On the Julia set of analytic self-maps of the punctured plane

Walter Bergweiler¹

Received:

ABSTRACT Let f be a non-constant and non-linear entire function, g an analytic self-map of $\mathbb{C}\setminus\{0\}$, and suppose that $\exp \circ f = g \circ \exp$. It is shown that z is in the Julia set of f if and only if e^z is in the Julia set of g.

1991 Mathematics Subject Classification: 30D05, 58F23

1 Introduction and main result

Let f be an analytic self-map of a domain $D \subset \widehat{\mathbb{C}}$, where $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ denotes the Riemann sphere. The main objects studied in complex dynamics are the Fatou set F(f)which is defined as the set where the family $\{f^n\}$ of iterates of f is normal and the Julia set $J(f) := D \setminus F(f)$. By Montel's theorem $J(f) = \emptyset$ if $\widehat{\mathbb{C}} \setminus D$ contains more than two points. Thus it suffices to consider the cases $D = \widehat{\mathbb{C}}$, $D = \mathbb{C}$, and $D = \mathbb{C}^* := \mathbb{C} \setminus \{0\}$. If $D = \widehat{\mathbb{C}}$, then f is rational. This case was studied in long memoirs by Fatou [15] and Julia [19] between 1918 and 1920 and has been the object of much research in recent years, see the books [5, 9, 29] for an introduction. The case that $D = \mathbb{C}$ so that f is entire was considered first by Fatou [16] in 1926 and since then by many other authors, see [6] and [11, §4] for surveys. This paper is concerned with the case $D = \mathbb{C}^*$ which was studied first by Radström [27] in 1953 and more recently in [2, 8, 12–14, 20–26].

Given an analytic self-map g of \mathbb{C}^* there exists an entire function f satisfying

(1)
$$\exp f(z) = g(e^z)$$

¹Supported by a Heisenberg Fellowship of the Deutsche Forschungsgemeinschaft

for all $z \in \mathbb{C}$. This function f is unique up to an additive constant which is a multiple of $2\pi i$. It follows from (1) that

(2)
$$\exp f^n(z) = g^n(e^z)$$

for $n \in \mathbb{N}$. From (2) we can easily deduce that if $\exp z_0 \in F(g)$, then $z_0 \in F(f)$; that is,

(3)
$$\exp^{-1} F(g) \subset F(f).$$

In fact, let U be a neighborhood of z_0 and $V = \exp U$. If $g^{n_k} \to 0$ or $g^{n_k} \to \infty$ in V as $k \to \infty$, then $\Re f^{n_k} \to -\infty$ or $\Re f^{n_k} \to \infty$ and hence $|f^{n_k}| \to \infty$ in U as $k \to \infty$. If $g^{n_k} \to \varphi \not\equiv 0, \infty$ in V, then $|f^{n_k}(z) - \psi(e^z)| = 2\pi i m_k + o(1)$ for $z \in U$ as $k \to \infty$, where $m_k \in \mathbb{Z}$ and $\exp \psi = \varphi$. Again we find that $\{f^{n_k}\}$ has a convergent subsequence. We thus conclude that $\{f^n\}$ is normal in U if $\{g^n\}$ is normal in V. Hence (3) holds.

It is less obvious that we also have

(4)
$$\exp^{-1}J(g) \subset J(f)$$

and hence, together with (3), (5)

$$\exp^{-1}J(g) = J(f).$$

Consider for example f(z) = 2z and $g(z) = z^2$. Then (1) holds and $\{f^n\}$ is normal in \mathbb{C}^* so that $J(f) = \{0\}$, but $J(g) = \{z : |z| = 1\}$. Note, however, that in this example f is linear, a case which is usually excluded in complex dynamics.

THEOREM Let f be entire, g an analytic self-map of \mathbb{C}^* , and suppose that (1) holds. If f is not linear or constant, then (5) holds.

This result is stated in [12, Lemma 1.2] and [20, Lemma 2.2], but I have been unable to follow the arguments for (4) given there. The proofs of (3) in [12] and [20] are different from the one given above. On the other hand, the question whether (5) holds was raised in [24] and certain partial results were obtained. In particular, the above theorem answers the question asked in [24] whether $J(g) = \mathbb{C}^*$ implies that $J(f) = \mathbb{C}$.

Our theorem may be useful to obtain results for analytic self-maps of \mathbb{C}^* from those for entire functions. For example, it was proved in [2, 24] that if g is an analytic self-map of \mathbb{C}^* , then the components of F(g) are simply or doubly connected. This result follows immediately from our theorem and Lemma 3 below. As another example we mention the results of Baker and Weinreich [4] on the boundary of unbounded invariant components of the Fatou set of transcendental entire functions. Our theorem immediately yields analogous results for analytic self-maps of \mathbb{C}^* . A further application concerns the Lebesgue measure and the Hausdorff dimension of Julia sets of entire functions and analytic self-maps of \mathbb{C}^* , see [13]. We also mention that it was used in [4, 7, 18] that (5) holds for certain particular examples of functions f and g satisfying (1).

ACKNOWLEDGMENT I would like to thank Norbert Terglane and Steffen Rohde for useful discussions and Yubao Guo for translating [12].

2 Lemmas

LEMMA 1 Let f be a (non-constant and non-linear) rational function, entire function, or analytic self-map of \mathbb{C}^* . Then J(f) is the closure of the set of repelling periodic points of f.

Recall that z_0 is called a repelling periodic point of f if $f^n(z_0) = z_0$ and $|(f^n)'(z_0)| > 1$ for some $n \in \mathbb{N}$, with a slight modification if f is rational and $z_0 = \infty$. Lemma 1 is due to Fatou [15, §30, p. 69] and Julia [19, p. 99, p. 118] for rational functions, Baker [1] for entire functions, and Bhattacharyya [8, Theorem 5.2] for analytic self-maps of \mathbb{C}^* . A different proof (that applies to all three cases) has recently been given by Schwick [28].

We note that Lemma 1 also gives a short proof of (3) because if z_0 is a repelling periodic point of f, then exp z_0 is a repelling periodic point of g. This is the proof of (3) given in [12].

LEMMA 2 Let f and g be as in the theorem. Then there exists $\ell \in \mathbb{Z}$ such that $f(z+2\pi i) = f(z) + \ell 2\pi i$. For $n \in \mathbb{N}$ and $m \in \mathbb{Z}$ we have $f^n(z+m2\pi i) = f^n(z) + \ell^n m 2\pi i$.

The first claim follows easily from (1). The second claim is deduced from the first one by induction.

LEMMA 3 Let f and g be as in the theorem. Then all components of F(f) are simply connected.

To prove Lemma 3 we note that Lemma 2 implies that |f(it)| = O(t) as $t \to \infty$, t > 0. The conclusion now follows from [6, Theorem 10].

3 Points that tend to infinity under iteration

Eremenko [10] considered for transcendental entire f the set

$$I(f) = \{z : \lim_{n \to \infty} |f^n(z)| = \infty\}$$

and proved that (6)

$$J(f) = \partial I(f).$$

The main difficulty is to prove that $I(f) \neq \emptyset$. Once this is kown, (6) is not difficult to deduce. Eremenko's proof that $I(f) \neq \emptyset$ is based on the theory of Wiman and Valiron on the behavior of entire functions near points of maximum modulus [17, 30]. His proof shows that there exists $z \in I(f)$ such that $|f^{n+1}(z)| \sim M(|f^n(z)|, f)$ as $n \to \infty$, where $M(r, f) = \max_{|\zeta|=r} |f(\zeta)|$. Since $\log M(r, f)/\log r \to \infty$ as $r \to \infty$ for transcendental entire f it follows that $\log |f^{n+1}(z)|/\log |f^n(z)| \to \infty$ as $n \to \infty$. We define

$$I'(f) = \left\{ z : \lim_{n \to \infty} \frac{\log |f^{n+1}(z)|}{\log |f^n(z)|} = \infty \right\}$$

and deduce that $I'(f) \neq \emptyset$. Again it follows that $J(f) = \partial I'(f)$.

The theory of Wiman-Valiron and the arguments of Eremenko based on it do not require that f is transcendental entire but only that f is analytic in a neighborhood of ∞ and that ∞ is an essential singularity of f. In particular, the above arguments remain valid for analytic self-maps of \mathbb{C}^* with an essential singularity at ∞ . We summarize the above discussion as follows.

LEMMA 4 Let f be a transcendental entire functions or an analytic self-map of \mathbb{C}^* with an essential singularity at ∞ . Then $I'(f) \neq \emptyset$ and $J(f) = \partial I'(f)$.

4 Proof of the theorem

If g is rational, then $g(z) = cz^k$ where $c \in \mathbb{C}^*$ and $k \in \mathbb{Z}$. It follows that f is linear or constant, contradicting the hypothesis. Thus g is transcendental and there is no loss of generality in assuming that ∞ is an essential singularity of g.

We have already shown in the introduction (and also after Lemma 1) that (3) holds. It remains to prove (4). We thus assume that $w_0 = \exp z_0 \in J(g)$ and have to show that $z_0 \in J(f)$. Let U be a neighborhood of z_0 . We shall show that $U \cap J(f) \neq \emptyset$. The conclusion then follows since J(f) is closed.

By Lemma 1 and Lemma 4 there exist $z_1, z_2 \in U$ such that $w_1 = \exp z_1$ is a repelling periodic point of g, say $g^k(w_1) = w_1$, and $w_2 = \exp z_2 \in I'(g)$. If $z_1 \in J(f)$ or $z_2 \in J(f)$, then we are done. If z_1 and z_2 lie in different components of F(f), then we connect them by a path in U. This path meets J(f) and again we have $U \cap J(f) \neq \emptyset$. Thus we may assume that z_1 and z_2 lie in the same component of F(f). Since $w_2 \in I'(g) \subset I(g)$ we deduce from (2) that $z_2 \in I(f)$ and hence $z_1 \in I(f)$.

By a result of Baker ([3, Lemma 1], see also [6, Lemma 7]) and Lemma 3 there exists a constant C such that

(7)
$$|f^n(z_2)| \le C|f^n(z_1)|$$

for all large n.

Since $g^k(w_1) = w_1$ we have $\exp f^k(z_1) = \exp z_1$ and hence $f^k(z_1) = z_1 + m2\pi i$ for some $m \in \mathbb{Z}$. By Lemma 4 we have

 $f^{2k}(z_1) = f^k(z_1 + m2\pi i) = f^k(z_1) + \ell^k m2\pi i = z_1 + m(1 + \ell^k)2\pi i$

and induction shows that

$$f^{nk}(z_1) = z_1 + m\left(\sum_{j=0}^{n-1} \ell^{jk}\right) 2\pi i.$$

We deduce that if $M > \max\{1, |\ell|\}$, then

$$|f^{nk}(z_1)| = o(M^{nk})$$

as $n \to \infty$. Combining this with (7) we find that

(8)
$$|f^{nk}(z_2)| = o(M^{nk})$$

as $n \to \infty$.

On the other hand, $|g^n(w_2)| \to \infty$ and $\log |g^{n+1}(w_2)| / \log |g^n(w_2)| \to \infty$ as $n \to \infty$ by the choice of w_2 . Hence $\Re f^n(z_2) \to \infty$ and $\Re f^{n+1}(z_2) / \Re f^n(z_2) \to \infty$ as $n \to \infty$ by (2). We deduce that

$$|f^n(z_2)| \ge \Re f^n(z_2) \ge M^n$$

for all large n, contradicting (8). Thus z_1 and z_2 cannot lie in the same component of F(f) and the proof of the theorem is complete.

References

- [1] I. N. Baker, Repulsive fixpoints of entire functions, Math. Z. 104 (1968), 252-256.
- [2] I. N. Baker, Wandering domains for maps of the punctured plane, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 191-198.
- [3] I. N. Baker, Infinite limits in the iteration of entire functions, Ergodic Theory Dynamical Systems 8 (1988) 503-507.
- [4] I. N. Baker and J. Weinreich, Boundaries which arise in the dynamics of entire functions, *Rev. Roumaine Math. Pures Appl.* 36 (1991), 413-420.
- [5] A. F. Beardon, *Iteration of rational functions*, Springer, New York, Berlin, Heidelberg 1991.
- [6] W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N. S.) 29 (1993), 151-188.
- [7] W. Bergweiler, Invariant domains and singularities, *Math. Proc. Cambridge Philos.* Soc., to appear.
- [8] P. Bhattacharyya, Iteration of analytic functions, PhD Thesis, University of London, 1969.
- [9] L. Carleson and T. W. Gamelin, *Complex dynamics*, Springer, New York, Berlin, Heidelberg 1993.
- [10] A. E. Eremenko, On the iteration of entire functions, in *Dynamical systems and ergodic theory*, Banach Center Publications 23, Polish Scientific Publishers, Warsaw 1989, 339-345.
- [11] A. E. Eremenko and M. Yu. Lyubich, The dynamics of analytic transforms, *Leningrad Math. J.* 1 (1990), 563-634; translation from *Algebra i Analiz* 1 (1989).
- [12] L. Fang, Complex dynamical systems on C^{*} (Chinese), Acta Math. Sinica 34 (1991), 611-621.
- [13] L. Fang, Area of Julia sets of holomorphic self-maps of C^{*}, Acta Math. Sinica (N. S.) 9 (1993), 160-165.
- [14] L. Fang, On the iteration of holomorphic self-maps of \mathbb{C}^* , preprint.
- [15] P. Fatou, Sur les équations fonctionelles, Bull. Soc. Math. France 47 (1919), 161-271; 48 (1920), 33-94, 208-314.
- [16] P. Fatou, Sur l'itération des fonctions transcendantes entières, Acta Math. 47 (1926), 337-360.
- [17] W. K. Hayman, The local growth of power series: a survey of the Wiman-Valiron method, *Canad. Math. Bull.* (3) 17 (1974), 317-358.

- [18] M. Herman, Are there critical points on the boundary of singular domains?, Comm. Math. Phys. 99 (1985), 593-612.
- [19] G. Julia, Sur l'itération des fonctions rationelles, J. Math. Pures Appl. (7) 4 (1918), 47-245.
- [20] L. Keen, Dynamics of holomorphic self-maps of C^{*}, in *Holomorphic functions and moduli I*, edited by D. Drasin, C. J. Earle, F. W. Gehring, I. Kra, and A. Marden, Springer, New York, Berlin, Heidelberg 1988, 9-30.
- [21] L. Keen, Topology and growth of a special class of holomorphic self-maps of C^{*}, Ergodic Theory Dynamical Systems 9 (1989) 321-328.
- [22] J. Kotus, Iterated holomorphic maps of the punctured plane, in *Dynamical systems*, edited by A. B. Kurzhanski and K. Sigmund, Lect. Notes Econ. & Math. Syst. 287, Springer, Berlin, Heidelberg, New York 1987, 10-29.
- [23] J. Kotus, The domains of normality of holomorphic self-maps of C^{*}, Ann. Acad. Sci. Fenn. Ser. A I Math. 15 (1990), 329-340.
- [24] P. M. Makienko, Iterates of analytic functions of C^{*}, Soviet Math. Dokl. 36 (1988), 418-420; translation from Dokl. Akad. Nauk. SSSR 297 (1987).
- [25] P. M. Makienko, Herman rings in the theory of iterations of endomorphisms of C^{*}, Siberian Math. J. 32 (1991), 431-436; translation from Sibirsk. Mat. Zh. 32 (1991), no. 3, 97-103.
- [26] A. N. Mukhamedshin, Mapping the punctured plane with wandering domains, Siberian Math. J. 32 (1991), 337-339; translation from Sibirsk. Mat. Zh. 32 (1991), no. 2, 184-187.
- [27] H. Radström, On the iteration of analytic functions, Math. Scand. 1 (1953), 85-92.
- [28] W. Schwick, Repelling periodic points in the Julia set, *Bull. London Math. Soc.*, to appear.
- [29] N. Steinmetz, *Rational iteration*, Walter de Gruyter, Berlin 1993.
- [30] G. Valiron, *Lectures on the general theory of integral functions*, Edouard Privat, Toulouse 1923.

Technische Universität Berlin Fachbereich Mathematik, Sekr. MA 8–2 Straße des 17. Juni 136 D-10623 Berlin Germany

Email: bergweil@math.tu-berlin.de