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Abstract

Let f and h be transcendental entire functions and let g be a continuous and open
map of the complex plane into itself with g ◦ f = h ◦ g. We show that if f satisfies
a certain condition, which holds, in particular, if f has no wandering domains, then
g−1(J(h)) = J(f ). Here J(·) denotes the Julia set of a function. We conclude that if f
has no wandering domains, then h has no wandering domains. Further, we show that
for given transcendental entire functions f and h, there are only countably many
entire functions g such that g ◦ f = h ◦ g.

1. Introduction and results

The Fatou set F (f ) of an entire or rational function f is the set where the family
{fn} of iterates of f is normal and the Julia set J(f ) is its complement. These sets
play a fundamental role in complex dynamics (see [5, 10, 21, 23] for an introduction
to this theory).

Now let f and h be entire functions and let g : C→ C be a non-constant continuous
function such that

g ◦ f = h ◦ g. (1)

Then we say that f and h are semiconjugated (by g) and call g a semiconjugacy.

Theorem 1. If f and h are transcendental entire functions, if g is a non-constant
continuous function and if (1) holds, then

g(J(f )) ⊂ J(h). (2)

If, in addition, g(C) is an open set and, in particular, if g is an open mapping, then
C \ g(C) contains at most one point.

† A.H. was partially supported by the U.S. National Science Foundation grant DMS 94-00999.
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The special case when g is entire is important and Theorem 1 is easy to prove in

this case. Theorem 1 is also easy to prove if we assume that g is open or discrete.
Even in the case when g is entire, however, it is not clear whether we also have

g−1(J(h)) ⊂ J(f ) (3)

and thus

g−1(J(h)) = J(f ). (4)

If g is a homeomorphism of C onto itself satisfying (1), then g is called a conjugacy.
In this case (4) clearly holds. It is also known that (4) holds if g(z) = ez (see [8]).
Here it suffices to assume that f is a holomorphic self-map of C\{0}. In [9] it was
shown that (4) holds if g is entire and if there exists an entire function k such that
f = k ◦ g and h = g ◦k. Note that if f and h have this special form, then (1) is always
satisfied.

In order to state a further condition implying (4) we recall that a component U
of F (f ) is called a wandering domain if fm(U ) w fn(U ) = 6 for m� n. A famous
theorem of Sullivan [24] says that rational functions do not have wandering domains.
Transcendental entire functions, however, may have wandering domains, but certain
classes of functions with no wandering domains are known (see [6, sections 4·5, 4·6]
for further discussion and references).

A further concept that we need is the setA(f ) where the iterates of a transcendental
entire function f tend to ∞ about as fast as possible. Given such an f , we shall see
in Section 4 that

lim
n→∞

log log M (R, fn)
n

=∞
for all large R > 0 and that

A(f ) = {z ∈ C : there exists L ∈ N such that |fn(z)| > M (R, fn−L) for n > L}
is not empty for such R. For a further discussion of the set A(f ) we refer to Section 4,
but note that if f does not have wandering domains then A(f ) ⊂ J(f ); see Lemma 4
below.

Theorem 2. Let f and h be transcendental entire functions and let g : C → C be
open and continuous such that g ◦ f = h ◦ g. If A(f ) ⊂ J(f ) then g−1(J(h)) = J(f ). In
particular, this is the case if f does not have wandering domains.

Consider the special case when f = h and g is entire. We then have f ◦g = g ◦f and
say that f and g commute. Theorem 2 implies that g−1(J(f )) = J(f ) which means
that J(f ) is completely invariant under g. Now J(g) is known to be the smallest
closed completely invariant set with at least three points (see, for example [5, p. 67]
for the special case of rational functions). We deduce that J(g) ⊂ J(f ). We thus have
the following result.

Corollary. Let f and g be commuting transcendental entire functions. If f does not
have wandering domains or, more generally, if A(f ) ⊂ J(f ) then J(g) ⊂ J(f ).

The conclusion that J(g) ⊂ J(f ) if f does not have wandering domains was ob-
tained by Langley [20] under an additional growth restriction on g.

Of course the corollary implies that if neither f nor g has wandering domains, then
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J(f ) = J(g). It is conjectured that this remains valid in general, i.e. even if f and g
are allowed to have wandering domains. It is known to be true for rational functions
(see [14, pp. 364–365], [19, p. 143] or [3, section 4]).

There are other results for commuting entire functions which have a generalization
to the situation of a semiconjugacy. One such result is:

Theorem 3. Let f and h be entire functions such that f is either transcendental or a
polynomial of degree at least 2 and h is not the identity mapping. Then there are only
countably many entire functions g such that (1) holds.

Of course, if h is the identity mapping then (1) reads g ◦ f = g, which is satisfied
by all constant maps g but not by any non-constant map g unless f (z) = ωz + c for
some root of unity ω and some c ∈ C (see, for example [17]). If f has this form, then
there are uncountably many non-constant solutions g of the equation g ◦ f = g.

Theorem 3 generalizes the result of Baker in [1, theorem 1, p. 244] where it was
proved that if f is a given entire function, either transcendental or a polynomial of
degree at least two, then there are only countably many entire functions g commuting
with f .

Theorem 4. Let f and h be transcendental entire functions and let g : C → C be
open and continuous such that (1) holds. If f has no wandering domains then h has no
wandering domains.

Theorem 4 generalizes the result in [9] where the conclusion was obtained if g is
entire and if f = k ◦g and h = g ◦k for some entire function k. This was used in [9] to
exhibit certain new classes of entire functions with no wandering domains. If f = k◦g
and h = g ◦ k as in [9], then, by symmetry, f has wandering domains if and only if
h has wandering domains. In the situation of Theorem 4, however, it is possible that
f has wandering domains while h does not. An example is f (z) = z + ez + 1 + 2πi,
g(z) = ez and h(z) = zez+1.

2. An example

We give an example which shows that the non-constant continuous function g
need not be open or discrete in order to satisfy (1), even if f = h so that f and g
commute. The same example shows that for a given transcendental entire f there can
sometimes be uncountably many non-constant, continuous, and non-entire functions
g commuting with f (then also (1) holds with f = h).

First choose a numberR ∈ (0, 1) and then a continuous function a : [R2, R]→ (0, 1)
such that a(R2) = a(R)2. Note that then a is non-constant. The condition a(r2) = a(r)2

extends the definition of a uniquely to r ∈ (0, 1). Define also a(0) = 0 and a(r) = r for
all r ∈ [1,+∞). Then a : [0,+∞) → [0,+∞) is continuous and satisfies a(r2) = a(r)2

for all r > 0.
Next define G : C → C by G(reiθ) = a(r)eiθ. Then G(z2) = G(z)2 for all z ∈ C.

Clearly a can be chosen so that G is neither discrete nor open. Now (1) holds with
f (z) = h(z) = z2 and g = G.

To get an example with transcendental functions f and h, suppose that f = h is
transcendental, that f has a superattracting fixed point z0 whose immediate basin
of attraction A is bounded and bounded by a Jordan curve, and whose basin of
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attraction contains no singularity of f−1 other than z0, such that f (z)−z0 has a zero
of order 2 at z0. Let ϕ be a conformal map of A onto the unit disk D with ϕ(z0) = 0,
and note that ϕ conjugates f to z2.

For z ∈ A define g(z) = ϕ−1(G(ϕ(z))). Then g(f (z)) = ϕ−1(G(ϕ(f (z)))) =
ϕ−1(G(ϕ(z)2)) = ϕ−1(G(ϕ(z))2) = f (ϕ−1(G(ϕ(z)))) = f (g(z)) for z ∈ A.

If B is a component of the basin of attraction of z0 with fn(B) = A where n is
minimal, define g(z) = f−n(g(fn(z))) ∈ B for all z ∈ B, with the appropriate branch
of f−n.

Since G coincides with the identity mapping on ∂D and since ϕ extends contin-
uously and bijectively to ∂A, we see that g extends continuously to ∂A and ∂B by
setting g(z) = z there. Finally, we set g(z) = z when z is outside the closure of the
basin of attraction of z0. Then g is a continuous non-constant function commuting
with f , hence satisfying (1) with h = f .

Obviously g need not be discrete or open and there are uncountably many possible
choices for g.

We still need to find a transcendental entire function f with the required prop-
erties. The function f (z) = c(ez

2 − 1) satisfies all the conditions provided that c is a
sufficiently large positive number. Note that for any non-zero c, z0 = 0 is a super-
attracting fixed point of f and that f has a zero or order 2 at the origin. The set
of singularities of f−1 is {0,−c}. If c is large enough, we have |f (z)| > 1 whenever
|z| = 1. This implies that the componentW of g−1(D) that contains 0 satisfiesW ⊂ D
and that the immediate basin of attraction A of 0 satisfies A ⊂ W . Moreover, f is
a proper map of degree 2 from W onto D. Thus, in the terminology of [10, section
VI·1] or [12], the triple (f ;W,D) is a polynomial-like mapping of degree 2. The basic
result about polynomial-like mappings ([10, theorem VI·1·1] or [12, theorem 1]) says
that there exist a quasiconformal mapping ψ and a polynomial p of degree 2 such
that f (z) = ψ(p(ψ−1(z))) for z ∈ W . Since 0 is a superattracting fixed point of f we
deduce that p has a superattracting fixed point and by suitably normalizing ψ we
may assume that p(z) = z2. This implies that A = ψ(D) and ∂A = ψ(∂D). Thus ∂A is
not only a Jordan curve but a quasicircle, and f is conjugate to z 7→ z2 in A. Similar
reasoning can be found in the proof of theorem 2 in [7, p. 529].

If c is large enough, we also have fn(−c) → ∞ as n → ∞. Thus z0 = 0 is then
the only singularity of f−1 in the basin of attraction of z0 = 0. This completes the
construction of the example.

3. Proof of Theorem 1

Let the assumptions of Theorem 1 be satisfied. Recall that, by Baker’s result [2],
J(f ) is the closure of the repelling periodic points of f . Suppose that b ∈ J(f ). Then
b = limn→∞ zn where fkn(zn) = zn, say, and all the zn are distinct repelling periodic
points of f , and kn tends to infinity. Furthermore, g(b) = limn→∞ g(zn) and by (1),
it is seen that hkn(g(zn)) = g(zn) for all n. We shall show that g(zn) ∈ J(h) for all n.
It then follows that g(b) = limn→∞ g(zn) ∈ J(h) and thus (2) holds.

To show that g(zn) ∈ J(h), suppose that g(zn) ∈ N (h). Since hkn(g(zn)) = g(zn), the
point g(zn) is then an attracting, superattracting or Siegel fixed point of hkn . Now
g(C) is a connected set containing more than one point. Hence we may choose a small
neighbourhood Vn of g(zn) so that the set A = g(C)\ x∞p=0 h

pkn(Vn) contains at least
two points. This implies that B = g−1(A) has at least two points. We then choose
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a neighbourhood Un of zn so that g(Un) ⊂ Vn. Now g(fpkn(Un)) = hpkn(g(Un)) ⊂
hpkn(Vn) ⊂ C\A so that fpkn(Un) ⊂ C\B for all p ∈ N. It follows that zn ∈ Un ⊂
F (fkn) = F (f ), which gives a contradiction. This completes the proof of (2).

Suppose that g is continuous and that g(C) is an open set, which is true, in par-
ticular, if g is an open mapping, and that (1) holds. Now hn(g(C)) = g(fn(C)) ⊂ g(C)
for all n > 1. If C \ g(C) contains at least two points, then the family {hn : n > 1} is
normal in g(C) so that g(C) ⊂ F (h). Then g(J(f )) ⊂ g(C) ⊂ F (h), which contradicts
(2). This completes the proof of Theorem 1.

4. Preliminaries for the proof of Theorem 2

First we need a result on the growth of composite functions.

Lemma 1. Let v be an entire function satisfying v(0) = 0 and let u : C → C be a
continuous function satisfying the maximum principle, which means that |u| does not
have a local maximum. Let 0 < ρ < 1 and define c(ρ) = (1− ρ)2/4ρ. Then

M (r, u ◦ v) >M (c(ρ)M (ρr, v), u)

for r > 0. In particular

M (6r, u ◦ v) >M (M (r, v), u).

For entire u and v this result was proved by Pólya [22] with an unspecified constant
c(ρ) coming from a theorem of Bohr. Hayman [18] gave a sharp form of Bohr’s the-
orem leading to the value of c(ρ) given above. A fairly elementary proof of Lemma 1
was given by Clunie [11, section 3]. Goldstein [16, p. 122] observed that the proofs
mentioned do not require that u is entire but only that u satisfies the maximum
principle. The continuity of u was assumed here only to ensure that |u| attains its
maximum on compact sets so that M (r, u) = max |z|=r |u(z)| and M (r, u ◦ v) are
defined.

For the rest of this section let f be a transcendental entire function. Define

I(f ) = {z ∈ C : |fn(z)| → ∞ as n→∞}.
Eremenko [13] proved that I(f )�6 and deduced from this that J(f ) = ∂I(f ). His
proof that I(f )�6 does in fact show that there exists z0 ∈ I(f ) such that

|fn+1(z0)| ∼M (|fn(z0)|, f ) (5)

as n→∞. Since log M (r, f )/ log r →∞ for transcendental entire f it follows from
(5) that

log |fn+1(z0)|
log |fn(z0)| → ∞

as n→∞ and this implies that

log log |fn(z0)|
n

→∞
as n→∞. In particular, as already mentioned in the introduction,

log log M (R, fn)
n

→∞ (6)

as n→∞ if R > |z0|.
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We shall deduce the following lemma from Eremenko’s method.

Lemma 2. For each R > 0 there exists z0 ∈ C such that

|fn(z0)| > 2M (R, fn) (7)

for all n ∈ N = {0, 1, 2, . . .}.
Proof. Since f is transcendental and since log M (r, f ) is convex in log r

M (2r, f )
M (r, f )

→∞

as r →∞. We may thus assume without loss of generality that

M (2r, f ) > 4M (r, f ) (8)

for r > R. By Eremenko’s result there exists z0 ∈ I(f ) satisfying (5). We may assume
that

|fn+1(z0)| > 1
2M (|fn(z0)|, f ) (9)

for all n ∈ N and that

|z0| > 2R, (10)

because otherwise we may replace z0 by fk(z0) for a sufficiently large k.
We shall prove (7) by induction. Now (10) says that (7) holds for n = 0 and so we

assume that (7) holds for some n ∈ N. Combining this with (8) and (9) we deduce
that

|fn+1(z0)| > 1
2M (|fn(z0)|, f ) > 2M

( |fn(z0)|
2

, f

)
> 2M (M (R, fn), f ) > 2M (R, fn+1).

This completes the proof of Lemma 2.
We now fix a value R > 0 so large that (6) is satisfied and, as noted in the

introduction, define

A(f ) = {z ∈ C : there exists L ∈ N such that |fn(z)| > M (R, fn−L) for n > L}.
Clearly we have A(f ) ⊂ I(f ).

Lemma 3. J(f ) ⊂ A(f ).

Proof. It follows from the definition of A(f ) that A(f ) is completely invariant.
Hence A(f ) is completely invariant. Lemma 2 says that A(f ) is not empty and in
fact is an infinite set. The conclusion now follows from the fact already mentioned
in the introduction that the Julia set is the smallest closed completely invariant set
with at least three points.

We note here that it also follows as in [13] that J(f ) = ∂A(f ). We also note that if
R > R0÷min z∈J(f ) |z|, then (6) is satisfied. Moreover, A(f ) does not depend on the
choice of R as long as R > R0. We shall, however, not need these observations.

Lemma 4. If f does not have wandering domains then J(f ) = A(f ).

Proof. Because of Lemma 3 and since J(f ) is closed it suffices to prove that A(f ) ⊂
J(f ). Suppose now that z0 ∈ A(f ) w F (f ). Since f has no wandering domains, there
exists m ∈ N such that fm(z0) is in a periodic component of F (f ) where the iterates
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of f tend to∞. Such periodic components of F (f ) are called Baker domains. Baker
([4, theorem 1], see also [6, lemma 7]) proved that if w is in a Baker domain, then

log |fn(w)| = O(n)

as n→∞. It follows that

log |fn(z0)| = O(n) (11)

as n→∞. On the other hand, (6) and the definition of A(f ) imply that

log log |fn(z0)|
n

→∞ (12)

as n→∞. Clearly (11) and (12) give a contradiction and hence A(f )wF (f ) =6. It
follows that A(f ) ⊂ J(f ).

5. Proof of Theorems 2 and 4

We will deduce Theorem 2 from the following result.

Theorem 5. Let f and h be transcendental entire functions and let g : C→ C be open
and continuous such that g ◦ f = h ◦ g. Then g−1(A(h)) ⊂ A(f ) and g−1

(
A(h)

) ⊂ A(f ).

Proof. It is well known and not difficult to prove that f 2, the second iterate of f ,
has a fixed point (see, for example [15]). Moreover, it is easy to see that A(f 2) = A(f ).
Thus it is no loss of generality to assume that f has a fixed point. We may place this
fixed point at the origin so that f (0) = 0 because otherwise we can conjugate f , g
and h by a suitable linear map.

For R > 0 we shall set DR = {z ∈ C : |z| < R} and CR = {z ∈ C : |z| = R}.
We choose R so large such that DR w J(h)�6 and such that (6) holds in the form
stated and also holds with f replaced by h. Thus this value of R can be used in the
definition of A(f ) and A(h). We now choose S > 0 such that g(C6R) ⊂ DS and such
that CS contains no Fatou exceptional value of h. Recall that a ∈ C is called a Fatou
exceptional value of h if h−1(a) ⊂ {a}. Since h has at most one Fatou exceptional
value this choice of S is clearly possible. It now follows that there exists M ∈ N such
that hM (DR) ⊃ CS . We deduce that if n ∈ N, then hn+M (DR) ⊃ hn(CS) and hence

M (R, hn+M ) >M (S, hn) > max
w∈g(C6R)

|hn(w)| = M (6R, hn ◦ g) = M (6R, g ◦ fn).

Using Lemma 1 we obtain

M (R, hn+M ) >M (M (R, fn), g). (13)

Suppose now that z0 ∈ C is such that g(z0) ∈ A(h). Then there exists L ∈ N such
that

|g(fn(z0))| = |hn(g(z0))| >M (R, hn−L)

for n > L. It follows that

M (|fn(z0)|, g) >M (R, hn−L). (14)

Combining (13) and (14) yields

M (|fn(z0)|, g) >M (M (R, fn−L−M ), g)
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and hence

|fn(z0)| >M (R, fn−L−M )

for n > L + M . It follows that z0 ∈ A(f ). We thus have g−1(A(h)) ⊂ A(f ) and
since g is open this also implies that g−1

(
A(h)

) ⊂ A(f ). This completes the proof of
Theorem 5.

Proof of Theorem 2. Suppose that A(f ) ⊂ J(f ). As already noted in the proof of
Lemma 4 this implies that J(f ) = A(f ). Lemma 4 says that this is satisfied in
particular if f has no wandering domains. Because of Theorem 1 we only have to
prove (3). By Lemma 3 we have J(h) ⊂ A(h). Theorem 5 now yields

g−1(J(h)) ⊂ g−1
(
A(h)

) ⊂ A(f ) = J(f ).

Proof of Theorem 4. Suppose that f has no wandering domains but that h has a
wandering domain V . By the last statement of Theorem 1, g−1(V )�6. Note that
the set g−1(V ) is open, and let U be a component of g−1(V ). Then U is a component
of F (f ) by Theorem 2. For n ∈ N we have g(fn(U )) = hn(g(U )) ⊂ hn(V ) and thus
g(fm(U )) w g(fn(U )) =6 for m� n. It follows that fm(U ) w fn(U ) =6 for m� n
so that U is a wandering domain of f . This is a contradiction.

6. Proof of Theorem 3

Suppose the assumptions of Theorem 3 be satisfied. If g = c is constant and
satisfies (1) then c = h(c). Since h has only countably many fixed points, there are
only countably many such functions g. So we may assume from now on that g is
non-constant.

Note that there exists p ∈ N such that fp has a repelling fixed point; (see [2]
for the case that f is transcendental). If (1) holds for some g, then g satisfies also
(1) with f, h replaced by fp, hp. Therefore by replacing f, h by fp, hp, if necessary,
without changing notation, we may assume that f has a repelling fixed point ξ.
The assumption that h is not the identity map is no longer needed, since g is non-
constant, so that we do not have to worry about the possibility that some iterate of
h might be the identity map.

There is a disk C = B(ξ, ρ) = {z : |z − ξ| < ρ} centred at ξ such that there is a
univalent branch F of f−1 defined in C, fixing ξ and mapping C into a relatively
compact subset of C, such that Fn(z)→ ξ uniformly for z ∈ C as n→∞, and such
that f is univalent in C.

We write Cq = B(ξ, ρ/q) for q > 1. Then each Cq has the same properties as C,
mentioned above. All properties are clear except possibly F (Cq) ⊂ Cq for all q > 1.
However, even this can be satisfied, for all q > 1, by taking ρ small enough since
|F ′(ξ)| = 1/|f ′(ξ)| < 1.

Let η be a given repelling fixed point of h (we will show later that there is at
least one such point η provided that there is some non-constant entire g satisfying
(1)). There is a disk K centred at η such that there is a univalent branch H of h−1

defined in K, fixing η and mapping K into a relatively compact subset of K, such
that Hn(z)→ η uniformly for z ∈ K as n→∞, and such that h is univalent in K.

Fix q > 1. Since ξ ∈ J(f ), there are a ∈ Cq \ {ξ} and p > 1 such that fp(a) = a.
From now on, let a (and hence p) be fixed by q. Next note that hp has only finitely
many fixed points in K, and pick such a fixed point b.
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We write P (f, h, η, q, b) for the set of all non-constant entire functions g that satisfy

(1) together with g(ξ) = η, g(Cq) ⊂ K, and g(a) = b. Note that the choice of q implied
the choice of a and p.

Suppose that g, γ ∈ P (f, h, η, q, b). We seek to prove that g = γ. This then shows
that each set P (f, h, η, q, b) has at most one element.

So we assume that g, γ ∈ P (f, h, η, q, b). Define an = Fn(a) ∈ Cq and bn = Hn(b) ∈
K for n > 0. Note that limn→∞ an = ξ.

We have g(an) ∈ K. By induction, we show that g(an) = bn for all n > 0. This is
true for n = 0. Suppose that it is true for 0 6 n 6 k − 1 for some k > 1. The point
z = ak is the unique solution in Cq to the equation f (z) = ak−1, and the point w = bk
is the unique solution in K to the equation h(w) = bk−1. Now g(ak) ∈ K and

h(g(ak)) = g(f (ak)) = g(ak−1) = bk−1

so that g(ak) = bk, as required.
The same argument applies with g replaced by γ, and we deduce that g(an) = γ(an)

for all n > 1. Since g and γ are entire and limn→∞ an = ξ is finite, it follows that
g ≡ γ, as desired.

Note that h has only countably many repelling fixed points and that for each
such point η as above, once K and q have been chosen (and hence a and p have also
been chosen), there are only finitely many fixed points b of hp in K. Therefore it
now suffices to show that if g is a non-constant entire function satisfying (1) then
g ∈ P (f, h, η, q, b) for some repelling fixed point η of h, some q > 1, and some fixed
point b of hp in K, where p (as well as a in the condition g(a) = b) is determined by q.

To see this, first note that by (1),

g(ξ) = g(f (ξ)) = h(g(ξ))

so that g(ξ) is a fixed point of h. Suppose that f ′(ξ) = λ so that |λ| > 1, and
that g(z) = g(ξ) + Aµ(z − ξ)µ + O((z − ξ)µ+1) as z → ξ, where Aµ � 0 and µ > 1.
Consideration of the power series expansions of both sides of (1) close to ξ shows
that then h′(g(ξ)) = λµ so that |h′(g(ξ))| > 1. (Note that this follows immediately by
differentiating (1) if g′(ξ)� 0.) Thus g(ξ) is a repelling fixed point of h, hence one of
the points η considered above; this also shows that if such a g exists, then h has at
least one repelling fixed point.

If η = g(ξ) and a neighbourhood K of η is given, then, by continuity, there is q > 1
such that g(Cq) ⊂ K.

If η = g(ξ) and K and q > 1, and hence a and p also, are given, note that, by (1),

g(a) = g(fp(a)) = hp(g(a))

and that g(a) ∈ K, so that b = g(a) is a fixed point of hp in K, as required. Now
g ∈ P (f, h, η, q, b). This completes the proof of Theorem 3.
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