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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 104, Number 2, October 1988 

A PROOF OF THE UNIFORMIZATION THEOREM 
FOR ARBITRARY PLANE DOMAINS 

YUVAL FISHER, JOHN H. HUBBARD AND BEN S. WITTNER 

(Communicated by Irwin Kra) 

ABSTRACT. We present a simple constructive proof of the Uniformization 
Theorem which works for plane domains. The proof is a combination of cov- 
ering space theory and Koebe's constructive proof of the Riemann mapping 
theorem, and the resulting algorithm can be used to estimate the Poincar6 
metric for the domain. 

1. Introduction. In the study of iteration of rational functions [B], we con- 
stantly need the Poincare metric for plane domains. The Uniformization Theorem 
is usually proved using potential theory. The proof is quite involved, and it is very 
hard to see how to compute the resulting metric., 

We present here a simpler constructive proof which works for plane domains, or 
more generally any Riemann surface some covering space of which can be embed- 
ded in C. It is nothing but a combination of covering space theory and Koebe's 
constructive proof of the Riemann mapping theorem. The algorithm has been im- 
plemented in FORTRAN. 

UNIFORMIZATION THEOREM FOR PLANE DOMAINS. If U is a region contained 
in C - {a, b} for some a 54 b in C, then there exists a conformal isomorphism of U 
with D. 

2. Preliminaries. Let D C C be the open unit disk, Dr be the open disk of 
radius r centered at 0, and Dr be the closure of Dr. 

Let ma (z) = (z + a)/(1 + az), where ii is the complex conjugate of a. For a C D, 
ma: D -* D is a conformal bijection with inverse m-a(z). Aut(D), the group of 
analytic automorphisms of D, is precisely {eioma(z)la c D}. 

Also define sq(z) = z2, and let U denote the universal covering space of U. 
2.1 The universal covering of C - {0, 1}. Let H denote the upper half plane. 

The following is essentially proved by Theorem 7 and Theorem 8 of Ahlfors [A, p. 
281]. 

THEOREM 2. 1. The modular function A: H -* C-{0, 1} is a universal covering 
map. 

2.2 Limits of analytic functions. The next theorem is stated in elementary texts 
for plane domains only, but the proof immediately generalizes to an arbitrary Rie- 
mann surface Q, at least if Q is a countable union of compact subsets. Actually, a 
theorem of Rado asserts that all Riemann surfaces Q have this property [F, p. 186], 
but this result is difficult. It is easy if Q is a covering space of a plane domain. 
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LEMMA 2.2. If Q is a Riemann surface which is a covering space of a plane 
domain U, then Q is a countable union of compact subsets. 

PROOF. This follows from the fact that the fundamental group of U is countable, 
which itself follows from the fact that U is a countable union of open discs. Q.E.D. 

REMARK. Notice that C - {1, -, 3,... } does not have a countable fundamental 
group; of course it is not an open subset of C. 

THEOREM 2.3(Montel). If fn: Q -* C is a sequence of uniformly bounded 
analytic maps, then fn has a subsequence which converges uniformly on compact 
subsets. 

PROOF. [A, p. 220]. 

LEMMA 2.4. If p: U -- Uo is a covering map, 7r: Y -* Uo continuous, and 
f: U -* Y is an open surjective map such that the following diagram commutes, 
then f is a covering map. 

y 
f 

U 7r 

p 

Uo 

PROOF. This is straightforward. 

3. Proof of the Uniformization Theorem for plane domains. 
Part a: Reduction to bounded domains. 

LEMMA 3. 1. Without loss of generality we may assume that 0 C U C D. 

PROOF. This is where we use Theorem 2.1. Let p: D - C -{a, b} be a universal 
covering map; there is such a p by Theorem 2.1 since D is conformally isomorphic 
to H. Let UJo be a connected component of p-1 (U); then Uo is contained in D, and 
since Uo is a covering space of U they have isomorphic universal covering spaces. 
The theorem will be proved if we can prove it for Uo. If a is any point of Uo, we 
can further replace Uo by its image under m_a, so that 0 C Uo. Q.E.D. 

REMARK. If U is bounded to begin with we just need to scale it to bring it into 
the disc. More generally if any component K of C - U is not a point, we can replace 
U by its image under the conformal mapping C - K -* D, where C is the Riemann 
sphere and K is the closure of K in C. But the case where U is the complement 
of a Cantor set is of particular importance in the applications we have in mind; we 
do not know any way to reduce that case to bounded domains without using the 
modular function or something equivalent. The case where U is the complement 
of a finite set is also of interest, specifically to the accessory parameter problem; it 
also seems to require the modular function. 

Part b: The main construction. We will construct recursively a sequence of 
domains U0, U1,.. ., Un, with all Un contained in D. Moreover, each Un will come 
with a covering map Pn: Un -+ Un-,, which will be of degree 1 or 2. Thus each 
Un is a covering space of U, and there exist covering maps fn: U -* Un, which can 
also be thought of as a sequence of mappings fn: U -* D. We will then prove that 
the fn converge to an isomorphism f: U -* D. 
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Assume Uo, .. ., Un-1 have been constructed, with each Ui C D, and 0 E Ui for 
each i. Further assume Pi ... X Pn- have been constructed, and pi (0) = 0 for each 
I. 

Let an E dUn-, be a point on the boundary of Un-1 that is closest to the origin, 
so that D(O, lanj) C Un-,. Let qn: D -+ D be given by 

qn= man o sq o mbn, 

where bn = V/-a is an arbitrary square root; note that qn(0) = 0. 
There are now two cases to distinguish. See Figure 1. 
Case 1. an is in a noncompact component of D - Un1, i.e. on an "outer" 

component of the boundary of Un-1. Then qnj(Un_i) consists of two connected 
components, intersecting at -bn. Choose the one containing zero, call it Un, and 
let pn be the restriction of qn to it. 

Case 2. an is in a compact component of D - Un, i.e. on an "inner" bound- 
ary component. This time q;1(Un-1) is connected; call it Un and let Pn be the 
restriction of qn to it. 

man sq(z) mbn 
case 1 , 

Un 

(Q:) 

case 2 D Pn 

ma sq(z) mb 

FIGURE 1 

Part c: Proof of convergence. Choose p: U - Uo a universal cover, and let 0 
be an inverse image of 0. Because the maps Pn: Un -+ Un-, are covering maps, 
there exist unique analytic mappings fn: U n Un with fn(0) = O which make the 
diagram in Figure 2 commute. 

The fn are uniformly bounded, so that {fn } is a normal family with a convergent 
subsequence converging to some analytic function f (see 2.3). 

PROPOSITION 3.2. The mapping f: U D is a covering map. 

With this claim, the main theorem is proved. For then U is a covering of D, and 
since D is simply connected, any analytic covering of D is an isomorphism. 

PROOF. We will prove that f is surjective first and then that it is a covering 
map of its image. 
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D 

f 
UnCD 

U2CD 
f2 IP2 

, - UlCD 

Uc " UOCD 
p 

FIGURE 2 

LEMMA 3.3. The mapping f is surjective. 

We will show that the domains Un contain larger and larger discs centered at 
the origin. The function h, defined below, has the property that if U" contains the 
disk of radius r, then U,,1 contains the disc of radius h(r). In this section, we will 
discuss h qualitatively. In fact it is possible to compute h(r) explicitly and use this 
computation to estimate the rate of convergence of the Un to the unit disk (see 
concluding remarks). 

DEFINITION OF THE FUNCTION h(r). Let qr = m-r o sq o m/, and let 
h: [0,1) -+ [0,1) be given by 

h(r) = inf{Izl lqr(Z)l = r}. 

Figure 3 explains the meaning of this formula. (The infimum is in fact realized 
by the line drawn.) Since Un contains the disc of radius r = la,nj, Un+1 contains 
the component of qr 1 (Dr) containing the origin, hence the disc of radius h(r). 

mE sq(z) M-r 
r V 

- 

h(r) 

D D D D 

FIGURE 3 

LEMMA 3.3. 1. The function h is continuous, and h(r) > r if r > 0. 

PROOF. The function h is obviously continuous. Since qr: D -* D with qr (0) = 0 
we have Jqr(z)l < Izl by Schwarz's lemma, with strict inequality if z :$ O. Taking 
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infimum's over BT = {zI Iqr(z)I = r}, we get h(r) > r. Moreover, the set Br 
is compact, so the infimum is realized, and hence the inequality is strict unless 
0 C Br, i.e. unless r = 0. Q.E.D. 

We now show that lan - 1 using the properties of h(r). By the definition of 
an and 3.3.1 we have lan+11 > h(lan ) > Ian4, so {lanl} is strictly increasing. Let 
A = lim lanl, and suppose A < 1. Let E = h(A) - A > 0. By continuity of h(r) 
we can choose 8 such that if la - Al < 6, then h(a) - a > E/2. Now choose N 
sufficiently large so that A - aNg < min(8,e/2). Then we have a contradiction 
since A < Ianj +E/2 < h(lan ) < lan+1I for n > N. Hence A = 1. 

REMARK. It might seem that we have already proved surjectivity; after all the 
images of the fn contain larger and larger discs, and the fn converge. The thing 
that could go wrong, and which would go wrong if for instance we had chosen a 
divergent sequence ?n of basepoints for U, is that the sequence { fn} could converge 
to a constant on the boundary of D. 

PROOF OF LEMMA 3.3. We want to show that for w C D, w C f (U). If w E D, 
then for some large enough N there exists a R such that IanI > R > Iw. Let V C U 
be the component of fn-l(DianI) containing 0. The mapping fn: V Dianl is a 
covering space and thus an isomorphism, so V1 = V nfn- 1 (DR) is compact. The sets 

fn+ z (DR ) C V11, because Pn+, a ? Pn satisfies Schwarz's lemma. Then { fn-+ (w) } 
is a sequence in V1 with a limit point v such that f (v) = w, and w C f (U). 

So D C f (U) and f (U) C D; since f is an open map f (U) = D. Q.E.D. 

LEMMA 3.4. The mapping f is a covering space of its image. 

PROOF. Let ir, = qi a ... * qn: D -* D, so that p = 7rn ? fn. The sequence 

Frn has a subsequence converging to an analytic function 7r: D -* D. By choosing 
a subsequence of the subsequence making the fn converge, we can guarantee that 
p = ir O f; then ir(D) = 7r(f (U)) = p(U) = Uo. 

Lemma 2.4 completes the proof. The proofs of Lemma 3.4, Proposition 3.2, and 
the Theorem are now complete. 

4. Concluding remarks. (1) Since U is isomorphic with D, we see that 7r is 
a universal covering map for U. It can be used to explicitly estimate the Poincare 
metric in U. 

(2) We can make the fn and irn converge (not just via a subsequence) by nor- 
malizing their derivatives to be positive. However, this is not necessary in practice 
where some irn is chosen to approximate a universal cover of U, and an arbitrary 
rotation composed with irn is not important. 

(3) If only Case 1 occurs, which is the case if and only if U is simply connected, 
the above gives a proof of the Riemann mapping theorem due to Koebe. The map 
7v: D -+ U is a conformal isomorphism. 

(4) The sequence {IanI} is actually bounded below by {hn (IaiD}, so examining 
{ho (la, 1)} gives a worst case behavior for the rate of convergence of the algorithm. 

The square root of a circle through the origin is lemniscate (this is the bound- 
ary of B2 in Figure 3), and we can compute the minimum distance from 0 to 
m_sqrt(r)(0B2) = B3. If r is the radius of the original disk, then the minimum 
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distance from 0 to the boundary qT '(Dr) iS 

h(r) = V'F- r (r(- 1 + r2 + 2) 
,\r2 + 1- v2-r (r +1 

h(r) - 1 + (r - 1) - -(r 1)3 + 

It is simple to check that h has a fixed point at 1 which attracts all r C (0, 1) 
under iteration. We can estimate the rate of convergence of ho'(r) to 1 -. 

In fact, 
h 0 (r) = 1- + o(- /A'/i). 

For a more practical estimate, suppose 1/2 < r < 1. If h n(r) = 1E-, then n 
satisfies 

(4/E)2 - (2/(1 - r))2 > n > (2/E)2 - (4/(1 - r))2. 

This estimate follows by induction from the fact that if 2/V,' < 1-r < 4/r/m, 
then 2/ /m + 1 < 1 - h(r) < 4/ m+ 1, which follows from the asymptotic expan- 
sion for hon(r) above. This is not nearly a sharp estimate. The inequalities can be 
improved by requiring r to be closer to 1. 

When n is large enough so that 1 -E < hon(laD1), then 1-E < lanl, and pu (z), 
the Poincare metric for Un, can be computed to within E by approximating Un as 
D; for in that case 

PD (?) ?< PU, () < (1 - E)PD (0) 
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