ON SOLUTIONS OF THE BELTRAMI EQUATION

By

MELKANA A. BRAKALOVA AND JAMES A. JENKINS

Abstract. In this paper we study the existence and uniqueness of solutions
of the Beltrami equation fz(z) = u(z)f2(z), where p(z) is a measurable function
defined almost everywhere in a plane domain A with ||u]|cc = 1. Here the partials
fz and f, of a complex valued function f(z) exist almost everywhere. In case
lulloo < @ < 1, it is well-known that homeomorphic solutions of the Beltrami
equation are quasiconformal mappings. In case ||¢|jec = 1, much less is known.
We give sufficient conditions on u(z) which imply the existence of a homeomorphic
solution of the Beltrami equation, which is ACL and whose partial derivatives fz
and f, are locally in L? for any ¢ < 2. We also give uniqueness results. The
conditions we consider improve already known results.

1 Introduction

In the Beltrami equation

(8) f2(2) = u(2)f=(2),

u(z) is to be a measurable function defined almost everywhere in a plane domain A
with ess.l.u.b.||u||c = 1. Here the partials f; and f, of a complex valued function
f(2) exist almost everywhere. In case ||ullcc < ¢ < 1, it is well-known that
homeomorphic solutions of the Beltrami equation are quasiconformal mappings
with maximum dilatation
D(z)< K= l-j-—q
l-¢q
In case ||u|o = 1, much less is known. The only significant results known to the
authors are due to O. Lehto [4] and [5] and G. David [2].
In [4] Lehto treats the case of the plane with the following two stringent
restrictions on u(z):
(A,) in the complement of a compact set of measure 0, |u| is bounded away
from 1 on every compact subset;
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(A2) for any complex z and 0 < r; < 71y < 00,
/1‘2 (1 N 27{/2” Il - 6—21,'0#(2 +.7.ei9)|zd0)—1 ﬂ
2 0 1 - |u(z + rei®)|? r
is strictly positive and tends to co as r; — 0 or rz — 0.

Under these conditions, he proves the existence of a homeomorphic solution to
the Beltrami equation. Condition (A) essentially supposes the pointwise equicon-
tinuity of the approximating functions to be discussed below, thus bypassing the
most difficult step in the existence proof. In [4] and [5] Lehto does not study the
question of uniqueness.

In [2] David follows through the proof of existence in Ahlfors’ monograph [1],
giving some very detailed and complicated estimates. He considers the case when

u is defined in the plane and assumes that
(A) there exist constants o > 0 and C > 0 such that for £ > 0 sufficiently small

measure{z : |u(z)| > 1 — €} < Ce™®/°.

Under this condition he proves the existence of a homeomorphic solution and
shows that under suitable normalizations it satisfies a uniqueness result.

The main results as well as various auxiliary results in this paper are obtained
under conditions of the form

é/F(rm)dA<¢>B,

where B is a bounded measurable set, 5 > 0 is a constant which depends on B,
and F(z), defined for ¢ > 1, is either the identity function, or F(z) = z*, A > 1, 0or

X
F(z) = _
(z) = exp 1+logz
With the choice
z
F(z) = —_
(z) = exp 1+logz’

i.e., condition (A) below, we prove the existence of a homeomorphic solution of
the Beltrami equation having properties detailed in the statement of our Theo-
rem 1 (Existence Theorem). We also give uniqueness results, which are stated as
Theorems 2 and 2.

In the Appendices we compare our results with those already known. We show
that David’s results are not subsumed by Lehto’s by providing an example where
(A) holds while (A;) does not. We also show that (A) implies conditions (A) and
(B) of Theorem 1 but that condition (A) does not imply condition (A).



ON SOLUTIONS OF THE BELTRAMI EQUATION 69

2 Statements of the main results

Theorem 1 (Existence Theorem). Let A be a plane domain, u(z) a
measurable function defined a.e. in A with |||l < 1. Suppose that for every

bounded measurable set B C A there exists a positive constant ® g such that

(A) é/exp1+lOgE u |u|>dA<<I>B,

and

(B) // %MdA=0(R2), R — oo.

{lz|<R}NA

Then there exists a homeomorphic mapping f(z) of A into the plane, which is ACL
and whose partial derivatives f, and f; are in L1 on every compact subset of A for
every q < 2 and which satisfies the Beltrami equation () a.e. The partials f, and
f= are also distributional derivatives.

Theorem 2 (Uniqueness Theorem). Let u(z) and f(z) be as in Theorem 1,
with A being the plane. Let f(z) be a homemorphism of the plane onto itself which
has a.e. partial derivatives f,(z) and f5(z) locally in L2. If f satisfies the Beltrami
equation (8) a.e., then

f(z) = af(2) +b,

where a and b are constants, a # 0.

Theorem 2'. If f is a homeomorphism of a domain A onto a domain © and
has the same properties as in the above Uniqueness Theorem, then

f(z) = €(s(2)),
where £ is a conformal mapping of f(A) onto ©.
3 Construction of the function f(z)

We can assume that u(z) is defined in the plane by assigning the value 0 in
the complement of A. For the construction of the function f(z) we use only (A).
Condition (B) is used to prove that f(z) maps the plane onto itself.
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Now we define u,,, n =1,2,..., so that

() = u(e) il <12,
pn(z) =0 if|u(z)|>1- —71;

From the theory of quasiconformal mappings, there exist gq.c. mappings fr,
n=1,2,..., of the plane onto itself with complex dilatations p,, n =1,2,....
Let zo be a fixed point in the plane. For r; > ry > 0 denote by A the circular
ring
A={z:71 <|z—2) <72},
and by M,,(ry,r;) the module of its image under f,. The module M, (r,,r;) can be

estimated from below in terms of the complex dilatation u,, where p, = pn(2) =
pn (20 + r€'), in the following manner (see [6]):

2 1 ar
My (r,72) Z/ 2 =26, 12
™ ll —€ /“L’ﬂ| de r

0 1—{un|?

Propeosition 1. For any point zy and circular ring A = {ry < |z — 29| < T2},
the module M,(r,72) of the image of A under f, tends uniformly to o as 1 — 0,
Jor all n, vy fixed and zy in some compact set.

Proof. Using the lower estimate for the module of the image domain
introduced earlier, we obtain

1 /™ 1 dr
Mn(n,m)z—f L
4/, 2f" 1 d0r
o 1—uf

For any zo in a compact subset T of the plane containing the disc |z — zo| < 72,

1

/ /2" -1l d0£<c
1 r - ’

1+ log T4l

where C depends only on the compact subset T and the choice of r,. Now we have

1

27 PRI

= 2

rz/ exp 1 Iﬂll do < ¢
0 l+log1
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72
—=. Therefore,

. . 1
on a set E of logarithmic measure 3 log
T1

1

1 [ - C
exp 1 Ml dé < 7 Oonk.

1+log

27 Jo

1=y 1
The function
T
h(z) = exp m,
defined for z > 1, is convex and increasing and lim,... h(z) = oco. Let I(y) =
logyloglogy for y > 1 and let A~1(y) be the inverse of h(x). One can show that
h~(h(z))
lim ———*~ =1,
s0 1(h(z))

so, for some constant ¢ > 0 and sufficiently large y, h™!(y) < cl(y). Therefore,
using the convexity of h(z), we have

1 27
h(——/ ~1—da)<——CTZ onE
2r Jo  1—|ul mrélog —

T1

27
1
L g (=) me
2m Jo 1|yl 7r?log —

T
Combined with the asymptotic behavior of I(y), this implies

27
1
'-1"/ —df < Cl<—€'T2) onFE.
2r Jo  1—|ul mr?log —
T1

Now we fix R, 0 < R < 1 and evaluate M, (R?", RV ) for any fixed function f,:

A T 1 dr
n 2N RN > _/ s _/ haddl
Mn(E™, )—4 ey 1 r ~ 8me ( C ) T

and

i B m g1/ R)Y
. /R“m 1 dr
— 8mc Jpan I C r
nr2log(1/R)N

Using the properties of I(y), the logarithmic function and explicit integration, one
can prove that

1 R 1 dr log(4/3)
8mc Jpan Z( C >r 16nclog N’

nr?log(1/R)N

as N — 0.
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Thus, for some L > 0,

f: M, (R*,RN) > i og(4/3)

= = 16mclog N
By the superadditive property of the module it follows that
Jim M,(RY,R) = o,

independently of the choice of z; and n.
Now let 0 < R < min{1,r2}. For any fixed N there is r;, sufficiently small,
such that
{RN <|z— 20| < R} C{r1 <|z—z0| <72};

and therefore M, (r1,72) > M,(RY,R) or lim, o My(ri,r2) > Mp(RN,R) for
any fixed N. Thus lim,, .o M, (r1,72) = 00, independent of the choice of 2z and n.
]

From now on we assume that the quasiconformal mappings {f,(z)},n =
1,2,..., have two fixed points a; and a3, with d = |a; — az| > 0.

Proposition 2. The family of quasiconformal mappings { fn(2)}, n=1,2,...,
is uniformly equicontinuous on each compact subset T of the plane.

Proof. Suppose that this is not the case. Then for some ¢ > 0 there exist
indices j, 1 oo, positive numbers &, | 0 and points 2™ and 2{™ in T, such that
™ = 25V) < 8, and |, (:17) ~ £ (57)] 2 €.

Denote by zo an accumulation point of the sequence {zgn)}. The distance
between 2o and at least one of the points a; and ay is at least d/2. We assume that
this point is a;. The image under f;, of the ring § < |z — 29| < d/2 for sufficiently
small § > 0 and sufficiently large n is a doubly connected domain for which one
complementary component has a diameter > ¢, and the other contains a, and oo;
thus its module is bounded independent of §, which contradicts Proposition 1. O

Proposition 3. For the sequence f,(z) there exists a subsequence of functions
which converges uniformly to a function f(z) on compact subsets.

Proof. The result follows from Proposition 2 and the Theorem of Arzela-
Ascoli. O

We denote the convergent subsequence again by f,(z).



ON SOLUTIONS OF THE BELTRAMI EQUATION 73

Proposition 4. If

1
dA=O(R?*) asR— oo,
//l—lul ()

|z|<R

then f,(z) converges uniformly in n to oo, as z — oo.

Proof. There exists a constant P, such that

// 1 ia<pr
1— |yl

R<[z[<R?

We claim that for R > Ry > 0,

27

2
/ 145 3PR
J 1— [y r

onaset E, E C (R, R?), of length at least (R? — R)/2. Otherwise, there would be
a set X of length equal to (R% — R)/2 such that

RZ 2w

2
/ / —1—:1T—‘rdrd0 > / PR 4> 3PR¥(R® - R),
R O # X

r

which contradicts our assumption. Therefore,

R? 2 _
/ 1 (—11"_>_R R
T

o 6PR?
G p—;
o 1- |N|
Now fix R > Ry > 1. There exists P such that
a4 < PR®* fork=1,2,....
1— |y
R2k < |z|< R4k

Let Ay be the annulus {z : R? < |z| < R*} and MY the module of its image
under f,, n=1,2,.... Then

e 1 a1 1 d
N T T
> - =
Mn Z / Tll_e—ZiG”nlzde r 4];\/ ‘2f|' 1 de r
—— e - 2k
S S T PAE B T=Td]
N
1 R4k_R2k N
> — > .
- 42 6PR% — 24P
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Therefore MY tends uniformly in n to 0o, as N — oo. Since f,(z) tends uniformly
in n on compact subsets to f(z) as n — oo, we conclude

f(z) =00, asz— oo. a

4 f(z)is a homeomorphism

Lemma 1. Let h,, n = 1,2,..., be a sequence of homeomorphisms of the
plane onto itself with two fixed points a, and ay. If hy, converges uniformly on
every compact subset of the plane to a function h(z), and if for every annulus A
there is a q > 0 such that for all n

1) M(hn(4)) 2 g,
then h is a homeomorphism.

Proof. Assume that 4 is not a homeomorphism. Then there exist two points
21 # 22 such that h(z;) = h(z2) = wo. We can assume that none of the points
21, 22 and wg coincides with a, and that z; does not lie on the segment connecting
z and ay. Construct a line ¢ through z; which does not meet that segment, a circle
C; passing through a, and 22, which does not meet ¢, and a concentric circle Ca,
outside of C;, which also does not meet t. Let D be the doubly connected domain
bounded by C; and t, and A the ring domain bounded by C; and C5. Then A C D

and
M(hn(D)) > M(hn(A)).

On the other hand, the spherical diameters of h,,(C;) and h,(t) are bounded away

from zero, while the spherical distance between them tends to 0 as n — oo. This
implies that M (h,(D)) — 0 as n — oo, which contradicts (1). O

Lemma 2. Let u* be a measurable complex valued function with ||u*||c = 1
and let !, be a sequence of measurable functions, constructed in the same way as
in Section 3. If

(i) hn are the corresponding quasiconformal mappings of the complex plane
onto itself with two distinct fixed points;

(i) hy, converge uniformly on compact subsets of the plane to h; and

(ii1) for each compact subset L in the plane, and some positive constant ®,

1
2 [[—da<an,
@ || =A<
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then
1. there exists q > 0 such that M(h,(A)) > ¢, and

2. h is a homemorphism.

Proof. Fix a point z in the plane, and for 0 < 7, < r; let S be the annulus
{z: 7, < |z — 2| < 72}. According to (2), there exists a constant &5 such that

3 J] A<
S

As in Proposition 1, using the appropriate estimate for the module of the image,

we have
M) 2 ; [ 5 —9’"—”——

71 f

There is a measurable subset X of [rq, 72| of measure (r; — r1)/2 on which

Iul

27

1 8ds
dg < .
0/1—|ﬂ"| = (ro —m)(r2 + 3r1)

Otherwise, we would have

ro 2m 85 (ri+r2)/2
——dbrdr > S / rdr = ®s,
J 1—| 1- g = (ra —r1)(r2 + 3r1) s
Ti T1

which contradicts (3).
Therefore, for each A there exists g, as defined below, such that for all n

1 dr/r m(re + 3r1)(r2 — 1) 7 dr
> - > _— .
M(ha(A)) > 4/27r : > e / " =¢>0

X —de ri+ra)/2
=7 v

By Lemma 1, h(z) is a homeomorphism. a

Proposition 5. The function f(z) constructed in Proposition 3 is a
homeomorphism and maps the plane onto the plane.

Proof. Inequality (2) for u follows from (A). This together with the properties
of f.(z) implies that f(z) is a homeomorphism. O
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5 Differentiability properties of f(z)

Lemma 3. Ifh,(z) are quasiconformal mappings of the plane onto itself with
complex dilatation u}, satisfying |puy| < |p*| < 1a.e., if hn(2) converge uniformly
on compact subsets of the plane to a homeomorphism h(z), and if for every rectangle
R there is a positive constant ®g such that

) // ;ﬁm < ®p,
R

then h(z) is ACL.

Proof. Let R = {(z,y) : a < z < b,c < y < d}. Denote by I, the segment
with ordinate y and e < z < b, and by R, the rectangle which is the subset of R
below that segment. Let A(y) be the area of the image of R, under h(z). Then
A(y) is an increasing function of y and thus has a finite derivative A’(y) for almost
all y in the interval [c, d]. Moreover, by Fubini’s Theorem,

1
——dzr
/ 1— |p*]
v
is finite for almost all y in [c,d]. Further, for any system of infinitely many
nonoverlapping subintervals (£;,£;), £ = 1,2,...,m, of (a,b) and any § > 0

sufficiently small (i.e., y + § < d), consider

1m5k+1y+6 ly L1
= == d d
52//1—|u| 6/ / i e
kzlﬁk Y Y €k

By a theorem of Lebesgue on differentiation, for almost all y in (¢,d) this
expression has a limit as 6 — 0, which is

m Ekq1
2 / 1 —llu"ldzic
k=1 g,
Allowing all possible rational pairs of &, &, this will hold simutaneously for

almost all y in (¢, d). Choose yo for which all of this applies. Now let (zx,z}) be
an arbitrary system of nonoverlapping subintervals of (a,b). Let &, &; be rational
numbers satisfying z;, < & < & < 7}, and set

wg = h(zy +iyo), wy, = h(zg + iyo),
wi = h(&k + 1%0), wi = h(&x + iyo)-
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To prove that f is absolutely continuous on I, it is enough to show that
> i, lwi — wg| has an upper bound which tends to zero with 37 (z} — zx).

We choose 6 > 0 with yo + 6§ < d and denote by Ry(6) the rectangle
{{z,y) : & < x < &, yo < y < yo + 6}. Taking its corners as vertices, it be-
comes a quadrangle whose image under h(z) we denote by Q(6). Let m(Qr(6))
be the area of Q(6) and G, (6) the distance between the images of the vertical sides
of Ry(8). Let M(Qx(6)) be the module of Qx(6) for curves joining the images of
horizontal sides of Ry (6). Then, as in Theorem 4.1 of [3],

(Be(6)?

M@= Sguen

Denote the corresponding entities under h;(z) by Ri (6), Qi (6) and M (Qi (6))-
Using an upper estimate for the module of a quadrangle from [6], we have, after
applying the Schwarz Inequality,

y+6 £k+1<1 +, !)2 9 y+
7y
J < .7 < =
maw <4 | [ 4t us |
y ¥y &k
Letting j — oo, we obtain
y+6 Ert1
M(Qu(6)) < = / / 1 a4
B E 1w
¥y
and therefore
(Be(8))* 5) / /
m(Qx(8)) = e | > |
Thus

Xt < 5 J[ =

1 UR),

The Schwarz Inequality then gives
- (Be(8))* 5))

<z // . |u*|d“" (Alvo +6) - Alwo))

UR(6)
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Letting 6 — 0, we have

2
S i -wl | <240y / 1
k=1 k=17 &k 1= |u|

< 2A'(y0)2/mdw.
k=1, H

Letting £ — z,§; — =}, we have finally

m 2 m Tk
1
(Z lwi — wkl) < ZA'(yo)Z/l—_l—:‘ldw-
k=1 k=15 "

Since the integral is absolutely continuous as a set function, this completes the
proof. d

Proposition 6. The function f(z) is ACL.

Proof. Since (A)holds for u, so does (4); and y,,, u, fr, f satisfy the conditions
of Lemma 3. This implies that f is ACL. O

Lemma 4. If

(i) hn are quasiconformal mappings of the plane onto itself with complex
dilatation p;, satisfying |uk| < |p*| < la.e;

(ii) hn(2) converge uniformly on compact subsets of the plane to h(z);

(ili) for some X\ > 1 and every compact subset L of the plane there exists a
positive constant ¥, such that

&) /L/ (ﬁq)AdAgéL,

then h(z) has partial derivatives h, and h; which are in L? on every compact subset

of the plane, where
22

<L —_—
=17

Proof. Let L be a compact subset of the plane and © a Jordan domain
containing L. By condition (ii), h, converge uniformly on © to h. Let J,
denote the Jacobian of h,,. We use the fact that a.e.

(Jn)1/2

|(hn):| = A
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By Holder’s Inequality it follows that

// |(hn):|0dA = // m:/zq/"’ “
1/q
s(/@/(Jn)“%dA) (é/WdA) |

where 1/p’ + 1/¢ = 1. We choose p' = 2/q, which implies that ¢ is at most
22/(1 + ). Then the first integral becomes [f5 Jn dA, which is the area of the
image of © under h,,(z) and is therefore finite. Thus the first integral is uniformly
bounded for all n. The second integral is also uniformly bounded because of (5).

Therefore,
J[ 0.
<)

are uniformly bounded in n. For ¢ > 1, L9(0) is a reflexive Banach space.
Therefore the sequence of functions (h,), has a weakly convergent subsequence
(hn,)z. The same is true for (h,);, because the h,, are sense preserving and thus
[(hn)z| < |(Bn)zl- :Fhe same is true for the real partials (hn, ), and (h,, )y, which
converge to k and h in LI(®). Since the h,, are quasiconformal, (hy,, ), and (k. ),
are distributional derivatives (see [1] p. 28). For any test function t(z,y) with
support in O,

/ (hnk)xt($’ y)dA = _/ hnkt(x,y)mdA
<) 6

Passing to the limits as k — oo, we have, by the weak convergence of (h,, ), and
the uniform convergence of A, ,

//ﬁtdA:—/ ht, dA.
€} 5]
//fndA:-//htydA.
5} (=]

Thus h(z) has distributional derivatives in L(0). By Theorem 2.1.4 of [7],
h (being continuous) coincides with its representative in the context of this
theorem and h, € L9(©). The same is true for h;z, and therefore both partials
belong to L? (L).

Note that this also proves that i is ACL, but under stronger conditions than in
Lemma 3. O

Similarly,
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Proposition 7. The partials f, and f; of f(z) are in L on compact subsets
of the plane for every q < 2.

Proof. Since (A) holds for u, so does (5) for every A > 1. This, together
with the properties of f,, f, un and p, implies that f, and f; are in L?(L) for every
compact set L in the plane and 1 < ¢ < 2, and thus for any ¢, 0 < ¢ < 2. ad

6 f(z) satisfies the Beltrami equation

Lemma 5. Let hy, be quasiconformal mappings of the plane onto itself with
complex dilatations uy, satisfying |un| < |u*| € 1,limp .00 ut = u*, a.e. Suppose
that the functions h, converge uniformly on compact subsets of the plane to h and
let X > 1. If for any rectangle R with sides parallel to the axes, there exists a
positive constant ®r such that

6) 4] (Tﬁy dA < &g,

then
hs(2) = u*h,(z) ae.

Proof. Denote ((z) = h;(2) — p*(2)h.(2). Then ((z) is defined a.e. Now we
can write

C = [hi - (hn)f] + [(hn)i - ﬂ':z(hn)z] + [N:z(hn)z - ,U*(hn)z] + [N«*(hn)z - ,M*hz].

Denote
L n(2) = bz — (ha)s,
Ion(2) = (hn)z = tin(hn)z,
I3 n(z) = pp(ha)z = " (hn)z,
Isn(2) = p*(hn)z — 4R
Then

//(dA://ImdA+//I2,ndA+//Ig,ndA+/ Ion dA.
R R R R R

Now [[I2»dA = 0 because I, = 0 a.e. According to Lemma 4, h has L1
derivatives in R, and so do &, as quasiconformal mappings. By formula (6.17) on

p. 50 of [3],
/ [(hn)z = Rz A——-/h—h
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Since h,, tend uniformly to h on the boundary dR, the above integrals converge
to 0 as n — oo. So we have

I lim / / Iin dA=0.
k1 amde ]
R

Further, from Holder’s Inequality it follows that

‘ J[ 1anaal = ’ J[ - u*)(hn),dAl
R R
< (//Iu:—n*lpdA>1/p(//|(hn)z|qu>l/q,
R

R
where 1/p+1/¢=1, p,¢ > 0,and

)
=71y

thus 1 < g < 2. As in the proof of Lemma 4, one can show that [f . |(kn):|* dA
FLo,

are uniformly bounded in n. Since u% — u* as n — oo a.e. and |u;, — u*
by Lebesgue’s Theorem

/ |,u;—u*|pdA—>0 asn — 0o.
R

Therefore,
/ I3,ndA—?0 asn — oo.
R
By p. 138 of [3], u* can be approximated by uniformly bounded step
functions ¢ with constant values on squares with sides parallel to the axes, so
that limy_ o ¢x = p* a.e. in R. Using this, we have

J[ 11 a8 = / / (1" = 68) ((hn)s — he)dA + é / 6 ((n)s — he)dA.

R R

By Holder’s Inequality,

/I \w — 60)((h)s — hs)
R

<( é [l - oifaa) 1,,,< 4 [ (b - hzi‘-’dA)l/q,

dA
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with g as above. Since [ |(hs).|’dA is uniformly bounded and h, € L(R),
Jfr |(An)z = h.|'dA is uniformly bounded. Since limi_.co 5 = p* a.e., by
Lebesgue’s Theorem we can choose kg so that, for £ > ko and every n,

/ ‘p’*_(bk”(hn)z_hzldASE'

R

On the other hand, since ¢, has a constant value on the finitely many squares or
parts of squares covering R and by the argument used to prove (7), we have

/ ®ko ((An)z — h,)dA — 0 asn — oco.
R

Therefore, there exists Ny such that for n > Ny

' [ 1o - hz)dA{ <e
R

’// I4,ndA‘ < 2e.
R
//IMdA——»O as n — oo,
R

and completes the proof that
/ ¢(dA=0.

R

or

This shows

Using the measure-theoretic argument of [3] p. 189, one can show that { = 0
a.e. Thus we have

hz(z) — p*(2)h,(z) =0 ae.

Proposition 8. The function f(z) satisfies the Beltrami equation (3).

Proof. Since (A) holds for u, so does (6). This, together with the properties
of f,., f, un and p, implies that f satisfies the Beltrami equation (3). O
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7 The inverse function g(w) of f(z)

Lemma 6. Let

(i) hn, n = 1,2,..., be homeomorphisms of the plane onto itself with fixed
points a1 # aq such that

(ii) h,, converge uniformly to a homeomorphism h on compact subsets of the
plane and

(iii) h,, converge uniformly to oo, as z — oo and n — .

(iv) Suppose that for any fixed annulus A, the module M(h,(A)) is uniformly
bounded away from zero; and let

(v) ln, n=1,2,..., and | be the inverse homeomorphisms to h,, n =1,2,...,
and h, respectively.

Then the sequence l,, n = 1,2,..., is pointwise equicontinuous; and l,
converges uniformly to | on compact subsets of the plane.

Proof. Assume that the sequence [, is not pointwise equicontinuous. Then
there exist a point p, a number ¢ > 0, a sequence 6§ | 0, and sequences {wy}3,
and {l,,}32, such that |wx — p| < 6x and

(8) llnk(wk) = ln, (P)' 2 €.

The sequence I, (wy) has a finite accumulation point because h, converges
uniformly to oo as z — oo and n — co. We can find a subsequence which tends
to this accumulation point. We denote this subsequence again by {I,,, }32, and the
accumulation point by zo. If necessary, after taking another subsequence, we can
assume that there is a finite point ¢ such that [, (p) — ¢, as k — co. Because of
(8) we have zp # g.

Assume that zq # a; and that g does not lie on the segment joining zp and a;.
Draw a circle I'? through z, and a; such that g is outside of I'{ and a line '} through
g not meeting I'?. Draw a second circle T'; tangent to I'Y at a, of larger radius which
does not meet I' and a line T, parallel to I'y which lies between I'; and I'). There
is an integer ko such that for k > ko, lx(ws) is inside I’y and I, (p) is in the half
plane determined by I'; not containing I';. For each k > ko, we construct a circle
I"(lk) passing through a; and l,, (w;), tangent to I';y at a;, and a line I‘(zk) parallel to
T'; and passing through [,,, (p).

For each k > kg, hn, (I‘gk)) passes through a; and wy; and hq,, (I‘gk)) passes
through p and co. Therefore, the spherical diameter of each of the families of curves
B (F(lk)) and h,, (I‘(zk)) is bounded away from 0. However, the spherical distance
between hy, (I‘(lk)) and hnk(l‘gk)) is less than 8. If we denote by Ay the doubly-
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connected domain bounded by r§’°> and I‘gk) and by M (hy,, (Ax)) the module of its
image under hy,, it follows from Lemma 2 of [4] that M (h,, (4x)) — 0 as k — oo.

Now consider A to be the doubly connected domain bounded by the curves I'y
and T’ and let M (h,,(A)) the module of its image under k., . Since A C Ay for
k> ko,

M (hn, (A)) < M (hn, (A8));

and thus M (hy, (A)) — 0 as k — co. This contradicts our assumption (iv).

If ¢ lies on the segment joining 24 and a; and ¢ # a,, we reverse the roles of
zp and q in the above proof. If ¢ = a; and a; # 20, then the proof goes as above,
interchanging the roles of a; and a;. Finally, if ¢ = a; and zy = a2, instead of
taking circles tangent to a; we take circles centered at a;.

This proves the pointwise equicontinuity of the sequence {l,}. Therefore, by
Lemma 5.1, page 71 of [3], there exists a subsequence of {I,,}32, converging
uniformly on compact subsets of the plane to a continuous function /y. For any z
and k, hn, (In, (2)) = z and Iy, (hn,(w)) = w. Since hy,, converges uniformly to h
and l,,, converges uniformly to ly, we have

h(lo(z)) =z and l() (h(w)) = w.

Therefore, lp(z) is identical to I(z); and the sequence [,(z) converges to {(z)
uniformly on compact subsets of the plane. O0

Let g(z) be the inverse of f(z) and let g,(z) be the inverse of fp(z), for n =
1,2,....

Proposition 9. The sequence g,, converges uniformly to g on compact subsets
of the plane.

Proof. Now, since (A) holds for f,, (2) holds; and, by Lemma 2, M (f,(A))
are uniformly bounded away from 0. This, together with the properties of f,, f, the

definition of g,, and g, and Lemma 6, implies the statement of the above proposition.
O

Proposition 10. The function g is ACL and g, is locally in L.

Proof. Let B be a compact set in the plane and U a compact disk such that B
lies in the interior of U. Denote by J,, denote the Jacobian of f,. The functions
gns n=1,2, ..., are quasiconformal with Jacobian 1/J, (g, (w)). We denote their
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complex dilatations by v,,, n = 1,2,.... Thus

/l(gn (w|dAw—// e 1_'% )|2)dAw
// 2)1—|un 2)|) //l-lun(z)l )

gn(U) n(U)

By the uniform convergence of g,, all g,(U) lie in a compact set V', so

//1—|Mn (2)| z_//1~|u(z Asi

and all the terms [f, |(9"(w))w| dA,, are uniformly bounded because (A) holds
for u(z). Since g,, n=1,2,..., is sense-preserving, [[,, |(gn(w))w|2dAw are also
uniformly bounded. Thus the sequences (g, )., and (g,)s are uniformly bounded
sequences in the Hilbert space L2(U), so there are subsequences (gn, ) and (gn, )w
which converge weakly in L2(U). The same is true for the real partials (g5, ). and
(gni)vs w = u + v, wWhich converge weakly to § and § in L*(U). Since g, are
quasiconformal, (gn, ). and (gn, )» are distributional derivatives (see p. 28 of [1]).
Then, for any test function t(u, v),

/ / (gni JutdAy = / (gn, )tudAy,
/ (i JotdAy = é / (g, tudAy.

Passing to the limit as k¥ — oo, we have, by the weak convergence of (gn, ). and
(gn, )» and the uniform convergence of g,,,

/ / GtdA, = — / / gtudA, and / / gtdA, = — / / gtydA,.
U U U U

Thus g has distributional derivatives in L?; and so, by Lemma 2 of [1] or Theorem
2.1.4 of [7], g is ACL. (Note that since g is continuous, it coincides with its
representative in the sense used in Theorem 2.1.4 of [7].) Moreover, g,, is in L2(U)
and thus in L?(B). m]

8 Proof of the main results

Proof of Theorem 1. As mentioned at the beginning of Section 3, we can
extend u(z) to a measurable function in the whole plane which satisfies condition
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(A) for any bounded measurable set B. The existence of the homeomorphism f(z)
of the plane onto itself is proved in Section 4. By the statements in Section 5,
f(z) is ACL and its partial derivatives f, and f; are in LY(K), for any compact
subset K of the plane and any ¢ < 2. Moreover, they are distributional derivatives.
By the results in Section 6, they satisfy the Beltrami equation. Restricting f to A
completes the proof of Theorem 1. O

Proof of Theorem 2. Since f and g have partials locally in L2, f(g(w)) is
absolutely continuous in the sense of Tonelli (see p. 143 of [3]) and a.e.

a%.}f(g(w)) = fz (g(w))gw(w) + fz (g(w))gw(w).

Except on a set E of measure 0, fz(z) = u(z)f.(z); and except on the set f(E),
fz (g(w)) = ,u(g(w))fz (g(w)). Therefore,

Fo(g(w)) 95 (w) + fz(9(w)) gw(w) = f: (g(w)) [ga(w) + (g(w)) guw(w)]

except on the set f(E).
Now we show that g,, = 0 and g; = 0 a.e. on f(E). Obviously, we are done if
F(FE) is a set of measure 0. If f(E) has a positive measure, then

0_//1—Iu //1-}1(;&;) A //lgww” Ao

f(E)

Here J,, is the Jacobian of g, and the change of variables is justified by Lemma
2.1, Chapter III [3]. Therefore g,, = 0 a.e. on f(E). Since g is sense-preserving,
gs = 0 a.e. on f(E).

Now let F and G be the sets where f(z) and g(z) are not differentiable,
respectively. Let H be the set where f does not satisfy (5). By the same
argument as above, it follows that since F' and H have measure 0, g,, = 0 and
gs =0a.e. on f(F)U f(H).

One can show, using differentiability a.e., that except on the set f(F) U G,

2 (g(w)) fz(g(w))

==L and g5=-—F—%,

. (9(w)) . (9(w))

where J, is the Jacobian of f. Substituting these expressions above, we have,
except on the set f(E)U f(F)UG,

gw(w) =

oot [oa(w)-+ ulotuN)gw(w)] = £ (w) | - S+ (o) 2020
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Also, except on the set f(H),

~fz(9(w)) + nlg(w)) £ (9{w)) = 0.

Since G has measure 0 and g,, and g; are O a.e. on f(E)U f(F)U f(H), we conclude
that

Fe(g(w)) [90(w) + u(g(w)) gu(w)] =0 ae.
This proves that
%f(g(w)) =0 ae.

By Corollary 1, [1] p. 31, f (9(w)) is a conformal mapping of the plane onto itself.
Thus

f(g(w)) =aw+b with constants a # 0 and b.

Therefore
f(2) =af(z) +b. O

Proof of Theorem 2'. We extend u(z) to the whole plane, construct the
homeomorphisms f(z) and g(z), and restrict g(z) to f(A). Then f (9(w)) defined
on f(A) satisfies the condition

E)%f(g(w)) =0 ae. inf(A).

Thus f(g(w)) is a conformal mapping of f(A) onto © = f(A), which we call £(w).
O

9 Appendices

Appendix 1. Here we are going to construct an example of a function p(z)
which satisfies David’s condition (A) but does not satisfy Lehto’s condition (A;).
To do so, we construct two sequences {I,}32, and {C,}52, of subsets of the open
unit interval I, using the following procedure by induction. Denote by C; a Cantor
setin Iy of measure ¢, 0 < t < 1. Then I; = I\ C} is a set of countably many open
intervals. Assume that I, ; is constructed and is a union of countably many open
intervals. Then C,, is defined as the union of Cantor sets on the open subintervals
of I, .1, each with a measure t times the measure of the corresponding subinterval.
Then we define I, as I,, = In_1 \ Cp, thus I, is an union of countably many open
intervals.
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From now on, depending on the context, we denote by I(A) the linear measure
or by m(A) the area measure of a measurable set A. Thus we have

I =I()\Cl, l(Cl)=t, l(Il)=1—t,
I, =1L\ C, I(C2) =t(1 -1), I(I2) = (1 -1,
I,=1, 1\C,, I(Cp) =t(1 —t)" Y, (I, =(1-t)"

We define also E,, = I, x I, and G, = Cp, x C,,. Then m(E,,) = (1—t)?". Also
G, CEn_1, En=E,1\Gnand E,_; D Gy, for! > n. Denote by E. = Nr—, En
and let u(z) be a measurable function defined as

1—enp, on Gny1,
u(z) =141, on Eq,
0, everywhere else.

Here e, is a decreasing sequence of positive numbers defined as

e = «
" 2nln(1-t)’

where « is a positive constant.

To show that u(z) satisfies David’s condition (A), we choose ¢ > 0 to be a
sufficiently small number and define A = {z : |u(2)| > 1 —¢}. There exist numbers
en and en4; such thate,,1 < ¢ < e,. Therefore, A C {z : |u(z)| > 1 —e,} C Ept1.
Thus m(A) < m(Eny1) = (1 = )X+t = g=@/ents < ¢=2/¢, Therefore, u(z)
satisfies David’s condition (A). However, u(z) = 1 on the set E,, which is not
compact and whose closure is the closed unit square Q. Therefore, p is not less
than 1 outside of a compact set of measure 0 and thus does not satisfy Lehto’s
condition (A,).

Appendix 2. In this section we relate conditions (A) and (B) of Theorem 1
to David’s condition (A). We show that (A) implies (A) and (B) but (A) does not
imply (A).

Result 1. Let K be a bounded measurable subset of the plane and i a
complex-valued measurable function on K with ||| < 1. Then the following two

conditions are equivalent.
(C) There exists 8 > 0 such that

é/exP{l-,'alﬂl}dA<®’
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where ® is a positive constant.
(D) There exist o > 0 and C > 0 such that for sufficiently small ¢ > 0

measure{z : |u(z)| > 1 — ¢} < Ce /5.
Proof. We first show that (D) implies (C). Let
1 1
Snz{z:wgl—|u|<-2—;}.

Then measure{S,} < Ce~*?" for n > ny. Thus

J/ e""(l—ﬂml)d’*: // e"p(l—ﬁml)d‘“ // e"p(l—ﬁml)‘m
K K\ U S. U S»

n>nqg n>ng

a§: [ oo(c2)

<A+ Z C exp{26 — a}2",

n=1

where A; is an appropriate constant. If o > 24 this series converges, which proves
that (D) implies (C). Now we show that (C) implies (D).
Let M be any positive number, M > 1. The set where

g
oo {3} >

has measure less than ®/M. Therefore, the set where

B
log M

1-|pyl <

has measure less than &/M. Thus, with ¢ = 8/log M, the set where |u| > 1 ~ ¢ has
measure less than ®e~#/¢. This completes the proof that (C) implies (D). O

Result 2. Let u(z) be defined in the plane. David’s condition (A) implies (D)
for every bounded measurable set K. However, condition (D) for every bounded
measurable set K does not imply (A).

Proof. The statement that (A) implies (D) for every bounded measurable set
K is obvious. To prove the second part of Result 2, let

1-—1
pu(z) = plz +iy) = { log(1/y)’

0, elsewhere.

0<y<l, z€R,
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Then for some small ¢ > 0, the set where 1 — |u| < ¢ is the set where y < e~!/¢.
Let K be a bounded measurable set with |z} < [ on K. The measure of the set
1— |u| < ¢ is less than 2le~1/¢. Therefore, condition (D) is satisfied for any K.
However, the measure of the set in the whole plane where 1 — |u| < ¢ is infinite,
and therefore condition (A) does not hold. O

Result 3. Condition (D) for every bounded measurable set in the plane
implies condition (A). However, condition (A) does not imply condition (D) for
every bounded measurable set K.

Proof. To prove the first part of the statement, we use Result 1 and the fact
that (C) for every bounded measurable set implies (A).

To prove the second part of the statement, we give an example of a function x
for which (A) holds but (D) does not hold for some bounded measurable set.

Let {S,,} be a set of disjoint disks in the plane contained in a finite disk S with

n+1 n+2
measure{s } =e nlog(l 5 —e (n+1)log(1 B

Let u(z) = 0 in the complement of | Joo; S,, and p(z) =1—-1/2"*' on S,,. Let K
be any bounded measurable set. Then

//ex |ﬂ| dA<C+Z//ex 2 dA
P 1 ) PT i n+1)log2

1+log myp

<C+ Zexp{—Z("+l)/2} < oo.

n=1

Thus (A) holds for .
Assume that condition (D) holds for S and the above constructed p(z). Then
the measure of the set where {2 : 1 — |u| < 1/2"} is < Ce~*?" for some constant a.

—gn+l
On the other hand, the set {2 : 1 — |u| < 1/2"} has measure e=~05 , Therefore,

—on+l

eniogil 5 < Ce—az

thus
n 2
62 (_ln[ogil.555+a) <C asn— x,

which is a contradiction. Therefore, (D) does not hold for p(z) ontheset S. O

Result 4. If u(z) satisfies condition (A), then

/ / oA = O,

|z]<R
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Proof. Since (A)implies (D) for every bounded measurable set, we can choose
a suitable £ > 0 such that (D) holds for |z| < R and for some constants C and a.
Using the same argument as in Result 1, one can show that for every R > 0

// 1 dA < 9P,
1—|ul

1-|u|<e
lz|<R

where @ is a constant independent of R, while

2
// 1 dAgﬂR.
1— [yl €

1~|u|>e
|z|<R

This shows that

/ ! _jA=0(R?) asR— .
1— 1yl
|z|<R

Appendix 3.
Result 5. No condition of the form

Z{/ (—1—_1—|Zl>AdA <®

is sufficient for the conclusion of Proposition 1, where K is a bounded measurable
set, ® is a constant that depends on K, and )\ > 1.

Proof. We define
Foei®) = e e,

where 0 < 7 < 1 and 0 < p < 1. The complex dilatation of the mapping is

i _ 200 TP — 1Y,
st = n (222,

thus

Therefore,
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Given )\, we can always choose 7 < 2/A. But f maps the punctured disc 0 < |z| < 1
onto a proper annulus 1 < |z| < e, and therefore we do not get the conclusion of

Proposition 1 for this f. O
In [2], p. 69, G. David gave a similar but more complicated example.
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