more recent proofs due to

Dominguez (Theorem 1.7.1) and to Bergweiler, Rippon and Stallard (Theorem 6.5.2).

The later is a generalization of the Wiman-Valiron method to functions defined on

tracts; here we discuss the original case of entire functions, with the proof based on

power series.

If f is entire, then is has a Taylor series expansion

f(z) =
∞∑

n=0

anzn.

Since the radius of convergence is ∞, the coefficients satisfy

lim
n→∞

|an|1/n = 0.

Thus for any fixed r, |an|rn → 0 and hence the supremum

µ(r) = µ(r, f) = sup
n

|an|rn,

is attained. We let N(r) = N(r, f) denote the largest index n where the maximum is

taken. This is an increasing step function and is right continuous at the jump points.

Note that the jumps are > 1 when the maximum of |an|rn is attained at several

different indices. N(r) is called the central index of f at r. (From now on we will fix

f and simply write M(r), µ(r), N(r) unless we need to stress the dependence on the

function f .)

Lemma A.11.1. µ(r) ≤M(r).
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Proof. By rescaling we may assume r = 1, µ(r) = 1 and aN = 1 where N =

N(1). Then g(z) = f(z)− zN is perpendicular to zN in L2 of the unit circle, so

0 =

∫

|z|=1

zNg(z)ds =

∫

|z|=1

zNf(z)− zNds =

∫

|z|=1

zNf(z)ds− 2π.

This implies
∫
|z|=1

|f |ds ≥ 2π and hence |f | ≥ 1 somewhere on the unit circle. Thus

M(1) ≥ µ(1), as desired. �

One of the remarkable consequences of Wiman-Valiron theory is that this inequal-

ity can be reversed in a certain sense. There are several ways to make this precise;

one says that for any δ > 0, we have

M(r) ≤ µ(r)(log µ(r))1/2(log log µ(r))1+δ,

for all r > 0 except a set of finite logarithmic measure. See Theorem 6 of [65].

However, we will not pursue this particular line of reasoning. Our goal is to use

the Wiman-Valiron method to show that near a point where f attains a circular

maximum, i.e., near a point z such that

|f(z)| =M(|z|, f),

f behaves like the power function wN(|z|). Before making and proving a precise

statement, we will deal with a number of more technical details.

As noted above, the sequence {|an|rn} attains a maximum value at n = N = N(r).

By definition, moving to the left or right of N gives smaller terms, but we would like

these terms to decay quickly to zero as we move away from N . An ideal estimate

would be

|an|rn ≤ µ(r) exp(−bk2),
where n = N + k and c > 0, but this is too much to ask for. However, the estimate

is true if we replace the constant b by a function of N + |k| that tends slowly to zero.

The reader by take b(t) = t−1−δ in the proof below.

Lemma A.11.2. If f(z) =
∑
anz

n is an entire function, and b(x) is a positive,

strictly decreasing, integrable function on [0,∞). Then there is a set E of finite

logarithmic measure and a constant K > 0 so that for r ∈ [1,∞) \ E

|an|rn ≤ µ(r) exp(−1

2
b(max(N, n)) · (N − n)2).
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Proof. Let

rn = rn(f) = inf{r : N(r) ≥ n}.

Note that rn increases to infinity with n and that for each n there is an r ∈ [rn, rn+1]

such that

|an|rnn ≤ |an|rn = |an+1|rn+1 ≤ |an+1|rn+1
n1

.

Thus

|an+1|
|an|

=
rn

rn+1
=

1

r
,

so

1

rn+1

≤ |an+1|
|an|

=
rn

rn+1
≤ 1

rn
.

Thus

an
a0

=
a1
a0

· a2
a1

· · · an
an−1

· = 1

r0r1 · · · rn−1

.(63)

Set B(t) =
∫ t
0
b(s)ds. This is an increasing, concave down function that ap-

proaches as finite limit as t→ ∞. For integers n ≥ 0 define

αn = exp(−
∫ n

0

B(t)dt), ρn = exp(B(n)).

Note that the α’s decrease to zero, and the ρ’s increase to a finite limit. Since b is

strictly decreasing, B is increasing but concave down, so

log ρn+1 = logB(n+ 1) ≥
∫ n+1

n

B(t)dt = − log
αn+1

αn
≥ B(n) = log ρn,

and hence

log
αn
αn−1

> − log ρn > log
αn+1

αn
,

or equivalently,

0 < ρ0 <
α0

α1

< ρ1 <
α1

α2

. . . .

Using a telescoping product, this implies for n > N ,

ρN−n
n ≤ 1

ρn
· · · 1

ρN+1

≤ αn
αN

=
αn
αn−1

· · · αN+1

αN
≤ 1

ρn−1

. . .
1

ρN
≤ ρN−n

N(64)
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If m < n, the definitions above and integration by parts give

αn
αm

ρn−mm = exp(−
∫ n

m

[B(t)− B(m)]dt)

= exp(−
∫ n

m

(n− t)b(t)dt)

≤ exp(−
∫ n

m

(n− t)b(n)dt)

≤ exp(−1

2
b(n)(n−m)2)

Thus for general n and m,

αn
αm

ρn−mm = exp(−1

2
b(max(m,n)) · (n−m)2).

To finish the proof we must show that if N = N(r), then for all n ∈ N,

|an|rn ≤ µ(r) · αn
αN

ρn−NN = |aN |rN · αn
αN

ρn−NN(65)

holds for all r outside some exceptional set E of finite logarithmic measure.

First let us estimate the set of r’s we must throw away when n ≤ N . In this case,

we have αn > αN and so (65) follows from

|an|rn ≤ |aN |rNρn−NN ,

or equivalently

|an|(
r

ρN
)n ≤ |aN |(

r

ρN
)N .(66)

This holds by definition if N(r/ρN) = N(r), i.e., r ∈ ρNIN = (ρNrN , ρNrN+1) for

some N . The complement of this union of intervals has finite logarithmic measure

by Lemma 6.3.1.

Next we estimate the set we must omit due to indices n > N . In this case, (66)

follows from

|an|(rρN)n
|aN |(rρN)N

≤ αnρ
n
N

αNρNN
(67)

since (64) implies the right hand side is ≤ 1. We cancel the ρN ’s and rewrite this as

|an|
|αn

rn ≤ |aN |
αN

rN(68)

or

cnr
n ≤ cNr

N(69)
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where we set cn = |an|/αn. Suppose for the moment that F (z) =
∑

n cnz
n is entire, so

that the central index of F makes sense. Then (66) holds as long asN(r, f) = N(r, F ).

(67) implies this is true if r ∈ (Rnρn, Rn+1ρn), and hence the exception set of r’s is

the union of complementary intervals

∪n(Rnρn−1, Rn+1ρn+1),

which has finite logarithmic measure by Lemma 6.3.1.

Finally, we have to prove that the {cn} are the Taylor coefficients of an entire

function, i.e., that

lim
n
c1/nn = 0.

Combining (63) and (64) gives

(
an
αn

)1/n ≤ (
a0
α0

ρ1 · · · ρn
r1 · · · rn

)1/n,

and this tends to zero since the ρn’s are bounded above and the rn’s tend to ∞. �

Now that we have the pointwise estimate, we show that the sum of terms far from

the central index is small. This is somewhat involved, but is really just a matter of

breaking an infinite sum into pieces and estimating each piece separately.

Lemma A.11.3. Suppose f is a transcendental entire function, r > 0, and N =

N(r, f). Assume b has been chosen to be positive, decreasing, integrable and satisfy

1

Ct2
≤ b(t) ≤ C

t| log t| and b
′(t) = O(b(t)/t).

If γ > 1 and

k =

⌊
1√

γb(N)| log b(N)|

⌋
,

| log ρ/r| < 2/k and σ < (γ − 1)/2 , then
∑

|n−N |≥k

|an|ρn
|aN |ρN

= o(b(N(r))σ),

uniformly as r → ∞ outside a set of finite logarithmic measure.

Proof. One difficulty with the desired estimate is that our pointwise estimates

of the terms on the left hand side from Lemma A.11.2 involve the central index of

ρ, whereas the right hand side only involves the central index of r. This would be

fine if N(r) = N(ρ), but will be a problem if the central index changes rapidly near
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r, so our first step will be to exclude the set of finite logarithmic measure where this

happens.

The basic strategy is to choose an η > 0 and cut the sum into pieces
∑

|n−N |≥k
=

∑

n≥(1+η)N

+
∑

n≤(1−η)N
+

∑

N+k≤n<(1+η)N

+
∑

(1−η)N<n≤N−k
= I + II + III + IV,

and prove

I, II = O(N−β),

for any β > 0 and

II, IV = O(b(N(r))−σ).

Given any ǫ > 0 our assumptions on b imply that there is an 0 < η < 1 so that

b((1 + η)t) ≥ (1− ǫ)b(t).

Fix ǫ so that σ < (1− ǫ)2γ and choose η so the inequality above is true. Next choose

α ≤ η/2, and set A = exp(N−α) and M = N(Ar, f). By Lemma ?? N ≤ M ≤
(1 + α)N, outside a set of finite logarithmic measure. Assume that we exclude this

set, as well as the exceptional set for Lemma A.11.2. Since M is the central index

for Ar, we have

|an|(Ar)n ≤ |aM |(Ar)M ,
for every n. Using the fact that N and M are central indices for r and Ar we get

|an|ρn
|aN |ρN

=
|an|(Aρ)n
|aM |(Aρ)N · |aM |rM

|aN |rN
· AM−n(

ρ

r
)n−M

≥ 1 · 1 · AM−n(
ρ

r
)n−M .

First assume that n > (1 + η)N . Since M ≤ (1 + α)N ≤ (1 + η/2)N , we have

n−M ≥ n− (1 + η/2)N ≥ nη/2

hence

AM−n ≤ Aηn/2 = exp(−1

2
ηnN−α).

Also,

(
ρ

r
)n−M ≤ exp((n−M)2/k).

Hence

|an|ρn
|aN |ρN

≤ exp(−1

2
ηnN−α + 2n/k).
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Our definition of k and assumptions on b imply

1

k
= O(

√
b(N)| log b(N)|) = O((N logN)−1/2)) = o(N−α),

since α ≤ η/2 < 1. Thus

|an|ρn
|aN |ρN

≤ exp(−1

3
ηnN−α),

if r is large enough (and hence n is large). Thus by the geometric sum formula

∑

n≥(1+η)N

|an|ρn
|aN |ρN

≤
∑

n≥(1+η)N

exp(−1

3
ηnN−α)

= O(
exp(−1

3
η(1 + η)N1−α)

1− exp(−ηN−α/3)
)

= O(
1

η
Nαexp(−ηN1−α/3))

= O(N−β)

= O(b(N)β/2)

for any β > 0.

Next assume n ≤ (1− η)N and repeat the argument above, replacing Ar by r/A.

Since M ≥ (1− α)N ≥ (1− η/2)N , we have

M − n ≥ (1− η/2)N − n ≥ Nη/2

and hence

An−M ≥ A−ηN/2 = exp(−1

2
ηN1−α).

We get

|an|ρn
|aN |ρN

≤ exp(−1

2
ηN1−α + 2N/k) ≤ exp(−1

3
ηN1−α),

using the definition of k as before. Now we are summing ≤ N terms of the same size,

so
∑

n≤(1−η)N

|an|ρn
|aN |ρN

≤ N exp(−1

3
ηN1−α)

= O(N−β)

for any β > 0.
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Finally we consider (1 − η)N < n ≤ N − k and N + k ≤ n < (1 + η)N . Recall

that b((1 + η)N) > (1 − ǫ)b(N) and ρ = ret where t ≤ 2/k. Lemma A.11.2 implies

that for N − p| ≤ ηn (except for a set of finite logarithmic measure),

|an|ρn
|aN |ρN

≤ |an|(ret)n
|aN |(ret)N

≤ |an|rn
|aN |rN

et(n−N)

≤ |an|rn
|aN |rN

et|p|

≤ exp(−1

2
b(N + ηN)p2 + t|p|)

≤ exp(t|p| − 1

2
(1− ǫ)b(N)p2)

≤ exp(|p|(t− b|p|))

where b = 1
2
(1− ǫ)b(N). Recall that 1/k = O(

√
b(N)/| log b(N)|) = o(

√
b), so

t =
2

o(k
√
b)

= o(b/
√
b) = o(bk) ≤ ǫb|p|,

if r is large enough. Thus

|an|ρn
|aN |ρN

≤ exp(−(1− ǫ)bkp)

and thus by the geometric formula

∑

k≤|p|≤ηN

|an|ρn
|aN |ρN

≤
∞∑

p=k

exp(−(1− ǫ)bp2/2)

= O(
1

bk
exp(−bk2/2))

= O(
1√
b
exp(−1

2
(1− ǫ)2b(N)γb(N)−1| log b(N)|))

= O(b(N)−1/2 exp(−γ
2
(1− ǫ)2| log b(N)|))

= O(b(N)−σ)

�
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Most of the hard work is finished now. All that remains is a simple lemma about

polynomials and then we can state and prove the main consequence of the Wiman-

Valiron method that we will need for dynamics.

Lemma A.11.4. Suppose P is polynomial of degree m and |P | ≤M on Dr. Then

|P ′(z)| ≤ eMn|z|m−1r−m.

Moreover, if |P (z)| =M , then

1

2
|P (z)| ≤ |P (w)| ≤ 3

2
|P (z)|,

for |w − z| < r/8m.

Proof. Since P (z)/zm is holomorphic on D
c

r with a removable singularity at ∞,

the maximum principle implies p(Z) ≤ M |z|m. The Cauchy estimate on a circle of

radius t = |z|/m around z gives

|P ′(z)| ≤ m

|z| max
|w−z|=t

|P (z)| ≤ m

|z|Mr−m|z|m(1 + 1

m
)m ≤ emMr−m|z|m−1.

If |z| = r and |z − w| ≤ r/8m, then on the line segment between z and w we have

|P ′| ≤ emMr−m(r(1 +
1

8m
))m−1 ≤ 4mM

r

so

|P (z)− P (w)| ≤ |z − w|4mM
r

≤ 1

2
M =

1

2
|P (z)|,

which implies the desired estimate. �

Theorem A.11.5. Suppose f is entire, r > 0, N = N(r, f), |z| = r, and |f(z)| =
M(r, f). Suppose that b and k satisfy the conditions of Lemma A.11.3. Then there

is a set E of finite logarithmic measure so that for r 6∈ E,

f(w) = f(z)(
w

z
)N(1 +O(δ) + o(1))),

whenever |z − w| ≤ δ|z|/k and r ր ∞.

Proof. Taking σ = 4 in Lemma A.11.3 we get

f(z) =
∞∑

n=0

anz
n =

N+k∑

N−k
anzn + o(|aN ||z|Nb(N)4),
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for all large r outside a set of finite logarithmic measure. Using Lemma A.11.1 and

our assumption b(N) = O(1/N),

f(z) =
N+k∑

N−k
anzn + o(|aN ||z|NN−4) = zN−kP (z) + o(M(|z|, f)N−4),

where P is a polynomial of degree ≤ 2k. On the circle of radius r,

rN−k|P (z)| = |f(z)− o(M(f )N−4)| ≤ |f(z)|+ o(M(r, f)) = (1 + o(1))M(r, f).

Fix an ǫ > 0 and set M = (1 + ǫ)rk−NN(r, f). Then if r is large enough, we have

|P | ≤ M on the circle of radius r. Suppose z is the point on this circle where |f |
attains its maximum, m(r, f). Then

rN−k|P (z)| = |f(z)| − o(M(r, f)) ≥ (1− o(1))M(r, f),

so

|P (z)| ≥ (1− o(1)M0 ≥
1− ǫ

1 + ǫ
M0 ≥ (1− 3ǫ)M0,

if r is large enough (and not in E) and ǫ is small enough. Thus by Lemma A.11.4

1

2
|P (z)| ≤ |P (w)| ≤ 3

2
|P (z)|,

for |z − w| < (1− 3ǫ)r/16k. For these same w, we have for ρ = |w|

w−Nf(w) = w−kP (w) + o(|aN |N−4)

= w−kP (w) + o(r−Nµ(r, f)N−4)

= w−kP (w) + o(r−NM(r, f)N−4)

= w−kP (w) + o(r−kMN−4)

= w−kP (w) + o(ρ−kMN−4)

= w−kP (w) + o(ρ−kP (z))

In the last line we replaced rk by ρk. This is justified since |r − ρ| ≤ r
k
and hence

(1− 1

k
)k ≤ (

r

ρ
)k ≤ (1 +

1

k
)k,

which is uniformly bounded above and below. Hence

f(w) = wN−kP (w) + o(ρN−k|P (z)|).

Setting w = z gives

f(z) = zN−kP (z) + o(rN−kP (z))
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or

1 =
f(z)

zN−kP (z)
(1 + o(1)),

and multiplying equations gives

f(w) = [f(z)(
w

z
)N−kP (w)

P (z)
+ o(|ρ

r
|N−k||f(z)|)](1 + o(1))

= f(z)(
w

z
)N−k(1 +O(

|P (w)− P (z)|
|P (z)| )(1 + o(1)

= f(z)(
w

z
)N−k(1 +O(2k|z − w|) + o(1)

) = f(z)(
w

z
)N−k(1 +O(δ) + o(1)).

�

A.12. Extremal length, symmetry and Koebe’s 1
4
-theorem

Here we given another proof of Koebe’ theorem using extremal length.

If γ is a path in the plane let γ̄ be its reflection across the real line and let

γ+ = (γ ∩ H) ∪ γ ∩ L, where H,L denote the upper and lower half-planes. If Γ is a

path family in the plane then Γ = {γ̄ : γ ∈ Γ} and Γ+ = {γ+ : γ ∈ Γ}.

γ
γ+

Figure 3. The curves γ and γ+

Lemma A.12.1. If Γ = Γ then M(Γ) = 2M(Γ+).
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Proof. We start by proving M(Γ) ≤ 2M(Γ+). Given a metric ρ, define σ(z) =

max(ρ(z), ρ(z̄)). Then for any γ ∈ Γ,∫
+γ+σds ≥

∫

γ+
ρds ≥ inf

γ∈Γ

∫

γ

ρds.

Thus if ρ admissible for Γ+, then σ is admissible for Γ Thus, since max(a, b)2 ≤ a2+b2,

M(Γ) ≤
∫
σ2dxdy ≤

∫
ρ2(z)dxdy +

∫
ρ2(z̄)dxdy ≤ 2

∫
ρ2(z)dxdy.

Taking the infimum over admissible ρ’s for Γ+ makes the right hand side equal to

2M(Γ+), proving the claim.

For the other direction, given ρ define σ(z) = ρ(z) + ρ(z̄) for z ∈ H and σ = 0 if

z ∈ lhp. Then∫

γ+
σds =

∫

γ+
ρ(z) + ρ(z̄)ds

=

∫

γ∩H
ρ(z)ds+

∫

γ∩H
ρ(z̄)ds+

∫

γ∩L
ρ(z) +

∫

γ∩L
ρ(z̄)ds

=

∫

γ

ρ(z)ds+

∫

γ̄

ρ(z)ds

≥ 2 inf
r
ho

∫

γ

ρds.

Thus if ρ is admissible for Γ, 1
2
σ is admissible for Γ+. Hence, since (a+b)2 ≤ 2(a2+b2),

M(Γ+) ≤
∫
(
1

2
σ)2dxdy

=
1

4

∫

H

(ρ(z) + ρ(z̄))2dxdy

≤ 1
2

∫

H

ρ2(z)dxdy +

∫

H

ρ2(z̄)dxdy

=
1

2

∫
ρ2dxdy.

Taking the infimum over all admissible ρ’s for Γ gives 1
2
M(Γ) on the right hand side,

proving the lemma. �

Lemma A.12.2. Let D∗ = {z : |z| > 1} and Ω0 = D∗ \ [R,∞) for some R > 1.

Let Ω = D∗ \K, where K is a closed, unbounded, connected set in D∗ which contains

the point {R}. Let Γ0,Γ denote the path families in these domains with separate the

two boundary components. Then M(Γ0) ≤M(Γ).
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Proof. We use the symmetry principle we just proved. The family Γ0 is clearly

symmetric (i.e., Γ = Γ, so M(Γ+) = 1
2
M(Γ0). The family Γ may not be symmetric,

but we can replace it by a larger family that is. Let ΓR be the collection of rectifiable

curves in D∗\{R} which have zero winding number around {R}, but non-zero winding
number around 0. Clearly Γ ⊂ ΓR and ΓR is symmetric soM(Γ) ≥M(ΓR) = 2M(Γ+

R).

Thus all we have to do is show M(Γ+
R) = M(Γ+

0 ). We will actually show Γ+
R = Γ+

0 .

Since Γ0 ⊂ ΓR is obvious, we need only show Γ+
R ⊂ Γ+

0 .

Figure 4. The annulus on top has smaller modulus than any other
annulus formed by connecting R to ∞.

Suppose γ ∈ ΓR. Since γ has non-zero winding around 0 it must cross both the

negative and positive real axes. If it never crossed (0, R) then the winding around 0

and R would be the same, which false, so γ must cross(0, R) as well. Choose points

z− ∈ γ ∩ (−∞, 0) and z+ ∈ γ ∩ (0, R). These points divide γ into two subarcs γ1 and

γ2.Then γ
+ = γ+1 ∪γ+2 . But if we reflect γ+2 into the lower half-plane and join it to γ+1

it forms a closed curve γ0 that is in Γ0 and γ+0 = γ+. Thus γ+ ∈ Γ+
0 , as desired. �

Let Ωǫ,R = {z : |z| > ǫ} \ [R,∞). Thus Ω1,R is the domain considered in the

previous lemma. We can estimate the moduli of these domains using the Koebe map

k(z) =
z

(1 + z)2
= z − 2z2 + 3z3 − 4z4 + 5z5 − . . . ,

which conformal maps the unit disk to R2 \ [1
4
,∞) and satisfies k(0) = 0, k′(0) = 1.

Then k−1( 1
4R
z) maps Ωǫ,R conformally to an annular domain in the disk whose outer

boundary is the unit circle and whose inner boundary is trapped between the circle

of radius ǫ
4R
(1±O( ǫ

R
). Thus the modulus of Ωǫ,R is 2π log 4R

ǫ
+O( ǫ

R
).
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Lemma A.12.3. Suppose z, w ∈ D and K is a compact connected set in D which

contains both these points. Let Γ be the path family that separates K and T. Then

the modulus of this family is maximized when K is the hyperbolic geodesic between z

and w in which case the modulus is 2π log 4
ρ
(z, w) + O(ρ(z, w)), where ρ denotes the

hyperbolic distance.

Proof. By conformal invariance we may use a Möbius transformation to move z

to 0and w onto the positive axis. Applying an inversion, the path family is mapped

to one as in Lemma A.12.2, showing that the radial line from z to w maximizes the

modulus. The estimate of the modulus follows from our previous remarks. �

We now give an elegant second proof of the Koebe 1
4
-theorem due to Mateljevic

[92].

Theorem A.12.4 (The Koebe 1
4
Theorem). Suppose f is holomorphic, 1-1 on D

and f(0) = 0, f ′(0) = 1. ThenD(0, 1
4
) ⊂ f(D).

Proof. Recall that the modulus of a doubly connected domain is the modulus

of the path family that separates the two boundary components (and is equal to the

extremal distance between the boundary components). Let R = dist(0, ∂f(D)). Let

Aǫ,r = {z : ǫ < |z| < r} and note that by conformal invariance

2π log
1

ǫ
=M(Aǫ,1) =M(f(Aǫ,1).

Let δ = min|z|=ǫ |f(z)|.Since f ′(0) = 1, δ = ǫ + O(ǫ2). Note that f(D) \ D(0, δ) ⊃
f(Aǫ,1), so

M(f(D) \D(0, ǫ2)) ≥M(f(Aǫ,1)).

By Lemma A.12.2

M(f(D) \D(0, ǫ2)) ≤M(Ωǫ2,R) = 2π log
4R

ǫ2
+O(

ǫ2
R
).

Putting these together gives

2π log
4R

δ
+O(

δ

R
) ≥ 2π log

1

ǫ
,

or

log 4R− log(ǫ+O(ǫ2)) +O(
ǫ

R
) ≥ − log ǫ.

Taking ǫ→ 0 shows log 4R ≥ 0, or R ≥ 1
4
. �
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A.13. The product formula

Lemma A.13.1 (Jensen’s’ formula). If f is holomorphic on a neighborhood of D,

non-zero on ∂D and {zk} are its zeros in D listed according to multiplicity, then

|f(0)| =
∏

k

|zk| sup
∂D

|f(z)|.

Proof. If f(0) = 0, there is nothing to do, so assume otherwise. Let

B(z) =
∏

k

z − zk
1− zkz

,

be the finite Blaschke product with the same zeros as f . Then g = f/B has no zeros

and |f | = |g| on ∂D. So by the maximum principle,

|f(0)| = |g(0)| · |B(0)| ≤ max
∂D

|g(z)| ·
∏

k

|zk| = max
∂D

|f(z)| ·
∏

k

|zk|.

�

We often use this in the following form after taking logarithms

log |f(0)| =
∑

k

log |zk|+ sup
∂D

log |f |.(70)

Theorem A.13.2 (Hadamard product formula). Let f be an entire function of

order α and let a = ⌊α⌋ be the greatest integer less or equal to α. Let {zk} be the

zeros of f listed according to multiplicity. Then

f(z) = exp(g(z))zr
∏

k

(
(1− z

zk
) exp[

a∑

j=1

1

j
(
z

zk
)j]]

)
,

where g is a polynomial of degree at most a. The product converges uniformly on

compact subsets of C and

n(r) = #{k : |zk| < r} = o(nα+ǫ)},

for every ǫ > 0. Conversely, if {zk} is a sequence that satisfies (71) then the product

converges uniformly on compact sets to an entire function of order at most α.
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Proof. Using Jensen’s formula and the fact that f is order α, for R ≥ 1 we get

n(R) = n(R)

∫ eR

R

dt

t

≤
∫ eR

0

n(t)
dt

t

=

∫ eR

0

1

|zk|
dt

t

= −Rn(R)− log |f(0)|+ logmax
|z|=R

|f |

= O(Rα+ǫ),

for every ǫ > 0. Thus for β > α + ǫ,

∑

|zk|>1

|zk|−β ≤
∞∑

j=1

∑

2j<|zk|≤2j+1

2−jβ ≤
∞∑

j=1

2(j+1)(α+ǫ)2−jβ

converges and hence, taking β = 1, the product

P (z) = zr
∏

k

(1− z

zk
),

converges on compact sets to an entire function with the same zeros (counted with

multiplicities) as f . Thus f/P is a non-vanishing entire function and hence is of the

form eg for some entire g. We claim that eg is also order α. This requires a lower

bound on |P |; because of the zeros, such a bound can’t hold everywhere, but we will

show that it holds on “most” circles centered at the origin.

Fix R > 0 and let A = {z : R ≤ |z| ≤ 2R}. Factor

P (z) = P1(z)P2(z)P3(z),

with zeros in {|z| < R}, {R < |z| < 4R} and {|z| ≥ 4R} respectively.

If z ∈ A and |zk| ≤ R then |z− zk| ≥ |zk| so |P1| ≥ 1 on A. Similarly, z ∈ A, then

log |P3(z)| ≤
∑

|zk|≥4R

log |1− z

|zk|
| ≤ O(|z|

∑

|zk|≥4R

1

|zk|
| ≤ O(RRα+β−1) ≤ O(Rα+β)
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Finally, for |P2| we give an average, rather than uniform bound:

1

R

∫ 2R

R

logmax
|z|=r

|P3|dr ≤ 1

R

∫ 2R

R

∑

R≤|zk|≤2R

log |1− r

|zk|
|dr

≤ 1

R

∑

R≤|zk|≤2R

∫ 2R

R

log |1− r

|zk|
|dr

≤ 1

R

∑

R≤|zk|≤2R

∫ R/|zk|

2R/|zk|
log |1− t||zk|dt

≤ 1

R
·O(Rα+β) · 1R · (

∫ 2

1/4

log |1− t|dt)

= O(Rα+β)

Thus there is some r ∈ [R, 2R] where max|z|=r |1/P2| = O(Rα+β. Combined with our

previous estimates, this shows eg is order at most α.

Let g = u + iv be its real and imaginary parts. Since |eg| = ℜg, u is a harmonic

function so that |u(z)| = O(|z|α+ǫ and hence |∇u(z)| = O(|z|α+ǫ−1. Since |∇u| =
|∇v|, we deduce that |∇v(z)| = O(|z|α+ǫ−1) and integrating along radial segments

gives |v(z)| = O(|z|α+ǫ). Thus |g(z)| = O(|z|α+ǫ and the usual Cauchy estimates

show g is a polynomial of order at most a = ⌊α⌋. Since we assumed α < 1, g must

be constant. �

Corollary A.13.3. If f is an entire function with order of growth < 1 then

f(z) = Czr
∏

k

(1− z

zk
),

where {zk} are the zeros of f , counted with multiplicity.

EXERCISE: Prove the product formula for the general case α > 0. The only

new observation is that
∑a

j=1
1
j
( z
zk
)j are the first a terms of the Taylor expansion of

log 1− z
zk

and hence

| log(1− z

zk
) +

a∑

j=1

1

j
(
z

zk
)j = O(| z

zk
|).
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A.14. Beurling’s cos ρπ theorem

Lemma A.14.1. Suppose u is subharmonic on Hr, u ≤ 0 on ∂Hr and for all ǫ > 0,

u(z) ≤ ǫ|z| when |z| = rn for some sequence rn ր ∞. Then u ≤ 0 on Hr.

The following is a Phragmén-Lindelöf type theorem that we will use later.

Theorem A.14.2 (Beurling’s Theorem). Suppose f is holomorphic in Hr and

continuous on its closure. Suppose o < ρ < 1 and |f(iy)| ≤ φ(|y|) where φ is

unbounded and

lim sup
r→∞

log φ(r)

rρ
= 0.

Assume that for every ǫ > 0, and |f(z)| = o(exp(−ǫ|z|)) on a sequence of circles

{|z| = rn} tending to ∞. Then

M(r, f) <
log φ(r)

cos ρπ/2
,

on some sequence rn → ∞.

Proof. Choose a = a(ǫ) so that

log φ(r) ≤ ǫrρ cos ρπ/2 + a(ǫ),

holds for all r with equality at some r = r(ǫ). Note that r(ǫ) → ∞ as ǫց 0 and that

a(ǫ) > 0 when ǫ is large enough.

Let F (z) = f(z) exp(−ǫzρ− a) where zρ is the branch that is positive on R+ and

a will be chosen below. Then

log |F (iy)| ≤ log |f(iy)|+ ℜ(−ǫzρ − a)

≤ log |φ(|y|)− a− ǫyρ cos ρπ/2

≤ 0,

on the imaginary axis and by assumption

log |F (z)| ≤ log |f(z)| ≤ C + ǫr/2),

on an infinite set of radii tending to ∞, and hence |F | ≤ 1 on Hr by Lemma A.14.1.

For r = r(ǫ), we have

M(r, f) ≤ ǫrρ + a(ǫ),

and

log φ(r) = ǫrρ cos ρπ/2 + a(ǫ),
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so

log φ(r) ≥ (M(r, f)− a(ǫ)) cos ρπ/2 + a(ǫ) =M(r, f) cos ρπ/2 + a(ǫ)(1− cos ρπ/2).

Since a(ǫ) > 0 and ρ < 1, the final term is positive and we get the desired inequality.

�

Suppose f is an entire function with order of growth < 1 with product expansion

f(z) = Czr
∏

k

(1− z

zk
),

and define a new function

g(z) = Czr
∏

k

(1 +
z

|zk|
).

Since |zk| = O(R1−ǫ) for some ǫ > 0, we see that this product converges uniformly

on compact sets and that g has the same order as f . Moreover, for r > 0,

m(r, g) = |g(−r)| ≤ m(r, f) ≤M(r, f) ≤ g(r) =M(r, g).

Thus various questions about m(r, f) and M(r, f) for general functions of order < 1

can be answered by looking at the special case when the zeros all lie on the negative

real axis. One result where this works is:

Theorem A.14.3. If f has growth at most order 1/2, minimal type, then

lim sup
r→∞

m(r, f) = ∞.

Proof. By our remarks above, it suffices to prove this when f attains its mini-

mum modulus on the negative real axis, i.e., |f(z)| ≥ f(−|z|) for all z. If m(r, f) is

bounded by M for all r, then f is bounded by M on the negative real axis, so

Replace g(z) by g(z2)

Apply Beurling’s theorem �

REMARK: Wiman proved in [142] that for any ǫ and any non-vanishing entire

function f

m(r) > M(r)−1−ǫ,

for some sequence of r’s tending to ∞. He conjectured this was true in general and

this was verified by Beurling [25] in the special case |f(r)| = m(r) (i.e., the minimal

values are attained along R+), but was disproved by Hayman in general [64]. Later
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we will show how to construct an entire functions so that m(r, f) < M(r, f)−C for

every C and r large enough.
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[139] Jussi Väisälä. Quasihyperbolic geodesics in convex domains. Results Math., 48(1-2):184–195,
2005.

[140] G. Valiron. Sur les theoremes des mm. bloch, landau, montel et schottky. C. R. Acad. Sci.
Paris, 183:728–730, 1926.

[141] Allen Weitsman. Symmetrization and the Poincaré metric. Ann. of Math. (2), 124(1):159–169,
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