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Chapter 7.1: Positive linear functionals

X = locally compact Hausdorff space (LCH space) .

Cc(X) = continuous functionals with compact support.

Defn: A linear functional I on C0(X) is positive if I(f ) ≥ 0 whenever f ≥ 0,

Example: I(f ) = f (x0) (point evaluation)

Example: I(f ) =
∫
fdµ, where µ gives every compact set finite measure.

We will show these are only examples.



Prop. 7.1; If I is a positive linear functional on Cc(X), for each compact

K ⊂ X there is a constant CK such that

|I(f )| ≤ CL‖f‖u
for all f ∈ Cc(X) such that supp(f ) ⊂ K.

Proof. It suffices to consider real-valued I . Given a compact K, choose φ ∈
Cc(X, [0, 1]) such that φ = 1 on K (Urysohn’s lemma). Then if supp(f ) ⊂ K,

|f | ≤ ‖f‖uφ,
or

‖f‖φ− f > 0, , ‖f‖φ + f > 0,

so

‖f‖uI(φ)− I)f ) ≥ 0, ‖f‖uI(φ) + I)f ) ≥ 0.

Thus

|I(f )| ≤ I(φ)‖f‖u.
�



Defn: let µ be a Borel measure on X and E a Borel subset of X . µ is called

outer regular on E if

µ(E) = inf{µ(U) : U ⊃ E,U open },
and is inner regular on E if

µ(E) = sup{µ(K) : K ⊂ E,K open }.

Defn: if µ is outer and inner regular on all Borel sets, then it is called regular.

It turns out that regularity is a bit too much to ask for when X is not a-compact,

so we adopt the following definition.

Defn: A Radon measure on X is a Borel measure that is finite on all compact

sets, outer regular on all Borel sets, and inner regular on all open sets.

Later we prove that that Radon measures are also inner regular on all of their

σ-finite sets.

Notation: we write f ≺ U if f U is open in X , 0 ≤ f ≤ 1 and supp(f ) ⊂ U .



Johann Radon (1887–1956)

https://mathshistory.st-andrews.ac.uk/Biographies/Radon/


The Riesz Representation Theorem: If I is a positive linear functional

on Cc(X), then there is a unique Radon measure µ on X so that I(f ) =
∫
fdµ

for all f ∈ Cc(X). Moreover,

(7.3) µ(U) = sup{I(f ) : f ∈ Cc(X), f ≺ U}
for all open sets U and

(7.4) µ(K) =

∫
{I(f ) : f ∈ Cc(X), f ≥ χK}

for all compact sets K in X .



Frigyes Riesz (1880–1956)

https://mathshistory.st-andrews.ac.uk/Biographies/Riesz/


Marcel Riesz (1886–1969)

https://mathshistory.st-andrews.ac.uk/Biographies/Riesz_Marcel/


Shizuo Kakutani (1911–2004)

https://mathshistory.st-andrews.ac.uk/Biographies/Kakutani/


Andrei Andreyevich Markov (1856–1922)

https://mathshistory.st-andrews.ac.uk/Biographies/Markov/


Proof of Riesz Representation:

Uniqueness: If I(f ) =
∫
fdµ then I(f ) ≤ µ(U) whenever U is open and

f ≺ U .

If K ⊂ U is compact, then by Urysohn’s lemma there is a f ∈ Cc(X) so that

f = 1 on K and f ≺ U , so µ(K) ≤ inf fdµ ≤ µ(U). Since µ is inner regular,

we can choose µ(K) ↗ µ(U) so (7.3) holds. This determines µ on open sets,

and hence on all Borel sets by outer regularity.



Existence: Define

µ(U) = sup{I(f ) : f ∈ Cc(X), f ≺ U}.
for U open. Define

µ∗(E) = inf{µ(U) : U ⊃ E,U open },
for general sets E. Clearly µ(U) ≤ µ(V ) if U ⊂ V , so µ∗(U) = µ(U) if U is

open.

Step 1: µ∗ is an outer measure.

Step 2: Every open set is µ∗-measurable.

This implies every Borel set is µ∗-measurable, so restricting it to Borel sets gives

a Borel measure satisfying (7.3) by definition.



Step 3: µ satisfies (7.4)

Thus µ is finite on compact sets.

Lemma: µ is inner regular on open sets.

Proof. If U is open and µ(U) > α choose f ∈ Cc(X) so that f ≺ U and

I(f ) > α. Let K = supp(f ). If g ∈ Cc(X)and g ≥ χK then g − f ≥ 0 so

I(g) ≥ I(f ) > 0. But then µ(K) > α by (7.4), so µ is inner regular on U . �

Step 4: I(f ) =
∫
fdµ for all f ∈ Cc(X).



Proof of Step 1:

By Proposition 1.10, if is enough to show that given open sets {Uj} and U =

∪jUj we have

µ(U) ≤
∑

µ(Uj).

Choose f ∈ Cc(X) with f ≺ U and set K = supp(f ). Then K is in a finite

union of the Uj, so my Prop 4.41 there are gj ∈ Cc(X) with gj ≺ Uj and∑
gk = 1 on K. Then f =

∑
gjf and fgj ≺ Uj so

I(f )−
n∑
1

I(fgj) ≤
n∑
1

µ(Uj) ≤
∞∑
1

µ(Uj).

Taking the supremum over f ≺ U and using definition of µ(U), we get

µ(U) ≤
∞∑
1

µ(Uj).



Proof of Step 2: Suppose U is open and E is any subset of X with finite µ∗

measure. We must show

µ∗(E) ≥ µ∗(E ∩ U) + µ∗(E \ U).

First suppose E is open. Then E ∩ U is open, so given ε > 0 we can find

f ∈ Cc(X) such that f ≺ E ∩ U and I(f ) > µ(EnU)− ε. Also, E \ supp(f )

is open, so we can find g ∈ Cc(X) such that g ≺ E \ supp(f ) and I(g) >

µ(E \ supp(f ))− ε. But then f + f ≺ E so

µ(E) ≥ I(f ) + I(g)

≥ µ(E ∩ U) + µ(E \ supp(f ))− 2ε

≥ µ∗(E ∩ U) + µ∗(E \ U)− 2ε

Taking ε→ 0 gives the desired estimate.



For general E, if µ∗(E) < ∞, then there is an open V containing E so that

µ(V ) ≤ µ∗(E) + ε and hence

µ∗(E) + ε ≥ µ(V )

≥ µ(V ∩ U) + µ(V \ supp(f ))

≥ µ∗(E ∩ U) + µ∗(E \ U)

so taking ε→ 0 finishes Step 2.



Proof of Step 3: If K is compact, f ∈ Cc(X), and f ≥ χK, define

Uε = {x : f (x) > 1− ε}.
Then Uε is open, and if g ≺ Uε, we have f/(1 − ε) − g ≥ 0 and so I(g) ≤
I(f )/(1− ε). Thus

µ(K) ≤ µ(Uε) ≤ I(f )/(1− ε)
and taking ε→ 0 gives

µ(K) ≤ I(f )µ(U).

On the other hand, for any open U ⊃ K, by Urysohn’s lemma there exists

f ∈ Cc(X) such that f ≥ χK and f ≺ U , whence I(f ) ≤ µ(K). Since µ is

outer regular on K , (7.4) follows.



Proof of Step 4: If suffices to show that I(f ) = inf tfdµ if f takes values in

[0, 1] since Cc(X) is the linear span of such functions.

Given a natural number N , let Kj = {x : f (x) ≥ j/N} and let K0 = supp(f ).

Also, define f1, . . . , fN in Cc(X) by

fj(x) =


0, x 6∈ Kj

f (x)− (j − 1)/N, x ∈ Kj−1 \Kj

1/N, x ∈ Kj

Then χKj
/N ≤ fj ≤ χKj−1

/N and so

1

N
µ(Kj) ≤

∫
fjdµ ≤

1

N
µ(Kj).

If U is open an contains Kj then Nfj ≺ U so I(fj) ≤ mu(U)/N .

By (7.4) 1
Nµ(Kj) ≤ I(fj) and by outer regularity, I(fj) ≤ 1

Nµ(Kj).



Set f =
∑N

1 fj. Then

1

N

N∑
1

µ(Kj) ≤
N∑
1

fjdµ =

∫
fdµ ≤ 1

N

N−1∑
0

µ(Kj),

1

N

N∑
1

µ(Kj) ≤ I(f ) ≤ 1

N

N−1∑
0

µ(Kj),

hence

|I(f )−
∫
fdµ| ≤ 1

N
(µ(K0)− µ(KN)) ≤ µ(supp(f ))

N
.

Since µ(supp(f )) <∞, taking N ↗∞, proves I(f ) =
∫
fdµ. �



Example: Harmonic measure

Suppose Ω is a bounded domain in n and for every continuous f on ∂Ω there is

a harmonic function u on Ω that has a continuous extension to ∂Ω that equals

f .

u is called the solution to the Dirichlet problem with boundary value f .

For z ∈ Ω the map f → u(z) is a positive linear functional.



By the Riesz theorem, there is a measure ωz on ∂Ω so that

u(z) =

∫
∂Ω

f (x)dωz(x),

ωz is called harmonic measure with basepoint z.

For E ⊂ ∂Ω, ω(z, E,Ω) denotes harmonic measure of E in Ω with respect to

z. It is a harmonic function in z with boundary values 1 on E and zero off E.

On the disk, harmonic measure equals Poisson kernels.

In general, harmonic measure equals first hitting distribution on ∂Ω of Brownian

motion started at z.



Geometric properties of ω are widely studied.

F. and M. Riesz theorem: if if Ω ⊂ R2 is simply connected, and ∂Ω is

a rectifiable curve, then harmonic measure is absolutely continuous to length

measure (same null sets).

Makarov’s theorem: if Ω ⊂ R2 is simply connected, then there is a set of

Hausdorff dimension 1 on the boundary that has full harmonic measure. Every

boundary set of Hausdorff dimension < 1 has zero harmonic measure.

In this case, harmonic measure is image of Lebesgue measure on circle under

Riemann mapping.

Obvious generalization to Rn is wrong (Wolff snowflakes). Some partial results,

but correct conjecture still unknown.



Bishop-Jones theorem: if Ω ⊂ R2 is simply connected, and E ⊂ ∂Ω lies

on some rectifiable curve, then `(E) = 0 implies ω(E) = 0.

Versions of this recently proven in higher dimensions.

C. Bishop PhD thesis: if ∂Ω is a ”fractal” curve then harmonic measure

for inside and outside domains are singular (iff set of tangent points has zero

linear measure).



Chapter 7.2: Regularity and approximation theorems

Prop. 7.5: Every Radon measure is inner regular on all of its σ-finite sets.

Proof. Suppose that µ is Radon and E is σ-finite (a countable union of finite

measure sets). If µ(E)) < ∞, the for any ε > 0 we can choose an open U

containing E such that µ(U) < µ(E) + ε and a compact F ⊂ U such that

µ(F ) > µ(U)− ε.

Since µ(U \E) < ε, we can also choose an open V ⊃ U \E such that µ(V ) < ε.

Let K = F \ V . Then K is compact, is inside E,

µ(K) = µ(F )− µ(F ∩ V ) > µ(E)− ε− µ(V ) > µ(E)− 2ε.

Thus µ is inner regular on E (if E has finite measure).

If µ(E) =∞, the E = ∪Ej is an increasing union of finite measure sets. Thus

for any N ∈ N there exists j such that µ(Ej) > N and hence, by the preceding

argument, a compact K ⊂ Ej with µ(K) > N . Hence µ is inner regular on E

in general. �



Cor. 7.6 Every σ-finite Radon measure is regular. If X is σ-compact, every

Radon measure on X is regular.

Proof. By definition, a Radon measure is outer regular, so inner regular implies

regular.

A Radon measure gives finite mass to compact sets, so a Radon measure on a

σ-compact space is automatically σ-finite. �



Prop. 7.7: Suppose that µ is a σ-finite Radon measure on X and E is a Borel

set in X .

a. For every ε > 0 there exists an open U and a closed F ⊂ E ⊂ U

µ(U F ) < ε.

b. There exists an Fσ set A and a Gδ set B such that A ⊂ E ⊂ B and

µ(BA) = O.

Defn: An Fσ set is a countable union of closed sets. A Gdelta set is a

countable union of open sets.

These are the first steps on the Borel hierarchy of sets.



Félix Edouard Justin Émile Borel (1871–1956)

https://mathshistory.st-andrews.ac.uk/Biographies/Borel/


Proof of Prop 7.7. Proof. Write E = ∪Ej where the Ej’s are disjoint and have

finite measure. For each j, choose an open Uj ⊃ Ej with µ(Uj)) < µ(F)+ε2
−j−1

and let U = ∪Uj. This is open, contains E and µ(V \Ec) = µ(V ∩E) < ε/2.

By the same argument applied to Ec there is an open V ⊃ Ec with µ(V \E) <

ε/2. Then F = V c is a closed subset of E and

µ(U \ F ) ≤ µ(U \ E) + µ(V c ∩ E) < ε.

This proves (a) and (b) is immediate: take a countable union with ε = 1/n. �



Thm 7.8: Let X be an LHC space in which every open set is σ-compact (this

occurs if X is second countable). hen every Borel measure on X that is finite

on compact sets is regular and hence Radon.

Proof. If µ is a Borel measure that is finite on compact sets, then Cc(X) ⊂
L1(µ). Thus

I(f ) =

∫
fdµ

is a positive linear functional on Cc(X) so is given by an associated Radon

measure ν according to Theorem 7.2. We want to show µ = µ.

If U ⊂ X is open, let U = ∪Kj where Kj are compact. Choose f1 continuous

and compactly supported so that f1 ≺ U f1 = 1 on K1.



Proceeding inductively, for n > 1 choose fn ∈ Cc(X) so that fn ≺ U and

fn = 1 on ∪n1Kj and also on ∪n−1
1 supp(fj). Then fn increases pointwise to χU

so by the monotone convergence theorem

µ(U) = lim

∫
fndµ = lim fndν = ν(U).

Thus µ = ν on open sets.

For any Borel set E there is an open V ⊃ E and a closed F ⊂ E with

ν(V \ F ) < ε. But V \ F is open, so µ(V \ F ) = ν(V F ) < ε. In particular,

µ(V ) ≤ µ(E) + ε, so µ is outer regular.

Also µ(F ) ≥ µ(E)ε, and F is σ-compact (since X is) so we deduce µ is inner

regular. Thus µ is regular, and must equal ν by the uniqueness in the Riesz

Representation Theorem. �



Prop. 7.9: If µ is a Radon measure on X , then Cc(X) is dense in Lp(u) for

1 ≤ p <∞.

Proof. Since the Lp simple functions are dense in Lp (Proposition 6.7), it is

enough to show to show that for any Borel set E of finite measure, χE can be

approximated in the Lp norm by elements of Cc(X).

Given ε > 0, by Proposition 7.5, we can choose a compact K ⊂ E and an open

U ⊃ E so that µ(U \ E) < ε. By Urysohn’s lemma we can choose f ∈ Cc(X)

such that χK ≤ f ≤ χU Then

‖χE − f‖p ≤ µ(U \ F )1/p, ε1/p.

. �



Lusin’s Theorem: Suppose that µ is a Radon measure on X and f : X → C
is a measurable function that vanishes outside a set of finite measure. Then for

any ε > 0 there exists φ ∈ Cc(X) such that φ = f except on a set of measure

< ε. If f is bounded, φ can be taken to satisfy ‖φ‖u ≤ ‖f‖u.



Nikolai Nikolaevich Luzin (1883–1950)

https://mathshistory.st-andrews.ac.uk/Biographies/Lusin/


Dimitri Fedorovich Egorov (1869–1931)

https://mathshistory.st-andrews.ac.uk/Biographies/Egorov/


Mikhail Yakovlevich Suslin (1894–1919)

https://mathshistory.st-andrews.ac.uk/Biographies/Suslin/


Proof of Lusin’s theorem. Let E = {x : f (x) 6= 0}, and suppose, to begin

with, that f is bounded. Then f ∈ L1 so by the previous result there is a

sequence in Cc(X) converging to f in the L1 norm and hence a subsequence

converging to f almost everywhere (Prop 2.32). By Egorov’s theorem there is

a set A ⊂ E with µ(E ⊂ A) < ε/3 and gn → f uniformly.

Choose B ⊂ A compact and U ⊃ E open so µ(A\B) < ε3 and µ(U \E) < ε3.

Since gn → f uniformly on B, f is continuous on B, so by Prop 4.34 there is

h ∈ Cc(X) with h = f on B and supp(h) ⊂ U . But then {x : f (x) 6= h(x)} is

contained in U \B, which has measure < ε.

To complete the proof for f bounded, define β : C → C by β(z) = z if

|z| ≤ ‖f‖u and β(z) = ‖f‖u · sgn(z) otherwise (β is nearest point retraction

onto the ball of radius ‖f‖u).



If |z| > ‖f‖u and set φ = β ◦ h. Then φ ∈ Cc(X). Moreover, ‖φ‖u ≤ ‖f‖u
and φ = f on the set where h = f , so we are done if f is bounded.

If f is unbounded, let An = {x : 0 < |f (x)| ≤ n}. Then An increases to E, so

so µ((E \ An) < ε/2 for sufficiently large n. By the preceding argument there

exists φ ∈ Cc(X) such that φ = fχA except on a set of measure < ε/2, and

hence φ = fi except on a set of measure ε. �



Defn: If X is a topological space, a function f : X → (−∞,∞] is called

lower semicontinuous (LSC) if {x : f (x) > a} is open for all a ∈ R.

Defn: f : X → [−∞,∞) is called upper semicontinuous (USC) if

{x : f (x) < a} is open for all a ∈ R.

]bf Prop. 7.11: LetX be a topological space.

a. If U is open in X , then χU is LSC.

b. If f is LSC and c ∈ [0,∞), then cf is LSC.

b. If G is a family of LSC functions and f (x) = sup{g(x) : g ∈ G} , then f is

LSC.

c. If f, g are LSC so is f + g.

d. If X is an LCH space and f is LSC and nonnegative, then

f (x) = sup{g(x) : g ∈ Cc(X), 0 ≤ g ≤ f}.

Proof is left to the reader.



Prop 7.12: Let G be a family nonnegative LSC functions on LCH space X

that is directed by (for every g1, g2 ∈ G there exists g ∈ G so that g1 ≤ g and

g2 ≤ g). Let f = sup{g : g ∈ G}. If µ is any Radon measure on X then∫
fdµ = sup{

∫
gdµ : g ∈ G}.

Cor. 7.13: If µ is Radon and f ≥ 0 is LSC, then∫
fdµ = sup{

∫
gdµ : g ∈ Cc(X), 0 ≤ g ≤ f}.

Prop 7.14: If µ is a Radon measure and f is a nonnegative Borel measurable

function, then∫
fdµ = inf{

∫
gdµ : g ∈ Cc(X), g ≥ f, g is LSC }∫

fdµ = sup{
∫
gdµ : g ∈ Cc(X), 0 ≤ g ≤ f, g is USC }



Chapter 7.3: The Dual of C0(X)

Defn: C0(X) are the continues function on X that tend to zero at infinity, i.e.,

for any ε > 0 there is a compact set K so that |f (x)| < ε for x ∈ X \K.

C0(X) is the closure of Cc(X) in the uniform norm.

If µ is a Radon measure on X the linear function

I(f ) =

∫
X

fdµ

extends from Cc(X) to C0(X) iff it is bounded with respect to the uniform

norm. This happens exactly when µ(X) <∞ because

µ(X) = sup{
∫
fdµ; f ∈ Cc(X), 0 ≤ f ≤ 1}

by (7.3) and |
∫
fdµ| ≤

∫
|f |dµ.



Thus positive linear functionals on C0(X) are exactly integration against finite

Radon measures.

What are the bounded linear functionals on C0(X)? These will be linear com-

binations of positive functionals.



Lemma 7.15: If I ∈ C0(X,R)∗, then there exist positive linear functionals

I± ∈ C0(X,R)∗ so that I = I+ − I−.

Proof. For f ∈ C0(X,R) define

I+(f ) = sup{I(g) : g ∈ C0(X,R), 0 ≤ g ≤ f}.
Obviously I+ is a positive functional. Since |I(g)| ≤ ‖g‖u · ‖I‖ ≤ ‖f‖u · ‖I‖
and I(0) = 0, we have

0 ≤ I+(f ) ≤ ‖I‖ · ‖f‖u.



We claim I+ is the restriction of a linear functional to C0(X, [0,∞)), i.e.,

I+(cf ) = cI+(f ), I+(f1) + I+(f2) = I+(f1 + f2).

First note I+(cf ) = cI+(f ) when c ≥ 0. Also, 0 ≤ gk ≤ fk, k = 1, 2 implies

g1 + g2 ≤ f1 + f2 so

I+(f1) + I+(f2) ≥ I+(f1 + f2).

If 0 ≤ g ≤ f1 + f2, let g1 = min(f1, g) and g2 = g − g1. Then

0 ≤ g1 ≤ f1, 0 ≤ g2 ≤ f2

I(g) = I(g1) + I(g2) ≤ I+(f1) + I+(f2)

I(f1) + I(f2) ≤ I+(f1) + I+(f2)

so equality holds.



If f ∈ C0(X,R) then its positive and negative parts

f+ = max(f, 0), f− = −min(0, f ),

are non-negative. Define I+(f ) = I(f+)− I−(f−).

If f = g − h where g, h ≥ 0 then g + f− = h + f+, so

I+(g) + I+(f+) = I+(h) + I+(f+).

Thus

I+(f ) = I+(g)− I+(h),

and if follows that I+ is linear on C0(X,R), i.e., if h = f + g then

I+(h) = I+(h+)−I+(h−) = I+(f+)−I+(f−)+I+(g+)−I+(g−) = I+(f )I+(g).



Next, note that

|I+(f )| ≤ max(I+(f+), I+(f ′)) ≤ ‖I‖ ·max(‖f+‖u, ‖f ′‖u) ≤ ‖I‖ · ‖f‖u.
so that ‖I+‖ ≤ ‖I‖.

Finally set I− = I − I+. We noted earlier that I+ is a positive functional. If

f ≥ 0

I−(f ) = I(f )− sup{I(g) : g ∈ C0(X,R), 0 ≤ g ≤ f}
= inf{I(f − g) : g ∈ C0(X,R), 0 ≤ g ≤ f}
≥ 0

so I− is also a positive functional.

�



For any I ∈ C0(X,C)∗ we can deduce

I(f ) =

∫
fdµ,

where

µ = (µ1 − µ2) + i(µ3 − µ4)

are finite Radon measures.

Defn: A signed Radon measure is a real Borel measure whose positive

and negative parts are Radon measures.

Defn: A complex Radon measure is a is a complex Borel measure whose

real and imaginary parts are signed Radon measures.

On a second countable LCH space every complex Borel measure is Radon.

We define a norm on complex Radon measures by

‖µ‖ = |µ|(X).



Prop. 7.16: If µ is a complex Borel measure, then µ is Radon iff |mu| is

Radon. Moreover, M(X) is a vector space and µ→ ‖µ‖ is a norm on it.

Proof. We observe that a finite positive Borel measure ν is Radon iff for every

Borel set E and every ε > 0 there exist a compact K and an open U such that

K ⊂ E ⊂ Ui and ν(U \K) < ε, by Propositions 7.5 and 7.7.

If µ = µ1 − µ2 + i(µ3 − µ4) and |µ|(U \ K) < ε, then µj(U \ K) < ε, for

k = 1, 2, 3, 4. So |µ| Radon implies all the µk are too.

If each µk is Radon, we can choose Uj, Kj so µj(Uj \ Kj) ≤ ε/4, and hence

µ(U \K) ≤ ε, where U = ∪Uj and K = ∩Kj. Thus µ is Radon.

Same argument shows linearity. The norm property follows from Proposition

3.14, |µ1 + µ2| ≤ |µ1| + |µ2|. �



The Riesz Representation Theorem: Let X be an LCH space, and for

µ ∈ M(X) and f ∈ C0(X) let Iµ(f ) =
∫
fdµ. Then the map µ → Iµ is an

isometric isomorphism from M(X) to C0(X)∗.

Proof. We have already shown that every linear functional on C0(X) is of the

form Iµ, so we only have to check we have an isometry.

If µ ∈M(X), then by Proposition 3.13c we have

|
∫
fdµ| ≤

∫
|f |d|µ| ≤ ‖f‖u · ‖µ‖.

so integration gives a linear functional with norm bounded by ‖µ‖.



On the other hand, if h = dµ/d|mu| then |h| = 1 by Proposition 3.13b, so by

Lusin’s theorem for any ε > 0 there is a f ∈ Cc(X) such that ‖f‖u = 1 and

f = h except on a set E with |µ|(E) < ε/2. Then

‖µ‖ =

∫
|h|2d|µ|

=

∫
hd|µ|

≤ |
∫
fdµ| + |

∫
(f − (h)dµ|

≤ |
∫
fdµ| + |

∫
(f − (h)dµ|

≤ |
∫
fdµ| + 2|µ|(E)

< |
∫
fdµ| + ε

≤ ‖Imu‖ + ε �



Cor 7.18: If X is a compact Hausdorff space, then C(X)∗ is isometrically

isomorphic to M(X).

If µ is a positive Radon measure on X and f ∈ L1(µ) then the complex measure

fdµ is easily seen to be Radon (Exercise 8) with norm ‖f‖1.

Thus L1(µ) isometrically embeds in M(X). The range is the set of measures

absolutely continuous with respect to µ.

Defn: the vague topology on M(X) is the same as the weak* topology

(comes from probability theory).



Prop. 7.19: Suppose µ, {µn} ⊂ M(X) and let Fn(x) = µn((−∞x]) and

F (x) = µ((−∞x]).

(a) if sup ‖µn‖ < ∞ and fn → F at every x where F is continuous, then

µn → µ vaguely.

(b) If µn ≥ 0, µn → µ vaguely and

lim sup
x→−∞

[sup
n
Fn(x)] = 0,

then Fn(x)→ F (x) at every x where F is continuous.

See the text for the proof.
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