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1. Introduction

If / is a rational function of degree at least 2 or, alternatively, a non-linear entire
function, denote by /" , for ne N, the nth iterate of/ regarded as a mapping of C to C.
Set

N(f) = {z: (/") normal in some neighbourhood of z},

J(f) = C-N(f).

N(f) is the 'set of normality' and J(f) is the 'Fatou-Julia' set for / . By definition,
N(f) is open (possibly empty). It is easily shown (see, for example, [6,7]) that J(f)
is non-empty and perfect, and, further, that J{f) is completely invariant under
mapping by / , by which is meant that z e J(f) implies both /(z) e J(f) and c e J(f)
for any c which satisfies f(c) = z. Also N(f) is completely invariant.

If U is a component of N(f) then f(U) lies in some component V of N(f) and
f[U) = V except in the case when / is transcendental entire with a Picard-exceptional
(omitted) value c such that ceV, when we have f(U)= V — {c). Suppose that
fn+k(U)nf"(U) # 0 for some integers such that n ^ 0, k > 0, and that n,k are
minimal with this property. Then W = fn(U) is periodic with period k and the limit-
ing behaviour of the iterates (fm) in W, and hence in U, is well understood: only a
small number of different possible cases arise. These are listed, for example, in [12].

If all f"(U), with n e N, are different components of N(f), the component U is
called a 'wandering domain' of / . Sullivan [12,13] solved a problem open since the
papers of Fatou and Julia by proving:

THEOREM A. A rational function whose degree is at least 2 has no wandering domains.

Transcendental entire functions may, however, have wandering domains. Two
rather different types have been constructed.

EXAMPLE 1. This is constructed in [3] as a product

where the an satisfy 1 < ax < a2 < ... and grow so rapidly that an + 1 < g(an) <2an + l.
The an arc chosen so that the annuli

An:al <\x\ <a$+l

have the property g(An) c An+1. The component Un of N(g) which contains An is a
wandering domain for which g(Un) = Un + 1 and gk(Un) -> oo (k -*• oo) hold.
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In §3 we show that any / such that N{f) has a multiply-connected component
provides wandering domains similar to those of Example 1.

EXAMPLE 2. This is due to M. Herman, and is quoted in [12]. It is
/(z) = z + 2ni— 1 +e~2.1 must thank M. Herman for explaining the idea behind the
construction of Example 2 and showing me its usefulness in many other situations.

Whereas, in Example 1, g has very slow growth, the example of Herman has order 1.
In § 5 we show that for any p, with 1 ^ p < oo, there is an entire function / of order p
which has an infinity of different families of wandering domains; that is, there are
components Uit with i e N , of N{f), such that /m(t/() = f\U), for m,n e N, implies
that i =j and m = n. All the components in this example and in Herman's are simply-
connected.

In discussing these examples one comes upon an interesting problem about
commuting functions, that is, functions f,g such that f{g) = g{f). If / and g are
rational, it is easy to see that J{f) = J{g), but the proof does not obviously extend to
the case when / and g are transcendental entire. In § 4 we show that J{f) = J(g) does
indeed hold in a very special but useful case when f,g are entire.

It seems natural to seek to extend Sullivan's proof of Theorem A to cover some
classes of entire functions. In §6, we analyse the proof to extract a set of conditions on
the entire function / under which Sullivan's method shows that / has no wandering
domains. It is shown that these conditions are satisfied if / has the form

•I/ ( z ) = I P(t)exp(Q(t))dt,

where P and Q are polynomials. The form / = Pxe
Qx for polynomials P ^ d is a

special case of this. By a further argument one can show that P{ez) has no wandering
domains if P is a polynomial.

2. Results from iteration theory

Where not otherwise stated these results are proved in [6,7].

DEFINITION. A number c e C i s Fatou-exceptional for / if /"(z) = c has only a finite
set of solutions for all values n e N taken together. If / is rational, there are at most
two such values, and if / is transcendental entire, there is at most one finite c with this
property.

LEMMA 2.1. Given any z e J(f) and any w which is not Fatou-exceptional for f, there
is a sequence znk, with nk e N, such that

f"k(znk) = w, znk -> z {nk -> co).

LEMMA 2.2. / / a e J{f), if N is an open neighbourhood of a, and if K is a compact
plane set which does not contain a Fatou-exceptional point off, then there exists n0 such
that f"(N) r> K for all n such that n> n0.

DEFINITION. The number zx is a fixed point of order p of / if fp{zx) = zy and
fk{zx) # zi for k < p. If Zj # oo, the value of (/p)'(^i) is called the multiplier of zx. If
l(/p)'(zi)l > 1 holds, Zj is called repulsive.
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LEMMA 2.3. (See [2] for entire functions.) The repulsive fixed points form a dense
subset ofJ(f).

LEMMA 2.4. / / zx is a fixed point of order 1 off and if \ f'{z{) \ < 1 then zx belongs to a
component U of N(f) such that

(i) f\z) -> z, in U, and
(ii) U contains a singular point of f~l.

If we replace | y(zx) | < 1 by f'(z) = 1, the statements remain true, except that zx is on
the boundary of U and not in the interior.

3. Entire functions with multiply-connected domains of normality

THEOREM 3.1. / / / is transcendental entire and U is a multiply-connected component
of N(f), then U is a wandering domain. Further, f" -> oo in U (n -> oo) and, for large
n, f"(U) contains a closed curve yn whose distance from 0 is large and whose winding
number about 0 is non-zero. In this case every component of N(f) is bounded.

COROLLARY. If the entire function f has a path to oo on which f is bounded, then all
components of N(f) are simply-connected.

One may note that the situation in Theorem 1 is similar to that in the special
Example 1 quoted in the introduction.

Proof of the theorem. It follows from the maximum principle that U can be
multiply-connected only if / " -*• oo in U. In [4] it was shown further that if U
is multiply-connected, then every component of N(f) is bounded. Thus U must be a
wandering domain of / .

Denote by y a Jordan curve in U whose interior contains points of J(f). By
Lemma 2.3 there is a fixed point a of some order p inside y. For every n, /"(a) takes
one of the values a,- = / '(a), where i = 1,2,...,p. For large n the curve f"(y) has large
distance from 0, since / " -* oo on y, and by the argument principle /"(y) has non-zero
winding number about /"(a). Thus /"(y) winds about 0 if n is large.

4. Fatou-Julia sets for commuting functions

If f,g are rational and f(g) = g(f) then J(f) = J(g) [8]. It is an open problem
whether the same is true when 'rational' is replaced by 'entire'.

Suppose as usual that / , g are rational or entire, not linear or bilinear. Suppose also
throughout the section that f(g) = g(f).

LEMMA 4.1. g(J(f)) c= J(f).

For, by Lemma 2.3, a e J(f) if and only if a is a limit point of repulsive fixed points
of/. But g maps a repulsive fixed point /? of order p of / to another fixed point /?' such
that (/7(/?) = (fpnn

LEMMA 4.2. / / f,g are rational then g(N(f)) c N(f).

Proof. If a G N(f), let D be a disc of centre a, radius p > 0, such that D cz N(f).
Then g(D) is a neighbourhood of g(cc). Since / " is normal in N(f) we can find for any
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S > 0 a sufficiently small p such that the (spherical) diameter of /"(£>) is at most S, for
n = 1,2,.... Since g is uniformly continuous in the spherical metric we may, for a
given e > 0, ensure that d > 0 above is such that the diameter of g{f"{D)) = f"(g(D))
is at most e. Thus / " is normal in g(D) which includes g(a).

(Obviously we cannot use the uniform continuity of g on the sphere in the
transcendental case.)

REMARK. If f,g are rational, Lemmas 4.1 and 4.2 imply that g(J(f)) = J(f) and
g(N(f)) = N(f), and hence that g~l(J(f)) = •/(/)• By Lemma 2.1 any fi e J{g) is a
limit point of a sequence {#""(<!;)} for some £, which we may choose in J(f). By the
above, all g~"(£) G J( / ) and so /? belongs to the closed set J(f). Thus J(g) a J(f) and
the symmetry of the assumptions gives J{g) = J{f).

An obvious modification of Lemma 4.2 gives

LEMMA 4.3. / / / and g are transcendental entire, then
(i) if a e N(f) and there is a subsequence f"k, with nk -*• oo, which has a finite limit in

the component of N(f) which contains a, then g(cc) e N(f),
(ii) if oo is never a limit function of a subsequence of (/") in a component of N(f),

then g(N(f)) c N(f).

Proof (i) Take a e N(f) and an open neighbourhood U of a such that U <= N{f);
then since f"k has a finite limit function in U, all f"k{U) lie in a single compact set on
which g is uniformly continuous. As in Lemma 4.2 one may take U so small that
g{f"k(U)) = f"k{g{U)) has small diameter for all large nk. Lemma 2.2 then shows that
g(U) and, in particular, g(a) belong to N(f).

Part (ii) follows immediately.

LEMMA 4.4. / / / and g are transcendental entire and if oo is not a limit function of any
subsequence of (/") in a component of N (/), nor of a subsequence of (g") in a component
ofN(g),thenJ(f) =

This follows from Lemmas 4.1 and 4.3 by the argument given in the Remark above.
We can deal with infinite limits in one very special case which will be useful later.

LEMMA 4.5. Suppose that f and g are entire, f commutes with g, and f = g + c, where
c is some constant. Then J(f) = J(g).

Proof. It is enough to show g(N(f)) cz N{f). Take a e N(f), and a neighbourhood
U of a such that U a N(f). By Lemma 4.3 (i) we need consider only the case when
/" -> oo in U. Take a constant A such that A > | c | + l. There exists n0 such that
\f"\> A holds in V for n > n0, and hence \f(z)\ > A holds for z e f"(U), with
n > n0.

If g(ix) ^ N(f), then (fm) takes all values, with at most one exception, for arbitrarily
large m in g(U). Thus there exists t = #(<!;), with £ € U, such that, for some m > n0,

Thus n = /m(£) G fm(U) and \g(rj)\ < 1. But \f{n)\ > A and so

\c\ = \f(r,)-g(rj)\>A-\,
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which contradicts the choice of A. The conclusion is that a e N(f) implies
g(oi) e N(f).

5. Examples of Herman's type

These examples may be derived from the commutative diagram

C—^—> C

e±z

C-{0}

in which C can be regarded as a covering space of C — {0} and / is an analytic map
compatible with the covering property, that is an entire function of the type
f(z) = z + P(z), where P is entire with period 2ni. The map h is then entire in many
cases and one may transfer a description of the iterative behaviour of h" to that of /",
or vice versa, although some care has to be exercised. If h is not entire then it has the
form

where F, G are entire, and the iterates h" are defined and map C — {0} into itself. This,
apart from entire or rational maps, is the only case in which one can set up a non-
trivial iteration theory of the Fatou-Julia type, based on the theory of normal families,
as was pointed out by Radstrom [11]. Thus the method may also be used to provide
examples of Radstrom's case by carrying over known results from the entire case.

EXAMPLE 5.1 (Example 2 of § 1). Taking f(z) = z— 1 +e~z in the diagram and e~z as
the projection map gives h(t) = ete~', which has a superattractive fixed point at t = 1.
The domain of attraction of t = 1 is easily seen to contain the positive real axis. In the
iteration of / this fixed point lifts to an infinity of superattractive fixed points
zn = 2nni, for n e Z. Each zn has as its domain of attraction a different component Dn

of N(f). Clearly N(f) is translated into itself by z -* z + 2ni since

Thus Dn + 1 = Dn + 2ni and f(z) -> zk for z e Dk. (In fact all these statements about /
are clear without any reference to the way in which / was constructed from h.)

Put g(z) = 2ni + f(z) so that f(g) = g(f) and, by Lemma 4.5, J(f) = J(g) and
N(f) = N(g). Thus Dn is a component of N(g) and g(Dn) = 2ni + f(Dn) = Dn + l,so that
each Dn is a wandering domain for g. Note that each Dk is simply-connected, in fact
approximately a 'horizontal strip' which goes to oo in both directions.

THEOREM 5.2. For any p such that 1 ̂  p ^ oo there exists an entire function f of
order p, which has an infinity of different families of wandering domains: there exist
components Uh where i e N, of N(f), such that fm{U) = f"(Uj), with i,j,m,n e N,
implies that m = n and i = j .

Proof Take f}{z) = 2nji + z + (K(ez))2 where j is an integer and K is entire. Taking
ez for the projection in the commuting diagram gives h(t) = texp(K2(t)). Now / 0 and
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/x commute and so, by Lemma 4.5, J(/o) = J{fi). Also J{f0) is invariant under
translation by 2ni since fn

0(z + 2ni) = fn
0(z) + 2ni. We take K so that K(t) = 0 has an

infinity of solutions f = a l Ja2 , . . . . Then h has fixed points of order 1, multiplier
h'(ctn) = 1 at each an, and these lift to families of fixed points znk = fln + 2nik, where /?„
is a fixed determination of logan. It is also easy to check directly that for each z of this
form one has fo(z) = z and f'0{z) = 1.

By Lemma 2.4, znk is on the boundary of at least one component Vnk of N{f0), such
that / 0 maps [/nk to itself and f% -> znk (n -• oo) in (/n>fc. Thus (/nJ = l/Mi, ^ 0 if
and only if m = n and i = j . We may choose the components Un<k so that

Now take / = / i and we have f{Unk) c (/n k + 1 5 so that t/n>fc is a wandering domain
for / . The components Ui0 have the property claimed in the theorem.

It only remains to show that we can prescribe the order of K(ez), which is the same
as that of / , to have the required value.

Suppose that 1 < p < oo. Set

where a, is an increasing positive sequence such that the counting function n(r) of the
number of a,- in {z: \ z | ^ r} satisfies

n(r) ~ p(logr)p~1, as r -> oo.

The averaged counting function N(r) is given by

N{r) = I —dt ~ (logr)", as r -> oo.
Jo ^

Now (see, for example, [5, p. 47]) the maximum modulus function

M(r) = max | K(z) \ = K{r)
\z\=r

satisfies

N(r)^ log M(r)^N(r
where

Q(r) =

<2r

on integration by parts. Thus, as r -> oo,

Q(r)(l-o(l)) < 2p(logr)"-1 = o(N(r)),

and

log M{r) ~ N(r) ~ (log r)p, as r -> oo.

The maximum modulus function for K(ez) is given by Mx(r) = /<C(er), so that

log Mx{r) ~ log M(er) ~ rp, as r -* oo.
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This completes the proof of Theorem 5.2 in the case where l < p < o o . I f p = l ,
we choose the a} so that n(r) grows more slowly than any power of logr, for
example, so that n(r) ~ log logr, which leads to log M^r) ~ r logr. On the other
hand, n(r) ~ (logr)loglO8r leads to p = oo.

EXAMPLE 5.3. If in the commuting diagram we take fn(z) = z + Inn + X sin z and if we
take elz for the projection map, then h(t) = texp{^X(t — t'1)}. Here h is a mapping of
Radstrom's type, and has a fixed point t = 1 with multiplier h'(\) = 1 + X. For f0 there
are corresponding fixed points above t = 1, that is at z = 2nn, where n e Z, with
multiplier (1 + X). If we take 11 + X | < 1, the fixed points at 2nn are attractive and each
belongs to a component Un of J(f0) in which / £ -»• 2nn (m -* oo), and fo(Un) c (/„.

Further, we have fn
0(z + 2ri) = fl(z) + 2n, so that J{f0) is invariant under trans-

lation by 2n. Once again /x and / 0 commute so that J ^ ) = J{f0). Thus / ! maps (7n

into Un + i , which is therefore a wandering domain for / ^

6. Some classes of entire functions without wandering domains

An analysis of Sullivan's proof of Theorem A allows an application to at least some
entire cases.

THEOREM 6.1. Suppose that the transcendental entire function f has the following
properties:

(i) the singularities of f~l lie over finitely many points;
(ii) the components of N(f) are simply-connected;

(iii) there are a constant X > 1 and a finite set of real parameters X1,...,Xk such that
every entire function of the form /<„ = O /O" 1 , where <I> is K-quasiconformal,for
1 ^ K ^ X, and Q>fixes 0,1, oo, can be expressed uniquely in terms of Xl,...,Xk;

(iv) if in (iii) <I> = $>{t,z) depends on a system of parameters t which vary in an open
neighbourhood T of the origin of UM for some M, in such a way that <D(0, z) = z
and <b(t,z) e Cl(T) for fixed z, then in some open subset ofT the parameters Xt

are also C1 -functions of t.
Then f has no wandering domains.

We postpone the proof until the next section.

THEOREM 6.2. / / P and Q are polynomials, with Q non-constant, then

f(z)= \
Jo

satisfies the assumptions of Theorem 6.1 and thus has no wandering domains.

Proof, (i) The singularities of / " 1 are of two types. The algebraic singularities are of
the form f(c) where f'(c) = 0, and are clearly finite in number. The transcendental
singularities correspond to the different asymptotic paths of/. Since / has finite order,
the number of transcendental singularities is also finite by the theorem of Denjoy,
Carleman and Ahlfors.

(ii) There are paths on which /(z) is bounded as z approaches oo and so by the
corollary to Theorem 3.1 every component of N(f) is simply-connected.
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(iii) We may write P{z) = [~[(z — z,)mi and Y,mi = P = degP. Let O be a normalized
K-quasiconformal mapping such that g = f<s> = O /O~ l is entire. Then g is a local
homeomorphism except at 0(z,) and in the neighbourhood of such points g is an mr

to-1 map. Thus the only zeros of g' are those of the polynomial

of degree p.
Now (see, for example, [10]) there is a constant C such that, for large z,

| <D(z) | < C | z \K and | O~ l{z) \ < C \ z \K. If the degree of Q is <?, so that / has order q,
this implies that the order of g is at most Kq. Since g' has only finitely many zeros, the
order of g' (which equals the order of g) is an integer and, provided that Kq < q+ 1,
this must be q. Thus if K < (q+l)/q, we have

g'(z) = P(z)exp(Q(z)),

Since /(0) = 0 and <D(0) = 0, it follows that g{0) = 0, and so

g(z)= P{u)eQ(u)du,
Jo

which is characterized by {p + q + 2) complex parameters, the coefficients of P and Q.
(iv) Suppose now that 0>t(z) = O(t, z) depends continuously differentiably on

parameters t e T <=: UM as in the statement of the theorem. Then the representation
for P obtained in (iii) shows that the coefficients b of P are in Cl(T).

Since / ' has only a finite number of zeros, it is easily shown that /(z) = z has an
infinity of solutions (see, for example, [9, Theorem 3.2]). Note that, by Lemma 2.4,
only finitely many of these fixed points have f'(z) = 1. If a,- are the various fixed
points of / then /?,(£) = <!>(£,a,-) are those of 0,/fl),"1. If the coefficients of Q are
a = (ao,alf...,aq) then each /?, gives rise to an equation

10

We shall prove that there exists a choice of (q + l) of the a,- so that, at t = 0,

D = dJ
dJi) * o.

This is sufficient to prove that the coefficients a of Q are in Cl(T) bear 0.
If D = 0 at t = 0, no matter how we choose (q+ 1) of the a,-, then there is a maxi-

mum number m < q+ 1 of linearly independent rows {dFJday. 0 ^ j ^ q}. There is a
non-zero vector (yo,...,t;q) orthogonal to these rows, and hence to all other such
rows for the infinity of possible choices of i. Thus

fz q

Joj=o

is zero whenever f(z) = z. We have used the fact that P and Q reduce to P and Q when

Since f{z) — z = 0 has at most finitely many multiple roots, we have

G(z) =E(z)

f(z)-z H(zY
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where E is entire, of order at most q, and H is a polynomial, whose degree we denote
by/i.

Write y = arga^O). For values of z = reie in a sector where cos(qd + y) > <5 > 0 one
has, on integrating by parts,

u)) du ~ zJ(exp 0(z))/fi'(z), as z -> 00,

and so E(z) ~ Const. zh+r, where / is the greatest value of ; such that Vj ̂  0. In a
sector where cos(q6 + y) < — S one has E(z) = 0{\)zh~i. Phragmen-Lindelof argu-
ments show that for a function E of order q these growth relations imply that £ is a
polynomial. But a polynomial cannot have different growth in the different types of
sector, as above. Thus in fact D cannot be zero at t = 0.

THEOREM 6.3. / / p is a non-constant polynomial, then f(z) = p(ez) has no wandering
domains.

Proof. Suppose that this is not the case and that l/x is a component of N(f) such
that all Un =f"~l(U1), for n ^ 1, are different. Clearly N(f) is invariant under
translation by 2ni.

Suppose that for some integers j , k, I,

0 # Ujn(Uk + 2nil).

Then Uj+1 = /(£/,-) meets Uk + l = f(Uk + 2nil), which is possible only if j = k. Thus
exp(t//) and exp(t/fc) are disjoint if j =£ k.

We have the commuting diagram

C —+ C

C-{0}

where h(t) = exp(p(f)). Hence h maps Vn = exp Un to Kn + x = exp Un+1.ln Vk, (h
n) takes

no values which lie in Vk, for n > 1. Thus (hn) is normal in each Vk.
In fact each Vk is a component of N(h). For any boundary point of Vk has the

form ea, where a is a boundary point of Uk. But a is a limit point of fixed points
zn of f:fVn(zn) = zn. Since exp(/v) = /T(exp) we have exp(zn) =/iv"(expzn), and
exp(zn) -*• ea, which is thus a limit point of fixed points of h (of arbitrarily large orders)
and so belongs to J(h).

Thus the Vk are wandering components of h; but by Theorem 6.2 no such
components exist. The theorem is proved.

7. Proof of Theorem 6.1

The proof depends on constructing a large family of quasiconformal maps each of
which conjugates the given function to another entire function. We recall some
definitions and results about quasiconformal maps. See, for example, [10].

Let K denote a number such that 0 < K < 1 and write K = (K+ 1)/(1 — K). A
topological map cp of a domain D into C is /C-quasiconformal if and only if q> is
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absolutely continuous on horiztonal and vertical lines and if | q>z | ^ | (pz | a.e. in D,
where q>-z = %(q)x — i(py) and q>z =^{(px + i(Py)- The quantity n = (pz/cpz, which exists
almost everywhere in D, is the 'complex dilatation' of cp. The property that <p is
conformal is equivalent to the vanishing of n a.e.

LEMMA 7.1. Given quasiconformal maps q>: G -> H andij/: H -> Kwe have that ij/(p is
quasiconformal and

(i) if \\t is conformal then fi^ = nv a.e^

(ii) if <p is conformal then ^ = n^(p)(p'(z)/(p'{z) a.e.,
(iii) if (p, ip are surjective, then if \i^ — ^ a.e., we have ty conformal.

This implies

LEMMA 7.2. / / / is a one-to-one conformal map ofD onto Dlt if q> is quasiconformal
and defined on Du Dt, and if fi = n9 satisfies

lAf) vtofWfW a-c in D,
then (pfq)'1 is conformal in cp(D).

LEMMA 7.3 (The measurable Riemann mapping theorem). Given a measurable
function \i on the plane such that || /̂  II oo < 1> there exists a unique sense-preserving
quasiconformal homeomorphism (p = <p" of C to C such that cpz = fup2 and q> fixes
0,l,oo.

Ahlfors and Bers [1] extended this to allow for a dependence on parameters. Their
result includes the following lemma.

LEMMA 7.4. Write t = (t1,...,tn) and s = (s1}...,sn). Suppose that for all t in some open
set T of W there is a function n{t,z), with z e C, measurable with respect to z, such that
II n(t>z) II oo ̂  1> and that (suppressing z)

Hit + s) = fi(t) + £ a£t)st + \s\a(t,s)
i = l

with || a(t,s) ||oo ^ cfor some constant c, and <x(t,s) -> 0 a.e. in z as s -* 0. Suppose also
that || afa + s) || a, are bounded and that afa + s) -> a,(r) a.e. for s -> 0.

Then (pM(f) is in CX(T) as a function of t for fixed z.

Proof of Theorem 6.1
Suppose that / satisfies the hypotheses of Theorem 6.1 and that there is a

wandering component U of N(f). By assumption all components of N(f) are simply-
connected. Since f'1 has only finitely many singular points it follows that, for large n,
f"(U) is free of such singularities and the map / : f"{U) -> f" + l(U) is a homeomorph-
ism. Without loss of generality we may suppose that this is the case for n ^ 0.

Define the equivalence relation ~ on C by x ~ y if and only if there exist m, n in N
such that fm(x) = f"{y). A class of equivalence [x] meets U in at most one point. For
x,y in U with x ~ y implies that /m(x) = f"(y) for some positive integers m,n. By the
definition of wandering domain m = n, while fm is a homeomorphism and so x = y.
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LEMMA 7.5. Given measurable \i in the above-mentioned U, such that \ \i \ < K < 1 in
U, there is an extension of pL to a function in L°°(C), which satisfies

ti)fWf{), a.c.inC.

Further | |//|L = supl/|/^| < K.

For define (i(z) = 0 if [z] n U = 0 or if [z] is one of the finite set of classes which
contains a singular point of f~l. For any other class [z]r\U = [x] for some x e U
and there are positive m,n such that /m(x) = f"(z).

Define

This extension of n is measurable in each f±n(U) and so in C and satisfies the
requirements of the lemma.

LEMMA 7.6. The quasiconformal homeomorphism cp11 associated as in Lemma 7.3 with
the extended n of Lemma 7.4 is such that

is entire.

By Lemma 7.2, /^ is conformal at all points except those of the form (p"(a) where
/'(a) = 0. Thus /M is analytic except for a finite number of points in whose
neighbourhood /M is bounded. Thus /M is in fact entire.

Initial construction of quasiconformal maps in the unit disc D
Take an integer M > k, where k is the number of parameters in the statement of

Theorem 6.1 (iii). Set

T = {{tlt...,tti):t,eR,\tt\< 1,1 Ki^M}.

Take three points lying on 3D in positive cyclic order, say a,b,c. On the arc (a, b)
pick arga < 0x < 02 < ... < 92M < argfr. Denote [02j-1,92j] by /,- and take a real
C^function Sj(6), where 1 ^ j< ^ M, such that, for a preassigned positive e, 5j = 0
except in /,., 5j > 0 in i), Sj{0) + 6 < 62j, 6- 5/0) > 02j. l in i), and | d'/O) | < e/2M < 1.
Note that, for t e T, O + ^tjSj(d) is a monotone map of [0,27r] to itself.

Define the homeomorphism of D onto D given by

and note that different t give different q>, all of which fix a,b,c. Also £ ^ 0 gives cp ^ Id.
Each <p is quasiconformal in £>, for q> e CJ(D), except at z = 0, and

A** = <Pi/<Pz = e

Thus in D, 1^1 ^ ^e. We choose e so that, for any K-quasiconformal map <1> of the
plane with K < (l+e)/(l— e) the function / o of Theorem 6.1 (iii) depends on the k
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parameters Xlt...,Xk. We also choose e so small that all K ^ {(1 +e) / ( l - e )} 2 satisfy
Lemma 7.9 (to be proved later).

The plane maps
First carry q> over to the wandering domain U as follows. From now on ip denotes

a fixed one-to-one conformal map of D onto U. Write <pt(z) = q>(t, re'e) so that, by
Lemma 7.1,

Xt

is quasiconformal with dilatation

which is measurable in U and satisfies \n,\ ^ ye.
By Lemma 7.5 we extend nt to the plane (keeping the same notation) so that

II A*» II» < i e a n d , by Lemma 7.3, obtain the associated plane map Or = </', which fixes
0,1, oo and makes /, = Or/<Dr~

1 entire, fixed by prescribing the parameters Xy,..., Xk.
Direct computation shows that /i, satisfies the requirements of Lemma 7.4. In fact

either fit{z) = 0 for all t, or there exists an x in U such that, for some m,n e N,

(M

= eiy{z)lt

where y(z) is real and (Ij = ^{argi/^ l(x)) is constant in t and J j3,-| < e/2M.
We have proved the following result.

LEMMA 7.7. (i) <J>,(z) is in Cl(T)for each fixed z.
(ii) 0)0(z) = z.
(iii) /,(z) = <Df/<Dr

 x = F(Xu...,Xk,z), where, in some open subset T of T, the
parameters Xt are in CY{T).

The third part follows from our assumptions of Theorem 6.1 (iii),(iv).

COROLLARY. Since M > k there is some non-constant arc t = t(o), with 0 ^ a < a0, in
T" a T on which X(t) is constant.

From the corollary we have, for 0 ^ a < a0,

%<,)/%«) = f,(a) = /,(0) = %0)f%0),

and hence

where Qa = %0\%a)-
Thus, for p e N, QJ" = f"Qa. If /p(a) = a, this implies that /"(fi^a)) = Qa(<x).

Since the fixed points of fp (for given p) form a discrete set and since Qa is continuous
in a, it follows that Qa(cc) = Q0(<x) = a. Thus Qa fixes every fixed point of every order of
/ and consequently all points of J(f). Similarly Qa maps U into itself (and fixes every
point of dU).

LEMMA 7.8. The map G = i / / " 1 ^^ : D -> D, with 0 ^ a < a0, fixes each point of 3D.
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The proof of Lemma 7.8 follows an idea of Peter Jones, which depends on

LEMMA 7.9. There isaK > 1 such that for every K-quasiconformal map f of the plane
which fixes 0,1, oo one has \ f(z) — z\ < \ uniformly for z e L = {ete: %n ^ 6 ^ %n}.

For the K-quasiconformal maps of given K which fix 0,1, oo form a normal family.
If K -> 1 such maps must converge to z uniformly on L.

Proof of Lemma 7.8. Each d),*1 has

and Qa is thus {(l+£)/(l—e)}2-quasiconformal and satisfies the hypotheses of
Lemma 7.9.

Consider z (close to 3D in D) and G(z). Denoting the hyperbolic distance by [ •, • ] we
have

Denote by a a nearest point of dU to t̂ (z) and set r = | a —i/f(z) |. There is a point /? on
5(7 whose distance from a is r. Scaling Lemma 7.10 gives that, since Qa fixes a,/?, oo,
we have

Now IXzJ.fUMz))]^ ^ W(z),QJiilt{z))]w, where W is the disc | w - ^ ( z ) | < r, and
hence less than an absolute constant, independent of z. This implies that as
z -* C e 3D we have G(z) -> C also.

Conclusion of the proof
For all a such that 0 ^ a < a0, <£>t(a) maps U to the same domain V. Let $ be a

conformal map of D onto V. Then Lemma 7.8 shows that <A~1(D»(0)$''A~1(*)r(<7)|A is the
identity on 3D. Thus

holds on 5D and both sides are maps of D to D with dilatations ^,((T) and ^r(0),
respectively, which are the same as the dilatations of <pf(CT) and (p,(0)-

By Lemma 7.1 (iii) we have

~̂1(I)r(<T)<A = L9<ptla),

where La,L0 are Moebius transformations which map D to D. Thus on 3D we have
Lacpt{a) = L0(pt{0). But on the arc (b,c) of 3D both <pr(CT) and cpm are the identity and so
La and Lo must be the same transformation. But this implies that (pt(a) = <pr(0) holds on
the whole of 3D for 0 ^ o < a0, which contradicts the construction of the q>. The
proof is now complete.
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