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Arakelian's Approximation Theorem 

JEAN-PIERRE ROSAY and WALTER RUDIN 
Department of Mathematics, University of Wisconsin, Madison, WI 53706 

Arakelian's theorem [1], [3] concerns uniform approximation by entire functions 
on possibly unbounded closed subsets E of the complex plane C. Our attention was 
drawn to this theorem because it has recently been used [2; p. 164], [5; p. 761] to 
construct interesting holomorphic maps from C n to C n. The aim of our note is to 
show that Arakelian's theorem follows very easily from the much better known 
theorem of Mergelyan [6; Chap. 20] which deals with uniform approximation on 
compact sets. 

Moreover-and this is perhaps our main point-in most applications the func- 
tion that is to be approximated on E is actually holomorphic in a neighborhood of 
E (i.e., in an open set that contains E), and in that case the proof given below relies 
only on the classical approximation theorem of Runge [7], [6; p. 270]. (Incidentally, 
we recommend Runge's beautiful original paper; it is very readable.) For functions 
that are holomorphic in a neighborhood of E, Arakelian's theorem thus turns out to 
be really elementary. 

If E is a closed subset of C, we shall use the phrase "hole of E" to denote any 
bounded component of the complement of E. Using this terminology, Runge's theorem 
states: 

If K is a compact subset of C, without holes, andf is holomorphic in a neighborhood 
of K, then f can be approximated, uniformly on K, by holomorphic polynomials. 

Mergelyan's theorem derives the same conclusion from a weaker assumption 
about f, namely: f should be continuous on K and holomorphic in the interior 
of K. 

To motivate the definition that follows, note that if E is a closed set without 
holes and D is a closed disc in CC, then the intersection E n D obviously has no 
holes either, but the union E U D may very well have some, even infinitely many. 

Definition. A closed set E C C, without holes, is an Arakelian set if, for every 
closed disc D c C, the union of all holes of E U D is a bounded set. 

Note. In [1] and [3], Arakelian's theorem is stated for closed sets without holes 
whose complement is "locally connected at infinity." The preceding definition 
describes the same class of sets. We chose it because we think that it is more easily 
understood, and because it explicitly states the property of E that is crucial in our 
proof. 

THEOREM. If E is an Arakelian set, f is a complex-valued continuous function on E 
that is holomorphic in the interior of E, and E > 0, then there is an entire function h 
that satisfies 

Ih (z) - f (z) I < 
for every z E E. 

The research for this paper was partially supported by NSF grant DMS-8400201 and by the William 
F. Vilas Trust Estate. 
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Proof Since E is an Arakelian set, there are closed discs D, (i = 1, 2, 3,...), 
centered at the origin, whose union is C, so that the interior of DI1, contains the 
compact set Di U HI, where HI is the union of the holes of E U Di. 

Put Eo = E, and Ei = E U Di U Hi for i > 1. Note that no El has holes. 
We first deal with the "Runge case" in which f is holomorphic in a neighbor- 

hood of E. Put ho = f, fix i > 1, and assume (as induction hypothesis) that we have 
a function h11 that is holomorphic in a neighborhood of E There is an open 
disc A that contains Di U Hi and whose closure A lies in the interior of Di+1. 
Choose a continuously differentiable function 4 on C so that 0 < 4 < 1, 4 = 1 in 
A, 4 = 0 outside Di + 1. 

Since E_ 1 has no holes, the same is true of El_1 n D, +. Runge's theorem 
therefore furnishes a polynomial P so that 

Ih_1 -PI < 2-1-le on E,_1 n D1+1 (1) 
and 

dm (w) 
|J | (h,, - P)(w)(dA)(w) I_ < 2 E (2) 

for all z E C. Here d4 = d4'/dz, and m denotes two-dimensional Lebesgue mea- 
sure. Note that (2) can be achieved because the integrand vanishes outside DI,1. 

Now let V be a neighborhood of Ei-I in which hi-1 is holomorphic, and which 
is so close to Ei-1 that (2) holds with V in place of E _. Define 

1 dm (w) 
r(z) =- (hi 1 - P)(w)(94')(w) ) (z EC C) (3) 

and 

hi = 4P + (I- )hj_j + r in A U V. (4) 

(This is well defined because 1 - 4 = 0 in A.) 
The fact that (hi1 - P)ad is continuously differentiable in V shows that 

dr = (hi1 - P)d4 

in V; see, for example [4; p. 104]. Since dh_1 = 0 in V, we see that 

dh, = (P-h,_j1) d4 + dr = 0 in V. (5) 

In A, 34 = 0. The integral (3) extends therefore only over V\ A, so that r is 
holomorphic in A. The same is true of hl, because hi = P + r in A. 

We conclude: h, is holomorphic in the neighborhood /\ U V of Ei (which is our 
induction hypothesis, with i in place of i - 1) and 

Ihi-hhi-1 = |(P-hl) + rI < 2-1? 1 on E, (6) 

by (1); note that 4 = 0 outside Di+1 and that Irl < 2-1?8. 
The sets E,_1 contain the discs Di-,, and these expand to cover C. Hence (6) 

shows that h = lim hi satisfies the conclusion of the theorem. 
In the "Mergelyan case" we get P from Mergelyan's Theorem, define r(z) as 

above, but with Ei 1 in place of V in (3), and we conclude that h, (defined by (4) 
on A U F_1) is continuous on El, holomorphic in the interior of Ei, and satisfies 
(6) on El_-I 
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This concludes the proof. 

Remark. On sets without interior, a considerably stronger version of the theorem 
can be derived from it without any extra effort: 

If E is an Arakelian set with empty interior, f and w are continuous functions on E, 
f is complex-valued, w is positive (and w(z) -> 0 as z -> so along E, to make things 
interesting), then there is an entire function h that satisfies 

Ih (z) - f (z) I < w(z) 
for every z E E. 

To prove this, apply the theorem twice: There are entire functions g and ho so 
that 

Reg < logw and |ho -f exp(-g)| <1 

on E. Put h = ho0 exp(g). 
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The Norm of a Linear Functional 

I. J. MADDOX 

Department of Pure Mathematics, Queen's University, Belfast BT7 INN, Northern Ireland 

Bounded linear functionals of the type 

f(x) = bg(t)x(t) dt (1) 

frequently occur in elementary functional analysis and its applications, and one 
needs to have an expression for Illf I, the norm of f. For example, if x = x(t) is a 
continuous function of period 2 T and X is the Banach space of all such functions, 
with lIx II = maxt x(t) 1: - S < t < S}, then the Fourier coefficients of x are, by 
definition, 

1 sr 1 ? 

ak =-f x(t)cos ktdt, bk =- x(t)sin ktdt, (2) 
qT -X ST -ST 
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