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Abstract. Let f be a holomorphic self-map ofC\{0},C, or the extended complex planeC
that is neither injective nor constant. This paper gives new and elementary proofs of the
well-known fact that the Julia set off is a non-empty perfect set and coincides with the
closure of the set of repelling cycles off . The proofs use Montel–Caratheodory’s theorem
but do not use results from Nevanlinna theory.

1. Introduction
Let D be eitherC\{0},C, or the extended complex planeC. Let f : D → D be a
holomorphic function that is neither injective nor constant. Denote the Julia set off , i.e.
the set of allz ∈ D at which the iterates{f n : n ∈ N} of f do not form a normal family,
byJ . Recall that a periodic pointp ∈ D of f with periodn ∈ N is called repelling if the
eigenvalue(f n)′(p) of f n atp has absolute value bigger than one.

The aim of this paper is to give new and elementary proofs of the following fundamental
properties of the Julia set.

THEOREM 1. J is a perfect set, i.e.J is a closed and non-empty subset ofD and does
not contain isolated points.

THEOREM 2. J is the closure of the set of all repelling periodic points off .

The first result is easy to prove for the case whenf is rational (due to Fatou [5] and Julia
[7], see also [13, p. 28], and [2, p. 159], for a different proof ) or whenf is a transcendental
holomorphic self-map of the punctured plane (due to Radstrœm [8]). For the case whenf
is a transcendental entire function, Theorem 1 is also due to Fatou [6] but is more difficult
to prove. Fatou himself used estimates on the growth of composite functions to show that
the Julia set of a transcendental entire function is a perfect set. More recent proofs of this
statement are often based on Nevanlinna theory (see for instance [2]).

We shall give an elementary proof of Theorem 1 which does not use results from
Nevanlinna theory and which is also different from Fatou’s proof. The proof is based
on a theorem of Bohr [4], which is an easy application of Montel–Caratheodory’s theorem.
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Theorem 2 is due to Fatou [5] and Julia [7] for the case whenD = C. They gave
different proofs, neither of which applies to the case whenf is a transcendental entire
function. In this case the theorem was first proved by Baker [1] using a method based
on Ahlfors’s theory of covering surfaces. For the case whenD = C\{0}, Theorem 2
was first proved by Bhattacharyya [3]. Recently Schwick [12] has given a new proof of
Theorem 2 which applies to all cases and is much more elementary. He makes use of a
normality criterion provided by Zalcman [14]. Moreover, his proof is based on the fact that
a transcendental meromorphic functiong has at most four perfectly branched values, i.e.
at most four valuesa ∈ C for which only finitely manya-points ofg are simple. This is a
consequence of Nevanlinna’s second fundamental theorem.

In our proof of Theorem 2, we shall modify Schwick’s method so that no results from
Nevanlinna theory are necessary. Instead of this we shall only use Picard’s theorem and
the fact that the recurrent but not periodic points are dense inJ . The latter is an easy
consequence of Baire’s theorem and Theorem 1. More precisely, one does not need the
whole statement of Theorem 1 but only the fact thatJ does not contain isolated points.
As we shall see in §2, this is easier to prove than the fact thatJ 6= ∅. On the other hand
Theorem 2 would be useless ifJ = ∅.

2. Proof of Theorem 1

Since there are already simple proofs for the case whenD = C orD = C\{0}, we confine
ourselves to the case whenD = C andf is transcendental.

It follows immediately from the definition ofJ thatJ is closed inD. The first non-
trivial part of the proof is to show the following.

Step 1.J does not contain isolated points.

Proof. We may assume thatJ 6= ∅. Assume thatJ is finite. Sincef−1(x) ⊂ J , for
eachx ∈ J , it follows from Picard’s theorem thatJ consists of one single point. By
conjugating if necessary, we may assume thatJ = {0}. Now f |C\{0} is a transcendental
holomorphic self-map of the punctured plane and thus, has a non-empty Julia set. This
implies thatJ \ {0} 6= ∅, a contradiction.

Hence,J is an infinite set. Once this is known it is easy to show thatJ does not contain
isolated points (see for instance [2, p. 159]). 2

The essential part of the proof is to show the following.

Step 2.J 6= ∅.
We shall make use of two lemmata, which will be proved first.

LEMMA 1. Let g be an entire function such thatg 6= idC and (g2 − idC )/(g − idC ) is
constant. Theng is a polynomial of degree≤ 1.

Lemma 1 was stated by Fatou [6] in a similar form. The proof given here is due to
Rosenbloom [9].
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Proof. We may assume thatg is not constant. Letc ∈ C be such that

(g2 − idC ) = c(g − idC ).

If c = 0 theng2 = idC , which implies thatg is injective and hence,g is a polynomial of
degree≤ 1. If c = 1 theng2 = g, which implies thatg is constant org = idC . Thus, we
may assume thatc 6∈ {0,1}. By differentiation we obtain

g′ ◦ gg′ − 1= c(g′ − 1)

and hence

g′(g′ ◦ g − c) = 1− c.
Sincec 6= 1, we conclude thatg′ omits zero andg′ ◦g omitsc 6= 0. Sinceg is not constant,
it follows from Picard’s theorem thatg′ is constant. Hence,g is a polynomial of degree
1. 2

LEMMA 2. Letg be an entire function such thatg(0) = 0, |g′(0)| < 1 andlimn→∞ gn =
0 locally uniformly inC. Theng(z) = g′(0)z, for eachz ∈ D.

Lemma 2 is based on a theorem of Bohr [4], which is an easy application of Montel–
Caratheodory’s theorem. To state Bohr’s theorem, we need a some more notation. For
eachz ∈ D andr > 0, denote the open disk centered atz with radiusr byD(z; r) and its
boundary by∂D(z; r). As usual, for an entire functionh andr ≥ 0, denote the supremum
of the set{|h(z)| : z ∈ ∂D(0; r)} byM(r; h).
THEOREM 3. (Bohr)DefineH to be the set of all holomorphic functionsh : D(0; 1)→ C
which satisfyh(0) = 0 andM(1

2; h) ≥ 1. For eachh ∈ H, let c(h) := sup{r > 0 :
∂D(0; r) ⊂ h(D(0; 1))}. Theninf{c(h) : h ∈ H} > 0.

Proof. Assume that inf{c(h) : h ∈ H} = 0. Then there exists a sequence(hn)n∈N in
H such that limn→∞ c(hn) = 0. Then, for all largen ∈ N, the circles∂D(0; 1) and
∂D(0; 2) are not contained inhn(D(0; 1)), which by the extended Montel–Caratheodory
theorem implies that{hn : n ∈ N} forms a normal family. By passing over to a
subsequence if necessary, we may assume that(hn)n∈N converges to a holomorphic
function h : D(0; 1) → C. By Hurwitz’s theorem we conclude thath ∈ H. Hence,
h is not constant and there existsr > 0 such that∂D(0; r) ⊂ h(D(0; 1

2)). Applying
Hurwitz’s theorem again we see that, for all largen ∈ N, c(hn) ≥ r and hence we obtain a
contradiction. 2

Proof of Lemma 2.We may assume thatg is not constant. Since|g′(0)| < 1, there exists
an open diskK ⊂ C centered at zero such thatg(K) ⊂ K. For eachn ∈ N, let

Kn := g−n(K) and rn := sup{r > 0 : ∂D(0; r) ⊂ Kn}.
SinceKn ⊂ Kn+1, for eachn ∈ N, and

⋃
n∈N Kn = C, we conclude that(rn)n∈N is

increasing and limn→∞ rn = ∞. Now, for eachn ∈ N andx ∈ D(0; rn), there exists
s ∈ (|x|, rn) such that∂D(0; s) ⊂ Kn. This implies thatf n(∂D(0; s)) ⊂ K, and from
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the maximum principle we conclude thatf n(x) ∈ K and hence,x ∈ Kn. Thus, we have
proved that, for eachn ∈ N,

rn = max{s > 0 : D(0; s) ⊂ Kn}.
Now, for eachn ∈ N, let sn := rn/2 and

hn : D(0; 1)→ C, z 7→ M(sn; g)−1g(2snz).

By Bohr’s theorem there existsc > 0 such that, for eachn ∈ N, there existstn ≥ c

satisfying∂D(0; tn) ⊂ hn(D(0; 1)). Hence, for eachn ∈ N,

∂D(0; tnM(sn, g)) ⊂ g(D(0; rn)) ⊂ g(Kn) ⊂ Kn−1 ⊂ Kn,
which by definition ofrn implies that

cM(sn; g) ≤ tnM(sn; g) ≤ rn = 2sn.

Hence,(M(sn; g)s−1
n )n∈N is a bounded sequence. This implies that the meromorphic

function φ := (g − g′(0) idC )/ idC satisfies limn→∞M(sn;φ) = 0. Since zero is a
removable singularity ofφ, it follows from the maximum principle and Liouville’s theorem
thatφ = 0. 2

Proof of Step 2.Sincef is transcendental, Lemma 1 yields thatg := (f 2 − idC )/(f −
idC ) is a non-constant meromorphic function. By Picard’s theorem we conclude that
g−1({0,1,∞}) 6= ∅. This implies thatf has a periodic pointp ∈ C. We may assume
thatp = 0 andf (0) = 0. If 0 ∈ J then we have finished. Thus, we may assume that
zero belongs to the Fatou set off , which especially implies that|f ′(0)| ≤ 1. LetE be the
component of the Fatou set off which contains zero.

If |f ′(0)| = 1 then by Weierstrass’ theorem each limit function of the sequence
(f n|E)n∈N is not constant. From this, one easily concludes thatf |E is injective (see,
for example, [2, p. 160]). Sincef is transcendental, we conclude thatE 6= C. Hence,
J 6= ∅.

If |f ′(0)| < 1 then it follows from Lemma 2 thatE 6= C and henceJ 6= ∅. 2

3. Proof of Theorem 2
Letp ∈ D be a repelling periodic point off with periodn ∈ N. The chain rule yields that
limk→∞ |(f kn)′(p)| = ∞, which by Weierstrass’ theorem implies that no subsequence of
(f kn)k∈N is uniformly convergent in a neighbourhood ofp. Hence,p belongs to the Julia
set off n, which coincides with the Julia set off . SinceJ is closed inD, we see that the
closure (inD) of the set of repelling periodic points off is also contained inJ .

Verification of the other inclusion takes place in two steps. We defineM to be the set of
recurrent but not periodic points ofJ , i.e. the set of allz ∈ J which belong to the closure
of the set{f n(z) : n ∈ N} \ {z}. The first step is to prove the following.

Step 1.M is contained in the closure of the set of repelling periodic points off .

To prove Step 1, we use Picard’s little theorem and the following result, which is a local
adaptation of Zalcman’s lemma [14] and was also used by Schwick [12].
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LEMMA 3. (Zalcman)LetF be a family of meromorphic functions in a domainU ⊂ C.
Let z0 ∈ U be such thatF is not normal atz0. Then there exist sequences(fn)n∈N in F ,
(zn)n∈N in U and(ρn)n∈N in R>0 and a non-constant meromorphic functiong : C → C
such thatlimn→∞ zn = z0, limn→∞ ρn = 0 and the sequence(fn ◦ (ρn idC +zn))n∈N
converges tog locally uniformly inC.

Proof. See [11]. 2

Proof of Step 1.Let z0 ∈M. By conjugating if necessary, we may assume thatz0 ∈ C.
LetU ⊂ C be an open neighbourhood ofz0. It follows from Zalcman’s lemma that there
exists a strictly increasing sequenceα in N, sequences(zn)n∈N in U and(ρn)n∈N in R>0

and a non-constant meromorphic functiong : C→ C such that

lim
n→∞ zn = z0, lim

n→∞ ρn = 0 and lim
n→∞ f

α(n) ◦ (ρn idC +zn) = g.
Sincez0 ∈ M andg is not constant, it follows from Picard’s little theorem that there

existsj ∈ N0 such thatf j (z0) ∈ U ∩ g(C). Let x ∈ g−1(f j (z0)). Then there exists an
open neighbourhoodV of x in C such thatg(V ) ⊂ U andg′(v) 6= 0 for eachv ∈ V \ {x}.
Sincez0 ∈M, we have thatf j (z0) ∈M too. Hence, there existi ∈ N andv ∈ V \ {x}
such thatg(v) = f i(z0). Thenv is an isolated zero of the function

h := g − f i(z0) = lim
n→∞(f

α(n) ◦ (ρn idC +zn)− f i ◦ (ρn idC +zn)).
Thus, Hurwitz’s theorem implies that there exists a sequence(vn)n∈N in C such that
limn→∞ vn = v and

f α(n)(ρnvn + zn)− f i(ρnvn + zn) = 0

for all largen ∈ N. Thus,pn := f i(ρnvn + zn) is a fixed point off α(n)−i for all large
n ∈ N. Using Weierstrass’ theorem and the chain rule we obtain that

g′(v) = lim
n→∞(f

α(n) ◦ (ρn idC +zn))′(vn) = lim
n→∞((f

α(n)−i )′(pn)(f i)′(ρnvn + zn)ρn).
Sincev ∈ V \ {x}, we have thatg′(v) 6= 0. Since we also know that

lim
n→∞(f

i)′(ρnvn + zn)ρn = (f i)′(z0) lim
n→∞ ρn = 0,

we conclude that limn→∞ |(f α(n)−i )′(pn)| = ∞, so that all but at most finitely many
periodic pointspn, n ∈ N, are repelling. Finally, since

lim
n→∞pn = lim

n→∞ f
i(ρnvn + zn) = f i(z0) ∈ U,

we see thatU contains a repelling periodic point off . 2

Our desired result follows immediately by combining Step 1 with the following.

Step 2.M is dense inJ .

SinceJ does not contain isolated points, this is an easy consequence of the following
theorem which in Steinmetz’s book [13, p. 38] is shown to be true for the case whenf is a
rational function.
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THEOREM 4. {z ∈ J : {f n(z) : n ∈ N} is dense inJ } is dense inJ .

Steinmetz’s proof of the rational case applies to the general case without further
difficulties. For the sake of completeness we shall give the proof. The main tool is the
following well-known theorem.

THEOREM 5. (Baire)Let (X, d) be a complete metric space. LetQ be a countable set of
open and dense subsets ofX. Then

⋂{Q;Q ∈ Q} is also dense inX.

Proof. See for instance [10]. 2

Proof of Theorem 4.We may assume thatJ 6= ∅, for otherwise there is nothing to prove.
Let d be the chordal metric for the case whenD = C, the euclidian metric for the case
whenD = C, and defined to be

C\{0} × C\{0} → R, (z,w) 7→ |z−w| +
∣∣∣∣1z − 1

w

∣∣∣∣
for the case whenD = C\{0}. In either case(J , dJ×J ) forms a separable complete
metric space. Now, for eachn ∈ N, there is a sequence(Bn,k)k∈N of opend-balls with
radius 1/n such thatJ ⊂⋃k∈N Bn,k andBn,k ∩J 6= ∅, for eachk ∈ N. SinceJ does not
contain isolated points, we conclude that, for eachn, k ∈ N, the setBn,k ∩ J is an infinite
set, which by Montel–Caratheodory’s theorem implies that

Qn,k := J ∩
⋃
j∈N

f−j (Bn,k)

is open and dense inJ . By Baire’s theorem we conclude that

Q :=
⋂
n,k∈N

Qn,k

is also dense inJ . Now letq ∈ Q. Then{f j (q) : j ∈ N} ∩ Bn,k 6= ∅, for eachn, k ∈ N.
Hence,{f j (q) : j ∈ N} is dense inJ . 2
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