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Chapter 10.1: Basic Concepts

Analysts’ Term
Measure space (X,M, µ), µ(X) = 1.
σ-algebra
Measurable set
Measurable real-valued function f
Integral of f ,

∫
fdµ

f ∈ Lp
Convergence in measure
Almost everywhere, a.e.
Borel probability measure on R
Fourier transform of a measure
Characteristic function

Probabilists’ term
Sample space (Ω,B, P )
σ-field
Event
Random variable X
Expectation or mean of X , E(X)
f has finite pth moment
Convergence in probability
Almost surely, a.s.
Distribution
Characteristic function of a distribution
Indicator function



Defn: The variance of a random variable (i.e., function) is

σ2(X) = E[(X − E(X))2],

and the standard deviation is

σ(X) =
√
σ2(X).

Defn: If φ : Ω→ Ω′ is measurable map, and P is a measure on Ω, the image

measure (or push forward measure) is defined by

Pφ(E) = P (φ−1(E)).

Prop 10.1: With notation as above, if f : Ω′ → R is a measurable function,

then ∫
Ω′
fdPφ =

∫
Ω

(f ◦ φ)dP

whenever either side is defined.



Defn: If X is a random variable on Ω then X is a measurable map from Ω to

R, so its image measure is a probability measure on R, called its distribution.

Defn: Given X as above, the distribution function is

F (t) = PX((−∞, t]) = P )x ≤= t).

Defn: Two random variables with the same distribution function are called

identically distributed.



Defn: For any finite sequence {X1, ..., Xn} of random variables on Ω consider

this as a map ΩRn. The image measure P(X1,...,Xn) is called the joint distribution.

It is a general principle that all properties of random variables that are relevant

to probability theory can be expressed in terms of their joint distributions.

E(X) =

∫
tdPX(t)

σ2(X) =

∫
(t− E(X))2dPx(t)

E(X + Y ) =

∫
(t + s)dP (X, Y )(t, s)

Given a Borel probability measure λ on R we define the mean and variance as

λ =

∫
tdλ(t)

σ2 =

∫
(t− λ)2dλ(t).



Defn: events E and F are independent if

P (E ∩ F ) = P (E)P (F ).

If P (E) > 0, the conditional probability of F given E is

PE(F ) = P (E ∩ F )/P (E).

Thus E and F are independent iff the probabilty of F is the same, whether or

not E occurs.



Defn: a collection of events {Eα} is independent if

P(X1,...,Xn)(Eα1 ∩ · · · ∩ Eαn) =

n∏
1

P (Eαj),

for any distinct subset of the α’s.

Defn: a collection of random variables {Xα} on Ω is independent if the

events Xα ∈ Bα are independent. This is equivalent to saying

P(X1,...,Xn) =
∏

PXi.



Functions of independent variables are indepededent.

Prop. 10.2: Let {Xnj : 1 ≤ j ≤ J(n), 1 ≤ n ≤ N} be independent random

variables, and let fn : RJ(n) → R be Borel measurable for 1 ≤ n ≤ N . Then

the random variables Yn = fn(Xn1, ., XnJ(n)) 1 ≤ n ≤ N , are independent.



An easy induction on (8.47) (definition of convolution of measures) shows that

λ1 ∗ · · · ∗ λn =

∫
· · ·
∫
χE(t1 + · · · + tn)dλ1(t)dλn(t).

Prop. 10.4: If {Xj} are independent random variables, then

PX1+...Xn = PX1 ∗ · · · ∗ PXn.

Prop. 10.5: Suppose that {Xj} are independent random variables If Xj ∈ L1

for all j, then ∏
Xj ∈ L1, E(

∏
Xj) =

∏
E(Xj).



Cor. 10.6: If {Xj} are independent random variables in L2 then

σ2(X1 + · · · + Xn) =
∑

σ(Xj).

In other words, independence implies orthogonal (but not conversely).

Proof. Let Yj = Xj−E(Xj). Then {Yj} are independent and have mean value

zero so

E(YjYk) = E(Yj)E(Yk) = 0 · 0 = 0,

so they are orthogonal. The result follows from Pythagorean theorem (5.23). �



Independence is natually asociated to product spaces. Random variables are

indenpendent if they depend on disjoint sets of coordinates.

Example: Rademacher functions:

rn(t) = sgn(sin(2n+1πt)).

This is +1 if nth binary digit of x is 0 and −1 if nth binary digit is 1.
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Hans Rademacher (1892–1969)

https://mathshistory.st-andrews.ac.uk/Biographies/Rademacher/


Chapter 10.2: The Law of Large Numbers

If you generate a sequence of numbers independently at random, with probability

pi of choosing the i number then for almost ever sequence, the number i occurs

with frequency pi.

If we generate binary sequences by choosing 0 or 1 with equal probability 1/2

then almost every sequence has an “equal” number of 0’s and 1’s.

Almost every real number has a binary expansion where 0’s and 1’s occur equally

often.

The laws of large numbers make statements like this precise.



10.9 The Weak Law of Large Numbers: Let {Xj}∞1 be a sequence of

independent L2 random variables with means {µj} and variances {σ2
j}. If

1

n2

n∑
1

σ2
j → 0

as n→∞, then

Sn =
1

n

n∑
1

(Xj − µj)→ 0

in probability as n→∞.

Proof. Sn has mean 0 and variance

1

n2

n∑
1

σ2
j .

So by Chebyshev’s inequality, for any ε > 0

P (|Sn| > ε) ≤ 1

(nε)2

n∑
1

σ2
j → 0

as n→∞. �



The limsup of a sequence of sets is the collection of points that are in infinitely

many of the sets. Also

lim supAn =

∞⋂
k=1

∞⋃
n=k

An.

10.10 The Borel-Cantelli Lemma: Let {An} be a sequence of events.

(a) If
∑∞

1 P (An) <∞, then P (lim supAn) = O.

(b) If An’s are independent and
∑∞

1 P (An) =∞, then P (lim supAn) = 1.

Proof. We have

P (lim supAn) ≤ inf
k
P (∪∞n=kAn) ≤ inf

k

∑
n≥k

P (An).

The latter sum tends to zero if the P (An) are summable. This proves (a).



To prove (b), suppose that
∑
P (An) diverges and the An’s are independent.

We must show

P ((lim supAn)c) = P

( ∞⋃
k=1

∞⋂
n=k

Ac
n

)
= 0.

It is enough to show

P (∩∞n=kA
c
n) = 0

for all k. Using independence and 1− t ≤ et we get

P (∩Kn=kA
c
n) =

K∏
k

(1− P (An)) ≤
K∏
k

exp(−P (An)) = exp(−
K∑
k

P (An))

which tends to zero as K →∞. �



Disjoint spheres, approximation by imaginary quadratic numbers, and the log-

arithm law for geodesics by Dennis Sullivan.

http://www.math.stonybrook.edu/~bishop/classes/math533.S21/Notes/Sullivan_spheres.pdf
http://www.math.stonybrook.edu/~bishop/classes/math533.S21/Notes/Sullivan_spheres.pdf








10.11 Kolmogorov’s Inequality: Let X1, ..., Xn be independent random

variables with mean 0 and variances σ2
1, . . . , σ

2
n, and let Skk = X1 + ... + Xk.

For any ε > 0,

P ( max
1≤k≤n

|Sk ≥ ε) ≤ ε−2
n∑
1

σ2
k.

Proof. Let Ak be the set where |Sj| < ε for j < k and |Sk| ≥ ε (first time |Sk|
exceeds ε). These sets are disjoint and the union is {max j ≤ k|Sk| ≥ ε. Hence

P (max |Sk| ≥ ε) =

n∑
1

P (Ak) ≤ ε−2
n∑
1

E(χAkS
2
k)

since S2
k ≥ ε2 on Ak.



On the other hand,

E(S2
n) ≥

n∑
1

E(χAkS
2
n)

=

n∑
1

E(χAk[S
2
k + 2Sk(Sn − Sk) + (Sn − Sk)2])

≥
n∑
1

E(χAkS
2
k) + 2

n∑
1

E(χAkSk(Sn − Sk) + (Sn − Sk)2].

We claim each term in the second sum is zero.



If the claim holds, then

E(S2
n) ≥

n∑
1

E(χAkS
2
k)

so

P (max |Sn| ≥ ε) ≤ ε−2E(S2
n) = ε−2

n∑
1

σ2
k

by Cor 10.6since the Xk’s have mean value zero.

But χAk only depends on the values ofX1, . . . , Xk, whereas Sn−Sk only depends

on the value of Xk+1, . . . , Xn. Since there are disjoint sets of independent

variables, these two quantities are also independent. Thus

E(χAkSk(Sn − Sk)) = E(χAkSk) · E(Sn − Sk) = E(χAkSk) · 0 = 0. �



10.12 Kolmogorov’s Strong Law of Large numbers If {Xn}∞1 are

independent L2 random variables with means {µn} and variances {σ2
n} so that

∞∑
1

n−2σ2
n <∞,

then

Sn
1

n

n∑
1

(Xj − µj)→ 0,

almost surely as n→∞.

Proof. Given ε > 0 , for k ∈ N let Ak be the set where |Sn|/n ≥ ε for some

n ∈ [2k−1, 2k]. Then on Ak we have |Sn| ≥ ε2k−1 for some n < 2k, so by

Kolmogorov’s inequality,

P (Ak) ≤ (ε2k−1)−2
2k∑
1

σ2
n.



Therefore

P (Ak) ≤
4

ε2

∑
k = 1∞

2k∑
m

2−2kσ2
n

≤ 4

ε2

∑
n = 1∞

∑
k≥log2 b

2−2kσ2
n

≤ 8

ε2

∑
n = 1∞n−2σ2

n

Thus
∑
P (Ak) < ∞, so by Borel-Cantelli P (lim supAk) = 0 (almost every

pooint is only in finitely many Ak). But lim supAk is the set where |Sn| ≥ εn

for infinitely many n, so

P (lim sup
1

n
|Sn| < ε) = 1,

for any ε > 0. Taking ε→ 0 through a countable sequence proves the result �



10.13 Khinchine’s Strong Law of Large Numbers: If {Xn} is a se-

quence of independent identically distributed L1 random variables with mean

µ, then

Sn =
1

n

n∑
1

Xj → µ

almost surely as n→∞.



Proof. Replacing Xn by Xn − µ, we may assume that Xn has mean zero. Let

λ be the common distribution of the Xj’s; we are thus assuming that∫
|t|dλ(t) <∞,

∫
tdλ(t) = 0.

Let Yj = Xj on the set where |Xj| ≤ j and zero elsewhere. Then
∞∑
1

P (Yj 6= Xj) = P (|Xj| > j)

=

∞∑
1

λ(t : |t| > j)

=

∞∑
j=1

∞∑
k=j

λ(t : k < |t| ≤ k + 1).

Since
∞∑
j=1

∞∑
k=j

=

∞∑
k=1

k∑
j=1

,

interchanging the order of summation gives



∞∑
1

P (Yj 6= Xj) =

∞∑
k=1

kλ(t : k < |t| ≤ k + 1)

≤
∞∑
k=1

|t|dλ(t)

< ∞.
By the Borel-Cantelli lemma, we almost surely have Xj = Yj for j sufficiently

large, so it suffices to show almost surely that

1

n

n∑
1

Yj → 0.



We have

σ2
n(Yn) ≤ Y (Y 2

n ) =

∫
|t|≤n

t2dλ(t),

and hence
∞∑
1

n−2σ2(Yn) ≤
∞∑
n=1

n∑
j=1

n−2

∫
j−1<|t|≤j

t2dλ(t)

≤
∞∑
n=1

n∑
j=1

j · n−2

∫
j−1<|t|≤j

|t|dλ(t).

Reversing the order of summation, and using
∞∑
n=j

n−2 ≤ 2/j,

we get
∞∑
n=1

n−2σ2(Yn) ≤ 2

∞∑
n=1

∫
j−1<|t|≤j

|t|dλ(t) = 2

∫ ∞
−∞
|t|dλ(t) <∞.



By Kolmogorov’s SLLN (10.12) if µj = E(Yj) we have n−1
∑n

1(Yj − µj) → 0

almost surely. By the dominated convergence theorem

µj =

∫
|t|≤j

tdλ(t)→
∫ ∞
−∞

tdλ(t) = 0.

It follows (Exercise 12) that n−1
∑n

1 µj → 0 also. Hence

1

n

n∑
1

Yj → 0

almost surely, as desired. �



Here is another version of the SLLN that does not require independence, only

orthogonality. This is very usely in many cases. However, we have to assume

the variances are bounded, which is more than was assumed in Kolmogorov’s

SLLN.

This is Theorem 1.5.2 from Fractals in Probabilty and Analysis by Bishop and

Peres.

Strong Law of Large Numbers: Let (X, dν) be a probability space and

{fn}, n = 1, 2 . . . a sequence of orthogonal functions in L2(X, dν). Suppose

E(f 2
n) =

∫
|fn|2 dν ≤ 1, for all n. Then

1

n
Sn =

1

n

n∑
k=1

fk → 0,

a.e. (with respect to ν) as n→∞.

http://www.math.stonybrook.edu/~bishop/fractalbook_final.pdf


Proof. We begin with the simple observation that if {gn} is a sequence of func-

tions on a probability space (X, dν) such that∑
n

∫
|gn|2 dν <∞,

then
∑

n |gn|2 <∞ ν-a.e. and hence gn → 0 ν-a.e.

Using this, it is easy to verify the Strong Law of Large Numbers (LLN) for

n→∞ along the sequence of squares. Specifically, since the functions {fn} are

orthogonal,∫ (
1

n
Sn

)2

dν =
1

n2

∫
|Sn|2dν =

1

n2

n∑
k=1

∫
|fk|2 dν ≤

1

n
.

Thus if we set gn = 1
n2Sn2, we have∫

g2
n dν ≤

1

n2
.

Since the right hand side is summable, the observation made above implies that

gn = n−2Sn2 → 0 ν-a.e.



To handle the limit over all positive integers, suppose that m2 ≤ n < (m+ 1)2.

Then ∫
| 1

m2
Sn −

1

m2
Sm2|2 dν =

1

m4

∫
|

n∑
k=m2+1

fk|2 dν

=
1

m4

∫ n∑
k=m2+1

|fk|2 dν

≤ 2

m3
,

since the sum has at most 2m terms, each of size at most 1. Set m(n) = b
√
nc

and

hn =
Sn

m(n)2
−
Sm(n)2

m(n)2
.



Now each integer m equals m(n) for at most 2m + 1 different choices of n.

Therefore,
∞∑
n=1

∫
|hn|2 dµ ≤

∞∑
n=1

2

m(n)3
≤
∑
m

(2m + 1)
2

m3
<∞,

so by the initial observation, hn → 0 a.e. with respect to ν. This yields that
1

m(n)2
Sn → 0 a.e.

which, in turn, implies that 1
nSn → 0 a.e., as claimed. �



In the strong law of large numbers better estimates for the decay of Sn are

possible if we assume that the functions {fn} are independent with respect to

the measure ν.

By 1915 Hausdorff had proved that if {fn} are independent and satisfy
∫
fndν =

0 and
∫
f 2
n dν = 1, then

lim
N→∞

1

N
1
2+ε

N∑
n=0

fn(x) = 0 for a.e. x

and for every ε > 0. After that Hardy–Littlewood, and independently Khinchin,

proved

lim
N→∞

1√
N logN

N∑
n=0

fn(x) = 0 for a.e. x.



The “final” result, found by Khinchin for a special case in 1928 and proved in

general by Hartman–Wintner says

lim sup
N→∞

1√
2N log logN

N∑
n=0

fn(x) = 1 for a.e. x.

If we only assume orthogonality, bounded variances cannot be improved to the

weaker condition in Kolmorgorov’s SLLN. See

ON THE STRONG LAW OF LARGE NUMBERS FOR PAIRWISE INDE-

PENDENT RANDOM VARIABLES by S. Csorgo, K. Tandori, and V. Totik

http://www.math.stonybrook.edu/~bishop/classes/math533.S21/Notes/Csorgo1983.pdf
http://www.math.stonybrook.edu/~bishop/classes/math533.S21/Notes/Csorgo1983.pdf


Andrey Nikolaevich Kolmogorov (1903–1987

https://mathshistory.st-andrews.ac.uk/Biographies/Kolmogorov/


Aleksandr Yakovlevich Khinchin (1894–1959)

https://mathshistory.st-andrews.ac.uk/Biographies/Khinchin/


Chapter 10.3: The Central Limit Theorem

Defn: The probability measure νσ
2

µ on R defined by

dνσ
2

µ (t) =
1

σ
√

2π
e−(t−µ)2/2σ2

dt

is called the normal distribution or Gaussian distribution with mean µ

and variance σ2. When µ = 0 and σ = 1 this is called the standard normal

distribution.



Theorem 10.14: Let λ be a Borel probability measure on R such that∫
t2dλ(t) = 1,

∫
tdλ(t) = 0.

(The finiteness of the first integral implies the existence of the second.) For

n ∈ N let λ∗n = λ ∗ · · · ∗ λ (n factors) and define the measure λn by

λn(E) = λ∗n(
√
nE).

where
√
naE = {

√
nx : x ∈ E}. Then λn → ν1

0 vaguely (in weak* topology).



Proof. The hypotheses on the measure imply that its Fourier transform is of

class C2 and satisfies

λ̂(0) = 1, (λ̂)′(0) = 0, (λ̂)′′(0) = −4π2.

(differentiate the integral twice in Thm 8.22d). Thus

λ̂(ξ) = 1− 2π2ξ2 + o(ξ2).

Moreover,

(λ∗n)∧ = (λ̂)n

so

λ̂n(ξ) = [λ̂(ξ/
√
n)]n = [1− 2π2ξ2

n
+ o

(
(
ξ2

n
)2

)
]n.

Since log 1 + x = x + o(x) near zero,

log λ̂n(ξ) = n log[[1− 2π2ξ2

n
+ o

(
(
ξ2

n
)2

)
]2 = −2π2ξ2 + no(ξ2/n)

which tends to−2π2ξ2 as n→∞. In other words, λ̂n(ξ)→ exp(−2π2ξ2) so the

conclusion follows from Propositions 8.24 (the Fourier transform of the Gauss

kernel) and 8.50 (pointwise convergence of the Fourier transform of a measure

implies vague convergence). �



10.15 The Central Limit Theorem: Let {Xj} be a sequence of indepen-

dent identically distributed L2 random variables with mean µ and variance σ2.

As n → ∞ the distribution of (σ
√
n)−1

∑n
1(Xj − µ) converges vaguely to the

standard normnal ν1
0 , and for all a ∈ R,

lim
n→∞

P

(
1

σ
√
n

n∑
1

(xj − µ) ≤ a

)
=

1√
2π

∫ a

−∞
e−t

2/2dt.

Proof. ReplacingXj by σ−1(Xj−), we may assume that µ = 0 and σ = 1. If λ is

the common distribution of the Xj’s, then λ satisfies the hypotheses of Theorem

10.14, and in the notation used there, λn is the distribution of n−1/2
∑n

1 Xj. The

first assertion thus follows immediately, and the seeond one is equlvalent to it

by Proposition 7.19 (characterization of vague convergence in terms of pointwise

convergence of distribution functions). �










