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six-cusped sextic, whose cusps lie on a conic, and many properties of this
projected curve similar to those of the plane quartic can be at once
obtained from the above general theorems.

It remains to be added that the nature of the harmouic envelope T6,
and the configuration of its contact-quadrics U^ in relation to the 86
double-sixes of the cubic surface by which T6 is defined, require further
investigation and elucidation.

ON AN INTEGRAL FUNCTION OF AN INTEGRAL FUNCTION

G. POLYA.*

THE following theorem, which I found in replying to a question of
Prof. I. Schur, seems to me to exhibit an essential characteristic of the
notion of order.

I. If g{z) and h{z) are integral functions and g[h(z)j is an integral
function of finite order, then there are only two possible cases: either

{a) the internal function h{z) is a polynomial and the external
function g(z) is of finite order ;t or else

(b) the internal function h(z) is not a polynomial but a function
of finite order, and the external function g(z) is of zero order.

This theorem appears quite simple but, though several proofs are
possible, I have not been able to find one that does not involve some
rather elaborate result connected with the theorem of Picard. The simplest
proof I can present is based on a theorem of H. Bohr,t which generalizes
one of Landau§ and leads easily to the following theorem, which is inter-
esting in itself.

II. Suppose tliat f(z), g(z), h(z) are integral functions connected by
the relation

(1)

• Received and read 17 February, 1925.
f The case of finite order includes that of zero order, and the latter includes the case of a

polynomial.
X H. Bohr, Scripta Univ. atque Biblioth. Hierosolymitanarum, 1 (1928).
§ E. Landau, Rend, di Palermo, 46 (1922), 347-348.
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Suppose further that

(2) h{0) = 0.

Let F(r)^G(r), H(r) denote the maximum moduli of f(z), g(z), h(z)
respectively in the circle \ z | ̂  r. Then there is a definite number c,
greater than 0 and less than 1, independent of g(z), h(z), and r, and'
such that

(3) F(r)>G(cH(b'))-

We could substitute any positive fraction for £ provided c is replaced
by some other suitable constant. Observe that the opposite inequality

F(r) ^ G(H(7'))

is an immediate consequence of the definitions.

Proof of Theorem II.—The theorem of Bohr which we need runs as
follows:—

Suppose that p is a given number, 0 < p < 1, and w = <j>(z) is any
function which is regular for \z\ ̂  1 and satisfies the conditions

(4) 0(0) = 0, Max|0(s)| = 1.
I*I=P

Let r^, denote the radius of the largest circle \ w \ = r^ whose points all
represent values taken by <f>{z) in the circular domain | ^ | ^ 1. Then r^,
is not less than C, C = C(p) being a positive number which depends only
on p.

To fix our ideas let us take p = h put C(£) = c, and apply the theorem
to the function

^ _ Mrz)

which satisfies the conditions (4). We see that the function w = h(z)
maps the circular domain | z \ ^ r on a Riemann surface extended over the
w>-plane whose various sheets cover the whole length of a certain circle
of centre w = 0 and of radius B, B being not less than cH(%r).

Suppose that w0 is a point on the circle | w \ = B, such that

Then there is at least one point z0 inside | z \ ^ r, such that

h(z0) = w0.
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It follows that

) G(|too|) = \g(wo)\ = \g[h(fij)\ < F(r).

Proof of Theorem I.—The case where g(z) or h(z) is a constant is of
•no interest and will be excluded. Considering, if necessary, h(z) — h{Q)
instead of h(z), and g\w-\-h(Q)J instead of g{w), we can and shall assume
that (2) is true. Then we have, adopting the notation (1), the inequality
(3). Observe that F(r), G(r), H(r) are increasing functions.

We may express the hypothesis that f(z) is of finite order by the
inequality

(5) F(r) < Aer\

Put h(z) = a1

and suppose | am | > 0. We have

(6) H(r)

and, in virtue of (3), (5), and (6),

G(c|oj2-»r«) <

That is to say, the order of g{z) does not exceed ajm. If h{z) is not a
polynomial, m can be chosen arbitrarily large and in this case the order
of g{z) is zero.

In any case there is an inequality for g(z), analogous to (6), let us say

\bn\r
n (\bn\>0,

Combining this with (3) and (5), we obtain

| 6,| cB(jff(ir))« < G(cHQr)) < F{r)

Thus the order of h(z) is not greater than a. The chief point being
settled by Theorem II, there is naturally no difficulty in finding closer
relations between the orders of magnitude of F(r), G(r), and H(r).

The case (b) of Theorem I is actually possible. Put

g(W) = l + 2-1W + 2-4M>2 + 2-9W3+.-., U(Z) = 6s.

The integral function

(7) g{h(z)) = 1 + 2 - V + 2 - V + . . .

is the "upper half" of a theta-series. The zeros and the order of mag-
nitude of the whole theta-series being perfectly known, we conclude on
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general principles that the function (7) is of the second order. We can
easily obtain more precise information by direct calculation. Let M(r)
denote the maximum modulus and N{r) the number of the zeros of the
f unction (7) in the circle | z | ̂  r. Then we have

lim r"2 logM(r) = 2 lim r~2N(r) = *
4 lOg '2

THE. ZEKOS OF RIEMANN'S ZETA-FUNCTION ON THE
CRITICAL LINE

M. FEKETE.*

1. Since Hardy, in his most interesting note "Snr les zeros de la
fonction £(s) de Riemann", t proved the existence of an infinity of zeros
of £ (s) on the line o- = £, several papers have been published on the order
of magnitude of the number N0(T) of zeros of £(s) = g(cr-\-it) for which

cr = l, 0<t<T.

1°. In 1915, Landau I proved that

AT (T)
lim inf i 0 ; ' > 0.

r->oo log log T

2°. In 1916, de la Vallee Poussin§ proved that

lim sap *f> > 0.

3°. In 1917, Hardy and Littlewood|| proved that to every e > 0
corresponds a TQ = T0(e), such that

NQ(T)>T*-e (T>T0).

4°. In 1921, the same authors H proved that

NJT)
lim inf = ^ p > 0.

T—>oo

* Received 3 June, 1925; read 11 June, 1925.
t Comptes rendus, 158 (1914), 1012-1014.
{ Landau, " Uber die Hardysche Entdeckung unendlich vieler Nullstellen der Zetafunk-

tion mit reellem Teil 4 " , Math. Annalen, 76 (1915), 212-243.
§ de la Vallee Poussin, " Sur les zeros de ((s) de Riemann ", Comptes rendus, 163 (1916),

418-421.
|| Hardy and Littlewood, " Contributions to* the theory of the Riemann zeta-function and

the theory of the distribution of primes ", Ada Math., 41 (1918), 119-196.
II Hardy and Littlewood, "The zeros of Riemann's zeta-function on the critical line ",

Math. Zeitschrift, 10 (1921), 283-317.


