Problem 1 (10 points): Give the correct definition or statement.

(1) Define differentiability of a function \(f : \mathbb{R}^n \to \mathbb{R}^n \).

(2) State the contraction mapping principle.

(3) State the inverse function theorem.

(4) State the rank theorem.

(5) Define a partition of unity.

(6) Define a differential form of order \(k \) on \(\mathbb{R}^n \).

(7) State Stokes theorem.

(8) Define measurable set.

(9) State the monotone convergence theorem.

(10) State the Lebesgue dominated convergence theorem.

Problem 2 (10 points): Give an example of each, or explain why it can’t exist:

(1) A sequence of functions on \([0, 1]\) that converges pointwise, but not uniformly.

(2) A sequence \(\{f_n\} \) on \([0, 1]\) so that \(f_n(x) \to 0 \) for every \(x \) but \(\int_0^1 f_n \, dx \not\to 0 \).

(3) A function \(f(x, y) \) so that the \(x \) and \(y \) partials exist, but \(f \) is not differentiable at \((0, 0)\).

(4) A subset \(E \subset \mathbb{R}^2 \) and a strict contraction \(f : E \to E \) that has no fixed point.

(5) A function that is \(C^1 \) on \(\mathbb{R} \), but is not \(C^2 \).

(6) A measurable function on \(\mathbb{R} \) that is nowhere continuous.

(7) A sequence of functions on \([0, 1]\) so that \(\int_0^1 |f_n| \, dx \to 0 \) but \(f_n(x) \) does not converge to zero for any \(x \).

(8) An integrable function \(f \) on \([0, 1]\) so that \(f^2 \) is not integrable.

(9) An example of strict inequality in Fatou’s theorem.

(10) An uncountable set of Lebesgue measure zero.
Problem 3 (10 points): Give a complete and correct proof of two of the following statements (your choice). You may use results from the text if they are correctly quoted.

1. If $f \geq 0$ on E and $\int_E f \,dx = 0$, then $f = 0$ almost everywhere on E.
2. If f_n is a sequence of measurable functions, then the set where f_n converges is measurable.
3. Prove that there is a non-measurable set in $[0, 1]$.
4. Prove that the continuous functions are dense in the integrable functions (L^1 norm).