A SHARP GROWTH CONDITION FOR A FAST ESCAPING SPIDER’S WEB

P. J. RIPPON AND G. M. STALLARD

Abstract. We show that the fast escaping set $A(f)$ of a transcendental entire function f has a structure known as a spider’s web whenever the maximum modulus of f grows below a certain rate. We give examples of entire functions for which the fast escaping set is not a spider’s web which show that this growth rate is best possible. By our earlier results, these are the first examples for which the escaping set has a spider’s web structure but the fast escaping set does not. These results give new insight into a conjecture of Baker and a conjecture of Eremenko.

1. Introduction

Let $f : \mathbb{C} \to \mathbb{C}$ be a transcendental entire function and denote by f^n, $n = 0, 1, 2, \ldots$, the nth iterate of f. The Fatou set $F(f)$ is the set of points $z \in \mathbb{C}$ such that $(f^n)_{n \in \mathbb{N}}$ forms a normal family in some neighborhood of z. The complement of $F(f)$ is called the Julia set $J(f)$ of f. An introduction to the properties of these sets can be found in [2].

In recent years, the escaping set defined by $I(f) = \{ z : f^n(z) \to \infty \text{ as } n \to \infty \}$ has come to play an increasingly significant role in the study of the iteration of transcendental entire functions with much of the research being motivated by a conjecture of Eremenko [5] that all the components of the escaping set are unbounded. For partial results on this conjecture see, for example, [9] and [16].

The most general result on Eremenko’s conjecture was obtained in [10] where it was proved that the escaping set always has at least one unbounded component. This result was proved by considering the fast escaping set $A(f) = \bigcup_{n \in \mathbb{N}} f^{-n}(A_R(f))$, where $A_R(f) = \{ z : |f^n(z)| \geq M^n(R, f), \text{ for } n \in \mathbb{N} \}$. Here $M(r) = M(r, f) = \max_{|z|=r} |f(z)|$, $M^n(r, f)$ denotes the nth iterate of M with respect to r, and $R > 0$ is chosen so that $M(r, f) > r$ for $r \geq R$. The set $A(f)$ has many nice properties including the fact that all its components are unbounded – these properties are described in detail in [12].

There are many classes of transcendental entire functions for which the fast escaping set has the structure of a spider’s web – see [12], [8] and [17]. We say
that a set \(E \) has this structure if \(E \) is connected and there exists a sequence of bounded simply connected domains \(G_n \) such that
\[
\partial G_n \subset E, \quad G_n \subset G_{n+1}, \quad \text{for } n \in \mathbb{N}, \quad \text{and } \bigcup_{n \in \mathbb{N}} G_n = \mathbb{C}.
\]
As shown in [12], if \(A_R(f) \) has this structure then so do both \(A(f) \) and \(I(f) \), and hence Eremenko’s conjecture is satisfied. Also, the domains \(G_n \) can be chosen so that \(\partial G_n \subset A_R(f) \cap J(f) \) and so \(f \) has no unbounded Fatou components. This gives a surprising link between Eremenko’s conjecture and a conjecture of Baker that all the components of the Fatou set are bounded if \(f \) is a transcendental entire function of order less than \(1/2 \). Recall that the order of a transcendental entire function \(f \) is defined to be
\[
\rho = \limsup_{r \to \infty} \frac{\log \log M(r)}{\log r}.
\]
For background and recent results on Baker’s conjecture, see [6], [7], [11] and [13]. It was shown in [11] (see also [12]) that all earlier partial results on Baker’s conjecture are in fact sufficient to imply the stronger result that \(A_R(f) \) is a spider’s web. Here we give a sharp condition on the growth of the maximum modulus that is sufficient to imply that \(A_R(f) \) is a spider’s web and hence that Baker’s conjecture and Eremenko’s conjecture are both satisfied. More precisely, we prove the following sufficient condition.

Theorem 1.1. Let \(f \) be a transcendental entire function and let \(R > 0 \) be such that \(M(r, f) > r \) for \(r \geq R \). Let
\[
R_n = M^n(R) \quad \text{and} \quad \varepsilon_n = \max_{R_n \leq r \leq R_{n+1}} \frac{\log \log M(r)}{\log r}.
\]
If
\[
\sum_{n \in \mathbb{N}} \varepsilon_n < \infty,
\]
then \(A_R(f) \) is a spider’s web.

We obtained a closely related result in [11, Theorem 3] with the stronger hypothesis that \(\sum_{n \in \mathbb{N}} \sqrt{\varepsilon_n} < \infty \) and remarked there that the square root could be removed by introducing a more sophisticated argument. The method of proof given here is quite different, and more enlightening, than that used to prove [11, Theorem 3]. In fact, Theorem 1.1 follows surprisingly easily from a new local version of the classical \(\cos \pi \rho \) theorem; see Theorem 2.1.

Remark. Theorem 1.1 can be generalised to apply to the set of points that escape as fast as possible within a direct tract of a transcendental meromorphic function; see [3] for earlier results concerning the fast escaping set in a direct tract.

It turns out that the condition in Theorem 1.1 is, in a strong sense, best possible. In particular, the following result shows that the condition in Theorem 1.1 cannot be replaced by the weaker condition that \(\sum_{n \in \mathbb{N}} (\varepsilon_n)^c < \infty \), for some \(c > 1 \).

Theorem 1.2. There exist transcendental entire functions of the form
\[
f(z) = z^2 \prod_{n=1}^{\infty} \left(1 + \frac{z}{a_n} \right)^{2p_n},
\]
where...
where \(p_n \in \mathbb{N} \), for \(n \in \mathbb{N} \), and the sequence \((a_n)\) is positive and strictly increasing such that \(A(f) \cap (-\infty, 0) = \emptyset \); in particular, \(A(f) \) is not a spider’s web.

Moreover, if \((\delta_n)\) is a positive sequence such that

\[
\sum_{n \in \mathbb{N}} \delta_n = \infty,
\]

then we can choose the sequence \((a_n)_{n \in \mathbb{N}}\) and a value \(R > 0 \) in such a way that, with

\[
p_n = [\delta_n^{\delta_n/4}], \quad R_n = M^n(R) \quad \text{and} \quad \varepsilon_n = \max_{R_n \leq r \leq R_{n+1}} \frac{\log \log M(r)}{\log r},
\]

there exists a subsequence \((n_k)\) such that

\[
(1.2) \quad \varepsilon_{n_k} \leq \delta_k + \frac{1}{2^{n_k}}, \quad \text{for} \ k \in \mathbb{N},
\]

and

\[
(1.3) \quad \varepsilon_{n_k+m} \leq \frac{\delta_k}{3^{m-1}} + \frac{1}{2^{n_k+m}}, \quad \text{for} \ k \in \mathbb{N}, 1 \leq m < n_{k+1} - n_k.
\]

Since it is possible to choose a positive sequence \((\delta_n)\) with

\[
\sum_{n \in \mathbb{N}} \delta_n = \infty \quad \text{and} \quad \lim_{n \to \infty} \delta_n = 0,
\]

Theorem 1.2 implies that there are functions of order zero for which \(A_R(f) \) fails to be a spider’s web. Thus new techniques are needed in order to solve Baker’s conjecture. One such technique is introduced in [13] where we show that all functions of order less than \(1/2 \) with zeros on the negative real axis satisfy Baker’s conjecture and also satisfy Eremenko’s conjecture with \(I(f) \) being a spider’s web. Since functions of the form (1.1) with \(\limsup_{n \to \infty} \varepsilon_n < 1/2 \) are of this type, this gives the following corollary to Theorem 1.2 which answers a question in [12].

Corollary 1.3. There exist transcendental entire functions for which \(I(f) \) is a spider’s web but \(A(f) \) is not a spider’s web.

Remark. In fact we show in [13] that functions of order less than \(1/2 \) with zeros on the negative real axis have the stronger property that \(Q(f) \) contains a spider’s web, where \(Q(f) \) is the quite fast escaping set. Thus Theorem 1.2 provides examples of functions for which \(Q(f) \neq A(f) \); these two sets are equal for many functions, including all functions in the Eremenko-Lyubich class \(\mathcal{B} \) as we show in [15].

The paper is arranged as follows. In Section 2 we prove Theorem 1.1 and then, in Section 3, we prove Theorem 1.2.

2. **Proof of Theorem 1.1**

Let \(f \) be a transcendental entire function and \(R > 0 \) be such that \(M(r) > r \) for \(r \geq R \). Recall that

\[
A_R(f) = \{ z : |f^n(z)| \geq M^n(R), \text{ for } n \in \mathbb{N} \}.
\]
and that $A_R(f)$ is a spider’s web if $A_R(f)$ is connected and there exists a sequence of bounded simply connected domains G_n such that
\[
\partial G_n \subset A_R(f), \ G_n \subset G_{n+1}, \text{ for } n \in \mathbb{N}, \text{ and } \bigcup_{n \in \mathbb{N}} G_n = \mathbb{C}.
\]

In this section we prove Theorem 1.1 which gives a condition that is sufficient to ensure that $A_R(f)$ is a spider’s web. The key ingredient in our proof is the following result which can be viewed as a local version of the classical cosine theorem. For a discussion of results of this type, see [14].

Theorem 2.1. Let f be a transcendental entire function. There exists $r(f) > 0$ such that, if
\[
\log M(r) \leq r^\alpha \quad \text{and} \quad r^{1-2\alpha} \geq r(f),
\]
for some $\alpha \in (0, 1/2)$, then there exists $t \in (r^{1-2\alpha}, r)$ such that
\[
\log m(t) > \log M(r^{1-2\alpha}) - 2.
\]

Proof. We apply the following result of Beurling [4, page 96]:

Let f be analytic in $\{z : |z| < r_0\}$, let $0 \leq r_1 < r_2 < r_0$, and put
\[
E = \{t \in (r_1, r_2) : m(t) \leq \mu\}, \text{ where } 0 < \mu < M(r_1).
\]
Then
\[
\log \frac{M(r_2)}{\mu} > \frac{1}{2} \exp \left(\frac{1}{2} \int_E \frac{dt}{t} \right) \log \frac{M(r_1)}{\mu}.
\]

Taking $r_2 = r$, $r_1 = r^{1-2\alpha}$, $\mu = M(r^{1-2\alpha})/e^2$, and $r(f) > 0$ such that $M(r(f)) \geq e^2$, we deduce from (2.1) and (2.2) that, if $m(t) \leq \mu$ for $t \in (r^{1-2\alpha}, r)$, then
\[
r^{\alpha} \geq \log M(r) \geq \log \frac{M(r)}{\mu} > \frac{1}{2} \exp \left(\frac{1}{2} \int_{r^{1-2\alpha}}^{r} \frac{dt}{t} \right) \log \frac{M(r^{1-2\alpha})}{\mu} = r^{\alpha}.
\]
This is a contradiction and so there must exist $t \in (r^{1-2\alpha}, r)$ such that $m(t) > \mu$; that is,
\[
\log m(t) > \log \mu = \log M(r^{1-2\alpha}) - 2,
\]
as required. \qed

We also use the following results about spiders’ webs proved in [12].

Lemma 2.2. [12, Corollary 8.2] Let f be a transcendental entire function and let $R > 0$ be such that $M(r) > r$ for $r \geq R$. Then $A_R(f)$ is a spider’s web if there exists a sequence (ρ_n) such that, for $n \geq 0$,
\[
\rho_n > M^n(R)
\]
and
\[
m(\rho_n) \geq \rho_{n+1}.
\]

Lemma 2.3. [12, Lemma 7.1(d)] Let f be a transcendental entire function, let $R > 0$ be such that $M(r) > r$ for $r \geq R$, and let $R' > R$. Then $A_{R'}(f)$ is a spider’s web if and only if $A_R(f)$ is a spider’s web.

In addition, we need the following property of the maximum modulus function, which was proved in this form in [11].
Lemma 2.4. Let f be a transcendental entire function. Then there exists $R > 0$ such that, for all $r \geq R$ and all $c > 1$,

$$M(r^c) \geq M(r)^c.$$

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Let $R > 0$ be such that, for $r \geq R$, Lemma 2.4 holds and $M(r) > r$. For $n \in \mathbb{N}$, let

$$R_n = M^n(R) \quad \text{and} \quad \varepsilon_n = \max_{R_n \leq r \leq R_{n+1}} \frac{\log M(r)}{\log r}.$$

Suppose that $\sum_{n \in \mathbb{N}} \varepsilon_n < \infty$. Then we can take N sufficiently large to ensure that

$$(2.5) \quad \sum_{n \geq N} \varepsilon_n < \frac{1}{8},$$

and

$$(2.6) \quad M(R_n)^{1/(8n^2)} = R_{n+1}^{1/(8n^2)} \geq e^2, \quad \text{for } n \geq N, \quad \text{and} \quad R_{N+1}^{1/4} \geq R_n \geq r(f),$$

where $r(f)$ is as defined in Theorem 2.1. Note that (2.6) is possible since $\log M(r) / \log r \to \infty$ and so, for large n, we have $\log R_{n+1} > 4 \log R_n$.

Now let

$$r_n = M^{n+1} \left(R_{N+1}^{N+n}(1-2\varepsilon_m-1/(8m^2)) \right), \quad \text{for } n \geq 0.$$

We note that, for $n \geq 0$, it follows from (2.5) that

$$\prod_{m=N}^{N+n} \left(1 - 2\varepsilon_m - \frac{1}{8m^2} \right) > 1 - \sum_{m=N}^{N+n} 2\varepsilon_m - \sum_{m=N}^{N+n} \frac{1}{8m^2} \geq \frac{1}{2},$$

and so, by (2.6),

$$R_{N+n+2} > r_n > M^{n+1}(R_{n+1}^{1/2}) \geq M^{n+1}(R_N^2) = R_{N+n+1}^2.$$

We claim that, for $n \geq 0$, there exists $\rho_n \in (R_{N+n+1}, r_n)$ with $m(\rho_n) > r_{n+1}$. Indeed, it follows from Theorem 2.1 (2.5), (2.6) and Lemma 2.4 that, for $n \geq 0$, there exists $\rho_n \in (r_n^{1-2\varepsilon_m} + 1, r_n) \subset (R_{N+n+1}, r_n)$ such that

$$m(\rho_n) \geq \frac{1}{c^2} \cdot M(r_n^{1-2\varepsilon_m})$$

$$\geq M(r_n^{1-2\varepsilon_m} + 1) \cdot (1-1/(8m^2))$$

$$\geq M(r_n^{1-2\varepsilon_m} + 2)$$

$$\geq M(r_n^{1-2\varepsilon_m} + 1/(8m^2))$$

$$= M \left(\left(R_{N+1}^{N+n}(1-2\varepsilon_m-1/(8m^2)) \right)^{(1-2\varepsilon_m-1/(8m^2))} \right)$$

$$\geq M^{n+2} \left(R_{N+1}^{N+n}(1-2\varepsilon_m-1/(8m^2)) \right)$$

$$= r_{n+1}.$$

Thus, for $n \geq 0$, there exists $\rho_n > R_{N+n}$ with $m(\rho_n) \geq \rho_{n+1}$ and so, by Lemma 2.2, $A_{R_{N+1}^n}(f)$ is a spider’s web. It now follows from Lemma 2.3 that $A_R(f)$ is a spider’s web as claimed. □
3. Proof of Theorem 1.2

Let
\[f(z) = z^3 \prod_{n=1}^{\infty} \left(1 + \frac{z}{a_n}\right)^{2p_n}, \]
where the sequence \((a_n)\) is positive and strictly increasing. In addition, let \((\delta_n)\) be a positive sequence such that
\[\sum_{n \in \mathbb{N}} \delta_n = \infty, \]
and let
\[p_n = \left[a_n^{\delta_n/4}/4 \right]. \]
Without loss of generality, we assume that
\[\delta_n < 1/2, \quad \text{for } n \in \mathbb{N}. \]
Note that \(f((-\infty, 0]) \subset (-\infty, 0]\) and that \(m(r) = f(-r)\) and \(M(r) = f(r) > r^3\), for \(r > 0\). Further, \(M(r) > r\) for \(r \geq 1\).

We first show that the sequence \((a_n)\) can be chosen so that \(A(f) \cap (-\infty, 0] = \emptyset\).

We choose the values of \(a_n\) carefully, beginning with \(a_1\), then \(a_2\) and so on. Because of the way in which we choose the values of \(a_n\), it is helpful to introduce the function \(g\) defined by
\[g(r) = \begin{cases} r^3, & 0 \leq r < a_1, \\ r^3 \prod_{a_n \leq r} \left(1 + \frac{r}{a_n}\right)^{2p_n}, & r \geq a_1. \end{cases} \]

Note that \(g\) is a strictly increasing function and that it is discontinuous at \(a_n\), for \(n \in \mathbb{N}\). A key property of \(g\) which we use repeatedly is that
\[m(r) = -f(-r) < g(r) < M(r), \quad \text{for } r \geq 0. \]
Since \(g\) is increasing, \((3.4)\) implies that
\[f([-r, 0]) \subset [-g(r), 0], \quad \text{for } r \geq 0. \]
We now set \(r_0 = 10\) and \(r_{n+1} = g(r_n) = g^{n+1}(10)\), for \(n \in \mathbb{N}\), and note that
\[r_{n+1} \geq r_n^3, \quad \text{for } n \geq 0. \]
Also, it follows from \((3.5)\) that
\[f^n((-r_m, 0]) \subset (-r_{m+n}, 0], \quad \text{for } n, m \in \mathbb{N}. \]

We begin by proving the following result.

Lemma 3.1. If there exists a sequence \((N_k)\) such that,
\[f^{N_k}((-r_{N_k}, 0]) \subset (-r_{N_k}, 0] \]
and, for \(k \geq 2\),
\[f^{N_k}((-r_{N_1 + \ldots + N_k - 1 + 2k}, 0]) \subset (-r_{N_1 + \ldots + N_k}, 0], \]
then \(A(f) \cap (-\infty, 0] = \emptyset\).
Proof. We first note that, if the hypotheses of Lemma 3.1 hold, then it follows from (3.7) and (3.9) that, for \(k \in \mathbb{N} \),
\[
f^{N_1 + \cdots + N_k}((-r_{2k}, 0]) = f^{N_k}(f^{N_1 + \cdots + N_{k-1}}((-r_{2k}, 0])
\subset f^{N_k}((-r_{N_1 + \cdots + 2k+1}, 0])
\subset (-r_{N_1 + \cdots + N_k}, 0].
\]
Thus
\[
f^{N_1 + \cdots + N_k}((-r_{2k}, 0]) \subset (-r_{N_1 + \cdots + N_k}, 0].
\] (3.10)

Now let \(z \in (-\infty, 0] \). There exists \(K \in \mathbb{N} \) such that, for \(k \geq K \), we have \(z \in (-r_k, 0] \) and hence, by (3.7), we have \(f^k(z) \in (-r_{2k}, 0] \). Thus, by (3.10) and (3.4), for \(k \geq K \),
\[
| f^{N_1 + \cdots + N_k + k}(z) | < r_{N_1 + \cdots + N_k} < M^{N_1 + \cdots + N_k}(10)
\]
and hence
\[
z \notin \{ z : |f^{n+k}(z)| \geq M^n(10) \text{ for } n \in \mathbb{N} \}.
\]
Thus \(A(f) \cap (-\infty, 0] = \emptyset \) as required. \(\square \)

We will show that we can choose the values of \(a_n \) in such a way that the hypotheses of Lemma 3.1 hold. In order to do this, it is helpful to set certain restrictions on our choice of values. Firstly, we choose \(a_1 \) and \(a_{n+1}/a_n, \ n \in \mathbb{N} \), sufficiently large to ensure that
\[
a_1^{\delta_1/4} \geq 4, \ a_{n+1} > a_n^2, \ a_{n+1}^{\delta_{n+1}/2} > 16a_n^{\delta_n}
\] (3.11)
and
\[
a_{n+1}^{\delta_{n+1}/16} > a_n^{\delta_n} \log a_{n+1}.
\] (3.12)

We note that (3.11) implies that
\[
p_1 \geq 1 \text{ and } p_{n+1} \geq 2p_n^2, \text{ for } n \in \mathbb{N}.
\] (3.13)

We also place certain restrictions on our choice of the values of \(a_n \) in relation to the values of \(r_n \):
\[
\text{if } a_k \in [r_n, r_{n+1}), \text{ then } a_m \notin [r_n, r_{n+4}) \text{ for } k, m \in \mathbb{N}, \ m \neq k.
\] (3.14)

We now show that, in order to prove that the hypotheses of Lemma 3.1 hold, it is sufficient to prove the following result.

Lemma 3.2. Suppose that, for some \(m \in \mathbb{N} \), we have defined the values of \(a_n \) for which \(a_n \leq r_m \) in such a way that they satisfy (3.11), (3.12) and (3.14). Then we can choose \(N \in \mathbb{N} \) and the values of \(a_n \) for which \(r_m < a_n \leq r_{m+N-1} \) in such a way that they satisfy (3.11), (3.12) and (3.14) and, no matter how the later values of \(a_n \) are chosen,
\[
f^N((-r_{m+1}, 0]) \subset (-r_{m+N}, 0].
\]

Proving Lemma 3.2 is the key part of the proof that we can choose the sequence \((a_n)\) so as to ensure that \(A(f) \cap (-\infty, 0] = \emptyset \). Before proving Lemma 3.2 we show that, if this result holds, then the hypotheses of Lemma 3.1 also hold. First, by applying Lemma 3.2 when \(m = 1 \) we see that there exists \(N_{1,1} \in \mathbb{N} \) and a choice of \(a_n \) for \(r_1 < a_n \leq r_{N_{1,1}} \) such that
\[
f^{N_{1,1}}((-r_2, 0]) \subset (-r_{N_{1,1}+1}, 0].
\] (3.15)
We then apply Lemma 3.2 with $m = N_{1,1}$ and deduce that there exists $N_{1,2} \in \mathbb{N}$ and a choice of a_n for $r_{N_{1,1}} < a_n \leq r_{N_{1,1}+N_{1,2}-1}$ such that

$$f^{N_{1,2}}((-r_{N_{1,1}+1}, 0]) \subset (-r_{N_{1,1}+N_{1,2}}, 0].$$

It follows from (3.15) and (3.16) that

$$f^{N_{1,1}+N_{1,2}}(-r_2, 0] \subset f^{N_{1,2}}((-r_{N_{1,1}+1}, 0] \subset (-r_{N_{1,1}+N_{1,2}}, 0].$$

Putting $N_1 = N_{1,1} + N_{1,2}$, we deduce that we can choose the values of a_n for which $r_1 < a_n \leq r_{N_1-1}$ in such a way that

$$f^{N_1}((-r_2, 0]) \subset (-r_{N_1}, 0].$$

Thus (3.8) holds.

Now suppose that, for some $k \geq 2$, we have defined N_j, for $1 \leq j \leq k-1$, and defined a_n, for $r_1 < a_n \leq r_{N_1+\ldots+N_{k-1}-1}$. We claim that we can use Lemma 3.2 to define $N_k \in \mathbb{N}$ and a_n with $r_{N_1+\ldots+N_{k-1}-1} < a_n \leq r_{N_1+\ldots+N_{k-1}}$ such that (3.9) holds for k. The argument is similar to that given above. First, we apply Lemma 3.2 with $m = N_1 + \ldots + N_{k-1} + 2k-1$ to construct $N_{k,1}$ and a_n with

$$r_{N_1+\ldots+N_{k-1}+2k-1} < a_n \leq r_{N_1+\ldots+N_{k-1}+N_{k,1}+2k-2}$$

such that

$$f^{N_{k,1}}((-r_{N_1+\ldots+N_{k-1}+2k}, 0]) \subset (-r_{N_1+\ldots+N_{k-1}+N_{k,1}+2k-1}, 0].$$

Then, for $2 \leq j \leq 2k$, we apply Lemma 3.2 repeatedly with

$$m = N_1 + \ldots + N_{k-1} + N_{k,1} + \ldots + N_{k,j-1} + 2k-j$$

to construct $N_{k,j}$ and a_n with

$$r_{N_1+\ldots+N_{k-1}+N_{k,1}+\ldots+N_{k,j-1}+2k-j} < a_n \leq r_{N_1+\ldots+N_{k-1}+N_{k,1}+\ldots+N_{k,j}+2k-j-1}$$

such that

$$f^{N_{k,j}}((-r_{N_1+\ldots+N_{k-1}+N_{k,1}+\ldots+N_{k,j-1}+2k-j+1}, 0]) \subset (-r_{N_1+\ldots+N_{k-1}+N_{k,1}+\ldots+N_{k,j}+2k-j}, 0].$$

Putting $N_k = N_{k,1} + \ldots + N_{k,2k}$, we deduce that a_n can be chosen with

$$r_{N_1+\ldots+N_{k-1}-1} < a_n \leq r_{N_1+\ldots+N_k-1}$$

such that

$$f^{N_k}((-r_{N_1+\ldots+N_{k-1}+2k}, 0]) \subset (-r_{N_1+\ldots+N_k}, 0]$$

and hence (3.9) holds for k.

So, it remains to prove Lemma 3.2.

We begin by proving four lemmas. The first describes the extent to which f is small close to a zero at $-a_k$, where $k \in \mathbb{N}$.

Lemma 3.3. For each $k \in \mathbb{N}$,

$$|f(z)| < 1, \text{ for } z \in (-a_k, -a_k^{1-\delta_k/16}).$$
Proof. This holds since, for such a \(z \), it follows from (3.1), (3.11), (3.12) and (3.13) that

\[
|f(z)| \leq a_k^3 \left(1 - \frac{a_k^{1-\delta_k/16}}{a_k} \right)^{2pk/k-1} \prod_{m=1}^{k-1} \left(1 + \frac{a_k}{a_m} \right)^{2p_m} \prod_{m=k+1}^{m} \left(1 + \frac{a_k}{a_m} \right)^{2p_m}
\]

\[
\leq \left(1 - \frac{1}{a_k^{\delta_k/16}} \right)^{\frac{a_k^{1/2}}{\delta_k/16}} a_k^{3+2p_1+\ldots+2p_{k-1}} \prod_{m=k+1}^{1/2} \left(1 + \frac{1}{a_m^{1/2m-k}} \right)
\]

\[
\leq \exp(-\delta_k/16) a_k^{-\delta_k/16} e^{1+1/2+1/4+\ldots}
\]

\[
\leq a_k^{-\delta_k/16} \exp(-\delta_k/16) < 1.
\]

□

The second lemma shows that there is a large increase in the size of \(g(r) \) at \(r = a_k \), where \(k \in \mathbb{N} \).

Lemma 3.4. For each \(k \in \mathbb{N} \),

\[
\log g(a_k) \geq p_k^{1/2} \log(a_k^{1-\delta_k/16}).
\]

Proof. For \(k \in \mathbb{N} \), it follows from (3.11) that

\[
g(a_k^{1-\delta_k/16}) < a_k^3 \prod_{m=1}^{k-1} \left(1 + \frac{a_k}{a_m} \right)^{2p_m}
\]

\[
< a_k^{3+2\sum_{m=1}^{k-1} p_m} \leq a_k^{4p_{k-1}}
\]

and

\[
g(a_k) \geq 2^{2pk}.
\]

Thus, by (3.11), (3.12) and (3.13),

\[
\frac{\log g(a_k)}{\log g(a_k^{1-\delta_k/16})} \geq \frac{2pk \log 2}{4p_{k-1} \log a_k} > \frac{p_k}{3p_{k-1} \log a_k} > p_k^{1/2}.
\]

□

The third lemma shows that \(\log g \) has a convexity property.

Lemma 3.5. Let \(r > 0 \) and \(t \geq 2 \). Then

\[
\log g(r^t) \geq t \log g(r).
\]

Proof. Let \(r > 0 \) and \(t \geq 2 \). We have

\[
g(r^t) \geq r^{3t} \prod_{a_m \leq r} \left(1 + \frac{r^t}{a_m} \right)^{2p_m}
\]

and

\[
g(r)^t = r^{3t} \prod_{a_m \leq r} \left(1 + \frac{r}{a_m} \right)^{2p_m t}
\]

Thus it is sufficient to show that

\[
\left(1 + \frac{r}{a_m} \right)^t \leq \left(1 + \frac{r^t}{a_m} \right)
\]
when \(a_m \leq r \). This is true since it follows from (3.11) that, for \(a_m \leq r \) and \(t \geq 2 \),
\[
\left(1 + \frac{r}{a_m}\right)^t \leq \left(\frac{r \, 1/2}{a_m}\right)^t = \frac{r^t}{a_m^{t/2}} < 1 + \frac{r^t}{a_m}.
\]

The fourth lemma gives an upper bound on the growth of \(g \) on intervals where no point is the modulus of a zero of \(f \).

Lemma 3.6. Let \(r > 0 \), \(0 < s < 1/2 \) and \(t > 1 \) and suppose that there are no values of \(n \in \mathbb{N} \) for which \(a_n \in (r^s, r^t] \). Then
\[
\log g(r^t) \leq t(1 + 2s) \log g(r).
\]

Proof. It follows from (3.11) that
\[
g(r^t) = r^{3t} \prod_{a_m \leq r^s} \left(1 + \frac{r^t}{a_m}\right)^{2p_m} < r^{3t} \prod_{a_m \leq r^s} r^{2p_m} = r^{t(3 + \sum_{a_m \leq r^s} 2p_m)}
\]
and
\[
g(r) > r^3 \prod_{a_m \leq r^s} \left(\frac{r}{a_m}\right)^{2p_m} > r^{3 + \sum_{a_m \leq r^s} 2p_m(1-s)}.
\]
Thus
\[
\log g(r^t)/\log g(r) < t/(1-s) \leq t(1 + 2s),
\]
since \(s < 1/2 \).

We are now in a position to prove Lemma \(3.2\).

Proof of Lemma 3.2. Suppose that \(m \in \mathbb{N} \) and that we have defined the values of \(a_n \) for which \(a_n \leq r_m \). We now define a sequence \((s_k)\), \(0 \leq k \leq N\), inductively according to certain rules that we give below. Each time we define a value \(s_k \), we also add a zero of \(f \) at \(-s_k\) provided this is allowed by (3.11), (3.12) and (3.14); no other zeros of \(f \) are added. We choose our values \(s_k \) in such a way that
\[
(3.18) \quad r_{m+k} \leq s_k \leq r_{m+k+1}, \text{ for } 0 \leq k < N,
\]
\[
(3.19) \quad s_N \leq r_{m+N}
\]
and
\[
(3.20) \quad f^k((-r_{m+1}, 0]) \subset (-s_k, 0], \text{ for } 0 \leq k \leq N.
\]
The result of Lemma 3.2 follows directly from (3.19) and (3.20). The difficult part of the proof is to show that there exists an \(N \in \mathbb{N} \) for which (3.19) is satisfied.

We define our sequence \((s_k)\) as follows:

- set \(s_0 = r_{m+1} \);
- if \(s_k > r_{m+k} \) and there is a zero of \(f \) at \(-s_k\), then we set
 \[
 (3.21) \quad s_{k+1} = g(s_k^{1 - \delta_{n_k}/16});
 \]
- if \(s_k > r_{m+k} \) and there is no zero of \(f \) at \(s_k \), then we set
 \[
 (3.22) \quad s_{k+1} = g(s_k);
 \]
- if \(s_k \leq r_{m+k} \), then we terminate the sequence \((s_k)\).
It follows from Lemma 3.3 and (3.5) that, with this construction, (3.18), (3.19) and (3.20) are indeed satisfied.

It remains to prove that there exists $K \in \mathbb{N}$ such that the sequence terminates at s_K; that is, if

$$T_k = \frac{\log s_k}{\log r_{m+k}},$$

then there exists $K \in \mathbb{N}$ such that $T_K \leq 1$.

We introduce the following terminology. We let L denote the largest integer for which $a_L \leq r_m$ and define a (finite) subsequence (k_n) such that

$$a_{L+n} = s_{k_n}, \text{ for } n = 1, 2, \ldots.$$ \hfill (3.23)

The main idea is to show that, for each $n \geq 2$ we have that T_{k_n+1} is less than T_{k_n}, with k_n defined as above. These decreases counteract the small increases that may occur from T_k to T_{k+1} for other values of k and, for n large enough, they will combine together to cause T_{k_n+1} to drop below 1.

We first estimate some quantities that will be useful in our calculations. We begin by noting that it follows from (3.23), (3.18) and Lemma 3.4 that, for $n \geq 1$,

$$\log r_{m+k_n+2} = \log g(r_{m+k_n+1}) \geq \log g(s_{k_n}) \geq p_{L+n}^{1/2} \log g(s_{k_n}^{1-\delta_{L+n}/16}).$$

Thus, by (3.21)

$$\log r_{m+k_n+2} \geq p_{L+n}^{1/2} \log s_{k_n+1}, \text{ for } n \geq 1.$$ \hfill (3.24)

Together with (3.6), (3.24) implies that

$$\log r_{m+k_n+q} \geq 3^{q-2} p_{L+n}^{1/2} \log s_{k_n+1}, \text{ for } q \geq 2, n \geq 1.$$ \hfill (3.25)

Together with Lemma 3.5 (3.24) implies that

$$\frac{\log s_{k_n+q}}{\log r_{m+k_n+q+1}} \leq \frac{\log g^{-1}(s_{k_n+1})}{\log g^{-1}(r_{m+k_n+2})} \leq \frac{\log s_{k_n+1}}{\log r_{m+k_n+2}} \leq \frac{1}{p_{L+n}^{1/2}}, \text{ for } q \geq 2, n \geq 1.$$ \hfill (3.26)

Now fix $n \geq 2$ and write

$$t_{n,q} = T_{k_n+q} = \frac{\log s_{k_n+q}}{\log r_{m+k_n+q}}, \text{ for } q \geq 2.$$ \hfill (3.27)

For $2 \leq q < k_{n+1} - k_n$, there are no zeros of f with modulus in the interval (s_{k_n}, s_{k_n+q}) and so it follows from (3.22), Lemma 3.6 and (3.25) that, for such q,

$$\log s_{k_n+q+1} = \log g(s_{k_n+q})$$

$$\leq t_{n,q} \left(1 + 2 \frac{\log s_{k_n}}{\log r_{m+k_n+q}} \right) \log g(r_{m+k_n+q})$$

$$= t_{n,q} \left(1 + 2 \frac{\log s_{k_n}}{\log r_{m+k_n+q}} \right) \log r_{m+k_n+q+1}$$

$$\leq t_{n,q} \left(1 + \frac{2}{3^{q-2} p_{L+n}^{1/2}} \right) \log r_{m+k_n+q+1}. $$
Thus, for $2 \leq q < k_{n+1} - k_n$, we have

$$t_{n,q+1} \leq t_{n,q} \left(1 + \frac{2}{3^{q-2}p_{L+n}^{1/2}} \right).$$

(3.27)

For $q = k_{n+1} - k_n$, there are no zeros of f with modulus in the interval (s_{k_n}, s_{k_n+q}) and so it follows from (3.21), Lemma 3.6 and (3.25) that

$$\log s_{k_n+q+1} = \log g(s_{k_n+q})$$

$$\leq t_{n,q} \left(1 - \frac{\delta_{L+n+1}}{16} \right) \left(1 + \frac{2 \log s_{k_n}}{\log r_{m+k_n+q}} \right) \log g(r_{m+k_n+q+1})$$

$$= t_{n,q} \left(1 - \frac{\delta_{L+n+1}}{16} \right) \left(1 + \frac{2 \log s_{k_n}}{\log r_{m+k_n+q}} \right) \log r_{m+k_n+q+1}$$

$$\leq t_{n,q} \left(1 - \frac{\delta_{L+n+1}}{16} \right) \left(1 + \frac{2}{3^{q-2}p_{L+n}^{1/2}} \right) \log r_{m+k_n+q+1}.$$

Thus, for $q = k_{n+1} - k_n$, we have

$$t_{n,q+1} \leq t_{n,q} \left(1 - \frac{\delta_{L+n+1}}{16} \right) \left(1 + \frac{2}{3^{q-2}p_{L+n}^{1/2}} \right).$$

(3.28)

Lastly, it follows from (3.14) that, if $q = k_{n+1} - k_n + 1$, then $q - 1 \geq 2$. Also, there are no zeros of f with modulus in the interval $(s_{k_{n+1}}, s_{k_{n+1}+1}) = (s_{k_{n+1}}, s_{k_n+q})$ and so it follows from Lemma 3.6 and (3.26) that

$$\log s_{k_n+q+1} = \log g(s_{k_n+q})$$

$$\leq t_{n,q} \left(1 + \frac{2 \log s_{k_{n+1}}}{\log r_{m+k_n+q}} \right) \log g(r_{m+k_n+q})$$

$$= t_{n,q} \left(1 + \frac{2 \log s_{k_{n+1}}}{\log r_{m+k_n+q}} \right) \log r_{m+k_n+q+1}$$

$$\leq t_{n,q} \left(1 + \frac{2}{p_{L+n}^{1/2}} \right) \log r_{m+k_n+q+1}.$$

Thus, for $q = k_{n+1} - k_n + 1$, we have

$$t_{n,q+1} \leq t_{n,q} \left(1 + \frac{2}{p_{L+n}^{1/2}} \right).$$

(3.29)
It follows from (3.27), (3.28), (3.29) and (3.13) that, for $M \geq 2$, we have
\[
T_{kM+1+2} = t_{M,kM+1-kM+2}
\]
\[
= t_{2,2} \prod_{n=2}^{M} \prod_{q=2}^{k_n+1} \frac{t_{n,q+1}}{t_{n,q}}
\]
\[
\leq t_{2,2} \prod_{n=2}^{M} \left(1 + \frac{2}{p_{L+n}}\right)^{\delta_{L+n+1}} \prod_{q=2}^{k_n+1} \left(1 + \frac{2}{3^{q-2}p_{L+n}}\right)
\]
\[
\leq t_{2,2} \prod_{n=2}^{M} \left(1 + \frac{2}{p_{L+n}}\right)^{3^{m+1}} \prod_{q=2}^{k_n+1} \left(1 - \frac{\delta_{L+n+1}}{16}\right).
\]

It follows from (3.13) that $\sum_{n \in \mathbb{N}} \frac{1}{p_{L+n}} < \infty$ and so, since $\sum_{n \in \mathbb{N}} \delta_{L+n+1} = \infty$, we deduce that, for M sufficiently large, $T_{kM+1+2} \leq 1$, as required.

We have now proved Lemma 3.2. As noted earlier, this is sufficient to imply that the hypotheses of Lemma 3.1 hold and hence that $A(f) \cap (-\infty, 0] = \emptyset$ as required.

We complete the proof of Theorem 1.2 by showing that, in addition, conditions (1.2) and (1.3) are satisfied. That is, we prove the following.

Lemma 3.7. Let
\[
\varepsilon_n = \max_{R_n \leq r \leq R_{n+1}} \frac{\log \log M(r)}{\log r}.
\]

There exists a subsequence (n_k) such that
\[
\varepsilon_{n_k} \leq \delta_k + \frac{1}{2^{n_k}}, \quad \text{for } k \in \mathbb{N},
\]
and

\[
\varepsilon_{n_k+m} \leq \frac{\delta_k}{3^{m-1}} + \frac{1}{2^{n_k+m}}, \quad \text{for } k \in \mathbb{N}, 1 \leq m < n_{k+1} - n_k.
\]

Proof. We begin by setting $R_0 = r_0 = 10$ and defining $R_{n+1} = M(R_n)$, for $n \in \mathbb{N}$. Clearly $R_n \geq r_n$ by (3.1) and
\[
R_{n+1} \geq R_n^3, \quad \text{for } n \in \mathbb{N}.
\]

We claim that
\[
\text{if } a_k \in [R_n, R_{n+1}], \text{ then } a_m \notin [R_n, R_{n+2}) \text{ for } k, m \in \mathbb{N}, \ m \neq k.
\]

In order to deduce this from (3.14), it is sufficient to show that, if $r_p \in [R_n, R_{n+1})$, for some $p, n \in \mathbb{N}$, then $r_{p+2} > R_{n+1}$. We prove this in two steps. Firstly, we note that if $r_p \in [R_n, R_n^3)$, for some $p, n \in \mathbb{N}$, then it follows from (3.6) that $r_{p+1} \geq r_{p}^3 \geq R_n^3$. Secondly, if $r_p \in [R_n^3, R_{n+1})$, for some $p, n \in \mathbb{N}$, then we claim that
\[
r_{p+1} = g(r_p) \geq g(R_n^3) > M(R_n) = R_{n+1}.
\]
This is true since, if \(k \) is the smallest integer such that \(a_k > R_n^3 \), then

\[
g(R_n^3) = R_n^3 \prod_{m=1}^{k-1} \left(1 + \frac{R_n^3}{a_m}\right)^{2p_m}
\]

and so, by (3.1) and (3.11),

\[
M(R_n) = f(R_n) = R_n^3 \prod_{m=1}^{k-1} \left(1 + \frac{R_n^3}{a_m}\right)^{2p_m} < g(R_n^3) R_n^3 \prod_{m=1}^{k-1} \left(1 + \frac{R_n^3}{a_m}\right)^{2p_m} \leq g(R_n^3).
\]

Thus (3.36) does indeed hold and, by the reasoning above, this is sufficient to show that (3.34) holds.

Now, for \(k \in \mathbb{N} \), we choose \(n_k \in \mathbb{N} \) such that \(a_k \in [R_{n_k}, R_{n_k+1}) \). Then, by (3.34), this defines a sequence \((n_k)\) with \(n_j \neq n_k \) for \(j \neq k \). Now suppose that \(r \in [R_{n_k}, R_{n_k+1}] \), for some \(k \in \mathbb{N} \). It follows from (3.11) and (3.34) that

\[
M(r) = f(r) \leq r^3 \left(1 + \frac{r}{a_k}\right)^{2p_k} \prod_{m=1}^{k-1} \left(1 + \frac{r}{a_m}\right)^{2p_m} \prod_{m=k+1}^{\infty} \left(1 + \frac{r}{a_m}\right)^{2p_m} \leq \left(1 + \frac{r}{a_k}\right)^{2p_k} r^{3+2p_1+\cdots+2p_{k-1}} \prod_{m=k+1}^{\infty} \left(1 + \frac{r}{a_m}\right)^{1/2} a_k^{1/2} \leq \left(1 + \frac{r}{a_k}\right)^{a_k^{1/2}} r^{a_k^{1/2} - 1/2} e^{1+1/2+1/4+\cdots}
\]

and so

\[
M(r) < e^{2r^a_k^{1/2} - 1/2} \left(1 + \frac{r}{a_k}\right)^{a_k^{1/2}}.
\]

If \(r < a_k^{1/2} \), then it follows from (3.2) and (3.36) that

\[
M(r) < e^{2r^a_k^{1/2} - 1/2} \left(1 + \frac{r}{a_k}\right)^{a_k^{1/2}} < e^{3r^a_k^{1/2}}
\]

and hence, since \(r \geq R_1 \geq 1000 \),

\[
\frac{\log \log M(r)}{\log r} < \frac{\delta_k \log r + 2 \log \log r}{\log r} = \delta_k + 2 \frac{\log \log r}{\log r} \leq \delta_k + 2 \frac{\log \log R_{n_k}}{\log R_{n_k}}.
\]

It follows from (3.33) that, in this case,

\[
\frac{\log \log M(r)}{\log r} \leq \delta_k + 2 \frac{\log (3^{n_k} \log 10)}{3^{n_k} \log 10} < \delta_k + \frac{1}{2^{n_k}}.
\]
If \(a_k^{1/2} \leq r \leq a_k \), then
\[
\left(1 + \frac{r}{a_k}\right)^{a_k^{\delta_k}} = \left(1 + \frac{r}{a_k}\right)^{(a_k/r)^{\delta_k} a_k^{\delta_k}} < \left(1 + \frac{r}{a_k}\right)^{(a_k/r)^{\delta_k}} \leq e^{r^{\delta_k}}
\]
and, if \(r > a_k \), then
\[
\left(1 + \frac{r}{a_k}\right)^{a_k^{\delta_k}} < r^{a_k^{\delta_k}} < r^{r^{\delta_k}}.
\]
So, if \(r \geq a_k^{1/2} \), it follows from (3.36) and (3.11) that
\[
M(r) < e^{2r^{a_k^{\delta_k-1}}} r^{r^{\delta_k}} < e^{2r^{a_k^{\delta_k/2}}} r^{r^{\delta_k}} < e^{2r^{2r^{\delta_k}}}
\]
and hence
\[
\frac{\log \log M(r)}{\log r} < \frac{\delta_k \log r + 2 \log \log r}{\log r} = \delta_k + 2 \frac{\log \log r}{\log r} \leq \delta_k + 2 \frac{\log \log R_{nk}}{\log R_{nk}}.
\]
As before, it follows from (3.33) that
\[
(3.38) \quad \frac{\log \log M(r)}{\log r} \leq \delta_k + \frac{1}{2^{n_k}}.
\]
Together with (3.37), this implies that (3.31) holds.

Now suppose that \(r \in [R_{nk+m}, R_{nk+m+1}) \), for some \(k \in \mathbb{N} \), \(1 \leq m < n_{k+1} - n_k \).
It follows from (3.11) and (3.33) that
\[
M(r) = f(r) \leq r^3 \prod_{m=1}^{k} \left(1 + \frac{r}{a_m}\right)^{2^{p_m} \prod_{m \geq k+1} \left(1 + \frac{r}{a_m}\right)^{2^{p_m}}} \\
\leq r^{3+2^{p_1+\ldots+2^{p_k}}} \prod_{m \geq k+1} \left(1 + \frac{1}{a_m^{1-1/2^{m-k}}}
ight) a_m^{1/2} \\
\leq r^{a_k^{\delta_k}} e^{1+1/2+1/4+\ldots} \\
\leq e^{2r^{a_k^{\delta_k}}} \leq e^{2r^{R_{nk+1}^{\delta_k}}} \\
< e^{2r^{r^{\delta_k}/3^{m-1}}}
\]
Thus
\[
\frac{\log \log M(r)}{\log r} < \frac{\delta_k \log r/3^{m-1} + 2 \log \log r}{\log r} < \frac{\delta_k}{3^{m-1}} + 2 \frac{\log \log R_{nk+m}}{\log R_{nk+m}}.
\]
As before, it follows from (3.33) that
\[
(3.39) \quad \frac{\log \log M(r)}{\log r} \leq \frac{\delta_k}{3^{m-1}} + \frac{1}{2^{n_{m+m}}}
\]
and so (3.32) holds. \(\square\)
REFERENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS, THE OPEN UNIVERSITY, WALTON HALL, MILTON KEYNES MK7 6AA, UK

E-mail address: p.j.rippon@open.ac.uk

DEPARTMENT OF MATHEMATICS AND STATISTICS, THE OPEN UNIVERSITY, WALTON HALL, MILTON KEYNES MK7 6AA, UK

E-mail address: g.m.stallard@open.ac.uk