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Abs t rac t .  In this paper we study the existence and uniqueness of solutions 
of  the Beltrami equation f~ (z) = #(z)f~ (z), where #(z) is a measurable function 
defined almost everywhere in a plane domain A with II#[[oo = 1. Here the partials 
fe and fz of  a complex valued function f (z )  exist almost everywhere. In case 
[[#[[oo < q < 1, it is well-known that homeomorphic solutions of the Beltrami 
equation are quasiconforrnal mappings. In case 11#[Ioo = 1, much less is known. 
We give sufficient conditions on #(z) which imply the existence ofa  homeomorphic 
solution of the Beltrami equation, which is ACL and whose partial derivatives fe 
and f~ are locally in L q for any q < 2. We also give uniqueness results. The 
conditions we consider improve already known results. 

1 I n t r o d u c t i o n  

In the Beltrami equation 

f (z) 

#(z) is to be a measurable function defined almost everywhere in a plane domain A 

with ess.l.u.b.ll#[[~o = 1. Here the partials fe and fz of  a complex valued function 

f ( z )  exist almost everywhere. In case I1~11oo <_ q < 1, it is well-known that 

homeomorphic solutions of  the Beltrami equation are quasiconformal mappings 

with maximum dilatation 

D(z)  < K = l + q 
- 1 - q  

In case I[#[[o~ = 1, much less is known. The only significant results known to the 

authors are due to O. Lehto [4] and [5] and G. David [2]. 

In [4] Lehto treats the case of  the plane with the following two stringent 

restrictions on tz(z): 

(A1) in the complement of  a compact set of  measure 0, [#[ is bounded away 

from 1 on every compact subset; 
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(A2) for any complex z and 0 < rl < r2 < OO, 

fr2 ( fo27r ]l_e-2iOl~(z +reiO),2 )-1dr 
t+2  - 

a /" 

is strictly positive and tends to oo as rl --* 0 or r2 ~ c~. 

Under these conditions, he proves the existence of  a homeomorphic solution to 

the Beltrami equation. Condition (As) essentially supposes the pointwise equicon- 

tinuity of the approximating functions to be discussed below, thus bypassing the 

most difficult step in the existence proof. In [4] and [5] Lehto does not study the 

question of uniqueness. 
In [2] David follows through the proof of  existence in Ahlfors' monograph [1], 

giving some very detailed and complicated estimates. He considers the case when 

# is defined in the plane and assumes that 

(A) there exist constants a > 0 and C > 0 such that for e > 0 sufficiently small 

measure{z : I~,(z)l > 1 - ~} < Ce -~/~. 

Under this condition he proves the existence of  a homeomorphic solution and 

shows that under suitable normalizations it satisfies a uniqueness result. 

The main results as well as various auxiliary results in this paper are obtained 

under conditions of  the form 

f f  F(l_~(z)l)da<'~B' B 
where B is a bounded measurable set, Os > 0 is a constant which depends on B, 

and F(x), defined for x > 1, is either the identity function, or F(x) = x ;~, A > 1, or 

37 
F(x) = exp 1 + l o g - ~ "  

With the choice 

F(x) = exp 1 + log----"~' 

i.e., condition (A) below, we prove the existence of  a homeomorphic solution of  

the Beltrami equation having properties detailed in the statement of  our Theo- 

rem 1 (Existence Theorem). We also give uniqueness results, which are stated as 

Theorems 2 and 2'. 

In the Appendices we compare our results with those already known. We show 

that David's results are not subsumed by Lehto's by providing an example where 

(A) holds while (A1) does not. We also show that (A) implies conditions (A) and 

(B) of  Theorem 1 but that condition (A) does not imply condition (A). 
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2 S ta t e m e nt s  of  the  m a in  results  

T h e o r e m  1 (Exis tence  Theorem).  Let A be a plane domain, #(z) a 

measurable function defined a.e. in A with II~,lloo _< 1. Suppose that for  every 
bounded measurable set B C A there exists a positive constant ~ ,  such that 

1 

f / 1 -I~1 dA < OB, 
B 1 + log 

and 

(B) / 11 dA  = O(R2), R---*c~. 
1 #1 

{Izl<R}n~ 

Then there exists a homeomorphic mapping f (z)  o f  A into the plane, which is ACL 

and whose partial derivatives fz and f~ are in L q on every compact subset o f  A for  
every q < 2 and which satisfies the Beltrami equation (~) a.e. The partials fz and 

f z are also distributional derivatives. 

T h e o r e m  2 (Uniqueness Theorem). Let #(z) and f (z)  be as in Theorem 1, 

with A being the plane. Let f ( z ) be a homemorphism of  the plane onto itself which 
has a.e. partial derivatives ]z(Z) and ]z(z) locally in L 2. l f  f satisfies the Beltrami 

equation (~) a.e., then 

](z) -- af(z) --F b, 

where a and b are constants, a ~ O. 

Theorem 2'. I f ]  is a homeomorphism o f  a domain A onto a domain 0 and 
has the same properties as in the above Uniqueness Theorem, then 

](z)=r 

where ~ is a conformal mapping o f f ( A )  onto O. 

3 C o n s t r u c t i o n  of  the  func t ion  f(z) 

We can assume that #(z) is defined in the plane by assigning the value 0 in 

the complement of  A. For the construction of  the function f (z)  we use only (A). 

Condition (B) is used to prove that f (z)  maps the plane onto itself. 
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Now we define t~n, n = 1, 2 , . . . ,  so that 

1 
#~(z) =/~(z) ifl/~(z)l < 1 - - ,  

n 

1 
/z~(z) = 0 if[/~(z)[ > 1 - - .  

n 

From the theory o f  quasiconformal mappings, there exist q.c. mappings f,~, 

n = 1, 2 , . . . ,  o f  the plane onto itself with complex dilatations/zn, n = 1, 2 , . . . .  

Let  z0 be a fixed point in the plane. For r :  > r l  > 0 denote by A the circular 

ring 

A = { z : r l  < l z - z o l < r 2 } ,  

and by Mn(rl, r2) the module o f  its image under f,~. The module  Mn(rl, r2) can be 

estimated from below in terms o f  the complex dilatation #,~, where #,~ = #n (z) = 

#n(Zo + reiO), in the following manner (see [6]): 

Mn(rl, r2) >_ fr  r2 
1 

1 dr 
j I1 - -  e-2iO lzn[2 r 

o i - F h - Z  6o 

P r o p o s i t i o n  1. For any point zo and circular ring A = {rl < ]z - z0l < r2}, 

the module Mn(rl ,  r2) o f  the image o f  A under f~ tends uniformly to o~ as rl ~ O, 

for  all n, r2 fixed and zo in some compact set. 

P r o o f .  Using the lower estimate for the module o f  the image domain 

introduced earlier, we obtain 

1 f r 2  1 dr 
Mn(rl,r2) >_ 4 J~ J~2~r l do r 

o 1 - [ , I  

For any zo in a compact  subset T o f  the plane containing the disc Iz - Zo] < r2, 

/? r2 Jo exp 1 r - C, 
1 1 + log i - I~1 

where C depends only on the compact  subset T and the choice o f r z .  Now we have 

1 

fo 2~ 1 - I # l  dO < r 2 exp 1 r2 
1 + log ~ log 

1 - I , I  ~1 
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1 ?`2 
on a set E of  logarithmic measure ~ log - - .  Therefore, 

r l  

1 

1 2 .  1 - I # l  dO < 
exp 1 

1 + log ~ ~rr 2 log r2 
t -I .I  rx 

The function 

on E. 

( 1  f02'~ __-1 ) <  
h 1 

and ( ) - -  dO < h -1  C E. o n  
2~r 1 Pl 7rr 2 ~o r2 g - -  

?'1 

Combined with the asymptotic behavior o f  l(y), this implies 

.._1 f02'~ 1 _ _ ,  1 - ( C ) ~-~ I#-------'~ dO < el on E. 
~rr 2 log r2 

r l  

Now we fix R, 0 < R < 1 and evaluate Mn (R 2N , R g ) for any fixed function fn: 

Mn(R2N,RN) > 1 f RN 1 dr 1 f 1 dr > ( c ) 7  
- 4 Ja2u 2 i l____~[d O 1  r ~ E l ~r?" 2 lo~I/R)N 

1 _f~sN/2 1 dr 
->8~c 2,, l (  JR C ) r 

7rr 2 l o l l / R )  N 

Using the properties of / (y) ,  the logarithmic function and explicit integration, one 

can prove that 

1 _]n~3N/2 1 dr log(4/3) 

87rc 2N l(~rr 2log'[I/R) ~ v C  ) r ~167rclogN ' asN ~cr 

C 

7rr 2 log r2 
r l  

on E 

x 
h(x) = exp 1 + log--------~' 

defined for x _> 1, is convex and increasing and lim~-~oo h(x) = oc. Let l(y) = 
log y log log y for y > 1 and let h - l (y )  be the inverse of  h(x). One can show that 

h-l(h(x)) 
j i m  l(h(x)) = 1; 

so, for some constant c > 0 and sufficiently large y, h - l (y )  < el(y). Therefore, 

using the convexity of  h(x), we have 
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Thus, for some L > 0, 

~ log(4/31 
E Mn(R2N' RN) > 167rclog N" 
N=L N=L 

By the superadditive property o f  the module it follows that 

lim Mn(R N, R) : oo, 
N---* oo 

independently of  the choice o f  z0 and n. 

Now let 0 < R < min{1, r2}. For any fixed N there is r l ,  sufficiently small, 

such that 

{R N < I z -  z0I < R} c {ra < I z -  zol < r2}; 

and therefore Mn(rl,r2) >_ Mn(RN, R) or limrx--,oM,~(rl,r2) > Mn(RN,R) for 

any fixed N. Thus limr 1--,0 M,~ (rl, r2) = oo, independent o f  the choice o f  zo and n. 
[] 

From now on we assume that the quasiconformal mappings {fn(z)},n = 
1, 2 , . . . ,  have two fixed points al and a2, with d = lal - a2I > 0. 

Proposition 2. The family ofquasiconformal mappings {fn (z) }, n = 1, 2, . . . ,  

is uniformly equicontinuous on each compact subset T of  the plane. 

Proof. Suppose that this is not the case. Then for some e > 0 there exist 

indices j,~ T c~, positive numbers 8,~ I 0 and points z~ '~) and z~ '~) in T, such that 

Iz~ '~) - z~n)l < ~,~ and I,bo(z~ '~)) - $~,~(z~'~))l > ~. 

Denote by z0 an accumulation point of  the sequence {z~'~)}. The distance 

between z0 and at least one o f  the points al and a2 is at least d/2. We assume that 

this point is al. The image under f j ,  of  the ring 8 < [z - z0l < d/2 for sufficiently 

small/5 > 0 and sufficiently large n is a doubly connected domain for which one 

complementary component has a diameter > e, and the other contains al and oo; 

thus its module is bounded independent of/5, which contradicts Proposition 1. [] 

Proposition 3. For the sequence f n ( z ) there exists a subsequence of  functions 
which converges uniformly to a function f(z) on compact subsets. 

Proof. The result follows from Proposition 2 and the Theorem of  Arzela- 

Ascoli. [] 

We denote the convergent subsequence again by fn(z). 
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Proposition 4. I f  

g l I_-~dA = O(R ~) as R ~ c~, 

[zF<R 

then f~(z) converges uniformly in n to o0, as z ~ o0. 

Proof. There exists a constant P,  such that 

/ 1 < pR4. dA 
1 - t~ l  

n<_l~l<n 2 

We claim that for R _> Ro > 0, 

2zr 

r 
o 

R 4 N  

MN > f 1 dr 
n~ ~'~ 11 - e-2i~ 2 r 

o e0 

1 ~ R 4k -- R 2k N 

> 4 6PR 4k - 24P" 
k = l  

n 4k 
1 N.~,f 1 dr 

>- "~ k~..~lRJk 27r 1 r 
= I ~ i_ t 

on a set E,  E c (R, R2), o f  length at least (R 2 - R)/2. Otherwise, there would be 

a set X o f  length equal to (R 2 - R)/2 such that 

R 2 27r 

rdrdO > 3PR2rdr > ~PR (R - R), 
- -  r 

R 0 X 

which contradicts our assumption. Therefore,  

f n  R 2 - R R2 1 dr > 

2y 1 dO r - 6PR 2 " 

Now fix R > Ro > 1. There exists P such that 

f /  d_.__~A < pRsk ' f o r k  = 1 , 2 , . . . .  
1 - I ~ 1  - 

R 2 k < l z l < R  4u 

Let AN be the annulus {z : R 2 < Izl < R 4N} and M N the module o f  its image 

under fn, n = 1, 2 , . . . .  Then 
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Therefore  M N tends uniformly in n to oo, as N ~ oo. Since fn(z) tends un i fo rmly  

in n on compact  subsets to f (z)  as n ---* oc, we conclude 

f (z)  ~ c~, a s z ~ c ~ .  [] 

4 f(z) is a h o m e o m o r p h i s m  

L e m m a  1. Let h~, n = 1 ,2 , . . . ,  be a sequence o f  homeomorphisms o f  the 

plane onto itself with two fixed points al and a2. I f  h~ converges uniformly on 

every compact subset o f  the plane to a function h(z), and i f  for  every annulus A 

there is a q > 0 such that for  all n 

(1) M(hn(A)) >_ q, 

then h is a homeomorphism. 

P r o o f .  Assume that h is not a homeomorphism.  Then there exist two points 

zl ~ z2 such that h(zl) = h(z2) = wo. We can assume that none o f  the points 

zl,  z2 and wo coincides with a2 and that zl does not lie on the segment  connect ing 

z2 and a2. Construct a line t through zl which does not meet  that segment,  a circle 

C1 passing through a2 and zz, which does not meet  t, and a concentric circle C2, 

outside o f  C~, which also does not meet  t. Let D be the doubly connected domain  

bounded by  C~ and t, and A the ring domain bounded by  C~ and C2. Then A c D 

and 

M(hn(D)) > M(h,~(A)). 

On the other hand, the spherical diameters o f  hn (C1) and hn (t) are bounded away  

f rom zero, while the spherical distance between them tends to 0 as n ~ oo. This  

implies that M(hn(D)) --* 0 as n --* oo, which contradicts (1). [] 

L e m m a  2. Let #* be a measurable complex valued function with t1~*11oo = 1 

and let lz~ be a sequence o f  measurable functions, constructed in the same way as 

in Section 3. I f  
(i) h~ are the corresponding quasiconformal mappings o f  the complex plane 

onto itself with two distinct fixed points; 
(ii) h~ converge uniformly on compact subsets o f  the plane to h; and 

(iii) for  each compact subset L in the plane, and some positive constant ~z,  

//'1 (2) ,I/~*l dA < ~L, 
L 
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t h e n  

1. there exists q > 0 such that M ( hn ( A ) ) >_ q, and 
2. h is a homemorphism. 

P r o o f .  Fix a point z0 in the plane, and for 0 < rl < r2 let S be the annulus 

{z : rl < I z - z0l < r2}. According to (2), there exists a constant ~ s  such that 

f f  1 (3) 1 -Ilz*l dA < ~s. 
s 

As in Proposition 1, using the appropriate estimate for the module o f  the image, 

we  have r2 
1 r~ dr/r M(hn(S)) >_ ~ 2~ T 

fo 1 :-~,[dO 

There is a measurable subset X of  [rl, r2] o f  measure (r2 - rl)/2 on which 

27r 

1 

f 1-1 *1 
0 

~ d O  <_ 
8(I)s 

(r2 -- rl)(r2+3r1)" 

Otherwise, we would  have 

r2 2"n" ( r l -br2) /2  

f f  1 [dOrdr>_ 8~s f 1 - IV* (r2 - -  rx)(r2 q- 3rl) rdr = ~s, 
r l  0 r l  

which contradicts (3). 

Therefore, for each A there exists q, as defined below, such that for all n 

~2 
1 / dr/r 7~-(r2-31-3rl/(r2- ~,1/ / dr 

M(h,~(A)) > ~ ~ 1 �9 > 32~s --r- = q > O. 
x dO (~x+~2)/2 

0 1 - ] . 1  

By Lemma 1, h(z) is a homeomorphism. [] 

P r o p o s i t i o n  5. The function f(z) constructed in Proposition 3 is a 
homeomorphism and maps the plane onto the plane. 

P r o o f .  Inequality (2) for # follows from (A). This together with the properties 

of  f,~(z) implies that f(z) is a homeomorphism. [] 
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5 Differentiability properties of f(z) 

L e m m a  3. l fhn(z) are quasiconformal mappings of  the plane onto itself with 
complex dilatation #~, satisfying [#~[ < I~*1 - I a.e., i f  h~(z) converge uniformly 
on compact subsets of  the plane to a homeomorphism h( z ), and iffor every rectangle 
R there is a positive constant ~a such that 

g l x  - (4) --,l#*'-'----~dA < ~R, 
R 

then h(z) is ACL. 

Proof .  L e t R =  {(x,y) : a_< x < b , c <  y < d}. Denote b y I y  the segment 

with ordinate y and a < x < b, and by Ry the rectangle which is the subset of  R 

below that segment. Let A(y) be the area of the image of  Ry under h(z). Then 

A(y) is an increasing function of y and thus has a finite derivative A'(y) for almost 

all y in the interval [c, d]. Moreover, by Fubini's Theorem, 

/1  
1 -I#*-'----~ dx 

Iv 

is finite for almost all y in [c, d]. Further, for any system of infinitely many 

nonoverlapping subintervals (~a,~), k = 1 ,2 , . . . ,m,  of  (a,b) and any ~ > 0 
sufficiently small (i.e., y + 5 < d), consider 

1 m ~k+'y+Sffl  1 ~ e ( ~ k / 1  1 ) 
-~ k~l 1 --I#*--------T dA = -~ 1 --I#*---------T dx dy. 

= ~k Y y ~ k = l  ~k 

By a theorem of Lebesgue on differentiation, for almost all y in (c, d) this 

expression has a limit as 5 --+ 0, which is 

Allowing all possible rational pairs of  {~,~,  this will hold simutaneously for 

almost all y in (c, d). Choose y0 for which all of  this applies. Now let (xk, x~) be 

k * an arbitrary system of  nonoverlapping subintervals of  (a, b). Let { , {k be rational 

numbers satisfying xk < {k < ~ < X~, and set 

wk = h(xk + iyo), 

oak = h(~k + iyo), 

= h ( x l  + iy0), 

oa; = + iu0). 
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To prove that f is absolutely continuous on Iy o it is enough to show that 

~k~__l [w~ - wk[ has an upper bound which tends to zero with ~ = l ( x ~  - xk). 

We choose 5 > 0 with y0 + 6 < d and denote by Rk(5) the rectangle 

{(x, y) : (k < x < ~7:, y0 < y < y0 + 6}. Taking its comers as vertices, it be- 

comes a quadrangle whose image under h(z) we denote by Qk(5). Let m(Qk(5)) 
be the area of  Qk(5) and/3k(5) the distance between the images of  the vertical sides 

of  Rk(5). Let M(Qk(5)) be the module of  Qk(6) for curves joining the images of 

horizontal sides of  Rk(5). Then, as in Theorem 4.1 of  [3], 

M(Qk(5)) >_ 
m ( Q k ( 5 ) )  

Denote the corresponding entities under hi(z) by RJ(5), Qk(5) j and M(QJk(5)). 
Using an upper estimate for the module of  a quadrangle from [6], we have, after 

applying the Schwarz Inequality, 

y+5 ,~k+z y+5 ~k+z 

1--1#:, = dA< ~ / f l_,tz.,dA. 
y ~ Y ~k 

Letting j ~ c~, we obtain 

y+5 ~k+z 
1 

M(Qk(5))<_ ~ f f l _ [# , [ . da ,  
y ~k 

and therefore 

Thus 

(f~k(5))2 < 5 -~ f / 1  1 idA. m(Qk(5)) - - I , *  
n~(~) 

k•__ (3k(5)) 2 < 2 _.l.ltz,[dA" ff m(Qk(5)) - -~ J J  1 uRk(6) 
The Schwarz Inequality then gives 

m 
_< �9 

2 / /  1 <- "~ 1 - I#*'"-'~[ d A  " ( A ( y o  + 5) - A ( y o )  ) . 

uRk(5) 
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Letting 6 ~ O, we have 

1 
< 2A'(yo) 1 -I~,* 

x; 

_< 2A'(yo) 1 -I~*1 dx 

Letting (~ ---, xk, ~k x~, we have finally 

, _ _ 1  dx. w k - wk < 2A'(y0 1 - [#*l 
k=lx~ 

Since the integral is absolutely continuous as a set function, this completes the 

proof. [] 

P r o p o s i t i o n  6. The function f(z) is ACL. 

P r o o f .  Since (A) holds for tz, so does (4); and #n, #, fn, f satisfy the conditions 
of Lemma 3. This implies that f is ACL. [] 

L e m m a  4. I f  

(i) hn are quasiconformal mappings o f  the plane onto itself with complex 

dilatation #~ satisfying I~*1 <-- I~*1 -< I a.e.; 

(ii) hn(z) converge uniformly on compact subsets o f  the plane to h(z); 

(iii) f o r  some A > 1 and every compact subset L o f  the plane there exists a 

positive constant 4 5 such that 

ff(x (5) 1 ---i#*l dA <_ '~L, 
L 

then h( z ) has partial derivatives hz and he which are in Lq on every compact subset 

o f  the plane, where 
2A 

q <  I + A "  

P r o o f .  Let L be a compact  subset of the plane and O a Jordan domain 

containing L. By condition (ii), h,~ converge uniformly on ~) to h. Let J,~ 

denote the Jacobian of hn. We use the fact that a.e. 

(Jn)l/2 
I(h.)zl-- (1 -lu*12)1/2" 
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By HSlder's Inequality it follows that 

(J,~)q/z f f  l(hn)ztqdA= f f  dA 
(9 (9 

l iP'  

where 1/p' + 1/q' = 1. 

fo/  ) 1/q' 
1 

(1 * 2" ~:- dA 
- # n  ) 2  

We choose p' = 2/q, which implies that q is at most 

Passing to the limits as k ~ c~, we have, by the weak convergence of  (hnk)~ and 

the uniform convergence of  hn~, 

(9 (9 

Similarly, 

f / ht dA = - f f hty dA. 
(9 (9 

Thus h(z) has distributional derivatives in Lq(O). By Theorem 2.1.4 of [7], 

h (being continuous) coincides with its representative in the context of  this 

theorem and h~ E Lq(O). The same is true for h~, and therefore both partials 

belong to L q (L). 

Note that this also proves that h is ACL, but under stronger conditions than in 

Lemma 3. [] 

f f  (h~)st(x, y)dA = - f f  h~ k t(x, y)~dA. 

2A/(1 + ),). Then the first integral becomes ff(9 Jn dA, which is the area of the 

image of 6 under ha(z) and is therefore finite. Thus the first integral is uniformly 

bounded for all n. The second integral is also uniformly bounded because of  (5). 

Therefore, 

f l(h~lzlqdA 
e 

are uniformly bounded in n. For q > 1, Lq(O) is a reflexive Banach space. 

Therefore the sequence of  functions (h,~)z has a weakly convergent subsequence 

(hnk)z. The same is true for (hn)z, because the hn are sense preserving and thus 

[(h,~)~[ < ](hn)z[. The same is true for the real partials (hnk)x and (hnk)u, which 
2 

converge to h and h in Lq((~). Since the hn are quasiconformal, (hnk)x and (h,~k)v 

are distributional derivatives (see [1] p. 28). For any test function t(x, y) with 

support in O, 
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Proposit ion 7. The partials f~ and fz  o f f ( z )  are in Lq on compact subsets 
o f  the plane for every q < 2. 

P r oo f .  Since (A) holds for/z,  so does (5) for every A > 1. This, together 

with the properties o f f n ,  f ,  #,~ and #, implies that f~ and fe are in L~(L) for every 

compact set L in the plane and I < q < 2, and thus for any q, 0 < q < 2. [] 

6 f(z) s a t i s f i e s  t h e  B e l t r a m i  e q u a t i o n  

L e m m a  5. Let hn be quasiconformal mappings o f  the plane onto itself with 
complex dilatations #* satisfying I#nJ < I~*1 -< 1,1im,~o~ #~ = #*, a.e. Suppose 
that the functions h,~ converge uniformly on compact subsets o f  the plane to h and 

let )~ > 1. lf, for  any rectangle R with sides parallel to the axes, there exists a 
positive constant OR such that 

R 

then 
h~(z) = ~,*h:(z) a.e. 

Proof .  Denote ~(z) = h~(z) - #*(z)hz(z). Then ~(z) is defined a.e. Now we 

can write 

* h  " h  * h  r = [h~ - (h~)~l + [(h~)~ - . ~ (  n)=] + [~,~( ~)z - . * (h~)=]  + [ .  ( n)= - #*h=l.  

Denote 

Then 

s~, , , (z )  = h~ - (h,~)~,  

* h  s~, , , (z )  = ( h n ) ~  - ~n( n)=, 

* h  * h  S~,n(z) = #n(  n):  -- # ( , , ) : ,  

S4,n(Z) = / ~ * ( h : ) :  - # *h : .  

R R R R R 

Now f f R  I2,,~dA = 0 because I2,,~ = 0 a.e. According to Lemma 4, h has L 1 

derivatives in R, and so do h,~ as quasiconformal mappings. By formula (6.17) on 

p. 50 of  [3], 
1 Si i 

R OR 
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Since h,~ tend uniformly to h on the boundary OR, the above integrals converge 

to 0 as n --* c~. So we have 

(7) l i m  f f li,n dA = O. 
R 

Further, from H61der's Inequality it follows that 

R R 
l i p  ,~ 1/q 

R R 

where l /p+ 1/q = 1, p,q > O, and 

2A 

q =  I + A '  

thus 1 < q < 2. As in the proof  o f  Lemm a  4, one can show that f fR  I(hn)zl q dA 
are uniformly bounded in n. Since #~ --. #* as n --* oo a.e. and I#~ - , . i v  _< 2", 

by Lebesgue 's  Theorem 

/ l # * - # * [ P d A ~ O  as n ---* o~. 

R 

Therefore,  

/ I3,n dA --~ 0 as n --* oe. 

R 

By p. 138 o f  [3], #* can be approximated by uniformly bounded step 

functions r with constant values on squares with sides parallel to the axes, so 

that limk~oo r =/~* a.e. in R. Using this, we have 

R R St 

By H61der's Inequality, 

/(u* - - 

R 

R R 
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with q as above. Since ffR I(hn)z[ qdA is uniformly bounded and h~ E Lq(R), 
f fR  I(hn)~ - hz] qdz is uniformly bounded. Since l i m k ~  Ck = #* a.e., by 

Lebesgue's Theorem we can choose k0 so that, for k > k0 and every n, 

f f  -  kll(hn)  - hzl dA <- E. 

R 

On the other hand, since r has a constant value on the finitely many squares or 

parts of squares covering R and by the argument used to prove (7), we have 

/r a s  n - ~  o o .  

R 

Therefore, there exists No such that for n > No 

f f  - h )dA < 
R 

o r  

f / I4,ndA < 2r 
R 

This shows 

/ I4,ndA ---* 0 
R 

a s n ~  o o ,  

and completes the proof that 

f ~dA = O. 
R 

Using the measure-theoretic argument of [3] p. 189, one can show that ~ = 0 

a.e. Thus we have 

he(z)-#*(z)hz(z) = 0 a.e. [] 

Propos i t i on  8. The function f(z) satisfies the Beltrami equation (/3). 

Proof .  Since (A) holds for #, so does (6). This, together with the properties 

of  fn, f,  #n and #, implies that f satisfies the Beltrami equation (/3). [] 
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7 The  inverse  funct ion  g(w) of  f(z) 

L e m m a  6. Let 

(i) hn, n = 1, 2 , . . . ,  be homeomorphisms o f  the plane onto i tself  with f ixed 

points al ~ a2 such that 

(ii) h,~ converge uniformly to a homeomorphism h on compact subsets o f  the 

plane and 

(iii) hn converge uniformly to c~, as z ~ c~ and n --* oo. 

(iv) Suppose that f o r  any f ixed annulus A, the module M ( h,~( A ) ) is uniformly 

bounded away f rom zero; and let 

(v) l~, n = 1, 2 , . . . ,  and I be the inverse homeomorphisms to hn, n = 1, 2 , . . . ,  

and h, respectivel): 

Then the sequence In, n = 1 ,2 , . . . ,  is pointwise equicontinuous; and l~ 

converges uniformly to I on compact subsets o f  the plane. 

P r o o f .  Assume that the sequence In is not pointwise equicontinuous. Then 
W c~ there exist a point p, a number e > 0, a sequence ~k I 0, and sequences { k}k=l 

l and { n~}k=l such that Iwk - P l  < 6k and 

(8) I/~(wk) - /~(P)I  >- e. 

The sequence In~(wk) has a finite accumulation point because h,~ converges 

uniformly to oc as z ---, oo and n ~ oo. We can find a subsequence which tends 

to this accumulation point. We denote this subsequence again by  {lnk }~=1 and the 

accumulation point by  z0. I f  necessary, after taking another subsequence, we can 

assume that there is a finite point q such that l,~ k (p) ~ q, as k ---, oo. Because of  

(8) we have zo r q. 
Assume that zo r al and that q does not lie on the segment joining Zo and al.  

Draw a circle F ~ through zo and al such that q is outside o f f  ~ and a line F ~ through 

q not meeting F ~ Draw a second circle F1 tangent to 1`0 at al o f  larger radius which 

does not meet F ~ and a line 1"2 parallel to F ~ which lies between 1`1 and 1`0. There 

is an integer ko such that for k > ko, Ik(wk) is inside 1`1 and l,~k(p) is in the half  

plane determined by F2 not containing 1`1. For each k > k0, we construct a circle 

p~k) passing through a I and lnt ' (Wk) , tangent to r'i at al ,  and a line 1 (̀2 k) parallel to 

1'2 and passing through lnk (P). 

For each k > k0, h,~k(F~ k)) passes through al and wk; and hn~(F~ k)) passes 

throughp and ~ .  Therefore, the spherical diameter of  each of  the families of  curves 

h,~ (1`~k)) and h,~ k (F~ k)) is bounded away from 0. However,  the spherical distance 

between h,~k (1'~ k)) and hnk(1`~ k)) is less than ~ .  I f  we denote by  A~ the doubly-  
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connected domain bounded by F~ k) and F~ k) and by M ( h ,  k (Ak)) the module of  its 

image under hnk, it follows from Lemma 2 of[4] that M(h~k (Ak)) --* 0 as k ~ oo. 

Now consider A to be the doubly connected domain bounded by the curves F1 

and F2 and let M(h~(A))  the module of its image under hn~. Since A C Ak for 

k >  ko, 

M(hnk(A)) <_ M(h,~(Ak)); 

and thus M(h~ k (A)) ~ 0 as k ~ oo. This contradicts our assumption (iv), 

I f  q lies on the segment joining zo and al and q r al, we reverse the roles of  

z0 and q in the above proof. If  q = al and a2 r zo, then the proof goes as above, 

interchanging the roles of al and a2. Finally, if  q = al and z0 = a2, instead of  

taking circles tangent to al we take circles centered at al. 

This proves the pointwise equicontinuity of the sequence {/,~}. Therefore, by 

1 Lemma 5.1, page 71 of [3], there exists a subsequence of  { ,~}k=l converging 

uniformly on compact subsets of  the plane to a continuous function 10. For any z 

and k, h,~ k (l, k (z)) = z and I, k (h, ,  (w)) = w. Since h ,  k converges uniformly to h 

and In~ converges uniformly to/0, we have 

h(lo(z)) = z and lo(h(w)) = w. 

Therefore, lo(z) is identical to /(z); and the sequence l~(z) converges to l(z) 
uniformly on compact subsets of  the plane. [] 

Let g(z) be the inverse of  f(z)  and let g,~(z) be the inverse of  fn(z), for n = 

1 , 2 , . . . .  

Proposition 9. The sequence g~ converges uniformly to g on compact subsets 
o f  the plane. 

Proof .  Now, since (A) holds for fn, (2) holds; and, by Lemma 2, M(f,~(A)) 
are uniformly bounded away from 0. This, together with the properties of  fn, f ,  the 

definition ofg,~ and g, and Lemma 6, implies the statement of  the above proposition. 
[] 

Proposition 10. The function g is ACL and g~ is locally in I2. 

Proof. Let B be a compact set in the plane and U a compact disk such that B 

lies in the interior of  U. Denote by Jn denote the Jacobian of  fn. The functions 

gn, n = 1, 2 , . . . ,  are quasiconformal with Jacobian 1/Jn (gn(W)). We denote their 
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complex dilatations by un, n = 1, 2 , . . . .  Thus 

// // 1 
= 

U u 

= flu J,(z)dAz Jo(z - [ z)l 2) 2dAz" 

By the uniform convergence of  On, all gn (U) lie in a compact set V, so 

f /  1 __ I l l  1 lu.(z)l aAz < - 1-I f l#(z ) ,  daz;  
g~(u) v 

and all the terms f lu  I(g~( w))~o] 2 dA~ are uniformly bounded because (A) holds 

for #(z). Since gn, n = 1 ,2 , . . . ,  is sense-preserving, f l u  I(g,(w))r 2dA~ are also 

uniformly bounded. Thus the sequences (g,~)~o and (g,~),~ are uniformly bounded 

sequences in the Hilbert space L2(U), so there are subsequences (gn~)w and (g,~k)~ 

which converge weakly in L2(U). The same is true for the real partials (g,~)~, and 

(g,k),, w = u + iv, which converge weakly to j and } in L2(U). Since g,~ are 

quasiconformal, (g,~k)~, and (g-k)~ are distributional derivatives (see p. 28 of  [ 1]). 

Then, for any test function flu, v), 

f f  (g~k)~tdA~o = - f f  (g~k )t~dA~, 
U U 

f f  (gnk)vtdA~o = - f /(gnk )t~dAw. 
U U 

Passing to the limit as k ~ oo, we have, by the weak convergence of  (gnu),, and 

(g,~)v and the uniform convergence of  gnu, 

g O t d A w = - f f g t ~ d A w  and f f ~ , a a = = - f f ~ v a A o  
U U U U 

Thus g has distributional derivatives in LZ; and so, by Lemma 2 of  [1] or Theorem 

2.1.4 of  [7], 9 is ACL. (Note that since 9 is continuous, it coincides with its 

representative in the sense used in Theorem 2.1.4 of  [7].) Moreover, g,o is in LZ(U) 
and thus in L2(B). D 

8 P r o o f  o f  the  m a in  results  

P r o o f  o f  T h e o r e m  1. As mentioned at the beginning of  Section 3, we can 

extend #(z) to a measurable function in the whole plane which satisfies condition 
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(A) for any bounded measurable set B. The existence o f  the homeomorphism f(z) 
of  the plane onto itself is proved in Section 4. By  the statements in Section 5, 

f(z) is ACL and its partial derivatives fz and f~ are in Lq(K), for any compact  

subset K o f  the plane and any q < 2. Moreover, they are distributional derivatives. 

By the results in Section 6, they satisfy the Beltrami equation. Restricting f to A 

completes the proof  o f  Theorem 1. [] 

P r o o f  o f  T h e o r e m  2. Since ] and g have partials locally in L 2, f(g(w)) is 

absolutely continuous in the sense o f  Tonelli (see p. 143 o f  [3]) and a.e. 

~ ](g(w)) = L (g(w))g~ (w) + ]~ (g(~))gw(~). 

Except  on a set E o f  measure 0, ]~.(z) = #(z)]z(z); and except on the set f(E), 
]~(g(w) ) = #(9(w) ) f~(g(w) ). Therefore,  

L (g(w))g~(~) + ]~ (9(w))gw(~) = L (9(w)) [g~ (w) + ~(g(w))g~(w)] 

except on the set f(E). 
Now we show that g~ = 0 and g~ = 0 a.e. on f(E). Obviously, we are done i f  

f(E) is a set o f  measure 0. I f  f (E) has a positive measure, then 

0 =  1 I#(z)[ 2dA= = Ig~(w)12dA~'" 
- 1-I~(g(w))l 2dAw 

E f(E) f(E) 

Here Jw is the Jacobian o f  g, and the change o f  variables is justified by  L e m m a  

2.1, Chapter III [3]. Therefore g~o = 0 a.e. on f(E). Since g is sense-preserving, 

g~ = 0 a.e. on f(E). 
Now let F and G be the sets where f(z) and g(z) are not differentiable, 

respectively. Let H be the set where f does not satisfy (f~). By  the same 

argument as above, it follows that since F and H have measure 0, gw = 0 and 

g~ = 0 a.e. on f(F) t.J I(H). 
One can show, using differentiability a.e., that except on the set f(F) t_J G, 

gw(w)-  fz(g(w)) and g ~ -  fe(g(w)) 
Jz(g(w)) Jz(g(~))' 

where J~ is the Jacobian o f  f .  Substituting these expressions above, we have, 

except on the set f(E) t.J f(F) t_J G, 

s~(g(~)) s~(g(w)) 1 
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Also, except on the set f (H) ,  

- A  (9(w)) +  (g(w))Sz (g(w)) = 0. 

Since G has measure 0 and gw and ge are 0 a.e. on f(E) u f(F) U f(H), we conclude 

that 

.~ (g(w)) [9e(w) + #(9(w))g,~(w)] = 0 a.e. 

This proves that 

Ot~f(g(w)) = 0 a.e. 

By Corollary l,  [1] p. 31, ](g(w)) is a conformal mapping of  the plane onto itself. 

Thus 

f(g(w)) = aw + b with constants a r 0 and b. 

Therefore 

f(z) = af(z) + b. [] 

P r o o f  o f  T h e o r e m  2'. We extend #(z) to the whole plane, construct the 

homeomorphisms f(z) and g(z), and restrict g(z) to f (A).  Then ](g(w)) defined 

on f (A)  satisfies the condition 

O-~](g(w)) = 0 a.e. in f (A).  

Thus ](g(w)) is a conformal mapping o f f ( A )  onto O = ](A),  which we call ~(w). 
[] 

9 Appendices 

A p p e n d i x  1. Here we are going to construct an example of  a function #(z) 

which satisfies David's condition (A) but does not satisfy Lehto's  condition (A1). 

To do so, we construct two sequences {In}~=l and {Cn}~-i o f  subsets of  the open 

unit interval I0 using the following procedure by induction. Denote by C1 a Cantor 

set in I0 o f  measure t, 0 < t < 1. Then 11 = I0 \ C1 is a set ofcountably  many open 

intervals. Assume that In-1 is constructed and is a union of  countably many open 

intervals. Then Cn is defined as the union of  Cantor sets on the open subintervals 

o f  I,~_ 1, each with a measure t times the measure o f  the corresponding subinterval. 

Then we define In as In = In-1 \ C , ,  thus 1,~ is an union of  countably many open 

intervals. 
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From now on, depending on the context, we denote by l(A) the linear measure 

or by  re(A) the area measure o f  a measurable set A. Thus we have 

I(C1) = t, 1(11) = 1 - t, 

l(C2) = t(1 - t), l(12) = (1 - t) 2, 

I1 = Io \ C1, 

/2 = I1 \ C2, 

I,~=In-~ \Cn, l(Cn) = t(1 - t) n-l ,  l(In) = (1 - t) n. 

We define also En = In x In and G,~ = C,~ x C,~. Then m(E,~) = (1 - t) 2n. Also 
~-- - -  OO E G~ c E,~-I, En En_l \ Gn and En-l  D Gt, for l > n. Denote by Eoo = An=l n 

and let #(z) be a measurable function defined as 

1 - en, on Gn+l, 

#(z) = 1, onEoo,  

0, everywhere else. 

Here en is a decreasing sequence o f  positive numbers defined as 

o~ 

en = 2nln(1 - t ) '  

where a is a positive constant. 

To show that #(z) satisfies David's condition (A), we choose e > 0 to be a 

sufficiently small number and define A = {z : [#(z)[ > 1 - e}. There exist numbers  

e= and en+l such that e,~+l < ~ < en. Therefore, A C {z : [#(z)[ > 1 - e,~} C En+x. 
Thus re(A) < ra(En+l) = (1 - t )  2(n+1) = e -a/r < e -~ / ' .  Therefore,  #(z) 

satisfies David's  condition (A). However, #(z) = 1 on the set Eoo, which is not 

compact  and whose closure is the closed unit square Q. Therefore,  # is not less 

than 1 outside o f  a compact set o f  measure 0 and thus does not satisfy Lehto 's  

condition (Ax). 

A p p e n d i x  2. In this section we relate conditions (A) and (B) o f  Theorem 1 

to David 's  condition (A). We show that (A) implies (A) and (B) but (A) does not 

imply (A). 

R e s u l t  1. Let K be a bounded measurable subset o f  the plane and # a 

complex-valued measurable function on K with I1 11  -< 1. Then the following two 

conditions are equivalent. 

(C) There exists ~ > 0 such that 

K 
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where �9 is a positive constant. 
(D) There exist a > 0 and C > 0 such that for sufficiently small e > 0 

measure{z:  lu(z)l > 1 - ~) < ce  -~1~ 

Proof .  We first show that (D) implies (C). Let 

& =  z : 2 - - ~ - r < l - I ~ l <  ~ . 

Then measure{S,~} < Ce -~2~ for n > no. Thus 

f f e x P ( 1 - - ~ ) d A =  f f  e x P ( 1 - ~ ) d A §  ~ e x P ( 1 - ~ ) d A  
K K \  U S,~ U S .  

n > n  0 ~z>v~ 0 

n----D0 S,~ 

< A1 + y]~ C exp(2/3 - ~)2  ~, 

where A1 is an appropriate constant. I f a  > 2/3 this series converges, which proves 

that (D) implies (C). Now we show that (C) implies (D). 
Let M be any positive number, M > 1. The set where 

has measure less than ~/M.  Therefore, the set where 

/3 
1 -  Izl < log---~ 

has measure less than r  Thus, with e =/3/log M, the set where [#1 > 1 - e has 
measure less than ~e -;3/~. This completes the proof that (C) implies (D). [] 

R e s u l t  2. Let #( z ) be defined in the plane. David's condition (A) implies (D) 
for every bounded measurable set K. However, condition (D) for every bounded 

measurable set K does not imply (A). 

Proof .  The statement that (A) implies (D) for every bounded measurable set 
K is obvious. To prove the second part of Result 2, let 

1 
#(z) = I~(x + iy) -~ log(I/y) '  0 < y < 1, x e R, 

0, elsewhere. 
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Then for some small e > 0, the set where 1 - [#[ < e is the set where y _< e -1 / ' .  

Let  K be a bounded measurable set with lxl < l on K.  The measure o f  the set 

1 - [p[ < z is less than 21e -i/~. Therefore, condition (D) is satisfied for any K.  

However, the measure of  the set in the whole plane where 1 - [#[ < e is infinite, 

and therefore condition (A) does not hold. [] 

R e s u l t  3. Condition ( D ) f o r  every bounded measurable set in the plane 
implies condition (A). However, condition (A) does not imply condition ( D ) f o r  

every bounded measurable set K. 

P r oo f .  To prove the first part of  the statement, we use Result 1 and the fact 

that (C) for every bounded measurable set implies (A). 

To prove the second part o f  the statement, we give an example o f  a function # 

for which (A) holds but (D) does not hold for some bounded measurable set. 

Let {S,} be a set of  disjoint disks in the plane contained in a finite disk S with 

2n+l 2~+2 
measure{S.} = e ~ - e-(.+x)log(1.s). 

Let #(z) = 0 in the complement o f  I..J.~__i Sn, and #(z) = 1 - 1/2 n+l on Sn- Let K 

be any bounded measurable set. Then 

1 

/ / K  1 - ] # ] , _ _ ,  n ~ i s / /  
exp dA < C + exp 

- : 

Thus (A) holds for #. 

2n+1 
dA 

1 + (n + 1) log 2 

(3O 

C + E exp{-2(n+l)/2} < c~. 
n : l  

Assume that condition (D) holds for S and the above constructed #(z). Then 

the measure of  the set where {z : 1 - [#[ < 1/2"} is < Ce -~2" for some constant a. 
_2n-l-1 

On the other hand, the set {z : 1 - I#l < 1/2"} has measure e ~ .  Therefore, 

_2n+l  
e ~  <_ Ce-~2~; 

thus 
e 2 " ( - ~ f ~ ] ' 7 + a )  < C as n --~ 0% 

which is a contradiction. Therefore, (D) does not hold for #(z) on the set S. [] 

R e s u l t  4. I f  #(z) satisfies condition (A), then 

/ /  l l--~]dA -- O(R2). 

Izl<R 
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P r o o f .  Since (A) implies (D) for every bounded measurable  set, we  can choose 

a suitable e > 0 such that (D) holds for [z[ < R and for some constants C and a.  

Using the same argument  as in Result 1, one can show that for every R > 0 

//11 --,1#--------~ dA < ~, 
1-]Ul<e 

[zl<R 

where �9 is a constant independent o f  R, while 

/ 1[#[ dA < 7rR2 
1 -  - e 

1-lul>e 
Izl<n 

This shows that 

f f l 1-~[ dA = O( R 2) 

Izl<R 

as R ~ ec. 
[] 

A p p e n d i x  3. 

R e s u l t  5. No condition of  the form 

K 

is sufficient for the conclusion of  Proposition 1, where K is a bounded measurable 
set, ~ is a constant that depends on K, and A >_ 1. 

P r o o f .  We define 
f(pe iO) : e p~ eiO, 

where 0 < 7- < 1 and 0 < p < 1. The complex  dilatation o f  the mapping  is 

#(peiO ) = e2iO ( 7-pr _ 

thus 
1 1 1 

1 -[#[ 2 27-p "~" 

pp]<i 

Therefore,  
1 

f f  (1 -I.I1  
p<l 

This is finite i f  and only i f  

fo 1 p-g-s dp < co. 
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Given A, we  can always choose "r < 2/A. But f maps the punctured disc 0 < Izl < 1 

onto a proper annulus 1 < [z I < e, and therefore we  do not get the conclusion o f  

Proposition 1 for this f .  [] 

In [2], p. 69, G. David gave a similar but more complicated example. 
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