OMITTED VALUES IN DOMAINS OF NORMALITY
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ABSTRACT. It is proved that if U and V are connected components of the
Fatou set of an entire function f and if f(U) C V, then V\f(U) contains at
most one point.

Let f be an entire (or rational) function. The Fatou set F' of f is the subset of
the plane (or sphere) where the iterates of f form a normal family. It is easy to see
that if U is a connected component of F, then f(U) is contained in some connected
component V of F. For rational functions, we have f(U) = V, see [2, §5.4]. For
transcendental entire functions, it is possible that f(U) # V. A simple example is
given by f(z) = Xe*, 0 < A < e~1, where F is connected and 0 € F\ f(F).

Theorem . Let f be an entire transcendental function and let U and V be con-
nected components of F' satisfying f(U) C V. Then V\f(U) contains at most one
point.

To prove the theorem, let f, U, and V' be as required and suppose that V'\ f(U)
is not empty. It is easy to see that this implies that there exists a curve -y tending
to 0o in U such that f(z) tends to a value in V\ f(U) as z — oo in 7. In particular,
f(2) is bounded on some curve tending to co. A result of Baker [1, §3] now implies
that U and V are simply-connected. Hence there exist conformal maps ¢ and
from the unit disk D onto U and V. We define g = ¢! o f o ¢ so that g(D) C D.
Clearly, it suffices to prove that D\g(D) contains at most one point.

By a result of Beurling (see [4, Theorems 11.5 and 11.9]) there exists a set
A C [0,2n] of capacity zero with the property that if § ¢ A, then there exists
ag € OU\{oo} such that p(re?’) — ag as r — 1. It follows that f(p(re??)) —
f(ag) € 8V\{oo} and hence that |g(re?)| — 1 as r — 1, provided 6 ¢ A. A result
of Lohwater (see [3, Theorem 5.14]) now implies that D\g(D) contains at most one
point. This completes the proof of the theorem.
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