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1. Introduction and terminology. Suppose that 

(1.1) /(z) = f anz
n = u + iv 

o 
is a transcendental integral function. In this article we develop the theory initiated 
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by Wiman [22, 23] and deepened by other writers including Valiron [18, 19, 20], 
Saxer [15], Clunie [4, 5] and Kôvari [10, 11], which describes the local behaviour 
of f(z), near a point where \f(z)\ is large, in terms of the power seriesf of f(z). 
The theory leads in particular to a good account of the relation between the maxi­
mum modulus 

(1.2) M(r,f) = sup | / (z) | , 

and the maximum term 

(1.3) ix{r) = sup K | rn = aNrN 

n 

say. Here N=N(r) is called the central index. If there are several maximum terms, 
which can only happen for isolated values of r we define N(r) to be the largest of the 
corresponding indices. The theory also allows us to compare 

(1.4) A(r) = inf u(z) and B(r) = sup u{z) 
\z\=r |z |=r 

with M(r). 
We recall that log M(r) is an increasing convex function of log r. Thus 

(1.5) a(r) = r — log M(r), and b(r) = r — a(r) 
dr dr 

exist except for isolated values of r and a(r) increases with r, while b(r)>0. 
We note that N(r) is an increasing function of r and N(r)-> oo with r. If 

(1.6) N(r) = N for rN < r < rN+1 

we see that 

(1.7) r y log v(r) = N = N(r), r^ < r < rN+1. 
dr 

Since ^(r) is continuous at the points rN, we deduce that 

(1.8) logrfr) = logKrQ)+ f ^ ^ , 0 < r0 < r < oo. 

Thus log //(r) is also a convex increasing function of log r. 

1.1. Densities. In order to develop our results we shall need various kinds of 
measures and densities for sets of points on the positive axis. Let E be such a set 
and let E[a, b] denote the part of E for which a<r<b. The linear and logarithmic 
measures of E are defined to be 

m(E) = f dr and lm(E) = | — 
JE JE(I,OO) r 

respectively. These may be finite or infinite. We also define the lower and upper 

t For an extension of the theory to functions in a finite disk see [12]. 
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densities of E by 

r->-oo ' 

and the upper and lower logarithmic densities of E by 

=—-A _ r r - lm(E(h r)) 
log dens E — h m — v . 

r-oo logr 
The definition (1.3) only tells us that the term with index N equal to the central 

index is larger than any of the others in the power series (1.1). The key result of the 
Wiman-Valiron Theory allows us to obtain a definite inequality for 

Kl rn 

when n is unequal to N, which is valid for all n and 'most' values of r in a certain 
sense and shows that the terms for which |«—N\>k are negligible compared with 
//(r) if for instance k>N1/z+a. This reduces the local behaviour of/(z) essentially 
to that of zN~kF(z), where P(z) is a polynomial of degree at most 2k. 

1.2. The basic results. We now introduce the comparison series. Let an, w=0 
to oo be a sequence of positive numbers such that an+1/an decreases with increasing 
n. Let pn be a sequence of numbers such that 

(1.9) 0</ )o<-°, °^<Pn<^-, n^l 
a l a n aw+l 

so that pn increases with increasing n. We shall say that a value r is normal (for 
the sequences an, pn and an) if we have for some N 

(1.10) \an\r
n^\aN\rN^9 n = 0too). 

It follows from the definition of pN that for n^ N 

•11) — < PN > 

so that if (1.10) holds, N=N(r) is necessarily the central index of/(z). It turns 
out that, the more rapidly an tends to zero, the stronger on the whole is the infor­
mation contained in (1.10), but the smaller is the set of normal r. The set of r 
which are not normal will be called exceptional. 

The following result gives us information about the size of the set of normal r 
in different situations. 

THEOREM 1. Suppose that rN is defined by (1.6) and that pN satisfies (1.9). Then 
(i) If p^ is bounded above the set of exceptional r has finite logarithmic measure; 
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00 if 

JV-OO l o g rN 

then the set of exceptional r has upper logarithmic density at most d. 
(iii) If PisrlrN->§ as N-+co, the set of normal r has infinite logarithmic measure. 

If N(r) jumps from N to N+k as r increases through the value rN+l9 we define 
rN+1—rN+2=

z' ' '=zrN+k' With this definition we see that 

so that 

and 

\"N+k\ = 

laiV+fcl rN+k — lfliVl rN+l 

k ' 
rN+l rN+l ' ' ' rN+k 

Thus we always have 
rN+l 

a N\ < 
K l rxr2 --rN 

On the other hand we deduce from (1.9) that 

a « - l Pn 
so that 

<*o "" P1P2 " ' PN 
In particular 

00 (lfWv,..Lf.0 as N-
\ccNJ \a0 rx rNJ 

even under the weakest hypothesis (iii) of Theorem 1. Thus if any of the hypotheses 
(i), (ii) or (iii) of that theorem hold, and we set 

AN — 

it follows that 

0 

is an integral function. It follows that for 0 < p < oo, F(z) has a maximum term for 
\z\ = p, and if M=M(p) is the central index of F(z) for \z\ = p, we deduce that 

Kpn < AMPM, n = 0 to oo. 
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The inequality can be written as 

K l JPPMT < *nPM 

IfljfI (PPM)M "" *MPM 
(1.12) ; , ; , M < - ^ < 1 > n*N 

in view of (1.11). Thus if we set r=ppM, it follows that N(r)=M, and the inequality 
(1.10) holds. Thus r is normal if r takes this form, i.e. if we can write r=ppM, where 
M is the central index of F(z) for M=/>. 

Let (J?n, i*n+i) be the interval in which the central index of F(z) is n, so that 
Rn is defined for F(z) as rn is defined for f(z) by (1.6). Then the intervals 
(Rnpn9 Rn+iPn) a r e normal so that the exceptional values of r are contained in 
the complementary intervals of the form (Rnpn-!, Rnpn)- Let EN be the set of 
these complementary intervals for « = 1 to N. Then 

, ,r* x ^ £ fRnPn dt i PN 
w=l JRnPn-i t p0 

Also the exceptional r for r<RN+1pN are contained in JE^. 
Next we recall that the central index of/(z) is n in the interval (pnRn, />ni?n+i), 

so that rn<pnRn. Thus if r n < r < r n + 1 , we deduce that r<pn+1Rn+2> so that the 
exceptional t in (0, r) are contained in 2^+! and so have logarithmic measure 
at most log(pn+1//>0). Thus if E is the set of exceptional t, we have 

/m(£(l, r)) < log fe±* , rn <; r <£ rn+1. 

Now Theorem 1 follows at once. If pN is bounded above then so is lm(E(l, r)) 
as r->oo, so that E has finite logarithmic measure. If (ii) holds then 

lm(E(l9r)) ^ logp n + 1 +Q( l ) „ log pn-n+Q(l) „ . , m 

—: <> : S : S 0+0(1), as n -* co, 
log r log r log rn 

so that our conclusion follows again. Finally if (iii) holds then 

Zm(£( l , r ^ 1 ) )£ log f t r i . 1 +0( l ) , 

so that if E' is the set of normal r, we have 

/ m ( £ X l > r n + 0 ) ^ l o g ^ + O ( l ) - > o o , as n->oo. 
Pn+l 

Thus in this case Er must have infinite logarithmic measure. This completes the 
proof of Theorem 1. 

2. Construction of the comparison sequences. We now proceed to give a general 
method due to Kôvari [11], for constructing the sequences an, which makes it 
easy to estimate the quantities occurring on the right hand side of (1.10). Such 
estimates are fundamental to the Wiman-Valiron method. 
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Suppose then that oc(f) e C^O, oo) and that <x'(r)<0 there. We set 

(2.1) an = K expH a(f) dt\, pn = exp{-a(n)}, 

where Kis a, positive constant. Then for n> 1 

a fn 1 /•»+! a 

l o g - ^ - = a ( 0 d r > a B = l o g - > a(0 A = log - ^ , 
an_x Jn-i />n Jn aw 

and the right hand inequality remains valid for «=0 . This proves (1.9). Again 

•Ï2. P ^ M = exp( f W(a(0-a(M)) dt) 

= exp (n—t)oL\i)dt . 

Thus we deduce that for \n—M\>k, we have 

(2.2) ^ - P Ï M < exp{-|/c2aM. fc}, 

where 

(2.3) <*M.k= min |a'(f)|. 
|M-*|<fc 

2.1. Estimates for the terms of integral functions. By specialising the function 
a(f) we can obtain a number of results adapted to particular situations. 

THEOREM 2. Iff(z) is any integral function we have for normal r and n=k+N, 
where N=N(r) is the central index off(z), 

(2.4) ^ f £ exp{-ifc(|fc|+iV)fc2}, 

where\ bÇNy^KN log N • • • log3 N(logl+1 N)1+\ K>09 logl * iterated denotes 
the I times iterated logarithm, (3>0 and the set of exceptional r has finite logarithmic 
measure. 

If we have some more information about the size of f(z) we can obtain (2.4) 
with a larger value of b(\k\+N). We give two further examples. 

THEOREM 3. Suppose that f(z) has finite order p. Then for c<l//> (2.4) holds 
with b(N)=cjN. The corresponding set of exceptional r has upper logarithmic 
density at most cp. 

t This function is not to be confused with that defined by (1.5). If b{r) is defined by (1.5) this 
will always be stated explicitly. Somewhat more general test functions were used by Kôvari 
[111. 
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THEOREM 4. Suppose that for some constants p>2 and c>0 , we have 

hm < c, 
r->oo (logr)* 

and take a so that ô=a(cpe)1/{p~1)<l. Then for normal r we have (2.4) with 
b(N)=a(p—l)~1N{2~v)np~1) and the set of exceptional r has upper logarithmic 
density at most ô. 

A corresponding result for/?<2 can be deduced but turns out to be less useful. 
The above results can all be deduced from (2.1) and (2.2) with a suitable choice 
of the function a(t). For Theorem 2 we take 

a'(0 = — — , t > t0 

Ktlogt-'loglt(logl+1t)
M9 -

a'(0 = a'('o)> t£t09 

where t0 is a sufficiently large positive number and set 

oc(f) = oc'i 
Jo 

(r) dr. 

Then a(f) is negative decreasing and bounded below as t->oo. Thus we can apply 
Theorem 1 and note that the exceptional set of r has finite logarithmic measure. 
Also |a'(f)| decreases with t, so that 

*Mtk = min |a'(OI = -a '(M+|fc |) . 
|ikf-*l<fc 

Now (2.4) follows from (1.10), (2.2) and (2.3). 
Next in the case of Theorem 3, we choose 

a'(0 = -c, t£ 1, 

so that a ( 0 = — c log t, t>.l, and then (2.1) with a suitable Kgives 

Pn = n\ *n = expj - c log t dt\ = (eln)cn, n > 1. 

Also by our hypotheses we have for p±>p 

l o g M ( r , / ) < Q P l , r>r0 

and so we have by (1.8), 

N(r)£\ — <> logger) 
Jr t 

<, log M(er) < rp\ r > r0, 
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so that rN>N1/Pl. This gives for all sufficiently large N 

log Pn+i ^ log(n+l) 
S C f t — , 

log rn log n 
and since p± may be chosen as near p as we please, we may apply Theorem 1 case 
(ii) with ô=cp. Thus the set of exceptional r has upper logarithmic density at 
most cp. 

We now note that |a'(f)l decreases for t>0 so that we have 
a M , ,> |a ' (M+|fc | ) l = c/(M+|fc|). 

Now Theorem 3 follows from (1.10), (2.2) and (2.3). 
Finally we suppose that f{z) satisfies the hypotheses of Theorem 4. We set 

k= 1 +p~x, and deduce that for c'>c and r large, we have, 

fr& dt 
(fc- l)N(r)log r ^ N(t) - ^ log i*(rk) 

Jr t 

<, log M(rk) < c'k\\og rf. 
Thus 

N(r) < c'pil+p-yQog rf-1 < cep(log r)"-1 

if c' is sufficiently near c. Thus 

rN > exp(JV/cj?e)1/(3,-1). 

We now assume that a(cpé)ll(v~1)=ô<l, and set 

a(t) = -ot,(v-r\ 
so that (2.1) gives 

log px = crN1/(s,-1), 
and we deduce that 

N^OO log rN 

We can then apply (2.2) with (2.3). Also, since p>2, |oc'(f)| decreases with in­
creasing/?, and so we have again 

and we deduce Theorem 4. 

3. The truncated series. We proceed to show that for normal \z\ and large 
\f(z)\ only a few terms in the neighbourhood of the maximum term are of genuine 
significance in the power series development of/(z). We need first a general lemma 
on the growth of increasing functions. 

LEMMA 1. Suppose that N(r) is a positive increasing function of r for r>r0. 
Then (/*a>0, and\h\<N(r)~a, we have 

(3.1) \N(reh)-N(r)\ < ocN(r) 

for all r outside a set of finite logarithmic measure. 
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We shall assume that N(r) is continuous on the right. For otherwise we may 
achieve this by altering N(r) at a countable set of r and this will not affect the truth 
of (3.1) at other points. 

For each r>r0, we define h(r)=N{r)~a. We then define sequences rn, r'n induc­
tively as follows. Let r0 be the quantity of Lemma 1. If rn has already been defined 
we define 

r'n = rn exp ft(rn), r"n = r'n exp h(rn)9 

and rn+1 to be the least numberf (if any) such that rn+1>r'n and 

N{rn+1exp/i(rn+1)}>(l+a)iV(r 

Evidently we have for n>l9 ifr'n is defined, 

NK) > (1 + a) N(rn) > (1 + a) N^) > . . . > (1 + a)- N(r0). 

Thus 
00 /r"\ °° °° 
2 log -^ = 2 2 h(rn) = 2 2 N(rnT

x 

i \rj i i 

^ 2 f (l+oO-aln-1)N(r0)-
x < a), 

1 

so that the union E0 of all the intervals [rn, r^] has finite logarithmic measure. 
Let E1 be the complement of E0 in (r0, oo) and suppose that r e Ev Then either 

rn is undefined for large n9 in which case we have for all sufficiently large r 

(3.2) N{r exp fc(r)} < (l+a)iV(r); 

also if r '=r exp h(r), we have 

r' exp—h(r') >_ r' exp—h(r) = r, 

so that for all large r' we have 

N{r' exp-ft(r')} ^ iV(r) ^ ^ - ~ N(r') > (l-a)iV(rO. 
1+a 

Thus in this case (3.1) holds for all sufficiently large r. 
Alternatively suppose that rn is defined for all n, and let r be a point of E±. 

Then we have r'n<r<rn+1 for some «, so that (3.2) holds. Also suppose that 

(3.3) N(re-Mr)) < (l-a)N(r). 

Then if p=r exp (—h(r)), we have 

Peh{p) > PeMr) = r, 
so that 

N(PeMf))) ^ - i - iV(P) > (1+ocMp). 
1—a 

t The fact that the lower bound is attained follows from the continuity on the right of N(r). 
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Thus p must lie in one of the intervals [rv, r'y] and so 

r = peMr) < Peh{r^ ;< rr
ve

Ur^ = r'; 

so that r lies in E0 contrary to hypothesis. Thus (3.3) must be false and so (3.1) 
holds for r in E± and h=Th(r). Since N(r) increases with r, (3.1) also holds for 
\h\<h(r) and Lemma 1 is proved. 

From now on we shall call normal those values of r which satisfy (3.1) for a 
suitable constant a as well as (1.12). Since the exceptional set in (3.1) has finite 
logarithmic measure, the conclusions of Theorem 1 to 4 will remain with this re­
stricted notion of normality. 

3.1 Estimates for the terms far from the maximum term. Our main result in 
this section is 

LEMMA 2. Suppose that r is normal in the sense of Theorems 2 or 3 or the case 
p>2 of Theorem 4. We write N=N(r) and suppose that (3.1) holds with a suitable 
a. Suppose that y is a positive constant and write 

(3.4) k = 
\b(N) *b(N)f J 

where [x] denotes the integral part ofx. Further suppose that 

|log(p/r)I <, 2 / r \ and write p0(p) = \aN\ pN. 

Then we have for any fixed real q and }>i<y 

(3.5) 2 n* M Pn = o{^(p)NQb(N){1/2)^-il/2)} 
\n-N\>k 

uniformly as p and r tend to infinity subject to the above inequalities. 

Let rj be a constant, 0<?y<£, and assume first that n>(l + rj)N. We choose a 
fixed oc< J?? in Lemma 1 and write 

Px = r exp(iV~a). 

Let M be the central index for pl9 so that we have by Lemma 1 

J V ^ M < ( l + o c ) i V , and \an\ P?£ \aM\ P?. 

Thus n—M>\v]n. Also 

K l pn _ K l Pn _ K l Pn \aM\ rM / M M ~ " (PY~N 

MP) M PN \aM\ p? K l rN \r) \r) 

( p \M-n / p\n~N 
^J [-J £eM-lnnN-*+n\log(P[r)\}. 

From the hypotheses of Lemma 2 it follows that 

|log(p/r)| ^ 2k'1 £ o{N-l!i} 
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with the hypotheses of Theorem 2 and 3 and 

k-1 = 0{N{2-v)mp-m} 

in the case of Theorem 4. By choosing 

(3.6) a = , or a = \r\, 
op—I 

we can thus ensure that when r and N are large 

w) l 6 J 
We now set f= exp(— rjN~al6) and deduce that for large normal r 

2 »« Kl Pn = OL(P) 2 »**"} = 0{iV'Mp)^/(l-0} 
«>(1-M7)AT I n=iV J 

for every positive /?. 
Suppose next that n<{\ — rj)N. In this case we write 

P l = rexp(-JV-a) 

and proceed as above. We deduce that (\ — cx)N<M<N and 

^ 4 T ^ «p{-to* • N~*+N |io«(p/r)l} 
w ) 

<£ expl-^N1-»}, 

if a is given by (3.6) and N is large. Thus 
2 n« K | p- = o[fi0(P)N1+< expC-i^JV1-)] = o W r f r ' ] , 

n<(l-tj)N 

for every positive /?. Thus 

(3.7) 2 n*\an\p«=o{Mp)*r*} 
\n-N\>nN 

for every positive /?. 
Given e>0, we now choose ^ so small that 

6(N+|p|)>(l-e)6(W) for \p\^rjN, and (1— )̂-"« < 1+e, 

which is always possible under the hypotheses of Theorems 2,3,4. We also suppose 
that re-f<p<re\ where t=2kr\ Then (2.4) yields for n=N+p, \p\<rjN, 

n g l ^ l p n ^ ( 1 + g ) J v V b i - 5 , 2
 w h e r e 6 = i ( 1_8 ) 6 ( 2 V ) B 

Thus if fc satisfies (3.4) we deduce from this and (3.7) that 

(3.8) 2 n« K | P
n £ 2(l+8)N%(p)[fe^-^+o(N-^l 

\n-N\>k b=fc J 
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Our hypotheses ensure that, for large r, N is large and b is small, so that t is small 
compared with bk in view of (3.4). Thus ept~bp decreases with increasing/?, and 

00 2 r°° 2 
2evt-^ < etx~hx dx. 
p=k Jk—1 

We s e t y = x b w - t J { 2 W ) , j 0 =( / t - l ) è 1 / 2 - f / (2è 1 / 2 ) , and deduce that 

/*°° 2 2 r°° 2 

Jk-1 Jy0 

and 

f °° V A e~V° f°° g""2 ^ ^ 
e y dy = — —- dy ~ . 

Jî/o 2y0 Ji/o 2jr 2j/0 

Thus in view of (3.4) we deduce that 

k ~ V v J ~ °\ b{Nf<\\og l/fc(N)W ~ U{t> > 
since >>i<y and s may be chosen as small as we please. Now Lemma 2 follows from 
(3.8). 

We note in particular that 

2 K | r" = o{fi(r)} 
\n-N\>N 

if fc>(l+e){è(AO-1log l/6(iV)}1/2, for some s > 0 , for we can then take y i = l in 
(3.5). 

3.2 Similar estimates for functions of order (log r)2. Ifp=2 in Theorem 4 we 
obtain a simpler and stronger result. This is 

LEMMA 3. Ifp—2 in Theorem 4 and k is a fixed positive integer then 

I \an\r
n£Kr)A(a,k), 

\n-N\>k 
where 

v4((T,fc) = 2ie- ( 1 / 2 ) f f ? 2 

We note that if p=2 in Theorem 4, then that result yields for n=N+k 

| a „ | r " £ K ' , ) r a p ( - 2 f c » ) . 

outside set r of upper logarithmic density at most (5, provided that <5=2ore<l. 
Thus 

2 \an\r
n^2p(r)2e~a/2)atZ 

\n-N\>k t=k 

and this proves Lemma 3 in this case. 

3.3 Functions of order (log r)p, when /?<2. If p<2 we use a different technique 
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due essentially to Valiron [21, p. 42]. The following result due to Barry [1] will 
be useful in the sequel, although it is less precise than Lemmas 2 and 3. 

LEMMA 4. Suppose thatf(z) is an integral function such that 

— log log M(r) = p < 2 

r-*oo log log r 

Then if0<r}<2—p, we have 

2K|r"<Mr)exp{-( logr)"} 

outside a set ofr of logarithmic density zero. 

We choose s>rj, and q>p, such that e<2—q. Then it follows from our hypoth­
eses that we have for all sufficiently large r 

logMO<i( logr )* . 

Also since q<29 we deduce that 

iV(r)log r ^ f N(t) - <£ log Mr2) < i(log r2)* < (log r)«, 
Jr t 

so that 
logrN>N1/{Q'1\ N>N0. 

We now define kN by the equation 

log kN = 2(log rN)s 

and call the set of r for which 

f 2 <> r <> kNrN 
k* 

for some AT exceptional. We proceed to show that the set of exceptional r has loga­
rithmic density zero. To see this, suppose that 

kN kN+1 

Then the total logarithmic measure of the exceptional p, such that l<p<r is 
at most 

2 2 log kn ^ 2N log kN £ 4(log rN)q~1+e = o(log rN) = o(log r), 

as required. 
Suppose next that r is normal, so that 

kNrN < r < - J m 
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for some N, and write rjrN=cl9 rN+1/r=c2. Then we have for n<N 

K l r% < aNr%, 
so that 

so that 

\an\r
n£\aN\rN(An N=crNKr), 

\rN/ 

2 \an\rn ^ K r ) 2 ^ i f c ^ 

for large r. Similarly, 

2 Kl r» ^ ^ 
n>iV C2 — 1 

From the fact that r is normal and the definition of kN, we deduce that 

+ = 0{exp-(log r)8} = o{exp-(log r) '}, cx—1 c2—1 

and Lemma 4 follows. 

4. Maximum modulus and maximum term. It follows from Lemmas 2 to 4 
that in the series for/(z) we can neglect those terms whose index is not near N(r). 
By summing the estimates for the remaining terms we obtain a bound for M(r) in 
terms of//(r). We start by investigating the test functions. 

LEMMA 5. Suppose that F(r) is any one of the test functions used for the purpose 
of proving Theorems 2, 3 and the case p>2 of Theorem 4. Then if fair) denotes the 
maximum term and N=N1(r) the central index ofF(r), andifb(N) is defined as in 
Theorems 2 to 4, we have\ 

F(r) ~ i«1(r){27r/è(iV1(r))}
1/2, r -> oo. 

We write 

0 

and note that as in Lemma 2 we have 

(4.1) 2 <V"n = o{^i(r)}, as r ->oo , 
\n-N\>Jc 

if k is given by (3.4) with a suitable constant y. In all these cases k(N)=o(N). 
Thus if r=pN, we have for all the test functions 

<x'(0 = (l+o(l))a'(iV), as N,t -+ oo, while \t-N\ < k. 

Thus in this case, (2.2) can be sharpened to 

^ pn
N~N = exp{-Kn-iV)V(iVXl+o(l))}, \n-N\ < k. 

t For a different class of functions satisfying a similar inequality see [7]. 
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Hence, given e>0, we see that for all sufficiently large N 

2 ^TXPNT lies between 
\n-N\<k 

*NPN I exp{^2a'(iV)(lT£)}. 

Here 

(4.2) a'(N) = -b(N). 

We write c=c(N)= —l«.'(N)(l^e), and note that with our hypotheses c is 
small if N is large. Thus 

2 exp(-ct2) = (l+o(l)) f*e—* dx = ^ ± £ ^ fV%-*2 dy 
\t\<k J-k y C J-kVc 

= (l+0(l)(7r/c)1/2, 

since in view of (3.4) k ^Jc-^co, as iV->oo. Since s can be chosen as small as we 
please, we deduce that 

X a„(^)"~aiVp^{27r/fc(JV)}1/2. 
\n-N\<k 

Also if pN_x<r<pN x, and \t\<k, we see that 
JV+l' 

PN 

I \\PN'>\ 
Thus 

log-
PN-I 

' fca'(iV) -> 0, as N -> oo. 

2 «»rn 2 an/4 
ln-iV|<fe |w-iV|<fc r~ / L / X T \ ) 1 / 2 

^ ~ # ~{277/fc(iV)} . 
<x.Nr <*NPN 

Further if p^<:r<pN+1, the central index of F(r) is either N or AT+1, and for all 
our test functions b(N)~b(N+1). Thus 

2 *nr«~lh(r){2irlb(N)}1/t 

|n-JV|<fc 

and in view of (4.1) we deduce Lemma 5. 
It is sometimes of interest to have an expression for JV, and hence b(N) in terms 

of ^i(r). This can be deduced from (1.8), (2.1) and (4.2). Thus we have in the case 
of Theorem 2, 

b(N) = -a'(iV) = {KN log N • • • (logï+1 N)1+ô}~\ 

oL(N) = -^(logl+1Nrô+Cl, 

PN = c2 expj - — (logï+1 N) 4, 

where cu c2 ' • • denote positive constants. 
2 
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We denote by e^x) the / times iterated exponential functions. Then for 
pN<r^PN+i> w e deduce 

«M—*» 
and this in turn yields on integrating by parts 

logAi(r) = fV0-+O(l) 
Jro t 

~ c4iV{log JV • • • log, N • • • (log(+1 N)"+1)}-\ 

Thus in this case Lemma 5 yields 

(4.3) F(r) ~ c5i«(r)(log Mr))1/2 log2 rfr) • • • log,+1 Mr)(logi+2 fi(r))W-

In the case of Theorem 3, a much simpler analysis yields 

a'(JV) = -fc(iV) = -c/N 

a(0 = -c logf+c 6 

Pn = c7n
c, 

N(r)~csr
1/C, 

log ̂ (r) ~ ciV(r) = c2/b(N). 

Thus in this case we obtain from Lemma 5 

(4.4) nr)~-^(r){27rlog i W l(r)} 1/2 

c 
Finally in the case of Theorem 4 

G »rfa-.p)/(p-l) a'(iV) = -b(N) = — N(2 

p - 1 
a(iV) = -criV1/(î,-1) 

P. = c9exp{crJV1,(^l,}f 

/ l V - 1 

N(r)~ l - logr l 

log fi(r) ~ - iV(r)log r ~ - (AT(r))3>/(^1). 

Thus in this case Lemma 5 yields 

(4.5) F(r) ~ c10^(r){log ftCr)}^'™, 

where 

(4.6) c10 = (2irf2p{^)/iW(p- l)x/ V1-»*'* 
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4.1 The main results. Using (1.12) we can easily deduce from Lemma 5 and 
(4.3) to (4.5) corresponding inequalities for general functions when r is normal. 
We have in fact. 

THEOREM 5. With the hypotheses of Theorems 2, 3, and 4 when p>2, we have, 
given £>0, 

(4.7) Mir,f) < (1+^r)i[~-)1'2 

for all sufficiently large normal r. 
Ifp=2 in Theorem 4, we have with the notation of Lemma 3 for \z\=r 

(4.8) tfrXl-A(<t, 1)) :< \f(z)\ <Ç mi+A(*> *)) 

and ifp<2 and £>0, we have 

(4.9) |/(z)| = Mr){l+o[exp-(log rf-»~% 

Since (4.8) and (4.9) follow immediately from Lemma 3 and 4 respectively it is 
enough to prove (4.7). Let F(r) be the appropriate test function for which r is 
normal. Then for normal r we deduce from (1.10) that 

(4.10) \^ll^^nPt9 

and summing from 0 to oo, we deduce that 

Kr) ~ ° Kr) ° VI(PN) MPN) \b(N)) 
which yields (4.7). 

It is not difficult to deduce from (4.5) inequalities in terms of //(/•) alone. For 
this purpose we assume that 0O=1. This result may be achieved by adding a 
constant to f(z) which evidently does not alter any of our asymptotic relations. 
Then we may put n=Q in (4.10) and deduce that 

1 ^ <*o 
Mr) PI(PN) ' 

so that 

(4.12) ^(pN) <, a0/i(r). 

Using the asymptotic relations (4.3) to (4.5) and (4.12), which shows that 

(4.13) log^1(/) iV)<logKr)+0(l), 

we obtain 

THEOREM 6. We have for large normal r with the hypotheses of Theorem 2 

(4.14) M(r) < MrXlogMr))172 log, Mr) • ' ' loëlli(r)\logl+1[i(r)]
1+i. 
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With the hypotheses of Theorem 3 we have 

(4.15) M(r) < —±-u(r){27T log^r)} 1 ' 8 , 
c+o(l) 

and with those of Theorem 4 withp>2 

(4.16) M(r) < (c10+o(l)Mr)(log Kr))(^)/i2v\ 

where c1Q is defined by (4.6). 

To prove (4.15) for instance, we note that (4.11) and (4.4) yield 

M(nû < ZLENL < _ ! _ {2.iog^^)}1 / 2 

Kr) PI(PN) c+o(l) 

and using (4.13) we deduce (4.15). The other two inequalities follow similarly. 
It follows from Theorem 3, that we may take for c any quantity less than p - 1 

in (4.15). If p'>p, we choose c so that p<c~x<p, and deduce from (4.15) and 
Theorem 3 that we have 

(4.17) M(r) < p>(r){27r log f*(r)}1/z 

on a set of lower logarithmic density at least l—cp. Letting c1 tend to />', we deduce 
that the set where (4.17) holds has lower logarithmic density at least 1 — p\p . 
On the other hand (4.4) shows that if />'</> the set where (4.17) holds may be 
bounded. 

The inequality (4.14) is also best possible in the sense that ô cannot be replaced 
by zero. This can be shown by taking 

a ( 0 = - l o g i + 1 ( 0 

for large t. The corresponding test function is an integral function for which 

a'(0 = - { * log f • • • log, t}-1 = - 6 ( 0 , 
so that 

N(r) ~ el(r\ log /^(r) ~ iV(r){log N(r) • • • log, N(r)}~\ 

and so Lemma 5 yields for the corresponding test function F(r) 

F(r)~[*(r)(27r)lfXlogrtr))1/2 ogïAi(r) ' • • log w A i ( r ) . 
The inequalities (4.14) and (4.15) were proved by Wiman [22] to hold for some 

arbitrarily large r. Valiron [19] showed that (4.14) holds outside a set of finite 
logarithmic measure. The argument for deducing (4.15) for normal r and hence on 
a set of positive lower logarithmic density is implicit in the work of Clunle [4]. 

5. The minimum modulus of functions of small growth. We proceed to prove 
the following result which goes back to Valiron [21, p. 42]. 

THEOREM 7. Suppose thatfiz) is an integral function, such that 

(5<1) E s t e f i M z i u ^ ^ l . 
T—oo (log ry 4e 
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Then if 

m{rj) = inf | /(z) | , 
\z\=r 

andO<Aec<è<\9 we have outside a set of upper logarithmic density at most ô 

(5.2) ^ v O > m c ) = L=||r 
M(r,f) l+2 .2 r 

where r = exp{—dj{Ace)}. 
We define a by b—2cea, so that o*>2. Then Lemma 3 shows that 

m(rj)> 1-A(a,l) 

M(r,f) " l+A(o,1) 

for a set of r of lower logarithmic density at least l—d. Also 

A(a9 1) = 2 f e-
{1/2)™= 2 r ( l + r 3 + r 8 + • • •) 

fc=i 

where T=e~{1/2)a. In particular, since a>2, we see that 

[̂(cr, 1) ^ 2 r ( l + e " 3 + - ^ -Z j ) = 2.100 • • • r 

m ( r , / ) > l - 2 . 2 r 
Thus 

M(r , / ) - l+2 .2r 
as required. 

A corresponding result for arbitrary positive ô, c was proved by Barry [1] with 

(TT2C(2-Ô)\ 
(5.3) K(ô, c) = e x p -

ô 
However this beautiful result in which the constant n2 is best possible is proved by 
a quite different method and so we omit the proof. Barry [1] also obtains rather 
sharper estimates than (5.2) for a sequence of r when c is small, but at the cost of 
density. 

We also note the following result of Barry [1] which follows easily from Theorem 
7. 

THEOREM 8. i f (5.1) holds with c=0 , then 

m(rj) 
1 

M(r,f) 

as r->oo on a set of logarithmic density 1. 

In fact it follows from (5.2) in this case that for every positive e the set E(e) on 
which 

M(r,f) 
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has logarithmic density one. For given ô<l, we may choose c so small that 
K(ô, c)>l—s in (5.2) so that the complement of E(s) has upper logarithmic 
density at most ô, and so this density must be zero. Since this is true for every e, 
Theorem 8 follows. (For details see Barry [1, p. 477].) 

If/?<2 we can prove considerably more. In fact Lemma 4 yields at once 

THEOREM 9. Iff(z) is an integral function such that 

- l o g l o g M ( r ) = p < 2 ) 

r-*oo l o g log r 

then if0<r]<2—p we have 

- ^ > l - e x p { - ( l o g r ) " } 
M(r) 

outside a set of logarithmic density zero. 

6. Behaviour near the local maximum. The Wiman-Valiron Theory can be 
used to obtain very precise estimates for the behaviour of the function near points 
on \z\ =r, where \f(z)\ is maximal or nearly maximal, when r is normal. In order to 
develop this theory we first establish a result on the behaviour of a regular function 
near a point of maximum modulus. Our result is 

LEMMA 6. Suppose that f(z) is an integral function and that |z0|=r> 
\f(z0)\=M(r9f). Then we have except possibly for isolated values ofr 

d 
(6.1) z j^log/(z) = a(r\ \[z±)logf(z) 

\\ dz) ' 
£b(r) 

for z=z0, where a(r)9 b(r) are defined by (1.5). 

We set z0=rete. Then since \f(z0)\ is maximal, we deduce that 

(6.2) ^ l o g | / ( r ^ ) | = l m z 0 ^ = 0. 
w f(zo) 

Thus z0 is one of the finite number of points on |z|=r, where zf'(z)\f{z) is real. 
In a neighbourhood, r0—g<r<r0+s, of a fixed r0, the different values of 
log|/(ret0)| at the corresponding points 0y(r) satisfying (6.2) are either identical 
or distinct, except for isolated values of r0. Hence, except for such values of r0, 
for all r sufficiently close to r0 the maximum modulus is attained at points rete{r\ 
where 0(r) is the solution of (6.2) which coincides with a fixed solution 0(r0)=d09 

when r=r09 provided that r0 exp(/0o) is a point of maximum modulus. 
We now write z=z0e

T 

(6.3) log/(z) = # T ) = <£(0)+ar+G8+fr)T
2+ • - • 

where the expansion is valid for small r. In view of (6.2) it follows that 

/(zo) 
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is purely real. Next we choose r=a+id, where d=6(roe')—0o, so that z is a point 
of maximum modulus. We assume that the maximum modulus curve does not 
touch \z\=r at z0, which is true except for isolated values of r. Then it follows from 
(6.3) that 

l 0 g xti \ = 1 ° g 

so that 

m 
/(zo) 

= ot f+0(A 

a(r0) = y- log Jlf(r„0 = a = z 0 ^ , 
dtf / ( z 0 ) 

which is the first conclusion of (6.1). To obtain the second inequality we assume 
that /MO, which is true except for isolated values of r and choose 0=—ycr//?, 
T=(7+ /0 . Since /?=—(9/50)2log |/(r0ei9)|>0 in any case, we may thus assume 
/S>0. Taking real parts in (6.3) we deduce 

log M(r0e°) ̂  log \f(z0e
r)\ = log |/(z0)| + zo+^-^-lyaO+Oia*) 

= log M(r0)+aa + ^-^- <r2+0(a3). 
P 

We deduce that 

*W> = (£j log M(r0e°) ï ^ ± ^ ^ 2()S
2+yY/2 

V dz/ 

|8 

log/(z) | 

at z=z0- This proves the second inequality in Lemma 6 and completes the proof 
of that Lemma. 

We need some more subsidiary results. 

LEMMA 7. Suppose that P(z) is a polynomial of degree m, and \P(z)\<.M, for 
\z\<,r. Then ifR^r, we have 

l p , ( z ) | ^ £ M ^ ) ( z | ^ 

In fact it follows from a classical result of Bernstein [2, see also 13 p. 221] 
that the result holds without the factor e. However this does not greatly affect our 
results and we can give a simple proof of Lemma 7. 

We note first thatP(z)/zm remains regular at oo and so we can apply the maximum 
principle to this function in \z\>r and deduce that 

M", \P(z)\<,M ^ , \z\>r. 
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Now we apply Cauchy's inequality and deduce that for \z\<R, h=Rjm 

1 M MmR™*1 / 1 \ m 

|P'(z)| ^ i max \PQ\ ^^{R+hT = ^ ~ ( l + L) . 

This yields the required result. We deduce 

LEMMA 8. With the hypotheses of Lemma 7 if \zQ\<r, \P(z0)\>rjM, where 
0<?7<1, then we have 

J |P(z0)| < \P(z)\ < | |P(z0)| 
/or |z-z0|<^r/(8m). 

We deduce from Lemma 7 that for \z—z0\<rjrl(Sm) 

rm \ 8m/ r 
Thus in this range 

J*z I 4Mm 

P'(f) dS £ = ^ | z -z 0 | < pft, ^ | |P(z0)|. 
6.1 Statement and proof of the main results. We can now state and prove our 

first result on local behaviourf 
THEOREM 10. Suppose that f(z) is an integral function and that r is normal in the 

sense of one of the Theorems 2, 3, 4, provided that p>2 in the latter case. In this 
case we also set y=l0(p—1)1 (p—2), while in the other cases we set y =10. We 
write Nfor N(r), suppose that |z0|=r and 

(6.4) \f(z0)\>rjM(r9f) where fT*£ri£lf 

and define k by (3.4). Then if 

(6.5) z = z0e
T, and \r\ < rç/(30fc) 

we have 

(6.6) log ̂  = (N+for + &r2+ <5«r), 
/(zo) 

(6.7) l&l ^ -(18fcfo)', 7 = 1,2, and |<5(r)| < 4(18fc |T|/»?)3. 
77 

We apply Lemma 2 with y defined as in Theorem 10. Then we have for yx<y 
and |z|=p, where |p—r\<r/k 

N+k 

/(z) = 2^n+o{^(p)KN)nlz)n-(ll2)}. 
N-k 

t Similar results which are however not quite correct in the dependence of r upon r\ were 
obtained by Clunie [4, Theorem 5 and 5, Theorem 9]. 
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In the case of Theorems 2 and 3, we have 

b(N) = O^N-1), 

so that taking yi=9, we deduce 
?- ' N+k N+k 

(6.8) /(z) = 2 anz
n+o{p0(P)N-1} = 2 anz

n+o{M{P,f)N(f)-*}. 
N-k N-k 

In the situation of Theorem 4, we have 

b(N) = o{N{2-»)np-1}} 

so taking yx=9(p—1 )/(/>—2), we again deduce (6.8), so that (6.8) holds in all 
cases. 

Thus if \f(z)\>M(p,f)N(r)-*, we have 

(l+o(l))/(z) = z*"*P(z), 

where P(z) is a polynomial of degree at most 2k. To this polynomial we apply 
Lemma 7. We deduce from (6.8) that we have for \z\=r 

\zN-*P(z)\£(l+o(l))M(r,f)9 

so that if s is a fixed positive number and 

M0 = (l+e)rk-NM(r,f), 

we have, when r is sufficiently large 

(6.9) \P(z)\£MQ9 \z\ = r. 

Also (6.4) and (6.8) show that 

/(z0) = zN-«P(zQ)+o{M(rJ)N{rT*} = zN~kP(z0)+o{f(z0)} 

so that for large r 

rN-k\P(zQ)\ > (1-6) |/(z0)| > (l- f i>,M(r,/). 
Thus 

| P ( z 0 ) I > ^ M 0 . 

Hence we deduce from Lemma 8 that 

(6.10) l\P(z0)\<\P(z)\<l\P(z0)\ for | z - z 0 | < ^ ^ - . 

Also for this range of z we have (6.8) so that 

z" 
^ ^ } - f f i ! + ^)-fi±îfflffiB. 
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15 \ 16k) \rJ 

Using this and (6.10) we deduce finally that 

'^L 1 \fc ^ 16 

(6.11) 

where 

We now consider 

in the disk 

l/(z)l = l/(zo)l 
N 

(1+fl), 

| f l | < | for | z - z 0 | < ^ . 

# T ) = log/(ZoeO-Nr - log/(z0) 

n 

Then if cf>(r)=u+w, and r is large, so that k is large, we deduce from (6.11) that 

Also <£(0)=0. Hence if 

<^« , |T| < To, 

we deduce from subordination [see e.g. 13, p. 221] that 

(6.12) 

so that 

\$n\<,-TÔn, 
7T 

00 

w=3 

^ 4 1T|3 

T ^ ( T 0 - | T | ) 

In particular we deduce that 

where 

(6.13) \à{r)\ < io/My 
ir\r0f 

for | T | ^ | T 0 = 
30fc 

On combining (6.12) and (6.13) we have Theorem 10. 
In view of Lemma 6 we also deduce 

THEOREM 11. If | / (z 0 ) |=M(r , / ) , so that r}=\ in Theorem 10, we have 
N(f)+(j>x—a(r), \<l>z\<,\b{r) in Theorem 10 where a(r), b(r) are defined as in (1.5). 
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Theorem 10 asserts in particular tha t / ( z )^0 for |log(z/z0)|<^/(30A:). If/(z) 
has finite order p it follows from Theorem 3 that we may take b(N)=c1[N, and 
so fc=c2(iV(log N))1/2 where cl9 c2 are constants depending on p. Also the smaller 
we take c1 and so the larger we take c2, the smaller does the density of the excep­
tional set of r become. 

6.2. Behaviour of derivatives. The Wiman-Valiron theory also permits us to give 
good estimates for the derivatives of f(z), when \z\ is normal. We proceed to provet 

THEOREM 12. Suppose that f(z) and r satisfy the hypotheses of Theorem 10, 
that y and k are defined as in that Theorem and that 

r ( l - - M < p < r ( l +—). 
\ 40fc/ P \ 40k/ 

Then ifq is a fixed nonnegative integer we have for \z\=p 

(6.14) ( N J / < 8 ) ( Z ) = / ( z ) + ° {N)
 M(pJy 

In particular if log (pjr)=o (kr1), then 

N+k 

We write 

(6.16) 

Thus we have by Lemma 2 

/>« l^ ( t , 00l = 

M(p,f)-
{ m > 

M{r,f). 

/ (z) = 2 > „ z " + # z ) = zN-*P(z) + <Kz). 
N-k 

2 ann(n-l)---(n-q + l)z» 
n-N\>k 

<. I n^|aJp«=O{/«0(/')iV
îè(^r)(1/2,n-(1/2,}. 

\n-N\>k 

for any y i<y. We again choose y 1= ,9 y and deduce just as in the proof of Theorem 
10, that 

b(N)1/2n-1/2 = 0(N~% 
so that 

(6.17) ^ | ^ ) l = o W p r 4 } . 

Again repeated application of Lemma 7 shows that if P(z) is the polynomial 
occurring in (6.16) then for any fixed v>0, and \z\=p, we have 

|P(v)(z)l = O(k/ryM0, 

t A result of this type is (not quite correctly) stated and proved by Clunie [5, Theorem 8]. 
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where M0 is the quantity in (6.9). Thus 

/i.Y>-*p(z) = y h) (N~ky- z^-»+vp(v)(z) 
\dz! £Av(N-k-ci+v)\ 

(6.18) = ^ (
r

N ~ f e ) \ , zN-*-°{P(z)+O(k/N)M0} 

(N-fc-g)! 

in view of (6.16) and (6.17). Now 

z-a{/(z)+OCMo(p)N-4)+0(piV-&M0fc/iV)} 

MM'* <, M(/3,/)N-4 = 0 (^)M(p,f). 

Also 

p ^ M o = (l+8)QW"*M(r,/) = 0^jNM(r,f). 

Thus combining (6.16), (6.17) and (6.18) we deduce that 

(N-

m*M>^°m^4 (6.19) *'/"'(*) = 
(N—k—q)\ 

Next we chose z0 so that \f(z0)\=M(r,f) and take rj=l, T=log(p/r). Then 
(6.6) gives 

l o g | / ^ z 0 ) | = log\f(z0)\+Nr+O(l), 

T = 0(l)/fc, 
so that 

log M(p,/) > log M(r9f)+N log * + 0(1), 

and hence 

(ffM(r,f) = 0{M(P,f)}. 
Thus (6.19) yields 

which is (6.14). 
We chose z in (6.14) in turn so as to make \f(z)\ and \f{q)(z)\ maximal and 

deduce that 

M(pJ^) > {I+O(^)PJM(P , / ) 

and 

M(P,fM) <, {l+o(^)pj*M(/».A 
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so that 

M{P,f'))= (-Jjl+O^JMO,,/). 

To complete the proof of (6.15) it remains to show that 

log M(/>,/) = log M(r,f)+N log £ + o(l). 
r 

To see this we note that (6.16) and (6.17) yield for our range of p 

log M(p,f) = (iV-fc)log p + log M(p, P)+o(l). 

On the other hand it follows from Lemma 7, that 

M(p, P) = M(r, P){l + 0(fe(p-r)/r)} ~ M(r, P) 

if klog(plr)=o(l), and now the second inequality of (6.15) also follows and the 
proof of Theorem 12 is complete. 

6.3. A generalization of Picard's Theorem. We can use the preceding results 
to prove a result which generalizes Picard's Theorem. This is 

THEOREM 13.f Suppose that f(z) is a transcendental integral function. Then 
f(z) assumes every value with at most one exception infinitely often and, if such an 
exceptional value exists, all the derivatives fiq)(z) assume every value except possibly 
zero infinitely often. 

We note that iff(z)=ez+a, then f(z)?±a, f{q)(z)^0 for any q>\. We suppose 
that the equation / (z )=0 has only a finite number of roots and deduce that for 
any q>0, the equation f{q)(z)=l has infinitely many roots. This is equivalent to 
the stated result since if the equations/(z)=a,/ ( f f )(z)=6 have only a finite number 
of roots, where b^a, ifq=0, and 6^0 , if q>0, we may consider (f(z)—a)l(b—a) 
or (f(z)—a)lb instead of/(z). 

Suppose then that/(z) has only a finite number of zeros. Then 

/(z) = P(z)e^\ 

where P(z) is a polynomial and g(z) an integral function. Suppose first that g(z) 
is a polynomial. Then it is elementary to show that/(z) assumes all values except 
zero infinitely often [see e.g. 17, p. 279]. Since/(p)(z) takes a similar form, we also 
deduce that/(î>)(z) assumes all values except zero infinitely often in this case. 

Suppose next that g(z) is a transcendental integral function. Then we apply 
Theorem 2 and its consequences with b(N)=N~1(log N)~3, so that we may take 
in (3.4) and subsequently 

fc = 10[iV1/2(logiV)2], 

t The case q=l appears to be due to Pôlya-Saxer [15, p. 210] and the general case to Bureau 
131 



344 W. K. HAYMAN [September 

where N=N(r) is the central index. We note that 

f\z) = (P'+Pg')e\ f" = (Pg'z+2P'g'+Pg"+P"y9 

and prove by induction that 

f*\z) = Q(z)e\ 

where Q(z) is a polynomial of degree q in g'(z) and its derivatives, with coefficients 
that are polynomials in z, and the leading term of Q(z) is Pg'q. 

It now follows from Theorems 10 and 12 that if r is normal, z0 is so chosen that 
|g(z0)|=M(r,g), |z0|=r and if |log z/z0|=0(N-1) where N(r) is the central index 
of g(z), we have 

g(v»(z) _ g j g ( z ) = O^M(r, g)j. 
Thus 

p(z)g\zy~p(z)l^g(zy. 
On the other hand 

(6.20) N(r) = r ^ log //(r) < {log ^(r)}2 <£ (log M{r)f 
dr 

outside a set of finite logarithmic measure. In fact if £ is the set in [r0, oo] where 
(6.20) is false, we have in view of (1.7) 

< oo. 
logM^o) 

[dr<[ N(r) dr f00 N(r) dr 1 

JE r JEr log [x{rf "~Jr0r log ̂ (r)a log JU 

Thus we assume that r is outside this exceptional set and then 

Q(z)~p(z)(^jg(zy9 

since the other terms in the polynomial for Q{z) only contribute terms of the order 
M (r, g)9"1*6. We have shown that 

/(ff,(z) ~ p(z) (Mû\Q
eo(*)} for log (i\ L M < l0/N 

\ z0 / I \z0/l 
say. We deduce that in the same disk 

h(z) = log/(ff)(z) = g(z)+q log- + q log g{z) + logP(z)+o(l)~ g(z) 

in view of (6,20). Hence in this range, if we set #(z)=log /z(z), we deduce that with a 
suitable choice of H(z0) we have 

H(z) = log g(z)+o(l) = H(z0)+Nr+o(l) 

in view of Theorem 10. 
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We now apply Rouché's theorem and deduce that if |w—i/(z0)|<5, then the 
equation H(z)=w has a root for \Nr\ < 10, i.e. |log (zjz0)\ < 10AT-1. We may choose 
w of the form w= log(27r/)+(2m+iM? for some integers / and m0. In fact let 
H(z0)=U0+iV0, so that U0 is large and positive. Then we may choose / so that 

|log(27r/)~[/0| < 1, and m so that \(2m+%)ir-V0\ <, TT, 

and this gives \w—H(z0)\<5 as required. Thus there exists zl9 such that H(z1)=w9 

h(z1)=ew==27ril,f{p)(zi)=exip(h(z1))=l. Since there are infinitely many such points 
zl9 Theorem 13 is proved. It is worth stating that more precise results applying also 
to meromorphic functions can be obtained by means of Nevanlinna Theory [8, 
Theorem 3.5] but the present approach is probably more elementary. It also shows 
that for functions of infinite order the roots are located near the points of maximum 
modulus. This is false in general for functions of finite order asf(z)=ez shows. 

7. Two Counterexamples: The sigma function. To test the sharpness of the 
results obtained we consider two examples. 

EXAMPLE 1. Let a(z) be the sigma function with zeros at all the lattice points 
zm,n—m+ni' Then 

p(z) = - (fTlog <r(z) = z-*+ 2 ' ( M - Y - -f-} 
\dzj m,n { \Z — ZmtJ ZmiJ 

and the dash denotes the fact that the term for m=n=0 is to be omitted. Then 
p(z) is clearly doubly periodic with periods 1 and /. 

Also integrating we deduce that 

a(z) 
satisfies 

£(z+l)-£(z) = A, £(z + 0 - « z ) = -AU 
where A is a real constant. The second equation follows from the first, since by 
inspection 

Ç(z) = i + r/_L_ + _f.) 
z \z zm,n zm,n> 

satisfies £(zz)= —i*£(z). 
Integrating again we deduce that 

cr(z+l) J n , a(z+i) Am „ 
log - ^ T T " = Az+B> Iog "^T2 = -Aiz+C. a(z) a(z) 

Also 

c(z) = z exp XT' ( l - — jexpj— + -pp-1 
m>n \ zm.J \zm,n 2zm.n> 

is clearly an odd function. So setting z=— J, —Jf, we deduce that 
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eB-u/2)=_h ec-u/2)=-U 
so that 

a(z+l) = -eMz+ll2)a(z\ a(z+i) = -e-Ai{e+i/2)c(z). 

We now deduce 

LEMMA 9. Ifz2=z1+m+ni, where m, n are integers then 

Kz2)| e-1/2AM*= \G(ZX)\ e " 1 / 2 ^ < 

Write z±=x+iy, z2=x+l+iy. Then 

__ içAizx+l/Vi = ^(aH-1/2) __ el/2JU|z2 |2-|*i|2) 

Similarly if z2=zx+i 

1 <gg) 

I tfOi) 

Thus we see that |cr(z)| exp(—|^4|z|2) is invariant, if z is increased by a primitive 
period and so by any period. 

If z=zx is an arbitrary point in the plane we can always choose z2=x2+iy2, 
so that tal <i> | j2 l<i- Then |z2| is the distance from z to the nearest zero of c(z), 
and if we denote this distance by d, we see that there exist positive constants Al9 

A2 such that 

Thus 
AxdeV2A^<, Kz) | ^ A2de1/2A^\ 

where d is the distance from z to the nearest zero. 
It is clear that A>09 since otherwise a(z) would be constant by Liouville's 

Theorem.f Thus cr(z) has order 2 mean type, and in fact 

logM(r )=~r 2 +0( l ) , 

4̂ 
l ogMO^- r r 2 , 

N(r) ~ ^r2. 

For all values of z0 on \z0\=r there is a zero in |z—z0|< 1/̂ /2, whereas Theorem 10 
asserts that there is no such zero in 

| z -z 0 | ^ cr{N(r)log N(r)}-1/2 

Thus the index J in (3.4) and in the corresponding estimate for r in (6.5) cannot 
be replaced by any smaller quantity. 

__ ie-Ai(z+i/2)i = ^ ( Î / + 1 / 2 ) = e l /2^(|*2 |2- |*il8) 

f In fact an application of Jensen's formula shows at once that A=7rj2. 
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Theorem 10 also shows that if \f(zQ)\>rj exp(|^r2) then/(z) has an asymptotic 
formula and so/(z)7*0 for |z—z0|<c^/(logr)1/2, where c is a constant. This 
gives the right result apart from the factor (log r)~1/2. Clunie [4, 5] had stated 
Theorems of the type of Theorem 10 but with \r\<Ajk instead of |T|<^/(30fe), 
where A is a constant. The above examples show that no Theorem of this kind 
can be true. However Clunie's argument correctly yields Theorem 10 for functions 
of finite order. 

To see the size that rj may take in Theorem 10 for this example we investigate 
the minimum modulus of c(z), or what is the same thing, the distance of an arbi­
trary circle |z |=r>l to the nearest lattice point. Given r, let x be the fractional 
part of r2. Then if z=m+w is any zero |r2—|z|2|^min(;x;, 1— x), so that for most 
r, (r—|z|)>c/r for all zeros, where c is a positive constant and so ^>cW(r)*1/2 in 
Theorem 10. On the other hand if we choose for m the largest integer, such that 
m2<r2, and then for n the largest integer such that m2+n2<r2, we see that 

r2-m2 ;< 2m+l = 0(r), r2-m2-n2 < 2n + l = 0(r1/2)9 

so that if z=m+in9 (r— \z\)=0(r~1/2). Thus we can always find a point on |z|=r, 
where 

/(z) = 0{M(r,f)r-1/2} = 0{M(r9f)N(r)-1//k}. 

Thus rj can take any value between cN(r)-in and 1, for any positive r, and for 
any such rj9 the estimate for the disk in which an asymptotic expansion holds, is 
sharp, apart from a possible factor (log r)~1/2. 

7.1. How large must k and r\ be? Another example. It is natural to ask whether 
the factor {—log b(N)}1/2 which occurs in the definition of k in (3.4) and so in 
(6.5) is really necessary. We proceed to give an example to show that this is the case. 

For this purpose we set 

(7.1) o c ' ( 0 = - - , t^h a'(0 = - 2 , *<£1 

in the construction of section 2, and then, with a suitable choice of K we have 

(7.2) a (0=-2 ( logH- l ) , t > 1, Pn = eV, an = n~2\ n > 1, 

in (2.1), and è(AT)=2/iV. We now set 

(7.3) &(z) = 2' anz", &00 = I V n 

o 

where the sum 2 ' is taken over certain indices which will now be described. We 
define a sequence Av inductively by 

(7.4) Av+1 = Av+[|(AvlogAv)
1/2], v>l, A1 = 4, 

3 
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where [x] denotes the integral part of x. We then sum ]£' in (7.3) over all those 
powers n for which, for some v>l, we have 

K <, n < K+l%\ orn = Av^ [s(Av log Av)
1/2], 

where £ is a positive constant, which we take to be small. We write 

dv = [e(Av log Av)
1/2], Av' = Av+dv9 K = V i - C 

Then it follows from the analysis of section 1.2 that, for 

(7.5) e%2 £ r £ e2A;'2, 

the central index Nx(r) of ^(z) is either Xv or Â '. Also, if /^(r), ^2(r) are the maxi­
mum terms of <£i(z), <£2(z), then fa(r)<iLi2(r). Further if r lies in the range (7.5) 
then the central index N2(r) of <j)2(z) satisfies 

(7.6) K <: N&) g K 
Now the analysis of section 2 shows that if 

(7.7) A^n^A.+JA 1 / 2 , 

and r lies in the range (7.5) so that AT2(r) satisfies (7.6) we have 

ï £ = exp(-« + *l)>^| , 
/h(r) I N J 

where N=^N2(r). Thus if we sum over the range (7.7) and r is sufficiently large, 
we deduce that 

2a„rn A1/2 f 6 k2) 

where k=N—Àv. Thus 

A1/2 f 6 fc2) 

> ^ ! e x p ( ~ 5 ( A v - f l ~ ^ v ) î 

Kr) 4 M 4AV 

-v) > A1/6, 
A1/2 /-51ogAv > — exp 
4 1 16 

when v is large. Thus for r in the range (7.5), we see that the terms in the range 
(7.7) are much larger than fi2(r) and à fortiori than ^(r). 

A similar analysis holds for the range (7.7) with v replaced by v+1. The sum of 
these terms is also much larger than ^2(r). On the other hand the remaining terms 
of < (̂z) can be shown to be small compared with these so that for r in the range 
(7.5) we have 

(7.8) (1+o(\))Ur) = S ^ + S ^ r » , 
where in ^ i w e s u m o v e r the n satisfying (7.7), while in ]T2 we sum over the n 
satisfying (7.7), with (v+1) instead of v. The indices in ]£i a nd ^2 satisfy respec­
tively 

n ^ N(r) - - N(r)1/2 log N(r)1/2, n > N(r) + - iV(r)1/2(log N(r)1/2). 
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Thus for r satisfying (7.5) we cannot neglect both these ranges of terms in computing 
(j>x(r). Also the logarithmic density of all the ranges (7.5) is 

lim — —- = hm — = 1—As. 
v-oolog(e2Av

2
+1) - log(e2A?) v-oo A3/2 log Av 

This can be chosen as near 1 as we please, by choosing s small enough. Thus 
Lemma 2 fails if y x = l , and y is sufficiently small. 

Clearly <f>-A(z) always attains its maximum modulus on the positive real axis. 
It is not difficult to see that if 2i> 2 * a r e defined as in (7.8) then in the range 
(7.5) we have for z=reiT 

2 ^ 2 " = eiXnr(l+o(l)^nr
n
9 

if r=o(Xn1/2)9 while 
22ocnz

n = ean+ i r(l+o(l))S2anrn . 

Thus provided that one of these sets of terms dominates the other a formula of the 
type given in (6.6) holds, but with Kn or Aw+1 instead of N(r). The difference is 
significant unless (Aw+1—/lw)r->0, i.e. unless T=O{N log JV}~1/2, which is the order 
of magnitude for kr1 implied by (3.4) in this case. This limitation for the validity 
of (6.6) is therefore sharp, when rj=l in Theorem 10. 

8. Maximum and minimum of the real part. We finish the paper by investigating 
the functions A(r) and B(r) of (1.4) in their relation to the maximum modulus 
M(r). The following classical result is an immediate consequence of Theorem 10. 

THEOREM 14 [Wiman, 23]. Iff(z) is a transcendental integral function and A(r)9 

B(r), M(r) are defined by (1.4) and (1.2) respectively then we have 

(8.1) -A(r)~B(r)~M(r) 

as r->oo outside an exceptional set of finite logarithmic measures. 

We apply Theorem 10 with r)=l taking b(N)={N(\og AT)2}"1, k=N1/2(\og A03/2. 
Then (6.6) yields for \T\K2TTN-1, z=z0e

T 

/ (z.) N"» 

Suppose that z0 is chosen so that/(z0)=Mexp(/A), where M=M(r,f) and 
—7r<A<77\ We choose T = —iXJN and obtain for z=z 0 exp(/r) 

log/(z) = logM+o(l) , 
so that 

f(z) = u(z)+iv(z) = (l+o(l))M 
and hence 

B(r)>(l+o(l))M. 

Similarly by choosing T=/(T7—X)JN, we obtain for z=zQeT 

log/(z) = ( - l + o ( l ) ) M 

file:///t/K2ttN-1
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so that 
A(r)<(-l+o(l))M. 

Since clearly \A(r)\<M, B(r)<M, we obtain (8.1). Also in view of Theorem 2 
we see that the exceptional set of r has finite logarithmic measure. This proves 
Theorem 14. 

If we are prepared to admit a larger exceptional set we can obtain a much more 
precise result. This is 

THEOREM 15.f Suppose thatf(z) is a transcendental integral function and set 

,Q ~ - r - log log M(r) 
(8.2) hm = p. 

r-+oo log log r 
Then given e>0 , we have on a set ofr of positive upper logarithmic density 

(8.3) B(r) > M(r)(l - ^ ± £ > \ _A(r) > M(r)U _ £&&) 
\ 2 log M(r)} \ 2 log M(r) / 

where oc(/?)=0 ifp<2, <x.(p)=(p—l)lp, if2<p<co, oc(/?)=l ifp=co. 
In the opposite direction we have 

THEOREM 16.f For any p, such that 2<p<co, there exists f(z) satisfying (8.2) 
and such that we have as r->co 

B(r) = M(r), -A(r) = M(r) ( l - ^ + ^ > > ) . 
\ 21ogM(r) / 

Clearly by considering —f(z) instead off(z) we obtain a corresponding example 
with — A(f) and B(r) interchanged. 

8.1. Proof of Theorem 15: preliminaries. We apply the preceding theory with 

fc(jV)-1 = iV(log N)z, k = iV1/2(log 2V)3/2. 

Then the set of exceptional r has finite logarithmic measure and if r is normal, and 
if |z0 |=r, /(z0)=Mexp(/A), Af=M(r , / ) , Theorem 11 yields 

log / (z 0 ^) = logM+i(A+0a(r))-^2e2+O{|e |3 iV(r)3 / 2 + 5} 

for every positive <5 and |0|=o(fc_1). By comparing Theorems 10 and 11 we also 
deduce that 

N(r) ~ a(r) as r -* oo for normal values. 

We now choose Q=hja(r), where \h\<ir. Then the above asymptotic formula 
certainly yields 

logf(z0e
ie) = l o g M + i ( A + f t ) - & - £ - 2 + 0(a(r)-3/2+5). 

f Not previously published. 
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We may suppose that |A|<TT. Then if we choose h=— A, we obtain 

log/(z0^) = log M-fa - ^ - + 0(a(rT*/2+ô). 

Thus if f(z0e
id)=u+iv 

u + iv = M expl-fa-y- + 0(a(rr2/2+d)i 
( a(ry ) 

so that 

in view of Theorem 11. By choosing A=7r—A, if A>0 and h=—7r—l if A<0, 
we obtain a similar inequality for — A(r). 

To complete the proof we proceed to estimate the quantities occurring in (8.4). 
We have first 

LEMMA 9. Letf(x) be a positive increasing and convex function of x for x>x0 and 
suppose that 

(8.5) l i m i ^ ) ^ / , < i t o ^ )
) wherep>l. 

^ log* r *_«, logx 
Let x(p)=(p—l)[p if p<co; a(p)=l, if p=ao. Suppose that a, K are constants 
such that K>\, and a<a.(p). Then ifEis the set of all x such thaff 

f-^f^<LK*(p), and/'(x)>/(x)°, 

we have dens E>(K-\)jK. 
Suppose first that/? is finite. Then we choosepl9 p2 such thatp±<p</?a and 

<x>(pi)>a. Then by hypothesis we can choose x1 as large as we please such that 

(8.6) f(Xl) > xl\ 

Let C be a large positive constant and suppose that 

/ ' (*) V2 
(8.7) 7 7 T > - > for Cxx < x < xa. f(x) x 
Then we deduce that 

(8.8) f(x2) > f(CXl) (~f> C^x? ffi. 

t Since f(x) is convex,/"(x) exists almost everywhere. We define/'Ot) to be the right deriva­
tive off(x), so that f'(x) is increasing for all x>x0 and continuous outside a countable set. 
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In view of (8.5) this inequality must be false for some arbitrary large x2. Thus we 
choose x2 maximal subject to (8.7), and deduce that 

(8.9) fj^<^, x2>Cxlt 

J(x2) x2 

and also that we have 

(8.10) f(x) > C~v*x\ xx^x< x2. 

We next note that/'(.x) increases so that 

/(*) = /(*o)+ f V ( 0 dt <f(Xo)+(x-Xo)f'(x) < 2xf'(x) 

when x is large enough. Thus we deduce from (8.10) that 

f(x\ 1 /r~ î>2\1/:pi 
fXx)^J^>f(x)-l^—\ >/(*)«, Xl£x£x% 

2x 2\f(x)/ 
provided that x± is large enough. Also (8.9) holds. 

Ifp is infinite, we choosey so that 0L(px)>a. We may then still choose xx as 
large as we please to satisfy (8.6) and in this case we set x2=Cx± and deduce that 

f(x) > xfi > C~^x\ xx<x < x2, 

and this in turn leads to 

(8.11) / ' (*)>/(*)" , xt<:x<x2. 

Thus we deduce that in all cases we can find x± as large as we please and x2>Cx1 

such that (8.11) holds and in addition (8.9) holds if/? is finite with any/72>/?. 
We now note that if 

#*) = * - T M > thenf(x)=M ;; y 

almost everywhere. Also for x>x0, h>0, we have, since f'(t) increases 

J 'x+h 

, f'it)dt
 <f(x)+hf'(x+h) f(x) h 

/'(*+*) f'{x+h) - f'(x+h) -f'{x) 

Thus (j>(x) is non-decreasing. Suppose now that Ex is the subset of [xu x2] in E 
and let E% be the rest of the interval [xu xz]. Then we have almost everywhere 
in E2 

f(x)f"(x) , 
f'ipcf 

since (8.11) holds in E2. Since <j>{x) increases with x we deduce that 

f w ^ i ^ > M P ) 

<K*ù-<KxJ > P V ( 0 dt > | f (0 dt > Koc(p)m(E2), 
JXQ JEi 
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so that 

m(E2)<feww. 
If p=co, this gives 

(8.12) m(£2) <, ~2 + 0(1). 
K 

lfp< oo, we may apply (8.9) and deduce that 

#*2) < H ~ — 1*2 = a(p2)x2. 

Thus in this case we deduce that 

m ( £ 2 ) ^ ^ ; x a + 0 ( l ) . 
K«.(p) 

Thus we have in this case 

m(iy = ( x . - x O - m C ^ > x.(l - ^ ~ 7; + ~ V 
\ £a(p) C x2 / 

This is true for some arbitrary large x2 and hence 

" jKa(p) C 

Since we may choose C as large as we please and/?a as near/? as we please we deduce 
that dens E> 1 —Kr1. The same conclusion follows from (8.12) if/?=oo, and this 
completes the proof of Lemma 9. 

8.2 Completion of the proof of Theorem 15. We suppose first that p>3 in 
(8.2). In this case we set r=e*, and apply Lemma 9 with 

f(x) = logM(e% f'{x) = a(e% /"(x) = b(e% 

choose a so that §<a< l — 1/p and let Ebe the set of r for which 

bJrMMÙ^Kct(p) a n d a(r)>(loëM(r)y. 
a(rf 

Then, by Lemma 9, E has upper logarithmic density at least 1 — JST-1. Also for normal 
r on E we have, in view of (8.4), 

(8.13) B ( r ) > M ( r ) ( 1 _ ^ L + ^ m _ ) 
\ 2 log M(r) log M(r)/ 

provided that ô is chosen so small that ((3/2)—<5)a>l. Given KX>K, we deduce 
that 

^Wi-f^) 
\ log M(r) I 
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on a set of upper logarithmic density at least l — \jK. Since we may choose K as 
near Kx as we please, Theorem 15 follows. 

Suppose now that 2 < p < 3 . Then we may apply Theorems 10, 11 as before but 
now we can use the better estimate for k and hence r, which follows from Theorem 
4, with any/?x>3 and <5=0. In particular we may choose b(N)>N~1/2~ô, for any 
<5>0, and so k<Nm+ô for any <5>0. When we apply this to Theorem 10 we see 
that we obtain the improved error term 

0(f) = 0(r3iV3/4+35) = 0{iV9/4+35} = 0(a(r)-9/4+3 ') 

in (8.4). We can now apply Lemma 9 again, but with a so chosen that a < | , 
9<z/4>l, and we again obtain (8.13). Since the set of non-normal r has zero loga­
rithmic density the conclusion again holds on a set of upper logarithmic density 
at least (K-\)\K. 

Finally suppose that \<p<2. In this case we apply Lemma 4. We suppose that 
r is a quantity satisfying the conditions of that Lemma with some ??<2—p, and 
deduce that 

M(r) < fi(r){l + exp(-(log r ) % 

We also choose 0 so that if z=reid then aNzN is real and positive. Then 

B(r) > aNzN- J \anz
n\ > ^(r){l - exp(-(log r)% 

Thus if r is large 

M(r)-B(r) < 2ia(r)exp(-(log rf) <, 2M(r)exp{~log M(r)"V3,}> 

for any ^ ' < ^ , and this result is stronger than (8.13). This completes the proof of 
Theorem 15. 

8.3. Proof of Theorem 16. We proceed to construct our examples. Suppose 
first that/?= oo. In this case we set f(z)=ez. We have for z—rel° 

u = exp(r cos 0)cos{r sin 6}. 

Choose d=ô[r, where |<51<7r. Then we have uniformly for 0 in this range as 
r—>-oo 

u = erk - — + 0(r-3)]cos{<5+0(r-2)}. 

To make — u as large as possible |<5| must be near to rr. Thus we have throughout 
this range 

<8,4) _s,(,_!!gffi), 
and for 7Tlr<\d\<7T, we have evidently 

—u <C exp(r cos 6) < exp(r cos w/r). 
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Thus (8.14) holds uniformly as r->oo for \6\<TT, and we deduce that 

-A{r) < Al - *±m = M(r)h - ^±^-\. V \ 2r / W l 21ogM(r)j 

By taking 0=TT//-, we deduce that 

-A{r) > exp(r cos w/r) = er(l - * + ° ( 1 ) ] " 

Evidently B(r)=M(r)=er, so that Theorem 16 is proved in this case. 
Suppose next that 2<p< oo. In this case we set 

/,(z) = n ( i + - ) 
n-l \ p w / 

where 

(8.15) pn = e x p ^ - ^ } , p>2; Pn = exp{n/log n}, j> = 2. 

It is evident that \f(ret0)\ attains its maximum for given r when 0=0 and de­
creases steadily with increasing |0| for O<|0|<7r. To obtain an estimate for f(re%d) 
when 6 is small, we proceed as follows. We write 

bp(z) = (z y î l o g / p ( z ) = J - & - , aJLz) = z j - lo g / (z) . 
\ d z / n=l(z + />w) dz 

Suppose first that z—pN, and set «=JV+&. Then for/?>2, \k\<\N 

^ = expiiN+kf^-N11^} = exp + O^N^2^^). 
PN I P - l ^ 

We set 
jy(2-2))/(î)-l) 

c i v = : > 

p - l 
and deduce that for k—o(N) 

^ = exp{-fcc iV(l+o(l))}. 
PN 

This leads to 

&=— oo J—oo \6 

dx 1 

Since pjpn+r-*l, as w-voo, we deduce that for pn</°<Pn+i 

6.00 ~ ^( P w ) ~ ( p - l ) n W ) / t o - 1 } - (p-l)( log Py-\ 

and integrating twice with respect to log r yields 

. - i ^ ^ . . ( t o ? . / ? ) * 
««(p) ~ (log P) . log/^p) 
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It is not difficult to see that the above asymptotic expressions for bp(p)9 av{p) 
and log/^p) remain valid when we set p=z , and allow z to be complex, provided 
that |argz|<7r—ô for some positive d. For instance a straightforward estimate 
shows that in this range 

\b,(z)\ = o{\og\z\y-\ 
and now we can use Montel's theorem to show that 

-->p—l, a s | z | ->oo 
(logzy-2 

uniformly for | a r g z | 0 — ô , for any fixed <5. From this we can deduce that for 
|T |<7T/2 , say and p real and positive, we have 

log/pG*") = log/ , ( / ) )+iTf l , (p) - i rVp) + 0 |r|3 |6„(p)|. 

If we sstf]>(pe")=u+iv, this gives for T real and |T| |a,„0>)|<7r 

« = / , ( P ) ( 1 - | T V P ) + 0 |T|»ip(/>))cos(Ta,(/))+0 |r|3 fe„0>)), 

and we deduce that for u to have its minimum value in this range we must have 
\r\ as{p)~Tr. Thus for {r^-rrja^p) 

'MP), 
2aP(pY \ 2p log Up) J « > -UP) 

for TTlaj,{p)<d<Tr, we have 

l«(^ ' e) | < |/ ,(/>Ol ^ l/,{Kexp iV/a9(p)}| 

, , J , Q2+Q(1))(P-1)\ 

Thus we deduce that 

A(r9u) = -f9{pap{iwla^p))}+o{fp(p)llogf9(p)} 

f (ir*+o(l))*(p)) 

I 21og/J,(/>) J 

When/?=2 the above argument has to be modified slightly, since an asymptotic 
formula for b(p) only holds if />n+i//)n->l. We have 

Pn = exp(n/log n) 

from (8.15) and then the argument goes through essentially as before, with 

cN = , b2(pN) ~ — = log N, 
log N cN 

so that 
b2(p) ~ log log p, Û2(/>) ~ log p log log p, 

log/a(/>) ~ i(log p)2 log log p. 
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We again deduce that if A2(r) is the minimum of the real part of/2(z), then 

so that Theorem 16 holds when/?=2. This completes our proof. 

9. Conclusion. The foregoing results represent some of the main achievements 
of Wiman-Valiron theory. Its development in the present form is due to many 
people, but the principal credit after the original authors is probably due to 
Clunie [4, 5], who sharpened the form of the error term and also introduced the 
notion of density in connection with the theory, as it occurs for instance in 
Theorem 3, and to Kôvari [11], who developed the very nice form of comparison 
sequences in section 2. This has made the basic theory much less formidable than 
it used to be. 

A number of developments have been left out. For instance Theorem 5 lends 
almost immediately to a relation between the maximum modulus and charac­
teristic of functions with Picard values [cf. 9]. Another subject to which the theory 
has been successfully applied is that of power series with gaps [see e.g. 6, 10, 11, 
16]. However it seems to me that many of the latter applications, which deal 
with terms well away from the central index, can be obtained by means of more 
elementary methods, such as Cauchy's inequality combined with growth Lemmas 
similar to Lemma 1. 

The theory as it stands seems dependent on upper growth, since in the develop­
ment of section 1.2 the comparison sequences aw have to be larger than \an\ for 
all n. Recently this disadvantage of the theory has to some extent been overcome 
by Sons [16] who has obtained results for functions of finite lower order but with­
out conclusions about density. Some extensions of this general nature would 
seem to be desirable in order to replace upper logarithmic density by lower loga­
rithmic density or alternatively to replace the upper limit by the lower limit in the 
statement of Theorem 15. 

The Wiman-Valiron theory can be extended to functions in the unit disk (see 
e-g- [12]) but Kôvari feels that the probabilistic technique of Rosenbloom [14] is 
generally more successful here. 

I am most grateful to the referee for carefully reading through the whole of 
this paper and correcting some errors. 
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