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Riemann Mapping Theorem: If () is a sim-
ply connected, proper subdomain of the plane,
then there is a conformal map f : D — ).
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If P =0 is a simple polygon, preimages of the
vertices are called the conformal prevertices.
In general, there is no simple formula for them in

terms of P.




The Schwarz-Christoffel formula gives a
formula for the Riemann map of the disk onto
a polygonal region {2: if the interior angles of P
are am = {7, .. anw} ie.,

A+0/ O‘k Ldw.

This maps the disk to a polygon with the correct
angles but the edge lengths depend on the param-
eters z = {21, ..., zn}. How to find z in practice?



Theorem: There is a €' < oo so that if € is
bounded by a simply polygon P with n vertices
we can find w = {wq,...,wp} C T so that

1. w can be computed in at most C'n steps.

2.dgc(w,z) < log8, z = conformal prevertices.

doc(w, z) is the infimum of log K such that there
is a K-quasiconformal A : ID — D such that
h(z) =w.

This is not quite a formula for the conformal pre-
vertices, but it is pretty close. This result origi-
nates with a theorem about convex sets in hyper-
bolic 3-manifolds.



Hyperbolic space: The hyperbolic metric on
the disk or ball is

dp = 2|dz|/(1 — |2]).
The hyperbolic metric on the upper halt space
dp = |dz|/dist(z, R?).

Geodesics are circles orthogonal to the boundary

The hyperbolic metric on a simply connected do-
main plane €2 is defined by transferring the metric
on the disk by the Riemann map. It satisfies

i
= dist(z, 0Q)
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A Kleinian group is a discrete group of isome-

tries of hyperbolic space. A hyperbolic mani-
fold is M = Ri /G, G a Kleinian group.

An orbit accumulates on a set A C S% = OB
called the limit set. The complement Q = S?\ A
is called the ordinary set and 0,oc M = Q/G is
a Riemann surface.

The convex core is smallest convex set in M
containing all closed geodesics.

0 OC(M) = OscM (M\C(M) ~ C(M)xRT).
e (G has a finite sided fundamental domain ift
C'(M) has finite volume.

e A\ has zero area iff Brownian motion almost

surely leaves C(M) (Ahlfors conjectures claims
this happens unless C(M) = M).



The convex core and the limit set are closely re-
lated. Let C(A) C H° be the smallest convex
set In Ri which contains all the infinite hyper-
bolic geodesics with both endpoints in A. This is
G-invariant and C(M) = C(A)/G.

There is one component of 0C (M) corresponding
to each complementary component of A. Let ()
be one such component and let S C Ri be the

component of C' (M) “facing ” 2. S is called the
dome of ().



The dome can also be defined as the boundary of
the union of all hemispheres centered on R? whose
bases are disks contained in ).

Similar to Euclidean space where the complement
of a closed convex set is a union of half-spaces.



If A is connected, ) is simply connected.

Each point on S is on the boundary of at least one
hyperbolic half-space H whose interior misses S.
OH is called a support plane. Its intersection
with S is either an infinite geodesic (bending
line) or a geodesic face bounded by geodesics.
Thus the base disk hits 0€) in at least two points.
The centers of such disks define the medial axis
in computational geometry:.

e Medial Axis =
set of support planes =
dual of bending lamination.

MA of a polygon is well known to be a finite tree.
It is a R-tree for any simply connected domain.



If €2 is simply connected and a finite union of disks
we call it finitely bent. The dome is a finite
union of geodesic faces which meet along infinite
geodesics with a well defined bending angle.
Every simply connected domain can be approxi-
mated by such domains from inside.

In general the dome is still a union of geodesic
faces (possibly empty) and bending geodesics (pos-
sibly uncountably many). There is a transverse
measure which says how much bending a trans-
verse arc encounters as it crosses the bending lam-
ination. Thus dome has a measured lamination,
called the bending lamination.
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Let pg be the hyperbolic path metric on S.

Theorem (Thurston): There is an isometry ¢
from (S, pg) to the hyperbolic disk.

For finitely bent domains one can see this by sim-
ply rotating around each bending geodesic by an
isometry to remove the bending. Doing this for
all of them maps the surface isometrically to a
hemisphere, which is isometric to the hyperbolic

disk.
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e Recall that a map is biLipschitz if

Lite,y) < d(f(@), Fy)) < Ad(z,y).

A
e f is a quasi-isometry (or rough isometry) if
1
P2 y) = B < p(f(2), fy) < Ap(z,y) + B.

e A homeomorphism is K-quasiconformal if
for every x € ()

Max,,. |, . — f(iE)—f(y)|
lim yle—yl=r |
30 ity | f(2) — [(y)]

O

< K.
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e For self-maps of hyperbolic disk,
BiLipschitz =
Quasiconformal =
Quasi-isometry =
there 1s BiLipschitz map with
same boundary values

Thus all three classes have the same type of bound-
ary values which can be identified as:

e A circle homeomorphism is quasisymmetric

if
_ sl
o=

whenever I, J are adJ acent intervals of equal length.
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Theorem (Sullivan, Epstein-Marden):
There i1s a K biLipschitz map o : {2 — S so

that 0 = Id on 0€2 = 05. Thus o is also K-QC
for some K independent of ).

If €2 is invariant under a Kleinian group, so is o.

Sullivan sketched proof for some invariant domains
without explicit constant. Epstein-Marden proved
1t for all simply connected domains with K = 80.
Best current bounds are K < 7.82 (B.) and K >
2.1 (Epstein-Markovic).

I currently know of five proofs involving explicit
constructions, Teichmuller theory, quasisymmet-
ric mappings and martingales. 1 will give the

)

“easy”’ one.
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A proof of Sullivan’s Theorem:

Define nearest point retraction R : {2 — S by
expanding horoball tangent at z € () until it first
hits S at R(z). It suffices to show R is a quasi-
1sometry.

In general, the retraction is not 1-to-1 in cres-
cents, so can’t be QC.
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Fact 1: If z € (),
dist(z, 90) ~ dist(R(z), R?)

- -
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Fact 2: R is Lipschitz. For simply connected
domain

i
= dist(z, 092)’

and for disk D C (),
dist(z,0Q) < dist(z,0D) < dist(z, 0f)
for z in convex hull (in D) of 9D N 0f2.
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Fact 3: pg(R(z), R(w)) <1 = po(z,w) <C.

Suppose R(z) is at height r. Every point on S-
geodesic from R(z) to R(w) has height ~ r. Thus
every preimage point v has

dist(v,00) ~r ~ |v — z|.
Thus preimage of path is covered by O(1) squares
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Moreover, g = 10 o : {) — D is locally Lipschitz.
Standard estimates show

_ dist(g(z), OD)
9(z)] = dist(z,0Q)

Use Fact 1
dist(z, )
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Proof giving explicit constant: Divide finitely
bent €2 into crescents and gaps. Foliate crescents
by orthogonal circles. Triangulate gaps and ex-
tend foliation to gaps. Define explicit map of {2
into Ugaps which locally QC and continuous when
followed by R : {2 — §.

\\ >
7
/
73’:3/1}\@\
'

Requires explict upper bound of fraction of length
that a foliation interval can spend in crescents.
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Corollary: Every simply connected domain can
be mapped to the disk by a locally Lipschitz home-
omorphism.

Corollary: Any conformal map f : D — () can
be written as f = g o h where h is a K-QC self-
map of D and |¢’| is bounded away from zero.
Indeed |¢'(tz)| < Clg'(2)], 0 <t < 1

Corollary: K = 2 in Sullivan’s theorem implies

Brennan’s conjecture: for any conformal f : {2 —
D, f' € LP(Q, dzdy) for all p < 4.

Epstein and Markovic showed K > 2.1.

Corollary: If (/G has no Greens function, then
02 1s either a circle or has dimension > 1.
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L 1s easy to visualize for for finitely bent domains.
Write €2 as a disk and a union of crescents. Map
‘outer’ edge of each crescent to ‘inner’ edge by a
Mobius transformation. Composing gives ¢.

Equivalently, foliate crescents by circles passing
though endpoints. The orthogonal foliation con-
sists of circular arcs which are orthogonal to both
boundary arcs of the crescent. Following leaves

gives ¢ : 080 — OD.
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The medial axis: The medial axis of a do-
main is the set of points in the interior which are
equidistant from two or more boundary points.

Chin-Snoeyink-Wang proved the medial axis can
be computed in time O(n).

Medial axis is a type of Voronoi diagram, where
sites are vertices and open edges and distance is
measured along paths inside P. This constrained
Voronoi diagram has extra edges at the concave
vertices.

23



Applications of the medial axis:
e Analysis of chromosones

e Designs of type fonts

e Describe statisical features of porus materials
e Shape recognition

e Time critical collision detection

e Robotic motion

e Biological description of shape

e Mesh generation

e Computer vision

e Radiosurgery

However, medial axis is unstable under perturba-
tions. For example, medial axis of a disk is a point,
but for regular n-gon has n radial segments.
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Medial axis flow: Fix a MA-disk Dg. If D is
a distinct MA-disk, £2\ D has at least two com-
ponents and exactly one of these intersects Dj.
Take the boundary arcs of D corresponding to
the components that don’t hit Dy. This foliates

0\ Dy
A

@)

Following orthogonal flow gives ¢ : 90 — T =
0Dg. This map differs from Riemann map by a
K-QC map (where K is independent of 2).
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Theorem: There is a €' < oo so that if € is
bounded by a simply polygon P with n vertices we
can find points w = {wq,...,wp} = ¢(v) C T
so that

1. w can be computed in at most Cn steps.

2.dgc(w,z) <log8, z = conformal prevertices.
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This theorem was motivated by 1998 paper of
Toby Driscoll and Steve Vavasis “Numerical con-
formal mappings using cross ratios and Delaunay
triangulations”. They define an mapping which
turns out to be the ¢+ map for a domain assoicated
to P.

However, this approximation requires new vertices
to be added to P (arbitarily many depending on
the geometry), so their method is not O(n).
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If we know the medial axis we can compute ¢(v)
in O(n) steps:

e Compute the medial axis (which is a tree) and
fix a root vertex.

e For each vertex of medial axis find the unique
adjacent vertex closer to the root (the “parent”).
Include vertices of P as leaves of medial axis tree.
Also choose 3 reference points on boundary of each
non-trivial disk.
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e Define a certain explicit Mobius transformation
between each disk and its parent. Record cross
ratios of images of reference points with respect
to reference points for parent.

@ «,49

<\

e ; is defined by composing the maps along path
from leaf to root.

e Working from the root outwards, we compute
images of reference points using recorded cross ra-
tio information. When we reach a vertex of P we

have ¢. Time is O(n).

29



Other properties of ¢
e The map ¢ shrinks arclength along P. (Collaps-
Ing a crescent decreases arclength on ‘outer’ edge;
this gives finitely bent case and pass to limit for
general case.)

o If v C 00 is an arc whose endpoints lie on
0D N 0f) for some open disk D C (2, then the
images of vertices on <y can be chosen to depend
only v and not on the rest of 0.

7
T O
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o If v ={vj,vj,vj,,vj} CID NI for some
open disk D C €2 then the cross ratio of ¢(v)
equals the cross ratio of v.

e For any four vertices vj,, vy, vj,, v, of P the
corresponding true and approximate prevertices
on T satisty

1 < MOdD(Zj17 Zj27 ng) Z]4)
8 = Modp(wjy, wj,, Wiy, w;,)

< 8,

where Mod denotes conformal modulus on the

disk.

=

31



There is an O(n) algorithm to compute the me-
dial axis of an n-gon. There are much simplier
O(nlogn) methods which may be faster in prac-
tice.

It 1s equivalent to compute the internal Voronoi
diagram for PP where the sites are the vertices and
open edges. A key step is the

Merge Lemma: Suppose n sites S are divided
into S7 and S5 by a line and that the Voronoi di-
agrams of S7 and Sy are given. Then the Voronoi
diagram of S can be found in at most O(n) addi-
tional time.

Sort z-coordinates of vertices and group into ver-
tical slabs. Recursively dividing P into two almost
equal sized pieces gives a O(nlogn) algorithim
(Yap 1993).
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The O(n) estimate is more involved. The basic
steps are (Chin-Snoeyink-Wang, 1998)

e Cut interior of P into trapedzoids with vertical
sides. Possible in O(n) time (Chazelle, 1991).

e Use trapezoids to divide P into pseudo-normal
histograms (Klein and Lingas, 1993).

)y
4
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e Cut each pseudo-normal histogram into mono-
tone histograms.

e Compute Voronoi diagrams of monotone his-
tograms (Aggarwal, Guibas, Saxe, Shor, 1989 and
Djidev, Lingas 1991)

e Merge monotone diagrams into diagrams for
pseudo-normal histograms and merge the results
into diagram for P.
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Davis’s algorithm: Suppose P is a poly-
gon with vertices v. = {vy,...,vp} and w =
{wi,...,wp} € T™ is the current guess for the
prevertices. Apply Schwarz-Christoftel to w and
let v/ = {v],...,v;,} be resulting vertices. Define
w’ by
vk — Vg1
V), — Vg
where k is a normalizing factor. Often works in
practice but must fail in some cases.

| / / L k
W — W] = klwg — wg |

Can we do better using medial axis?
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Coordinates on n-tuples: Let X, denote
the space of n-tuples of distinct points on the unit
circle and let X, be X, with any two Mobius
equivalent n-tuples identified.

Give X, coordinates by taking a triangulation of
the disk with the given vertices and using the n—3
numbers

10g MOd]D(Zjl, Zj2, ng, Zj4)
for each 4-tuple corresponding to a pair of adja-
cent triangles.
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Fix n angles and let .S denote the Schwarz-Christoftel
map from n-tuples on T to polygons determined
by these angles. Consider ¥ = ¢ o S mapping n-
tuples in the circle to n-tuples. Easy to check W

is well-defined on X,.

Given a simple polygon with vertices v the con-
formal prevertices are a solution of ¥(z) = «(v).
Is this the only solution?

Is U one-to-one? A diffeomorphism? Not hard to
see it is onto since ||¥(w) — w|| < C.

Does ||¥(w) — ¢(v)||? have additional local min-
ima?
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The QC extension of ¢ has an explicit Beltrami
coefficient. Can we improve our guess by quickly
solving (or approximately solving) the Beltrami
equation on the disk?

On the disk the Beltrami coeflicient can be written
as a sum p = »  py where each uy corresponds
to an explicitly given circle homeomorphism. The
composition of these maps may give a good ap-
proximation to the circle homeomorphism corre-
sponding to p, especially if all the norms are small.
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If €) is finitely bent we can multiply each crescent

angle by a factor of ¢t € |0, 1] to get a surface Q.
Thus {21 = €2 and y = D.

Then (1)~ ! o 1s is a map of 9Qs to Oy with
QC extension of size 1+ C'|s —t|. This means the
conformal prevertices are close in the dgo metric.
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Suppose we have a map I so that dpo(z, w) <
e implies dpo(z, F(w)) < Ae for some A < 1,
i.e., we can solve for conformal pervertices z by
iteration if we start close enough.

Choose tg = 0 < t1 < ...ty = 1 and let €2, =
(2¢,. Choose points so prevertices differ by €/2 in
dgc metric. Iterate F' to get within €/2 of kth
set of prevertices then use this as initial guess
for next set. Leads us to correct prevertices in

C'/(elog(1/)\)) steps.
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e What is best K in Sullivan’s theorem? Given a
polygon could compute the conformal and ¢ im-
ages for various 4-tuples of vertices to get lower
bounds.

e Can we get a “simple” map that approximates
the conformal prevertices within dgc distance €
in time O(nloge)?

e Driscoll and Vavasis report that the iteration

Wnt1 = wn + ((v) — V(wn)),

converges to the true prevertices in practice. Why
does it? This would be true if the derivative of W
was close to the identity.
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What works in R>?

If €2 is obtained by adding non-overlapping spheri-
cal caps repeated onto a ball then the medial axis
will still be a tree and the proot should be un-
changed: such a domain can be mapped to a ball
by a uniformly QC map with a bounded deriva-
tive.

In general, medial axis of 3-D domain is a 2-D
object. If each boundary point is associated to a
medial axis ball containing it and each point of
medial axis is connected by a path to some base
point, this induces a map from 0f2 to a sphere, but
is not clear when this is “nice”, or even continuous.
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