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Chapter 5.1: Normed Spaces

Vector spaces over K = R or C.

If x ∈ X , Kx is one dimensional space spanned by x.

Y + Z = {y + z : y ∈ Y , z ∈ Z}.

Defn: A semi-norm is a function x→ ‖x‖ ∈ [9.∞) so that

• ‖x + y‖ ≤ ‖x‖ = ‖y‖ (triangle inequality)

• ‖λx‖ = |λ|‖x‖

Defn: A norm is a semi-norm so that ‖x‖ = 0⇒ x = 0.

Defn: A normed vector space is a vector space with a norm. It is a

metric space.

Defn: A complete normed vector space is a Banach space.



Stefan Banach (1892–1945)

https://mathshistory.st-andrews.ac.uk/Biographies/Banach/


Banach Center

Institute of Mathematics

Polish Academy of Sciences



Examples:

• Rn with usual norm.

• Lp(dµ) = µ-measurable functions with semi-norm

‖f‖p =

(∫
|f |pdµ

)1/p

.

Make it a norm by taking equivalence classes of functions f ∼ g if f = g almost

everywhere.

• L∞ = essentially bounded measurable functions with semi-norm

‖f‖∞ = inf{α : µ({x : |f (x)| > α}) = 0}

This is also a Banach algebra (closed under multiplication).

• C(X): continuous functions on a compact space X

‖f‖ = sup
x∈X
|f (x)|.

This is also a Banach algebra.



• Cc(X): compactly supported continuous functions on a non-compact space

X .

• BC(X): bounded continuous functions on a non-compact space X .

• C0(X): continuous functions that tend to 0 at infinity on a non-compact space

X .

• Special cases:

`p consists of sequences so that
∑

m |an|p <∞.

`∞ consists of bounded sequences.

c0 sequences that tend to zero.

• Finite Borel measures on a compact space with ‖µ‖ = |µ(X)| (the absolute

value of the measure).



• Lipschitz functions: continuous functions so that

‖f‖ = ‖f (x0)‖ + sup
x,y

|f (x)− f (y)|
|x− y|

<∞.

• Hölder functions: give 0 < α ≤ 1 continuous functions so that

‖f‖ = ‖f (x0)‖ + sup
x,y

|f (x)− f (y)|
|x− y|α

<∞.

• C1,α(Rn): continuously differentiable functions whose derivative is α-Hölder.

• Sobolev spaces: W 1, p, f ∈ Lp and f ′ ∈ Lp. Define on smooth functions then

take completion.

• Sobolev space H1/2 (half a derivative in L2):∫
R

∫
R

|f (x)− f (y)|2

|x− y|2
dxdy <∞.



• Bounded Mean Oscillation (BMO): for f measurable on R let

mI(f ) =
1

|I|

∫
I

f (x)dx,

denote mean value of f on I .

‖f‖BMO = sup
I
mI(f −mI(f ))).

In other words, on every interval, f is close to its mean value on that interval.

For bounded intervals, Lp ⊂ BMO ⊂ L∞ for all p <∞. BMO is a good substi-

tute for L∞ in many situations (e.g., studying harmonic conjugation bounded

on Lp and BMO but not on L∞.

• Vanishing Mean Oscillation (VMO): subspace of BMO so that

mI(f −mI(f )))→ 0 as |I| → 0.

Is closure of continuous functions in BMO.

• H∞(D): bounded holomorphic functions on D with sup norm. Is complete

because uniform limit of holomorphic functions is holomorphic.



• Hardy Spaces Hp(T): holomorphic on disk and

sup
0<r<1

∫
T
|f (rieiθ)|pdθ <∞.

Equals subspace of Lp(T, dθ) that has holomorphic extension to disk (in a certain

sense).

• Bergman spaces: holomorphic functions on disk in Lp(dxdy):∫
D
|f (z)|pdxdy <∞.

• Dirichlet space: holomorphic on disk and∫
D
|f ′(z)|2dxdy <∞.

Holomorphic functions whose images have finite area, counted with multiplicity.



• Orlicz space: measurable functions so that∫
|f (x)| log+ |f (x)|dµ(x) <∞.

or more generally ∫
Φ(|f (x)|)dµ(x) <∞

where Φ is convex and Φ(x)/x → ∞ as x → ∞ and → 0 as x → 0. This is

not a norm. To get a norm let Ψ =x
0 Φ−1(t)dt and define

‖f‖Φ = sup{
∫
fgdµ :

∫
Ψ(g)dµ ≤ 1}.

• Lorentz space: measurable functions with semi-norm

‖f‖p,q = p1/q

(∫ ∞
0

tqµ({x : |f (x)| ≥ t})q/pdt
t

)1/q

.



Defn: Two norms are equivalent if there is C1, C2 <∞ so that

C1‖x‖1 ≤ ‖x‖2 ≤ C2‖x‖2.

Defn: a series
∑∞

k=1 xn in a normed vector space converges if sn =
∑n

k=1 xn

has a limit.

Defn: a series is absolutely convergent if
∑
‖xn‖ < ∞ (a sum of real

numbers).



Theorem 5.1: A normed vector space X is complete iff every absolutely

convergent series in X converges.

Proof. Suppose X is complete and
∑
xn is absolutely convergent. Let sn =∑n

k=1 xn. Then

‖sn − sm‖ ≤
m∑
k=n

‖xk‖ → 0,

so {sn} is Cauchy and has a limit.



Conversely, assume absolutely convergent series converge. Let {xn} be Cauchy.

WLOG we may pass to a subsequence (also called xn) so that ‖xn−xm‖ ≤ 2−n

for m > n. If

y1 = x1, yn = xn+1 − xn
Then

n∑
1

yk = xn,

and
∑
yk is absolutely convergent, so has a limit z, which is also limit of xn. �



Product spaces:

If X and Y are normed vector spaces, X × Y becomes a normed vector space

with

‖(x, y)‖ = max(‖x‖, ‖y‖).
Can also use

‖(x, y)‖ = ‖x‖ + ‖y‖
‖(x, y)‖ =

(
‖x‖2 + ‖y‖2

)1/2
.

or other equivalent norms.



Quotient spaces:

If Y is vector subspace of X define x ∼ y if x− y ∈ Y .

Set of equivalence classes is a vector space denoted X/Y , the quotient space.

If y is closed we can define quotient norm

‖x + Y‖ = inf
y∈Y
‖x + y‖

.



Defn: A linear map T : X → Y between normed vector spaces is bounded

if there there exists C <∞ so that

‖Tx‖ ≤ C‖x‖

Prop. 5,2: If X and Y are normed vector spaces and T : X → Y is linear

then TFAE:

(a) T is continuous.

(b) T is continuous at 0.

(c) T is bounded.



Proof. (a) ⇒ (b) is trivial.

To prove (b) ⇒ (c), note there is a neighborhood U of 0 in X so that T (U) is

inside the unit ball of Y . Since U is open it contains a δ-ball around the origin.

So ‖x‖ < δ ⇒ ‖Tx‖ < 1. Thus in general,

‖Tx‖ =
1

δ
‖x‖ · ‖T (δx/‖x‖)‖ ≤ 1

δ
‖x‖.

To prove (b) ⇒ (c), note that

‖Tx− Ty‖ ≤ C‖x− y‖,
so T is continuous, even Lipschitz. �



Defn: L(X ,Y) is vector space of bounded linear operators from X to Y . It is

a normed space wit

‖T‖ = sup{‖Tx‖ : ‖x‖ ≤ 1}
= sup{‖Tx‖/‖x‖ : x ∈ X \ {0}}
= {‖Tx‖/‖x‖ : x ∈ X \ {0}}.

Prop. 5.4 If Y is complete, so is L(X ,Y).

Proof. Suppose {Tn} is Cauchy. Then for a fixed x, Tnx is also Cauchy since

‖Tnx− Tmx‖ ≤ C‖Tn = Tm‖‖x‖,
so Tnx→ Tx ∈ Y . Note that

T (λx) = lim
n
Tn(λx) = lim

n
λTn(x) = λT (x),

and

T (x+y) = lim
n
Tn(x+y) = lim

n
Tn(x+y) = lim

n
Tn(x)+Tn(+y) = λT (x)+T (x),

so T is linear.



If ‖x‖ ≤ 1, then

‖T (x)‖ = ‖ lim
n
Tn(x)‖ ≤ lim

n
‖Tn‖,

so T is bounded. Moreover, if ‖x‖ ≤ 1,

‖(T − Tn)(x)‖ = lim
m
‖Tmx− Tnx‖ ≤ sup

m>n
‖Tm − Tn‖,

is as small as we wish if n is large, since {Tn} is Cauchy. �



Operator norms satisfy

‖TS‖ ≤ ‖T‖ · ‖S‖.
If X is a Banach space this makes L(X ,X ) into a Banach algebra.

Defn: A bounded operator T ∈ L(X ,Y) is invertible if it is 1-1, onto and

T−1 is bounded. Also called an isomorphism.

If we set

Tf (y) =→
∫ x

0

f (y)dy

then T is bounded 1-1 operator from L1([0, 1]) to C([0, 1]), but is not onto.

We shall see later that a bijective bounded operator between Banach spaces is

automatically invertible (open mapping theorem).



5.2 Linear Functionals

Defn: a linear map from X to the scalars is called a linear functional.

Defn: the collection of bounded linear maps L(X , K) is called the dual space

of X .

Examples:

(L1)∗ = L∞ but (L∞)∗ 6= L1 in general

Lf(g) =

∫
fgdµ,

(Lp)∗ = Lq where 1
p + 1

q = 1, 1 ¡p,q, ¡ infty

(L2)∗ = L2

C(X)∗ = finite measures on X



Prop. 5.5: Let X be a vector space over C. If f is a complex linear

functional on X and and u = Ref , then u is a real linear functional, and

f (x) = u(x)− iu(ix) for all x ∈ X .

Conversely, if u u is a real linear functional on X and f (x) = u(x) − iu(ix),

then f is complex linear. If X is normed, ‖u‖ = ‖f‖.

Proof. If f is complex linear, u = Ref , and λ is real, then

u(λx+y) = Ref (λx+y) = Reλf (x)+f (y) = λRef (x)+Ref (y) = λu(x)+u(y),

so u is real linear.

Also,

Im(f (x) = −Re(if (x)) = −u(ix),

so

f (x) = Ref (x) + iImf (x) = u(x)− iu(ix).



Suppose u is real linear, set f (x) = u(x)− iu(ix). Then f is clearly linear over

R since u is, and

f (ix) = u(ix)− iu(−x) = u(ix) + iu(x) = i(u(x)− iu(ix)) = if (x).

This implies f is linear over C.

If X is normed then

|u(x)| = |Ref (x)| ≤ |f (x)|,
implies ‖u‖ ≤ ‖f‖.

Conversely, if f (x) 6= 0, then let α = f (x)/|f (x)). Then f (αx) = α(x) is real

so f (αx) = u(αx), so

|f (x)| = αf (x) = f (αx) = u(αx) ≤ ‖u‖|α|‖x‖ = ‖u‖‖x‖.,
Thus ‖f‖ ≤ ‖u‖. �



Defn: a sublinear functional on X is a map p : X → R so that

p(x + y) ≤ p(x) + p(y), x, y ∈ X
p(λx) = λp(x), x ∈ X , λ > 0.

It is not obvious that linear functionals exist, but they always do.

The Hahn-Banach Theorem: Suppose X is a real vector space, p a sub-

linear functions on X ,M a subspace of X and f a linear functional onM such

that f (x) ≤ p(x) for all x ∈M. Then there is a linear functional F on X that

extends f and F (x) ≤ p(x) for all x ∈ X .



Proof. First we extend by one dimension, from f on M to g on M + Rx,

x 6∈ M.

If y1, y2 ∈M, then g(y) ≤ p(y) implies

f (y1) + f (y2) = f (y1 + y2) ≤ p(y1 + y2) ≤ (y1 − x) + p(x + fy2),

or

f (y1)− p(y1 − x) ≤ p(x + y2)− f (y2).

Note that all the y1’s are on one side and the y2’s on the other. Hence for any

x,

sup
y1

f (y1)− p(y1 − x) ≤ inf
y2

p(x + y2)− f (y2).

Choose some α between these two real numbers (possibly equal).



Define

g(y + λx) = f (y) + αx.

This is linear onM + Rx and extends f . Just need to check g ≤ p.

First assume λ > 0. Then since α is less than the RHS above,

g(y + λx) = λ(f (y/λ) + α)

≤ λ(f (y/λ) + p(x + (y/λ))− f (y/λ))

λp(x + (y/λ))

p(λx + y)



Next assume λ = −µ < 0. Then since α is larger than the LHS above,

g(y + λx) = µ(f (−y/µ)− α)

≤ µ(f (y/µ) + p(−x + y/µ)− f (y/µ))

µp(−x + y/µ)

p(λx + y)

The family of linear extensions dominated p is partially ordered, and the union of

nested subspaces is a subspace, so by Zorn’s Lemma there is a maximal element.

If this element is not defined on the whole space X , then the argument about

extends it to a larger subspace, contradicting maximality. Thus every element

extends. �



Hans Hahn (1879–1934)

https://mathshistory.st-andrews.ac.uk/Biographies/Hahn/


If p is a semi-norm and f is a linear functional then f ≤ x iff |f | ≤ p because

p(x) = p(−x).

The Complex Hahn-Banach Theorem: Let X be a complex vector

space, p a seminorm on X , M a subspace of X , and f a complex linear

functional on M such that |f (x)| ≤ p(x) for ∈ xM . Then there exists a

complex linear functional F on X such that |F (x)| ≤ p(x) for all ∈ X and

extending f .

Proof. Let u = Ref . Extend u to U by the real version on Hahn-Banach and

then set F (x) = U(x)−iU(ix) which is a complex linear extension of f . Finally,

if α = F (x)/|F (x)| then

|F (x)| = αF (x) = F (αx) = U(αx) ≤ p(αx) = p(x).

�



Theorem 5.8: Let X be a normed vector space.

(a) IfM is a closed subspace of X and ∈ X \M, then there exists ∈ X ∗ such

f (x) 6= 0 and f |M = O . In fact, if

δ = dist(x,M) = inf
y∈M
||x− y‖,

then f can be taken to satisfy ‖f‖ = 1 and f (x) = δ.

(b) If x 6= 0, there exists f ∈ x∗ such that ‖f‖ = 1 and f (x) = ‖x‖.
(c) The bounded linear functionals on X separate points.

(d) If x ∈ X , define x̂ : X ∗ → C by x̂(f ) = f (x). Then the map x→ x̂ is a

linear isometry from X into X ∗∗ (the double dual (X ∗)∗).



Proof. Proof of (a): Define f onM + Cx by

f (y + λx) = λδ.

Then f (x) = δ , f is zero onM and for λ 6= 0

|f (y + λx)| = |λ|δ ≤ |λ| · ‖y/λ + x‖ ≤ ·‖y + λx‖,
so |f (z)| ≤ |z| on the extension. Hahn-Banach can now be applied toM+Cx.

Proof of (b): Special case of (a) whenM = {0}.

Proof of (c): if x 6= y, there exists f ∈ X ∗ with f (x− y) 6= 0.

Proof of (d): Easy to check x̂ is a linear functional on X ∗ and the map→ x̂

is linear. Moreover,

‖x̂(f )| = |f (x)| ≤ ‖f‖ · ‖x‖,
so ‖x̂‖ ≤ ‖x‖. On the other hand, (b) implies that ‖x̂‖ ≥ ‖x‖. �



We may consider X ⊂ X ∗∗.

Defn: If X = X ∗∗ we say X is reflexive.

Non-reflexive example: (c0)∗ = `1 and (c0)∗∗ = (`1)∗ = `∞.



Theorem (3.3, Lax’s book): Suppose X is a real linear space and A is a

collection of commuting linear maps X → X , and p is a sub-additive function

so that p(Ax) = p(x) for all A ∈ A. Suppose f is a linear functional defined

on a linear subspace Y so that

(a) f is dominated by p

(b) Y is invariant under each element of A.

(c) f is invariant, i.e., f (Ax) = f (x), for all A ∈ A.

Then f has an extension to X that is dominated by o and also A invariant.

Proof from Lax’s Book “Functional Analysis”

http://www.math.stonybrook.edu/~bishop/classes/math533.S21/Notes/Lax_HB_invariant.pdf


Peter Lax (1926–present)

https://mathshistory.st-andrews.ac.uk/Biographies/Lax_Peter/


Examples:

Banach Limits: linear functional on `∞ that are shift invariant and extend taking

limits on the linear subspace of sequences that have limits.

Lebesgue integration defines a translation invariant linear functional on the space

of bounded measurable functions on the unit circle. Hahn-Banach extends it to

a rotation invariant finitely additive measure on all subsets of the circle. See

Lax’s book, Chapter 4.

There are no countable additive, rotation invariant measures. There is no finitely

additive, rotational invariant measure on the 2-sphere: rotations of 3-space do

not commute, so the lower dimensional proof does not extend. Non-existence is

based on the Banach-Tarski paradox.

The Hahn-Banach theorem surveyed by Gerard Buskes,1993.

 http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.zamlynska-68970a45-5c73-4016-b0e9-c73fc3305d2d


Alfred Tarski (1901–1983)

https://mathshistory.st-andrews.ac.uk/Biographies/Tarski/


5.3 The Baire Category Theorem and its Consequences

The Baire Category Theorem: Let X be a complete metric space.

(a) If {Un}∞1 are open dense subsets of X , then ∩nUn is dense in X .

(b) X is not a countable union of nowhere dense sets.

Proof. Proof of (a): GivenW nonempty and open, we must showW
⋂
∩nUn 6=

∅. Since U1∩W is open and nonempty, it contains a ball B(r0, x0), and we can

assume that 0 < r0 < 1. For n > 0, choose xn and rn < 2−n so that

B(xn, rn) ⊂ UnB(xn−1, rn−1).

Then {xn} is Cauchy and the limit point x is in

B(xn, rn) ⊂ Un

for all n, hence in Un ∩W , as desired.

Proof of (b): If {En} is a sequence of nowhere dense sets in X , then their

complements is a sequence of open dense sets. By (a) the intersection of the

complements is non-empty so the union of the E ′ns is not everything. �



It suffices for X to be homeomorphic to a complete metric space.

Defn: A Polish space is a separable topological space, that has a compatible

metric making it complete.

Defn: E ⊂ X is first category if E is a countable union of nowhere dense

sets. Otherwise E is second category

Defn: meager is same as first category. A set is residual if it is the comple-

ment of a meager (first category) set.

Residual and second category are not the same.



René-Louis Baire (1874–1932)

https://mathshistory.st-andrews.ac.uk/Biographies/Baire/


Category arguments are often used to give existence proof, by showing that

“most” elements of a space have a certain property.

Example: nowhere differentiable functions on [0, 1] are residual in C([0, 1]).

On the real line, we often use measure instead, e.g., “almost every point has

property P”, but there are usually no invariant measure on a infinite dimensional

space like C([0, 1]).

Example: A meager subset of R can have full measure.



There is a measure theoretic notion of “measure zero”. If X is a separable,

infinite dimensional Banach space then we say a Borel subset A is prevalent

if there is Borel probability measure µ on X so that µ(A + x) = 1 for every

x ∈ X . A set is negligible if its complement is prevalent.

Example: the set of nowhere differentiable functions on [0, 1] is prevalent

in C([0, 1]). The measure µ is Wiener measure; this fact corresponds to the

theorem that for any continuous function f , B + f is almost surely nowhere

differentiable , where B is Brownian motion.

See Section 6.5 (page 176) of my book Fractals in probability and analysis

http://www.math.stonybrook.edu/~bishop/fractalbook_final.pdf


Defn: A map f : X → Y is called open if it maps open sets to open set. If

f is invertible, its inverse is then continuous.

The Open Mapping Theorem: Let x and Y be Banach spaces. If T ∈
L(X ,Y) is surjective, then T is open.

Proof. We may assume ‖T‖ = 1. Let BX(r) denote the (open) ball of radius r

around 0 ∈ X . If suffice to show the image of B −X(r) contains a ball around

0 in Y . X =
⋃
nBX(n) and T is surjective, we have Y =

⋃
T (BX(n). By

Baire’s theorem some T (BX(n)) is somewhere dense, hence so is T (BX(1)), by

linearity.

Choose r > 0 so small that BY (y0, 4r) is a closed ball in T (BX(1)).



Choose y1 = Tx1 ∈ T (BX(1)) so that ‖y1 − y0‖ ≤ 2r. Then

T (BX(y1, 2r)) ⊂ BY (T (y1), 2r) ⊂ BY (y0, 4r) ⊂ T (BX(1))

and hence

y = −Tx1 + (y + y1) ∈ T (−x1 + BX(1)) ⊂ T (BX(2)).

Thus (dividing by 2) ‖y‖ < r ⇒ T (y) ∈ T (BX(1)).

In other words T (BX(1)) is dense BY (r). (or T (BX(1/r)) is dense BY (1)).

Dilating, it follows that if ‖y‖ < r2−n, then y ∈ T (B2−n).

Suppose ‖y‖ < r/2. We can find x1 ∈ BX(1/2) such that ‖y − T (x1)‖ < r/4.

By induction, we can find xn with norm < 2−n so that

‖y −
n∑
1

xk‖ < r2−n.

X is compete, so
∑∞

1 xn → x with ‖x‖ ≤
∑

2−n ≤ 1 and y = Tx. �



Corollary of Proof: If T : X → Y is bounded and there are ε > 0 and

R < ∞ so that T (BX(R)) is (1 − ε)-dense in BY (1), then T (X) = Y (T is

onto).

Application to Interpolating sequences: Every f ∈ L∞(T) as a har-

monic extension u on disk. Given a sequence {zn} ⊂ D we can restrict u to

{zn} to be bounded linear map L∞(T)→ `∞. When is it onto?

For example this happens if zn = 1− 4−n. Enough to show there are functions

fn with disjoint supports on T so that 0 ≤ f ≤ 1

un(zn) ≥ ε, for all n∑
k 6=n

uk(zn) ≥ 1− ε, for all n.

This is not too hard to do. In general, a sequence in D is interpolating iff it is

separated in hyperbolic metric and
∑

1− |zn| <∞.



Cor. 5.11: Let X and Y be Banach spaces. If T ∈ L(X ,Y) is bijective,

then T−1 is continuous, i.e., T is an isomorphism.



Defn: If T ∈ L(X ,Y), the graph of T is the set

Γ(T ) = {(x, y) ∈ X × Y : y = Tx}

The graph is a linear space. If X and Y are complete, so is X ×Y . Hence is Γ

is complete iff it is closed.

The graph of a continuous function is closed, but not conversely (e.g., f (x) =

1/x for x 6= 0, f (0) = 0).

But for linear maps, the converse is true.



The Closed Graph Theorem: If X and Y are Banach spaces and T :

X → Y is a closed linear map, then T is bounded.

Proof. Let π1 and π2 be the projections of Γ(T ) onto the two coordinates. These

are bounded linear maps onto X and Y respectively. Since π1 is 1− 1 and onto,

it is invertible, hence continuous. Thus

T = π2 ◦ π−1
1

is also continuous. �



Continuity = if xn → x then Txn → Tx.

Closedness = if xn → x and Txn → y then Txn → y.

We get to assume more in the second case, so it is often easier to prove the

conclusion. It is often easier to prove what limit has to be, if it exists, than

proving the limit does exist.

For example if f : X → X is continuous and fn(x) has a limit y then

f (y) = f (lim
n
fn(x)) = lim

n
fn+1(x) = lim

n
fn(x) = y,

so y must be a fixed point. Hard part is to show limit exists.



Nice application of Closed Graph theorem:

Thm: Let T be a bounded operator on the Hilbert space L2([0, 1]) so that if

f is a continuous function so is Tf . Then the restriction of T to C([0, 1]) is a

bounded operator.

Proof by de Lamadrid, 1963

https://www.ams.org/journals/proc/1964-015-03/S0002-9939-1964-0164239-3/S0002-9939-1964-0164239-3.pdf


Proposition: V = (V,F) be a Hausdorff topological vector space. Then, up

to equivalence of norms, there is at most one norm ‖ · ‖ one can place on V

so that (V, ‖ · ‖) is a Banach space whose topology is at least as strong as F .

In particular, there is at most one topology stronger than F that comes from a

Banach space norm.

Proof on Terry Tao’s blog

Another Terry Tao blog on closed graph theorem analogs in different parts of

mathematics

https://terrytao.wordpress.com/2016/04/22/a-quick-application-of-the-closed-graph-theorem/
https://terrytao.wordpress.com/2012/11/20/the-closed-graph-theorem-in-various-categories/
https://terrytao.wordpress.com/2012/11/20/the-closed-graph-theorem-in-various-categories/


Terry Tao (1975–present)

https://mathshistory.st-andrews.ac.uk/Biographies/Tao/


Application: If H is a Hilbert space and M : H → H satisfies

〈Mx, y〉 = 〈x,My〉,
is called symmetric.

Lemma (Hellinger and Toeplitz): A symmetric operator defined on whole

space must be bounded.

Proof. Suppose xn → x and Mxn → u. Then

〈u, y〉 = lim
n
〈Mxn, y〉 = lim

n
〈xn,My〉 = 〈x,My〉 = 〈Mx, y〉.

Since the dual separates points u = x. Hence M is closed, hence bounded by

Closed Graph Theorem.



Example: The Laplace transform, for f ∈ L2(0,∞),

g(s) = Lf (s) =

∫ ∞
0

f (t)e−stdt.∫
Lf (s)g(s)ds =

∫
f (s)Lg(s)ds =

∫ ∞
0

∫ ∞
0

f (t)g(s)e−stdsdt.

A more careful calculation shows ‖L‖ =
√
π.

L2 = L ◦ L is the Hilbert-Hankel operator:

g(r) =

∫ ∞
0

f (t)

t + r
dt.

This is bounded with norm π. It is bounded on Lp for 1 < p <∞, but L is not

(except p = 2).



Ernst Hellinger (1883–1950)
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Otto Toeplitz (1881-1940)

https://mathshistory.st-andrews.ac.uk/Biographies/Toeplitz/


Hermann Hankel (1837-1873)
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The Uniform Boundedness Principle: Suppose thatX andY are normed

vector spaces and A ⊂ L(X ,Y).

(a) If supT∈A ‖Tx‖ < ∞ for all x in some non-meager subset of X , then

supT∈A ‖T‖ <∞.

(b) If X is a Banach space and supT∈A ‖Tx‖ < ∞ for all x in X , then

supT∈A ‖T‖ <∞.

Proof. (b) follows from (a) since a Banach space is non-meager in itself.

Proof of (a): Let

Enn = {x ∈ X : sup
A
‖Tx‖ ≤ n} = ∩T∈Ax ∈ X : ‖Tx‖ ≤ n.

These are closed sets so some En contains a non-trivial closed ball B(x0, r). But

then B(0, r) ⊂ E2n for

‖x‖ < r ⇒ x + x0 ∈ B(r, x0)⇒ ‖Tx‖ = ‖Tx− Tx0 + Tx0‖
⇒ ‖Tx‖ = ‖Tx− Tx0‖ + ‖Tx0‖ ⇒ ‖Tx‖ = n + n,

Hence ‖T‖ ≤ 2n for all T ∈ A. �



Application: Divergence of Fourier series. The Fourier series of f on T is the

limit the partial sums

SNf (t) =

N∑
k=−N

f̂ (n) exp(−ikt).

If SN(x) converges for every continuous f and x to some limit then the Uniform

Boundedness Principle says the norms of the operators f → Snf are uniformly

bounded. But we can explicitly compute the norms

‖Sn‖ = ‖
N∑

k=−N

exp(−ikt)‖1

=
1

π

∫ 2π

0

| sin(N + 1
2)t|

t
→∞.

Hence there is a continuous function whose Fourier series diverges somewhere.

In one of the high points of 20th century mathematics Lennart Carleson proved

the Fourier series of a continuous function (even L2) converges almost every-

where.



Lennart Carleson (1928–present)

https://mathshistory.st-andrews.ac.uk/Biographies/Carleson/




5.4 Topological Vector Spaces Defn: A topological vector space (TVS)

is a vector space X over a field K (R or C) with a topology that makes addition

and scalar multiplication continuous from X × X → X or K × X → X
respectively.

Defn: A set A is convex if x, y ∈ A implies tx+ (1− t)y ∈ A for all 0 ≤ t ≤ 1.

Defn: A TVS is locally convex if there is basis of convex open sets for the

topology.

A normed vector spaces is a TVS. Most other examples of TVSs are generated

by families semi-norms.



Examples:

C(R) with seminorms sup|x|≤n |f (x)|.

L1
loc(R) with seminorms

∫ n
−n |f (x)|dx

Distributions: C∞ functions with seminorms ‖Dαf‖u (u = supremum norm).

Weak* topology on dual space of Banach space = weakest topology making all

bounded linear functionals continuous.



Unfortunate fact: There is no norm on the space C∞([0, 1]) of infinitely

differentiable functions on [0, 1] with respect to which d
dx is bounded.

Proof. Let fλ(x) = eλx. Then
d

dx
fλ = λfλ,

so the operator norm of d
dx is ≥ λ. �

Options:

(1) treat d
dx as an unbounded operator

(2) treat d
dx as a map between different spaces, e.g., Ck+1 → Ck.

(3) use seminorms sup |Dkf | on C∞. Theory of distributions.



Theorem 5.14: Let {pα}A be a family of seminorms on the vector space X .

If x ∈ X ,α ∈ A , and ε > 0, let

Uxαε = {y ∈ X : pα(y − x) < ε},
and let T be the topology generated by these sets.

(a) For each x ∈ X , the finite intersections of the set Uxαε, α ∈ A, ε > 0, form

a basis of the topology at x.

(b) A net {xi} in this topology converges to x iff pα(xi − x) converges to 0 for

all α ∈ A.

(c) (X , T ) is a locally convex topological vector space.



Proof. Proof of a: We have to show that given x ∈ X and any finite intersec-

tion of basis elements containing x (these elements may correspond to different

points in X ), there is basis element for x contained in the intersection.

So if x ∈ ∩k1Uxjαjεi set

δj = εj − pαj(x− xj) > 0.

Then by the triangle inequality for semi-norms

∩k1Uxαjδ ⊂ ∩
k
1Uxjαjεi.

Then apply Prop 4.4 (the topology generated by a collections of subsets of X
consists of ∅, X and all unions of finite intersections of the collection).



Proof of b: By (a), it suffices to observe that pα(x − x + i) → 0 iff {xi} is

eventually in Uxαε for every ε > 0.

Proof of c: To prove a map is continuous it suffices to show convergent nets

map to convergent nets (Prop 4.19).

If xi → x and yi → y then

pα((xi + yi)− (x + y)) ≤ pα(xi − x) + pα(yi − y)→ 0.

Thus addition is continuous. If λi → λ, then eventually |λi| ≤ C = |λ| + 1, so

pα(λixiλx) ≤ pα(λi(xi − x)) + pα((λi − λ)x)

≤ Cpα(xi − x) + |λi − λ|pα(x)

so scalar multiplication is continuous. Thus (X , T ) is a TVS.



Finally, have to check Uxαε are convex.

pα(x− [ty − (1− t)z]) ≤ pα(tx− ty)) + pα((1− t) + (1− t)z)

≤ tε + (1− t)ε
≤ ε �



Prop. 5.15: Suppose X and Y are vector spaces with topologies defined,

by the families {pα}A and {qβ}B of seminorms and T : X → Y is a linear

map. Then T is continuous iff for each β ∈ B there exist {α1, . . . , αk} ∈ A and

C > 0 so that qβ(Tx) ≤ C
∑
pαj(x).

Proof. Proof. If the bound holds, and xi is a net converging to x then

pα(xi − x)→ 0

for all α, so

qβ(Txi − Tx) ≤ C
∑

pαj(xi − x)→ 0.

Thus T maps convergent nets map to convergent nets, so it is continuous by

Prop 4.19.



If T is continuous, then for every β ∈ B there is neighborhood U of zero on

which qβ(Tx) < 1. We can take U to be a basis element

U ⊂ ∩k1Uxαjεj.
Take ε = min εj. Then

pαj(x) < ε∀j ⇒ qβ(Tx) < 1.

Suppose pαj(x) > 0 for some j. Let

y =
εx∑
pαj(x)

, or x =
1

ε
· y ·

∑
pαj(x).

Then pαj(y) < ε∀j, so

qβ(Tx) =
∑ 1

ε
pαj(x)qβ(Ty) ≤ 1

ε

∑
pαj(x).



On the other hand, if pαj(x) = 0∀j, then pαj(rx) = 0 for all j and all r > 0.

Hence

rqβ(Tx) = qβ(T (rx)) < 1

for all r > 0, which is only possible if it equals 0. Thus the inequality holds in

this case too. �



Prop. 5.16: Let X be a vector space equipped with the topology defined by

a family {pα} of seminorms.

(a) X is Hausdorff iff for each x 6= 0 there exists α ∈ A such that pα(x) 6= 0.

(b) If X is Hausdorff and A is countable, then X is metrizable with a translation

invariant metric (i.e., ρ(x, y) = ρ(x + z, y + z) for all x, y, z ∈ X ).

Folland leaves proof to reader. I will do the same

Since Hahn-Banach theorem was stated and proved for semi-norms, it applies

to TVS. It guarantees the existence of lots of continuous linear functionals on a

TVS X , enough to separate points, if X is Hausdorff.



Defn: In a topological vector space X , a net {xi}I is called Cauchy if the net

{(xi − xj}I×I converges to zero.

Defn: X is complete if every Cauchy net converges in X .

When X is first countable this is equivalent to every Cauchy sequence converg-

ing.

Defn: A Fréchet space is a complete Hausdorff topological vector space whose

topology is defined by a countable family of seminorms.



Maurice Fréchet (1878–1973)

https://mathshistory.st-andrews.ac.uk/Biographies/Frechet/


One of the most useful procedures for constructing topologies on vector spaces

is by requiring the continuity of certain linear maps.

Defn: Suppose that X is a vector space, Y is a normed linear space, and {Tα}A
is a collection of linear maps from X → Y . The weak topology T generated by

{Tα} is the weakest topology making all these maps continuous.

T is the topology defined by the seminorms pα(x) = ‖Tαx‖.

The usual TVS topology on C∞ is of this from when Tk = dk

dxk
.



Defn: If X is a normed vector space the weak topology on X is the topology

generated by X ∗, i.e., the weakest topology making x→ y(x) continuous for all

y ∈ X∗.

Defn: If {xi} is a net in X we say if converges weakly if y(xi) → y(x) for all

y ∈ X∗.

Example: (L1([0, 1]))∗ = L∞([0, 1]). A sequence in L1 converges weakly if∫
fngdx→

∫
fgdx,

for every g ∈ L∞.
sin(nx)→ 0 weakly.

This is the Riemann-Lebesgue Lemma.



Defn: Let X be a normed vector space, X∗ its dual space. The weak-star

topology (or weak*-topology) is the weakest topology for which the mappings

y → y(x) are continuous for all x ∈ X .

In general, weak* topology is different than the weak topology on X ∗; that one

is generated by elements of X ∗∗.

Defn: Let X and Y be Banach spaces. The topology on L(X ,Y) generated

by the evaluation maps T 7→ Tx for x ∈ X is called the strong operator

topology on L(X ,Y).

Defn: The topology generated by the linear functionals T → f (Tx) with

x ∈ X , f ∈ X ∗ s called the weak operator topology on L(X ,Y)).



These topologies are best understood in terms of convergence:

Tα → T strongly iff Tαx→ Tx in the norm topology,

Tα → T in weak operator topology iff Tαx→ Tx in the weak topology onY .
We have:

weak operator topology ⊂ strong operator topology ⊂ norm topology

Fewer open sets means a weaker topology.

Fewer open sets means easier to be compact.



Prop. 5:17: Suppose {Tn}∞1 ⊂ L(X ,Y), supn ‖Tn‖ <∞ and T ∈ L(X ,Y).

If ‖Tnx− Tx‖ → 0 for all x in a dense subset D of X , then Tn → T strongly.

Proof. Let C = supn ‖Tn‖. For x ∈ X and ε > 0 , choose x′ ∈ D such that

‖x − x′‖ < ε/3C. Choose n large enough so that ‖Tx′ − Tnx′‖ < ε/3. Then

Tnx→ Tx in norm since

‖Tnx− Tx‖ ≤ ‖Tnx− Tx′‖ + ‖Tnx′ − Tx′‖ + ‖Tx′ − Tx‖
≤ 2C‖x′ − x‖ + ε/3 < ε �



Alaoglu’s Theorem: If X is a normed vector space, the closed unit ball in

X ∗ is compact in the weak* topology.

Proof. For each x ∈ X let

Dx = {z ∈ C : |z| ≤ ‖x‖},
and let D =

∏
x∈X Dx Then D is compact by Tychonoff’s theorem. The el-

ements of D are precisely the complex-valued functions f on X such that

|f (x)| ≤ ‖x‖ for all x ∈ X . The closed unit ball B∗ of X ∗ are the linear

elements of this collection.

Both the product topology and weak* topologies on B∗ correspond to the topol-

ogy of pointwise convergence. Since closed subsets of compact sets in a Hausdorff

space are compact, it suffices to show B∗ is closed, i.e., the pointwise limit of

linear functions is linear. But if fα is a net converging to f then

f (ax+ by) = lim
α
fα(ax+ by) = a lim

α
fα(x) + b lim

α
fα(y) = af (x) + b(f (y). �



Example: finite signed measures on compact X are the dual space of C(X)

(Chapter 7). So given a sequence of probability measures on X there is a

subsequence {µn} and a probability measure µ so that lim
∫
gdµn =

∫
gµ for

all g ∈ C(X).

We use this all the time in dynamics. If f : X → X we can define µn by putting

mass 1/n on the first n iterates of a point x iterated. Then there is a limiting

measure of a subsequence, and we can show this is f -invariant.



Patterson-Sullivan measure on limit set of Kleinian group is defined in a similar

way: limit of discrete measures on a group orbit.

Many examples of proving a extremal measure for some inequality exists, e.g.,

minimize ∫ ∫
log

1

|x− y|
dµ(x)dµ(y)

over all probability measures µ on [0, 1]2.



5.5 Hilbert Spaces

Defn: An inner product on a complex vector space H is a map H ×H → C
denoted 〈x, y〉 so that

(1) 〈ax + by, z〉a〈a, z〉 + b〈y, z〉
(2) 〈x, y〉〈x, y〉.
(3) 〈x, x〉 ∈ (0,∞) if x 6= 0.

We deduce 〈x, ay + bz〉 = ā〈x, y〉b̄〈x, z〉

Defn: A Hilbert space is a Banach space whose norm is given by a inner product

‖x‖ = 〈, x, y, 〉.

Example: L2(µ) is a Hilbert space, with

〈f, g〉 =

∫
fgdµ.



The Schwarz Inequality: |〈x, y〉|‖x‖ · ‖y‖ with equality iff x and y are

linearly dependent.

Proof. If 〈x, y〉 = 0, the result is obvious.

If ∠x, y〉 6= 0, then x, y are both non-zero. Set α = sgn〈x, y〉 and z = αy, so

that

〈x, z〉 = 〈z, x〉 = |〈x, y〉|
and ‖x‖ = ‖y‖. For t ∈ R,

〈x− tz, x− tz〉 = ‖x‖2 − 2t|〈x, y〉| + t22‖y‖2.

The expression on the right is a quadratic function of t whose absolute mini-

mum occurs at t = ∠x, y〉|/‖y‖2. Setting t equal to this value, we obtain

0 ≤ ‖x− tz‖2 = ‖x‖2 − |〈x, y‖2/‖y‖2,

with equality iff x−tz = x−αty = 0, which the desired result is immediate. �



Prop. 5.20: The function x→ ‖x‖ is a norm.

Proof. That ‖x‖ = 0 iff x = 0 and that ‖λx‖ = |λ| · ‖x‖ are easy to check.

To prove the triangle inequality, note

‖x + y‖2 = 〈x + y, x + y〉 = ‖x‖ + Re〈x, y〉 + ‖y‖2,

so

‖x + y‖2 + 2‖x‖ · ‖y‖ + ‖y‖2 = (‖x‖ + ‖y‖)2. �



We can rewrite

‖x + y‖2 = ‖x‖+Re〈x, y〉 + ‖y2,

as

‖x + y‖2 − ‖x‖−‖y‖2Re〈x, y〉.
This lets us write the inner product in terms of the norm.

The polarization identity

〈x, y〉 =
1

4
(‖x + y‖2 − ‖x− y‖2 + i‖x + iy‖2 − i‖x− iy‖2)



Prop. 5.21: If xn → x and yn → y then 〈xn, yn〉 → 〈x, y〉.

Proof.

|〈xn, yn〉〈x, y〉| = |〈xn − x, yn〉 + 〈x, yn − y〉|
≤ |‖xn − x‖ · ‖yn‖ + ‖x‖ · ‖yn − y‖
→ 0 �



The Parallelogram law: ‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Proof. Add the equalities

‖x± y‖2 = ‖x‖ ± Re〈x, y〉 + ‖y2. �



This is useful to show that a norm is not a Hilbert space norm.

Show L1(R) is not a Hilbert space.



Defn: x, y are orthogonal if 〈x, y〉 = 0. Denoted x ⊥ y.

Defn: if E ⊂ H then E⊥ = {y : x ⊥ y∀x ∈ E}. 〈x, y〉 = 0.

The Pythagorean Theorem: If x1, . . . , xm ∈ H are pairwise orthogonal

then

‖
∑

xj‖2 =
∑
‖xj‖2.

Proof. By definition

‖
∑

xj‖2 =
∑
j,k

〈xj, xk〉.

All the terms vanish except when j = k, giving ‖xk‖2. �



Theorem 5.34: IfM is closed subspace of H then H = M ⊕M⊥. In other

words, every vector x = y + z in H can be expressed uniquely as a sum of

y ∈ M and z ∈ M⊥. These are the unique elements of these spaces that are

closest to x.

Proof. For x ∈ H define

δ = inf{‖x− y} : y ∈M}.

Let {yn} be a sequence converging to the infimum. By the parallelogram law

2(‖yn − x‖2 + ‖ym − x‖2) = ‖yn − ym‖2 + ‖yn + ym2− x‖2

Since 1
2(yn + ym) ∈M

‖yn − ym‖2 = 2‖yn − x‖2 + 2‖ym − x‖2 − 4‖1
2

(ym + yn)− x‖2

= 2‖yn − x‖2 + 2‖ym − x‖2 − 4δ2

→ 2δ2 + 2δ2 − 4δ2 = 0

Thus {yn} is Cauchy sequence and converges to some y ∈M sinceM is closed.

Moreover, ‖x− y‖ = δ.



Let z = x − y. We claim z ∈ M⊥. For any u ∈ M multiply by a scalar so

that inner product with x is real. Then

f (t) = ‖z + tu‖2 = ‖z‖2 + 2t〈z, u〉 + t2‖u‖2

is real quadratic in t with minimum δ2 at t = 0, and so has derivative zero at

t = 0. Hence 〈z, u〉0, so z ∈M⊥

If z′ ∈M⊥ then x− z ⊥ z′ − z so t

‖z′ − x‖2 = ‖z − x‖2 + ‖z − z′‖2

so z is unique closest point to x. Same argument shows y is closest point of M

to x

If x = y′ + z′ in the same spaces, then y − y′ = z − z′ ∈ M ∩M⊥ = {0}.
Thus the sum is unique. �



If y ∈ H then x→ 〈x, y〉 is a bounded linear functional of norm ‖y‖. Thus H
embeds in its dual space. In fact, this embedding is onto.

Theorem 5.25: If f ∈ H∗ then there is a unique y ∈ H so that f (x) = 〈x, y〉
for all x ∈ H.

Proof. To prove uniqueness suppose

〈x, y〉 = 〈x, y′〉
for all x ∈ H. Then

〈x, y − y′〉 = 0

for all x ∈ H. Taking x = y − y′ gives a contradiction unless y = y′.



If f is the zero functional take y = 0. Otherwise letM = {x ∈ H; f (x) = 0}

If f is the zero functional take y = 0. Otherwise let M = {x ∈ H; f (x) = 0}
ThenM is closed and non-empty so we can choose z ∈M ⊥ with norm 1. Set

u = f (x)z − f (z)x. Then

f (u) = f (x)f (z)− f (x)f (z) = 0

so u ∈M so

0 = 〈u, z〉 = f (x)‖z‖2 − f (z)〈x, z〉 = f (x)− 〈x, f (z)z〉.
Hence

f (x) = 〈x, f (z)z〉,
so we can take y = f (z)z. �



Defn: A subset {uα} is orthonormal if every element has unit length and pair

are perpendicular.

Gram-Schmidt: given a sequence {xn} of linearly independent vectors in H
we can convert it to an orthonormal set by setting

yn = xn −
n−1∑
k=1

〈x, xk〉xk,

un = yn/‖yn‖.



Jorgen Pedersen Gram (1850–1916)
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Bessel’s inequality: If {uα} is orthonormal then for any x ∈ H

∑
α∈A

|〈x, uα〉|2 ≤ ‖x‖2.

Proof. Enough to prove this for finite subsets F of A.

0 ≤ ‖x−
∑
α∈F

〈x, uα〉uα‖2

≤ ‖x‖2 − 2Re〈x,
∑
α∈F

uα〉uα〉 + ‖
∑
α∈F

∠x, uα〉uα‖2

≤ ‖x‖2 − 2
∑
α∈F

|〈x, uα〉|2 +
∑
α∈F

|∠x, uα〉|2

≤ ‖x‖2 −
∑
α∈F

|〈x, uα〉|2

�



This uses

〈x,
∑
α∈F

uα〉uα〉 =
∑
α

〈x, uα〉〈x, uα〉

=
∑
α

|〈x, uα〉|2



Theorem: If {uα} is an orthonormal set TFAE:

(a) (Completeness) {uα}⊥ = {0}
(b) (Parseval’s Identity) ‖x‖2 =

∑
α |∠x, uα〉|2 for all x.

(c) For all x, x =
∑

α〈x, uα〉uα, where the sum has only countably many

non-zero terms and converges in norm topology no matter how the terms are

ordered.



Friedrich Wilhelm Bessel (1784–1846)
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Proof of (a) ⇒ (c): Let α1, α2, . . . be any enumeration of the α’s that have

non-zero inner product with x. By Bessel’s inequality∑
|〈x, uα〉|2 <∞

so by the Pythagorean theorem

‖
m∑
n

〈x, uα〉uα‖2 =

m∑
n

|〈x, uα|2 → 0

as n,m ↗ ∞. Thus the series is Cauchy and hence converges since H is

complete. Set

y = x−
∑
〈x, uα〉uα.

Then y ⊥ uα for all α, so y = 0 by (a).

Proof of (c) ⇒ (b): We have

‖x‖2 −
∑
α

|∠x, uα〉|2 = ‖x−
∑
α

∠x, uα〉‖2 → 0



Proof of (b) ⇒ (a): If x ⊥ uα for all α then

‖x‖2 =
∑
α

|〈x, uα〉|2 =
∑

0 = 0



Defn: A set satisfying the conclusions of Theorem 5.27 is called an orthonormal

basis.

Example: let en(n) = 1 and en(k) = 0 otherwise. Then {en} is an orthogonal

basis of `2.

Example: exp(inx) is an orthogonal basis of L2([0, 2π]).

Example: zn, n ≥ 0 is basis of H2(D).

Example: χx(y) = 1 iff y = x is uncountable basis of L2 for counting measure

on R.

Example: Haar basis of L2([0, ]), where hn(x) = sgn(sin(2nπx). This is sim-

plest wavelet basis.



A vector on R349526

Represented using 349526 Haar functions



A vector on R349526

Represented using 105739 Haar functions



A vector on R349526

Represented using 41000 Haar functions



A vector on R349526

Represented using 11525 Haar functions



A vector on R349526

Represented using 1575 Haar functions



An orthonormal basis in a Hilbert space is an example of an unconditional,

monotone basis.

Per Enflo proved a general Banach space need not have a basis at all, much less

an unconditional basis.

It is now known that the space of bounded operators from `2 to itself does not

have the approximation property.

Grothendieck had reduced finding a space with no basis to finding a space with-

out the approximation property: every compact operator is a limit of finite rank

operators.

Defn: an operator is compact if the image of any bounded set is precompact.

Defn: an operator is finite rank it is image is finite dimensional.



Every limit of finite rank operators is compact. In a Hilbert space, the converse

is true. (Enflo showed false in Banach spaces.)



Per Enflo (1944–present)

https://en.wikipedia.org/wiki/Per_Enflo


Stanislaw Mazur presenting Per Enflo with a live

goose on Polish TV in 1972 for solving

Problem 153 in the Scottish Book.

http://www.math.stonybrook.edu/~bishop/classes/math533.S21/Notes/ScottishBook.pdf


Alexander Grothendieck (1928–2014)

https://mathshistory.st-andrews.ac.uk/Biographies/Grothendieck/


Prop 5.28: Every Hilbert space has an orthonormal basis.

Proof. Zorn’s lemma shows that the collection of orthonormal sets is partially

ordered and has a maximal element. Maximality means the collection is orthog-

onal to everything, which is (a) in Theorem 5.27. �



Prop. 5.29: A Hilbert space is separable iff it has a countable orthonormal

basis. in which case every orthonormal basis is countable.

Proof. If {xn} is a countable dense set in H, then by discarding recursively any

xn that are in the linear span of earlier ones, we obtain a linearly independent

sequence {yn} whose linear span is dense. Application of the Gram-Schmidt

process yields an orthonormal sequence {un} whose linear span is dense H and

which is therefore a basis.

Conversely, if {un} is a countable orthonormal basis, the finite linear combi-

nations of the un with coefficients in a countable dense subset of C form a

countable dense set. Moreover, if vα is another orthonormal basis, for each n

the set An = {a ∈ A : 〈un, vα〉 6= 0} is countable. By completeness of {un},
A = ∪nAn so A is countable. �



Defn: An invertible linear map between Hilbert spaces is unitary if it preserves

the inner product.

Unitary maps preserve norms, so are isometries.

Prop 5.30: Let {uα}A be an orthonormal basis for X . Then x→ 〈x, uα〉 is a

unitary map from X to `2(A).

Proof. The map is linear, and it is an isometry by the Parseval identity. To show

it is onto, let f ∈ `2(A). Then the Pythagorean theorem shows that the partial

sums of the series
∑
f (α)uα are Cauchy, so converge to some x that maps to

f . �



Spectrum and Spectral theory - brief summary:

Defn: A bounded operator on a Hilbert space is symmetric if 〈Mx, y〉 =

〈x,My〉.

Defn: The spectrum σ of a bounded operator on a Hilbert space is the set

of complex values λ so that λI −M is not invertible.

Example: if M has an eigenvalue Mv = λv then (λI −M)v = 0 so this

operator is not invertible. So λ is in the spectrum.



Thm 31.2 Lax: if M bounded and symmetric, the spectrum is real.

Thm 31.9 Lax: if M bounded and symmetric, then there is projection-valued

measure µ on the spectrum σ so that

M =

∫
σ

λdµ(λ)

and, more generally,

f (M) =

∫
σ

f (λ)dµ(λ)

for any continuous function f on σ.

The spectral measure can have atoms, a part singular to Lebesgue measure and

a part absolutely continuous with respect to Lebesgue measure.



Thm 28.3 Lax: if M is compact and symmetric, then there is an orthonormal

basis of eigenvectors

Mzn = αnzn.

The eigenvalues are real and the only accumulate at zero. This generalizes

diagonalization of real symmetric matrices.

Thm 30.1 Lax: if T is compact, it can be factored as T = UA where U is

unitary (UU ∗ = I) is positive, symmetric.

The eigenvalues of A are called the singular values of T .



T is called trace class if
∑
sj(T ) < ∞. This sum defines a norm on trace

class operators. For a trace class operator∑
〈Tzn, zn〉 =

∑
λk(T )

where {λk} are the eigenvalues and {zn} is any orthonormal basis.

For a trace class operator T , we can define a determinant of I + T

det(I + T ) =
∏

(1 + λk).

Defn: A operator T is Hilbert-Schmidt class if there is an orthonormal

basis {ek} so that ∑
‖Tek2 <∞.

This occurs iff
∑
s2
k(T ) <∞. Every trace class operator is the product of two

Hilbert-Schmidt operators (and conversely).



David Hilbert (1862–1943)

https://mathshistory.st-andrews.ac.uk/Biographies/Hilbert/
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