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Abstract. The Eremenko-Lyubich class of transcendental entire functions

with a bounded set of singular values has been much studied. We give a new
characterisation of this class of functions. We also give a new result regarding

direct singularities which are not logarithmic.

1. Introduction

Throughout this paper we assume that f is a transcendental entire function. We
say that f belongs to the Eremenko-Lyubich class, B, if the set of finite critical and
asymptotic values of f is bounded. This set coincides with the set of singular values
of the inverse function f−1. The class B was introduced to complex dynamics in
[8], and has been widely studied; see, for example, the papers [16], [17], [19] and
[20] on the structure of the escaping set for functions in this class; [1], [18] and
[21] on the dimensions of the Julia set and the escaping set; and [5] for an example
of a function in this class with a wandering domain. Papers studying the value
distribution of functions in this class include [12], [13] and [15].

An important property of functions in the Eremenko-Lyubich class is that they
are expanding, in the following sense. Define DR = {z : |f(z)| > R}, for R > 0.
If f ∈ B, then it follows easily from [8, Lemma 1] that there is a constant R0 > 0
such that

(1)

∣∣∣∣z f ′(z)f(z)

∣∣∣∣ ≥ 1

4π
(log |f(z)| − logR0), for z ∈ DR0

.

This property has many applications in complex dynamics and value distribution
theory; for example, it was used in [8] to show that functions in the Eremenko-
Lyubich class cannot have escaping Fatou components.

Define

(2) ηf = lim
R→∞

inf
z∈DR

∣∣∣∣z f ′(z)f(z)

∣∣∣∣ .
It follows from (1) that if f is a transcendental entire function in the Eremenko-
Lyubich class, then ηf = ∞. The main result of this paper is the following, which
shows that this property has a strong converse.

Theorem 1.1. Suppose that f is a transcendental entire function. Then, either
ηf =∞ and f ∈ B, or ηf = 0 and f /∈ B.

It is clear that if f has an unbounded set of critical values, then ηf = 0. Thus
the proof of Theorem 1.1 requires detailed analysis of the behaviour of functions
with an unbounded set of asymptotic values. Since every asymptotic value of f
gives rise to a transcendental singularity of f−1, we need a number of results on
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singularities of the inverse function. In particular we require the following result
on the density of transcendental singularities of a certain type, which may be of
independent interest. Definitions of terms used in the statement of this theorem
are given in Section 2.

Theorem 1.2. Suppose that f is a transcendental entire function, with a direct

non-logarithmic singularity with projection a ∈ Ĉ. Then at least one of the following
holds:

(i) a is the limit of critical values of f ;
(ii) every neighbourhood of this singularity contains a neighbourhood of another

transcendental singularity of f−1 that is either indirect or logarithmic, and
whose projection is different from a.

We observe that Theorem 1.2 is complementary to the following result of Berg-
weiler and Eremenko [3, Theorem 5], which has the same hypothesis although in
this result the projection of the transcendental singularity must be finite.

Theorem 1.3. Suppose that f is a transcendental entire function, with a direct
non-logarithmic singularity with projection a ∈ C. Then every neighbourhood of
this singularity is also a neighbourhood of other direct singularities of f−1 with
projection a.

Taken together, these results show that if a ∈ C is the projection of a direct
non-logarithmic singularity and is not the limit of critical values, then there is an
infinite number of singularities both over a and over points arbitrarily close to a.

We mention two examples of transcendental entire functions with direct non-
logarithmic singularities which illustrate some of the possibilities described above.

Example 1. Heins [9, p.435] gave the example f1(z) = ez sin(ez), which has pre-
cisely one direct non-logarithmic singularity over∞. Since the set of critical values
of f1 is unbounded, case (i) of Theorem 1.2 holds for this function. This example

also shows that Theorem 1.3 cannot be strengthened to a ∈ Ĉ.

Example 2. Herring [10] gave the example f2(z) =
∫ z

0
exp(−et) dt. This function

has no critical points. It follows from results in [10] that f2 has a direct non-
logarithmic singularity over ∞, every neighbourhood of which contains a left half-
plane. It also follows that within each set

Ak = {z : Re(z) > 0, | Im(z)− 2kπ| ≤ π/2}, for k ∈ Z,

there is a neighbourhood of a logarithmic singularity with projection

αk = α+ 2kπi, where α ∈ C is constant.

Moreover, each neighbourhood of the direct non-logarithmic singularity over ∞
contains neighbourhoods of these logarithmic singularities. Hence case (ii) of The-
orem 1.2 holds for f2.

The structure of this paper is as follows. In Section 2 we give details of Iversen’s
classification of singularities. We then prove Theorem 1.2 in Section 3. Finally, in
Section 4, we use Theorem 1.2 to prove Theorem 1.1.
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2. Singularities of the inverse function

We write Ĉ = C ∪ {∞}, and use B(w, r) to refer to the open disc around the
point w ∈ C, of radius r. We also write B(∞, r) = { z : |z| > r}. We write D
for the unit disc B(0, 1), and D∗ for the punctured unit disc B(0, 1)\{0}. We write
H for the left half-plane {z : Re(z) < 0}.

We recall Iversen’s classification of singularities; see, for example, [2], [3], and

[11]. Suppose that f is a transcendental entire function, and suppose that a ∈ Ĉ.
For each r > 0, we can choose a component U(r) of f−1(B(a, r)) so that r1 < r2

implies that U(r1) ⊂ U(r2). Then we have two possibilities:

(a) ∩r>0U(r) consists of a single point w, say, or
(b) ∩r>0U(r) = ∅.

In the first case, if f ′(w) = 0, then w is a critical point of f , a is a critical value
of f , and we say that the singularity is algebraic.

In the second case we say that the choice r 7→ U(r) defines a transcendental sin-
gularity of f−1, and we say that a is the projection of the transcendental singularity
or equivalently that the transcendental singularity is over a. Any of the sets U(r)
is called a neighbourhood of the transcendental singularity.

We say that a transcendental singularity over a point a is direct if there exists
r > 0 such that f(z) 6= a, for z ∈ U(r). Otherwise we call the transcendental
singularity indirect. We call a direct transcendental singularity over a point a
logarithmic if, for some r > 0, the restriction f : U(r)→ B(a, r)\{a} is a universal
covering. If a transcendental singularity is direct but not logarithmic, we use the
term direct non-logarithmic.

We call a curve Γ : (0, 1)→ C an asymptotic curve with asymptotic value a if, as
t→ 1, we have both Γ(t)→∞ and f(Γ(t))→ a. Given a transcendental singularity
over a point a it is possible to construct an asymptotic curve with asymptotic value
a, and vice versa; see [2, p.2] for details.

3. direct non-logarithmic singularities

In this section we prove Theorem 1.2. We need the following [9, Theorem 4′].

Theorem 3.1. Suppose that f is a transcendental entire function, D ⊂ C is a
domain, and W is a component of f−1(D). Then either fW , the restriction of f
to W , has finite constant valence in D, or else there is at most one point of D at
which the valence of fW is finite.

Here the valence of a point a ∈ D is the number of solutions of f(z) = a, for
z ∈ W . It follows from Theorem 3.1 that there cannot be two distinct points
a, a′ ∈ D such that f(z) ∈ {a, a′} has no solutions, for z ∈W .

We also need the following result, and two straightforward corollaries of it. This
seems to be well known, and follows quickly from results such as [14, Example 4.2].
See also [22, Theorem 6.1.1] for a detailed proof.

Theorem 3.2. Suppose that W ⊂ C is a domain, and g : W → D∗ is an unbranched
covering map. Then exactly one of the following holds:

(i) there exists a conformal map φ : W → H such that g = exp ◦ φ;
(ii) there exists a conformal map φ : W → D∗ such that g = (φ)m, for some

m ∈ N.
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The first corollary is similar to [22, Theorem 6.2.2], and differs from that result
in that it specifies the location of the neighbourhoods of the singularities, which is
necessary for the proof of Theorem 1.2. We give a proof for completeness.

Corollary 3.1. Suppose that f is a transcendental entire function with a transcen-

dental singularity which is not logarithmic, over a point a ∈ Ĉ. Then at least one
of the following holds:

(i) a is the limit of critical values of f ;
(ii) every neighbourhood of this singularity contains a neighbourhood of another

transcendental singularity of f−1 whose projection is different from a.

Proof. Suppose that, contrary to the conclusion of the corollary, we can choose a
sufficiently small r > 0 such that there are no critical points of f in

W = U(r)\{z : f(z) = a},

and all transcendental singularities of f−1 with a neighbourhood contained in U(r)
have projection a. The restriction of f to W is, therefore, an unbranched covering
of B(a, r)\{a}.

Let h be a conformal map from B(a, r)\{a} to D∗. We apply Theorem 3.2 with
g = h ◦ f . If case (i) of the theorem holds, then W is simply connected, and
the singularity is logarithmic, which is a contradiction. If case (ii) of the theorem
holds, then the conformal mapping φ has a punctured disc in the Riemann sphere
as its domain, and at the puncture φ has a removable singularity. Hence, since
f = h−1 ◦ (φ)m, the singularity is algebraic; this is also a contradiction. �

The second corollary of Theorem 3.2 is similarly straightforward, and we omit
the proof.

Corollary 3.2. Suppose that f is a transcendental entire function with a loga-

rithmic singularity over a point a ∈ Ĉ. Then there exist a neighbourhood of the
singularity, W = U(r), and conformal maps φ : W → H and h : B(a, r)→ D∗ such
that h ◦ f = exp ◦ φ.

We now prove Theorem 1.2.

Proof of Theorem 1.2. Suppose that f has a direct non-logarithmic singularity over

a point a ∈ Ĉ, and that a is not the limit of critical values of f . The existence of
transcendental singularities, over points other than a, in any neighbourhood of this
direct non-logarithmic singularity follows from Corollary 3.1; we need to show that
in any neighbourhood of this singularity there are singularities over points other
than a, which are either logarithmic or indirect.

The structure of the proof is as follows. We assume the contrary, and construct
a sequence of direct non-logarithmic singularities the projections of which have a
limit. We show that this limit is itself the projection of a direct non-logarithmic
singularity, and use the comment after Theorem 3.1 to obtain a contradiction.
Figure 1 illustrates the points and sets constructed.

Let r0 > 0 be such that there are no critical values of f in B(a, r0) and also,
since the transcendental singularity is assumed to be direct, such that f(z) 6= a,
for z in the neighbourhood U(r0). Suppose also that r0 is sufficiently small that
all transcendental singularities, over points other than a and with a neighbourhood
contained in U(r0), are direct non-logarithmic.
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Figure 1. The construction used in the proof of Theorem 1.2

Let (Rn) be any increasing sequence of positive real numbers such that Rn →∞
as n → ∞. We construct a sequence of neighbourhoods of direct non-logarithmic
singularities Wn(rn), with projection an say, such that, for n ≥ 0,

• Wn+1(rn+1) ⊂Wn(rn) ⊂ U(r0);
• Wn+1(rn+1) ∩B(0, Rn+1) = ∅;
• B(an+1, rn+1) ⊂ B(an, rn);
• an+1 6= a;
• the equation f(z) = an has no solutions for z ∈Wn(rn);
• rn → 0 as n→∞.

We set W0(r0) = U(r0), and then construct this sequence inductively. By as-
sumption, Wn(rn) is a neighbourhood of a direct non-logarithmic singularity, so we
can use Corollary 3.1 to choose a transcendental singularity with projection an+1

say and with neighbourhoods Wn+1(r), r > 0, such that Wn+1(r′n+1) ⊂ Wn(rn),
for some r′n+1 > 0, and such that 0 < |an+1 − an| < rn/2.

Next, we choose r′′n+1 > 0 such that Wn+1(r′′n+1) ∩B(0, Rn+1) = ∅. By assump-
tion Wn+1(r′n+1) is a neighbourhood of a direct singularity with projection an+1.
Hence, there exists rn+1 with

0 < rn+1 < min{r′n+1, r
′′
n+1, |an+1 − an|/4}

such that f(z) = an+1 has no solutions for z ∈ Wn+1(rn+1). Finally, both

B(an+1, rn+1) ⊂ B(an, rn) and an+1 6= a, by the choice of an+1 and rn+1. This
completes the construction.
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Let a′ = limn→∞ an, which exists by our choice of rn. Note that, by construction,
a′ 6= a. Let Γ be a curve produced inductively by joining a point in Wn(rn)
to a point in Wn+1(rn+1) using a curve lying in Wn(rn). By construction, Γ is
an asymptotic curve with asymptotic value a′. Hence a′ is the projection of a
transcendental singularity of f−1 which, by assumption, is direct non-logarithmic.

Choose r > 0 sufficiently small that D = B(a′, r) ⊂ B(a, r0), and such that
f(z) = a′ has no solutions in W , where W is the component of f−1(D) which has
unbounded intersection with Γ.

Now, by construction, a′ ∈ B(an, rn), for n ∈ N, and so there is an N > 0
such that a′ ∈ B(aN , rN ) ⊂ D and also a′ 6= aN . Note that WN (rN ) ⊂ W , since
the intersection of Γ and WN (rN ) is unbounded. Then a′ and aN are two distinct
points in B(aN , rN ) such that f(z) ∈ {a′, aN} has no solutions in WN (rN ), which
is contrary to Theorem 3.1. �

4. The Eremenko-Lyubich Class

In this section we prove Theorem 1.1. We need the following, [7, Theorem I.2.2].

Theorem 4.1. Suppose that W ⊂ Ĉ is simply connected and ∂W has more than
one point. Suppose that ψ maps W conformally to D. Let Γ be a Jordan arc in W
with endpoint z0 ∈ ∂W . Then the curve ψ(Γ) terminates in a point s0 ∈ ∂D, and
ψ−1(s)→ z0 as s→ s0 inside any Stolz angle at s0.

Here a Stolz angle at s0 ∈ ∂D is a set of the form;

{s ∈ D : | arg(1− s0s)| < α, |s− s0| < d}, for 0 < α < π/2, d < 2 cosα.

We also need the following result, which is a version of [2, Theorem 1] that
includes some assertions that appear only in the proof of that result; see also, [22,
Theorem 6.2.3].

Theorem 4.2. Suppose that f is a transcendental entire function with an indirect

singularity with projection a ∈ Ĉ. Suppose that a is not the limit of critical val-
ues of f . Then there exists a sequence of asymptotic values (an), which converge
to a, a sequence of disjoint unbounded simply connected domains (Un) such that
Dn = f(Un) is a disc with an ∈ ∂Dn, and a sequence of asymptotic curves (Γn)
such that Γn ⊂ Un, f(Γn) is a radius of Dn ending at an, and f is univalent in Un.

Finally, we need the following lemma.

Lemma 4.1. Let f be a transcendental entire function. Suppose that for every
R > 0 there exist r > 0, a0 ∈ C with |a0| > R, an asymptotic curve Γ′ with
asymptotic value a0, W a simply connected neighbourhood of Γ′, and an analytic
map φ, univalent on W , such that φ(Γ′) is an interval (−∞, x0), and

(3) f(z) = reφ(z) + a0, for z ∈W.

Then ηf = 0.

Proof. Suppose that ηf 6= 0. Then there exist ε, R > 0 such that

(4)

∣∣∣∣z f ′(z)f(z)

∣∣∣∣ > ε, for |f(z)| > R.
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Choose a0 such that |a0| > 2R, let h = φ−1 and put t = φ(z). Then, as z → ∞
along Γ′, by (3) and (4),

ε <

∣∣∣∣z φ′(z)reφ(z)

reφ(z) + a0

∣∣∣∣ =

∣∣∣∣h(t)
φ′(h(t))ret

ret + a0

∣∣∣∣ =

∣∣∣∣ h(t)ret

h′(t)(ret + a0)

∣∣∣∣ ∼ ∣∣∣∣h(t)ret

h′(t)a0

∣∣∣∣ .(5)

Hence, for sufficiently large negative values of t,

(6)

∣∣∣∣h′(t)h(t)

∣∣∣∣ < 2ret

ε|a0|
.

Without loss of generality we can assume that (6) applies for all t ∈ (−∞, x0).
Since W is simply connected, and since we can assume that 0 /∈ W , we can define
a branch of the logarithm, L, in W . Then, by (6),

(7)

∣∣∣∣ ddtL(h(t))

∣∣∣∣ < 2ret

ε|a0|
.

We set ζ = L(h(t)) and integrate (7), to obtain

(8)
2r

ε|a0|

∫ x0

−∞
et dt >

∫ x0

−∞

∣∣∣∣ ddtL(h(t))

∣∣∣∣ dt > ∣∣∣∣∫ x0

−∞

d

dt
L(h(t)) dt

∣∣∣∣ =

∣∣∣∣∣
∫
L(Γ′)

dζ

∣∣∣∣∣ .
Now, L(Γ′) is an unbounded curve, and so the right-hand side of (8) is un-

bounded. However, the left-hand side of (8) is bounded. This contradiction com-
pletes the proof. �

We now prove Theorem 1.1.

Proof of Theorem 1.1. As mentioned in the introduction, it is clear that if f ∈ B
then ηf =∞. Suppose, then, that ηf 6= 0. It is immediate from (2) that the set of
critical values of f is bounded. To complete the proof, we show that f cannot have
an unbounded set of finite asymptotic values, and so f ∈ B, and hence ηf = ∞.
To achieve this we show first that f cannot have an unbounded set of projections
of logarithmic singularities. We then show that f cannot have an unbounded set
of projections of indirect singularities. Finally, we show that f cannot have an
unbounded set of projections of direct non-logarithmic singularities.

Our first claim then is that f cannot have an unbounded set of projections
of logarithmic singularities. Suppose that, for every R > 0, f has a logarithmic
singularity with projection a0 ∈ C, such that |a0| > R. Noting that a0 is finite, we
apply Corollary 3.2 to obtain a simply connected neighbourhood, W = U(r), of the
singularity, and a conformal map φ : W → H such that (3) holds for some r > 0.
Let Γ be an asymptotic curve in W associated with the logarithmic singularity.

Put t = φ(z) and let

s = σ(t) =
1− t
1 + t

.

Then ψ = σ ◦ φ is a conformal mapping of W to D. Moreover ψ(Γ) is a curve in D
tending to −1.

We now construct another curve to ∞ in W which satisfies the hypotheses of
Lemma 4.1. Let Γ′ = φ−1((−∞, 0)). Then γ = ψ(Γ′) is a curve in D tending to −1
within a Stolz angle. By Theorem 4.1, ψ−1(s)→∞ as s→ −1 along γ, and so Γ′

is an asymptotic curve. Moreover, ret + a0 → a0 as t → −∞ along φ(Γ′), and so
Γ′ has asymptotic value a0. A contradiction follow by Lemma 4.1, since we have
assumed that |a0| > R. This establishes our initial claim.



8 D. J. SIXSMITH

We next show that f cannot have an unbounded set of projections of indirect
singularities. Suppose that, for every R > 0, f has an indirect singularity with
projection a ∈ C, such that |a| > 2R. By Theorem 4.2, f has an asymptotic value
a0, with |a0| > R, an asymptotic curve Γ′ associated with a0, and an unbounded
simply connected domain W containing Γ′ such that f is univalent in W . Moreover,
f(W ) is a disc, D, with a0 ∈ ∂D, and f(Γ′) is a radius in D ending at a0.

Without loss of generality, by composing with a rotation if necessary, assume
that the centre of D is at a0 + ex0 , for some x0 ∈ R. Define a branch of the
logarithm, L1, such that ψ(w) = L1(w−a0) is a univalent map on D. Let φ be the
univalent map φ = ψ ◦ f . Note that φ(Γ′) = (−∞, x0), and (3) holds with r = 1.
A contradiction follows by Lemma 4.1, since we have assumed that |a0| > R. This
establishes our second claim.

Finally we show that the projections of direct non-logarithmic singularities are
bounded. This follows immediately from the fact that the projections of other types
of transcendental singularities are bounded and from Theorem 1.2. This completes
the proof. �

Remark: It seems possible to generalise the result of Theorem 1.1 to transcen-
dental meromorphic functions with direct tracts (see, for example, [4] for more
background on this concept). We have not done this here, for reasons of simplicity.
However, the proof seems to work similarly, although a number of results used in
this paper need to be generalised. In addition, we need to replace Theorem 3.1
with [6, Corollary 1], and [8, Lemma 1] with [4, Lemma 6.3].

Acknowledgment: The author is grateful to Phil Rippon and Gwyneth Stallard
for all their help with this paper.
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