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Abstract Let f be a holomorphic self-map @\ {0}, C, or the extended complex plafie

that is neither injective nor constant. This paper gives new and elementary proofs of the
well-known fact that the Julia set gf is a non-empty perfect set and coincides with the
closure of the set of repelling cycles 6f The proofs use Montel-Caratheodory’s theorem
but do not use results from Nevanlinna theory.

1. Introduction
Let D be eitherC\{0}, C, or the extended complex plafg@ Let f : D — D be a
holomorphic function that is neither injective nor constant. Denote the Julia geti@f
the set of al € D at which the iterate§f” : n € N} of f do not form a normal family,
by 7. Recall that a periodic point € D of f with periodn € N is called repelling if the
eigenvalud /™)' (p) of f" at p has absolute value bigger than one.

The aim of this paper is to give new and elementary proofs of the following fundamental
properties of the Julia set.

THEOREM1. J is a perfect set, i.e7 is a closed and non-empty subset/bfind does
not contain isolated points.

THEOREM2. 7 is the closure of the set of all repelling periodic pointsfof

The first result is easy to prove for the case wiféa rational (due to Fatodb] and Julia
[7], see also13, p. 28], and 2, p. 159], for a different proof) or wheyi is a transcendental
holomorphic self-map of the punctured plane (due to Radstr@dnHor the case whept
is a transcendental entire function, Theorem 1 is also due to Féltbut{is more difficult
to prove. Fatou himself used estimates on the growth of composite functions to show that
the Julia set of a transcendental entire function is a perfect set. More recent proofs of this
statement are often based on Nevanlinna theory (see for instZjince [

We shall give an elementary proof of Theorem 1 which does not use results from
Nevanlinna theory and which is also different from Fatou’s proof. The proof is based
on a theorem of Boh#], which is an easy application of Montel-Caratheodory’s theorem.
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Theorem 2 is due to Fato®][and Julia [f] for the case wherD = C. They gave
different proofs, neither of which applies to the case wlifeis a transcendental entire
function. In this case the theorem was first proved by Bakkuging a method based
on Ahlfors’s theory of covering surfaces. For the case when= C\{0}, Theorem 2
was first proved by Bhattacharyyd][ Recently Schwick 12] has given a new proof of
Theorem 2 which applies to all cases and is much more elementary. He makes use of a
normality criterion provided by Zalcmai4l]. Moreover, his proof is based on the fact that
a transcendental meromorphic functiginas at most four perfectly branched values, i.e.
at most four valuea e C for which only finitely manya-points ofg are simple. This is a
consequence of Nevanlinna’s second fundamental theorem.

In our proof of Theorem 2, we shall modify Schwick’s method so that no results from
Nevanlinna theory are necessary. Instead of this we shall only use Picard’s theorem and
the fact that the recurrent but not periodic points are densg.irThe latter is an easy
consequence of Baire's theorem and Theorem 1. More precisely, one does not need the
whole statement of Theorem 1 but only the fact tlfatioes not contain isolated points.

As we shall see in 82, this is easier to prove than the factfhat ¢#. On the other hand
Theorem 2 would be uselessif = @.

2. Proof of Theorem 1
Since there are already simple proofs for the case wheaC or D = C\{0}, we confine
ourselves to the case whén= C and f is transcendental.

It follows immediately from the definition off that 7 is closed inD. The first non-
trivial part of the proof is to show the following.

Step 1.7 does not contain isolated points.

Proof. We may assume thal # #. Assume that7 is finite. Sincef~1(x) c 7, for
eachx € 7, it follows from Picard’s theorem thaf consists of one single point. By
conjugating if necessary, we may assume tiat {0}. Now f|c\(o; IS @ transcendental
holomorphic self-map of the punctured plane and thus, has a non-empty Julia set. This
implies that7 \ {0} # @, a contradiction.

Hence,7 is an infinite set. Once this is known it is easy to show atoes not contain
isolated points (see for instanc p. 159]). a

The essential part of the proof is to show the following.
Step 2.7 # 0.
We shall make use of two lemmata, which will be proved first.

LEMMA 1. Let g be an entire function such thgt # idc and (g2 — idc)/(g — idc) is
constant. Theg is a polynomial of degree 1.

Lemma 1 was stated by Fatof] [in a similar form. The proof given here is due to
Rosenbloom9].
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Proof. We may assume thgtis not constant. Lat € C be such that
(8% —idc) = c(g —idc).

If ¢ = 0 theng? = id¢, which implies thafg is injective and hence; is a polynomial of
degree< 1. If ¢ = 1 theng? = g, which implies thaf is constant og = idc. Thus, we
may assume that¢ {0, 1}. By differentiation we obtain

gogg —1=c(g -1
and hence
/ /
g(gog—c)=1l-c.

Sincec # 1, we conclude that’ omits zero an@’ o g omitsc # 0. Sinceg is not constant,
it follows from Picard’s theorem thaf' is constant. Hence; is a polynomial of degree
1. |

LEMMA 2. Letg be an entire function such thgt0) = 0, |g’(0)| < 1 andlim, . g" =
0O locally uniformly inC. Theng(z) = g’(0)z, for eachz € D.

Lemma 2 is based on a theorem of Bod}, which is an easy application of Montel—
Caratheodory’s theorem. To state Bohr's theorem, we need a some more notation. For
eachz € D andr > 0, denote the open disk centered atith radiusr by D(z; ) and its
boundary byd D(z; r). As usual, for an entire functionandr > 0, denote the supremum
of the set{|h(z)| : z € 9D(0; r)} by M (r; h).

THEOREM 3. (Bohr)DefineH to be the set of all holomorphic functiohs D(0; 1) — C
which satisfyr(0) = 0 and M(%; h) > 1. For eachh € H, letc(h) := supgr > 0 :
oD(0; r) C h(D(0; 1))}. Theninf{c(h) : h € H} > 0.

Proof. Assume that inffc(k) : h € H} = 0. Then there exists a sequenég),cn in

‘H such that lim_ . c(h,) = 0. Then, for all large: € N, the circlesoD(0; 1) and
aD(0; 2) are not contained in, (D(0; 1)), which by the extended Montel-Caratheodory
theorem implies thatk, : n € N} forms a normal family. By passing over to a
subsequence if necessary, we may assume (thatcy converges to a holomorphic
functionhs : D(0;1) — C. By Hurwitz’'s theorem we conclude that € H. Hence,

h is not constant and there exists> 0 such thato D(0;r) C h(D(0; %)). Applying
Hurwitz’s theorem again we see that, for all large N, ¢(h,) > r and hence we obtain a
contradiction. ]

Proof of Lemma 2We may assume thagtis not constant. Sincg’(0)| < 1, there exists
an open diskk C C centered at zero such thatk) C K. For eachn € N, let

K, =g "(K) and r,:=supr >0:3D(;r) C K,}.

SinceK, C K,y1, for eachn € N, and|J,.y K» = C, we conclude thatr,),en is
increasing and lim, o r, = oo. Now, for eachn € N andx € D(0; ry), there exists
s € (Jx|, rp) such tha D(0; s) C K,. This implies thatf" (0 D(0; s)) C K, and from
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the maximum principle we conclude that(x) € K and hencey € K,. Thus, we have
proved that, for each € N,

rm =maxXs > 0: D(0;s) C K,,}.
Now, for eachn € N, lets, :=r,/2 and
hy:D©0;1) > C, 2> M(sp; 8) " 8(2s02).

By Bohr's theorem there exists > 0 such that, for each € N, there exists, > ¢
satisfyinga D(0; t,) C h,(D(0; 1)). Hence, for each € N,

dD(0; t, M (sy, g) C g(D(O; rm)) C g(Ky) C K1 C Ky,
which by definition ofr,, implies that
cM(sp; 8) < taM(sp; 8) < 1n = 2sp.

Hence, (M (s,; g)sn_l)neN is a bounded sequence. This implies that the meromorphic
function¢ := (g — g'(0)idc)/ idc satisfies lim_. o, M(s,; ¢) = 0. Since zero is a
removable singularity ap, it follows from the maximum principle and Liouville’s theorem
that¢g = 0. ]

Proof of Step 2Since f is transcendental, Lemma 1 yields that= (2 —idc)/(f —
idc) is a non-constant meromorphic function. By Picard’s theorem we conclude that
¢ 1({0,1, o0}) # #. This implies thatf has a periodic poinp € C. We may assume
thatp = 0 andf(0) = 0. If 0 € J then we have finished. Thus, we may assume that
zero belongs to the Fatou set pfwhich especially implies thatf’(0)| < 1. Let E be the
component of the Fatou set gfwhich contains zero.

If |f/(0)] = 1 then by Weierstrass’ theorem each limit function of the sequence
(f"g)nen is not constant. From this, one easily concludes thiat is injective (see,
for example, 2, p. 160]). Sincef is transcendental, we conclude that£ C. Hence,
T #9.

If | £(0)] < 1then it follows from Lemma 2 that # C and hence7 # @. O

3. Proof of Theorem 2
Let p € D be a repelling periodic point of with periodn € N. The chain rule yields that
limi—oo |(f5") (p)| = oo, which by Weierstrass’ theorem implies that no subsequence of
(f*)ex is uniformly convergent in a neighbourhoodmf Hence,p belongs to the Julia
set of f”*, which coincides with the Julia set ¢gf. Since7 is closed inD, we see that the
closure (inD) of the set of repelling periodic points gfis also contained i/ .

Verification of the other inclusion takes place in two steps. We de¥ihi® be the set of
recurrent but not periodic points ¢f, i.e. the set of alf € 7 which belong to the closure
of the set{ f"(z) : n € N} \ {z}. The first step is to prove the following.

Step 1. M is contained in the closure of the set of repelling periodic pointg.of

To prove Step 1, we use Picard’s little theorem and the following result, which is a local
adaptation of Zalcman's lemma4] and was also used by Schwickd].
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LEMMA 3. (Zalcman)Let F be a family of meromorphic functions in a domainc C.
Letzo € U be such that is not normal atzo. Then there exist sequenags),cn in F,
(zn)nen IN U and (p,),en in R-o and a non-constant meromorphic functign C — C
such thatlim,, .« z, = zo, lim,— pn = 0 and the sequencef,, o (o, Idc +z,))neN
converges t@ locally uniformly inC.

Proof. See [L]]. ]
Proof of Step 1Let zo € M. By conjugating if necessary, we may assume that C.
LetU c C be an open neighbourhood gf. It follows from Zalcman’s lemma that there

exists a strictly increasing sequeneén N, sequence&,,),cn in U and(o,),cn in R.o
and a non-constant meromorphic functipnC — C such that

lim z, =z0, lim p,=0 and lim f*®™ o (p,idc +z,) = g.
n—o00 n—00 n—oo

Sincezp € M andg is not constant, it follows from Picard’s little theorem that there
existsj € Ng such thatf/(zg) € U N g(C). Letx € g~ 1(f/(z0)). Then there exists an
open neighbourhood of x in C such thatg(V) c U andg’(v) # 0 for eachv € V' \ {x}.
Sincezg € M, we have thatf/ (zg) € M too. Hence, there existe N andv € V \ {x}
such thaig(v) = f(z0). Thenv is an isolated zero of the function

hi=g— f'zo) = lim (f*" o (pnidc +2n) = £ © (pnidc +2n))-

Thus, Hurwitz’s theorem implies that there exists a sequéngg,cy in C such that
lim,— e v, = v and

fa(n)(lonvn +2n) — fi(pnvn +2,)=0

for all largen € N. Thus,p, = f!(p,vx + z,) is a fixed point of 4"~ for all large
n € N. Using Weierstrass’ theorem and the chain rule we obtain that

g'w) = lm (f*" o (pnide +20))'(wn) = M ((F“" ) (o) () (Puvn + 2n) ).
Sincev € V \ {x}, we have thag’(v) # 0. Since we also know that
lim (fi)/(pnvn +zZn)on = (fi)/(ZO) lim p, =0,
n—o0 n— o0
we conclude that lin, o [(f™ =) (p,)| = oo, so that all but at most finitely many
periodic pointsp,, n € N, are repelling. Finally, since
lim Pn = lim fi(pnvn +2zn) = fi(ZO) eU,
n—oo n—o0
we see that/ contains a repelling periodic point gf. |
Our desired result follows immediately by combining Step 1 with the following.

Step 2. M is dense in7.

SinceJ does not contain isolated points, this is an easy consequence of the following
theorem which in Steinmetz’s book3, p. 38] is shown to be true for the case wheis a
rational function.
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THEOREMA4. {z € J : {f"(z) : n € N}is densein7} is dense in7.

Steinmetz’s proof of the rational case applies to the general case without further
difficulties. For the sake of completeness we shall give the proof. The main tool is the
following well-known theorem.

THEOREMb. (Baire)Let (X, d) be a complete metric space. L@tbe a countable set of
open and dense subsetsXf Then{Q; O € Q} is also dense iX.

Proof. See for instancel[0]. ]

Proof of Theorem 4We may assume that # @, for otherwise there is nothing to prove.

Let d be the chordal metric for the case when= C, the euclidian metric for the case
whenD = C, and defined to be

C\{0} x C\{O} = R, (z, w) > |z — w| +

1 1
1_ E‘
for the case wheD = C\{0}. In either cas€.7, d s ) forms a separable complete
metric space. Now, for eaoh € N, there is a sequend®,, r)rcn Of opend-balls with
radius ¥n such that7 C ey Bnk @ndB, x NJ # @, for eachk € N. SinceJ does not
contain isolated points, we conclude that, for each € N, the setB,, x N J is an infinite
set, which by Montel-Caratheodory’s theorem implies that

Oni =T N0\ 7 (Bug)

jeN

is open and dense {fi. By Baire’s theorem we conclude that

Q:: m Qn,k

n,keN
is also dense itf. Now letg € Q. Then{f/(q) : j € N} N B« # @, for eachn, k € N.
Hence{f/(q) : j € N}is densein7. O
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