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1. DEFINITION OF ODE

DEFINITION 1.1. Let D ⊂ R
n be a domain, i.e., an open connected set.

(i) A time-dependent vector field on D is a pair consisting of a domain V ⊂ D × R together
with a Borel-measurable map F : V → R

n.
(ii) The time-dependent vector field F is said to be autonomous if V = D × R and for each

x ∈ D, F (x, ·) is constant. That is to say, there is a Borel measurable map ξ : D → R
n

such that F (x, t) = ξ(x) for all x ∈ D and all t ∈ R. ⋄

Vector fields are the data of ordinary differential equations (ODE). From such data one wishes
to produce so-called integral curves; finding these integral curves constitutes solving the ODE.

DEFINITION 1.2. Let F be a time-dependent vector field on a domain V ⊂ D × R. An integral
curve through x ∈ D with initial time s is an open set I(x,s) ⊂ R containing s, together with an
absolutely continuous curve γ(x,s) : I(x,s) → D, such that

(i) γ(x,s)(s) = x,
(ii) (γ(x,s)(t), t) ∈ V for all t ∈ I(x,s), and

(iii)
dγ(x,s)(t)

dt
= F (γ(x,s)(t), t) for almost every t ∈ I(x,s).

The central question of ODE is whether, for a given time-dependent vector field, integral curves
exist and, if so, are unique. In the next section we shall establish an existence theorem under rather
weak hypotheses on the time-dependent vector field. Later on we shall impose slightly stronger
conditions and then simultaneously prove existence and uniqueness.
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2. CAUCHY-PEANO EXISTENCE THEOREM FOR FIRST ORDER ODE

THEOREM 2.1 (Cauchy-Peano Existence Theorem). Let D ⊂ R
n and let V ⊂ D×R be domains.

If F : V → R
n is a continuous time-dependent vector field then for each (x, s) ∈ V there exists

an integral curve γx,s : Ix,s → D of F passing through x at the initial time s.

Before turning to the proof of Theorem 2.1, let us note that continuity of the time-dependent
vector field F is too weak an assumption as to imply uniqueness of the integral curve. Perhaps the
simplest example is that of the vector field F (x, t) = 3x2/3, for which the curve

γ
〈c〉
0,0 : I0,0 = R ∋ t 7→ (t− c)3χ[c,∞)(t) ∈ R

is an integral curve through 0, with initial time 0 (i.e., γ
〈c〉
0,0(0) = 0) whenever c ≥ 0. (The case

c = ∞, which we can take to mean the identically zero solution, is also such an integral curve.)

Proof of Theorem 2.1. Fix (x, s) ∈ V and δ > 0 such that Dδ(s) := Bδ(x) × Iδ(s) ⊂ V , where
Iδ(s) = (s− δ, s+ δ).

We claim there exist ε > 0 and absolutely continuous γj : Iε(s) → D, j = 1, 2, ...,, such that

(1)
∣∣γ′j(t)− F (γj(t), t)

∣∣ ≤ 1/j and |γj(τ1)− γj(τ2)| ≤ |τ1 − τ2| sup
Dδ

(s)|F |

for all τ1, τ2 ∈ Iδ(s) and almost all t ∈ Iδ(s). To define γj let N > 0 be an integer (which will
soon be taken very large), let to := s, let tm := s+mε/N , m ∈ Z ∩ (−N,N), and define

• γj(s) = x,
• for m ≥ 0 and t ∈ (tm, tm+1], γj(t) := γj(tm) + (t− tm)F (γj(tm), tm), and
• for m < 0 and t ∈ (tm, tm+1], γj(t) := γj(tm+1) + (t− tm+1)F (γj(tm+1), tm+1).

To describe it in words, the curve γj is piecewise linear, and the directions of the two line segments
coming out of the corners of the image of γj are parallel to the value of the vector field F at the
corner in question (and at the appropriate time) or else at one of the two neighboring corners.

The curves γj , if well-defined, are clearly continuous. The issue of well-definedness is that of
making sure the curves do not escape the domain V , and this confinement to V is guaranteed, for
instance, if ε supDδ(s)

|F | < δ. We therefore assume ε > 0 is so small that the latter estimate holds.
As a consequence,

(2) |γ′j(t)− F (γj(t), t)| ≤ |F (γj(tm), tm)− F (γj(t), t)|+ |F (γj(tm+1), tm+1)− F (γj(t), t)|

for tm < t < tm+1. Since Dδ(s) is compact, F is uniformly continuous on Dδ(s). Therefore, by
taking N sufficiently large we can make the right hand side of (2) as small as we like.

Next, if tm < τ1, τ2 ≤ tm+1 then

|γj(τ1)− γj(τ2)| ≤ |τ1 − τ2| sup
Dδ(s)

|F |,

which is uniformly bounded. On the other hand, if m ≥ 0 and τ1 < tm < τ2 ≤ tm+1 then, using
the fact that γj(tm) = γj(tm−1) + (tm − tm−1)F (γj(tm−1), tm−1),

|γj(τ1)− γj(τ2)| = |(tm − τ1)F (γj(tm−1), tm−1) + (τ2 − tm)F (γj(tm), t)m)|

≤ (|(tm − τ1|+ |τ2 − tm|) sup
Dδ(s)

|F | = |τ1 − τ2| sup
Dδ(s)

|F |,

and a similar calculation works for m < 0. Thus (1) is proved.
By the second estimate in (1) the sequence {γj} is equicontinuous. SinceDδ(x) is also compact,

the theorem of Ascoli-Arzela yields a subsequence γjℓ converging uniformly to γ : Iε(s) → Bδ(s).
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The first estimate in (1) implies that g = lim
ℓ
γ′jℓ exists uniformly and equals F (γ(·), ·). The equality

g = F (γ(·), ·) implies that g is continuous.
It remains to show that γ is differentiable and satisfies the differential equation. Toward this end,

observe that

γj(t) = x+

∫ t

s

(
F (γj(τ), τ) +

(
γ′j(τ)− F (γj(τ), τ)

))
dτ.

By the first estimate in (1), we may pass to the limit as j → ∞, obtaining

γ(t) = x+

∫ t

s

F (γ(τ), τ)dτ.

Thus γ(s) = x, γ is differentiable, and γ′(t) = F (γ(t), t), as desired. �

3. CONTRACTION MAPPINGS

In the proof of the existence and uniqueness theorem to be stated in the next section, we will
need to make use of an iteration scheme due to Picard. The convergence of this iteration scheme
depends on the concept of contraction mapping, which we now define.

DEFINITION 3.1. Let A ⊂ X be a subset of a metric space. A mapping S : A→ A is said to be a
contraction mapping if there exists some r ∈ (0, 1) such that

d(Sx, Sy) ≤ r · d(x, y)

for all x, y ∈ X . ⋄

The basic fact about contraction mappings is the following result.

PROPOSITION 3.2. Let X be a complete metric space and let A ⊂ X be a closed subset. Let

S : A→ A be a contraction mapping. Then S has a unique fixed point.

Proof. Let x ∈ A be any point. Consider the sequence {xj} defined by

xj := S(j)x, j = 0, 1, 2, ...

where S(0) = Id is the identity map and S(j) := S ◦ S(j−1) for all j ∈ N. Then for all j < k we
have

d(xj, xk) ≤
k−1∑

ℓ=j

d(xℓ, xℓ+1) ≤
k−1∑

ℓ=j

rℓd(x, Sx) =
rj(1− rk−j−1)

1− r
d(x, Sx) ≤

rj

1− r
d(x, Sx).

It follows that {xj} is a Cauchy sequence, and since A is closed (hence complete), the limit

x∗ := lim xj

exists and lies in A. Since a contraction mapping is continuous,

x∗ = limS(j)x∗ = limS ◦ S(j−1)x∗ = S(limS(j)x∗) = Sx∗.

Thus x∗ is a fixed point of S.
Finally, if y is another fixed point of S then

0 ≤ (1− r)d(x∗, y) = d(Sx∗, Sy)− rd(x∗, y) ≤ (r − r)d(x∗, y) = 0.

Thus y = x∗, and the proof is complete. �
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4. THE EXISTENCE AND UNIQUENESS THEOREM FOR FIRST ORDER ODE

DEFINITION 4.1. Let f : U → R
n be a function defined on a domain U ⊂ R

m. We say that f is
locally Lipschitz if for each p ∈ U and each ε ∈ (0, dist(p, U c) there exists a constant K = Kε,p

such that
|f(x)− f(y)| ≤ K|x− y|

for all x, y ∈ B(p, ε) := {z ∈ R
m ; |z − p| < ε}. ⋄

EXAMPLE 4.2. Any differentiable function is locally Lipschitz. On the other hand, the function
f : R ∋ x 7→ |x| ∈ R is (globally) Lipschitz but not differentiable. ⋄

Let D ⊂ R
n and V ⊂ D × R be domains. For each t ∈ R, we write

Vt = {x ∈ D ; (x, t) ∈ V }.

(It may happen that Vt = Ø for some t.)

DEFINITION 4.3. Let D ⊂ R
n and V ⊂ D × R be domains, let F : V → R

n be a time-
dependent vector field. We say that F is uniformly locally Lipschitz if for each t ∈ R the function
Ft : Vt → R

n is locally Lipschitz and moreover the Lipschitz constant can be taken locally uniform
with respect to t. In other words, for each (x, t) ∈ V there is a neighborhood U ⊂ V containing
(x, t) and a constant K > 0 such that |Fs(x1)−Fs(x2)| ≤ K|x1 − x2| for all x1, x2 ∈ D such that
(x1, s), (x2, s) ∈ U . ⋄

THEOREM 4.4 (Existence and Uniqueness Theorem for Ordinary Differential Equations).
Let D ⊂ R

n and V ⊂ D × R be domains and let F : V → R
n be a continuous and locally

uniformly Lipschitz time-dependent vector field. For each (x, s) ∈ V there exists an integral curve

γ(x,s) : I(x,s) → D for F . Moreover, the set of integral curves possesses the following uniqueness

property: if γ(x,s) : I(x,s) → D and γ̃(x,s) : Ĩ(x,s) → D are two integral curves through x at time s,

then γ(x,s)(t) = γ̃(x,s)(t) for all t ∈ I(x,s) ∩ Ĩ(x,s).

Proof. Let (xo, to) ∈ V and choose ε > 0 such that F is continuous in B(xo, ε) × (−ε, ε) and
Lipschitz in the first variable with Lipschitz constant K, i.e.,

|F (x, t)− F (y, t)| ≤ K|x− y|

for all (x, t), (y, t) ∈ B(xo, ε)× (−ε, ε). By continuity there exists a constant M > 0 such that

|F (x, t)| ≤M

for all (x, t) ∈ B(xo, ε)× (−ε, ε).
Choose positive constants α and β such that

(i) with Iα := {t ∈ R ; |t− to| ≤ α} and Bβ := {x ∈ R
n ; |x− xo| ≤ β},

Bβ × Iα ⊂ B(xo, ε)× (−ε, ε),

(ii) αM < β, and
(iii) αK < 1.

Let A denote the set of continuous maps φ : Iα → R
n such that

|φ(t)− xo| ≤ β for all t ∈ Iα.

Equip A with the norm

||φ||∞ := inf{C > 0 ; |φ(t)| < C a.e. t ∈ Iα} = sup
Iα

|φ|.
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Since uniform limits of continuous functions are continuous, A is a closed bounded subset of the
Banach (and hence complete metric) space L∞(Iα). Thus A is itself a complete metric space with
respect to the metric

d(φ, φ̃) := ||φ− φ̃||∞.

Consider the operator T defined by

Tφ(t) := xo +

∫ t

to

F (φ(s), s)ds.

Observe first that if φ ∈ A then clearly Tφ is continuous and defined on all of Iα. Moreover, for
t ∈ Iα one has

|Tφ(t)− xo| ≤M |t− to| ≤Mα < β,

where the last inequality follows from (ii). Thus Tφ ∈ A , which is to say,

T : A → A .

Next, observe that if φ1, φ2 ∈ A then

|Tφ1(t)− Tφ2(t)| =

∣∣∣∣
∫ t

to

(F (φ1(s), s)− F (φ2(s), s)) ds

∣∣∣∣

≤

∫ t

to

K |φ1(s)− φ2(s)| ds

≤ Kα sup
Iα

|φ1 − φ2| .

It follows from (iii) that for some r ∈ (0, 1),

||Tφ1 − Tφ2||∞ ≤ r||φ1 − φ2||∞.

Thus T : A → A is a contraction mapping. Therefore by Proposition 3.2 T has a unique fixed
point φ∗ ∈ A .

Being a fixed point of T , φ∗ satisfies the equation

(3) φ∗(t) = xo +

∫ t

to

F (φ∗(s), s)ds,

and therefore
φ∗(t+ h)− φ∗(t)

h
=

1

h

∫ t+h

t

F (φ∗(s), s)ds
h→0
−→F (φ∗(t), t).

Since φ∗ ∈ A , the latter limit is continuous, and thus the fixed point φ∗ of T is continuously
differentiable, and satisfies the equation

φ′
∗(t) = F (φ∗(t), t).

Since φ∗(to) = xo, we see that γ(xo,to)(t) := φ∗(t) is an integral curve of F through xo at time to.
Conversely, any integral curve of F satisfies the equation (3), and is therefore a fixed point of

T . Since contraction mappings have a unique fixed point, any two integral curves must agree on
Iα. By carrying out the same proof in small intervals centered at all points of the intersection of

the open set I(x,s) ∩ Ĩ(x,s), we obtain the uniqueness statement claimed in the theorem. The proof
is therefore complete. �
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5. MAXIMAL INTEGRAL CURVES, FUNDAMENTAL DOMAINS, AND FLOWS

Our next goal is to ‘glue together’ the integral curves of a time-dependent vector fields. The first
task is to maximally extend integral curves.

Let D ⊂ R
n and V ⊂ D × R be domains, and let F : V → R

n be a continuous, locally
uniformly Lipschitz time-dependent vector field. Fix an initial condition (x, s) ∈ V . By Theorem
4.4, F has an integral curve through x with initial time s.

PROPOSITION 5.1. With the notation above, there exists a unique integral curve γ(x,s) : I(x,s) → D
for F passing through x with initial time s such that if φ : I → D is another integral curve for F
through (x, s) then I ⊂ I(x,s).

Proof. With respect to inclusion of domains, the set I(x,s) of all integral curves for F passing
through x with initial time s is partially ordered. Moreover, given two such integral curves φi :
Ii → D, i = 1, 2, Theorem 4.4 implies that the function

φ(t) :=

{
φ1(t) , t ∈ I1
φ2(t) , t ∈ I2

is well-defined, and therefore φ : I1 ∪ I2 → D is also an integral curve for F passing through x
with initial time s. It follows that I(x,s) is a directed set. We have to show that it has a maximal
element, which is then of course unique.

To this end, let {φi : Ii → D}i∈I be a maximal linearly ordered subset of I(x,s). Then the set
I :=

⋃
i∈I Ii is open, and the curve φ : I → D defined by

φ(t) = φi(t), t ∈ Ii

is well-defined by the uniqueness part of Theorem 4.4, and therefore in I(x,s). Thus I(x,s) has a
unique maximal element in I(x,s). �

DEFINITION 5.2. The unique maximal element of the set I(x,s) defined in the proof of the previous
proposition is called the maximal integral curve for F through (x, s). We shall denote the maximal
integral curve for F through (x, s) by

Γ(x,s) : I(x,s) → D.

One can also consider the unions of the graphs of the maximal integral curves.

DEFINITION 5.3. The set

UF := {(x, s, t) ; (x, s) ∈ V, t ∈ I(x,s)} ⊂ V × R

is called the fundamental domain of the time-dependent vector field F , and the map

ΦF : UF → D

defined by ΦF (x, s, t) := Γ(x,s)(t) is called the time-dependent flow of F . ⋄

DEFINITION 5.4. The map Φt
s : D → D

(4) Φt
s(x) := Γ(x,s)(t) = ΦF (x, s, t)

is called the time-t map for the initial time s. ⋄

The uniqueness part of Theorem 4.4 implies a symmetry appearing in the composition law for
the maps (4), stated in the following result.
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PROPOSITION 5.5. For each s ∈ R one has

Φs
s(x) = x for all x ∈ Vs.

Moreover, if (x, s, t) ∈ UF and (Φt
s(x), t, r) ∈ UF , we have the pseudo-group law

Φr
t ◦ Φ

t
s(x) = Φr

s(x).

6. SUSPENSION

Autonomous vector fields are special cases of time-dependent vector fields. In this section, we
note that in a sense the converse is also true. To this end, let D ⊂ R

n and V ⊂ D ×R be domains
and let F : V → R

n be a time-dependent vector field. Define ξF : V → R
n × R by the formula

ξF (x, s) := (F (x, s), 1)

The vector field ξF is then autonomous, and its flow is given by the time-t maps

Φt
ξF
(x, s) = (Φs+t

s (x), s+ t).

It is therefore possible to extract the flow of F from that of ξF . If one can find the latter flow, this
is of course possible. In fact, if F is continuous and locally uniformly Lipschitz on V then ξF is
locally Lipschitz on V , so Theorem 4.4 applies to ξF .

In view of the suspension construction, it suffices to focus attention on autonomous time-
dependent vector fields, which we shall simply call vector fields from here on.

7. AUTONOMOUS VECTOR FIELDS

From the point of view of classical mechanics, the general setting of time-dependent vector fields
corresponds to physical systems in which the laws of physics change with time. Such situations
can happen, but in nature we mostly find them when the particular physical system we are studying
is not closed, i.e., it is part of a larger physical system.

By definition, the vector field representing a closed physical system is autonomous. That is to
say, for each x ∈ D

t 7→ F (x, t)

is constant. In this case, we choose the convention of always taking initial value problems to start
at time s = 0.

The fundamental domain and the flow are defined only slightly differently, so as to eliminate the
initial time. Let us make the definitions precise.

DEFINITION 7.1. Let ξ : D → R
n be a vector field on a domain D ⊂ R

n.

(i) The maximal integral curve for ξ through x ∈ D is the maximal integral curve

Γx : Ix → D

where Γx := Γ(x,0) and Ix := I(x,0).
(ii) The fundamental domain of ξ is the domain

U
0
ξ := {(x, t) ; t ∈ Ix} ⊂ D × R.

(iii) The flow of ξ is the map Φξ : U 0
ξ → D defined by

Φξ(x, t) = Γx(t).
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(iv) The time-t map is the map Φt
ξ defined by

Φt
ξ(x) = Φξ(x, t).

⋄

Note that U 0
ξ always contains D × {0}. Note as well that the time-t maps define the pseudo-

group law

(5) Φt
ξ ◦ Φ

s
ξ = Φt+s

ξ .

The link between the autonomous and time-dependent scenarios is the identity

Φt
s = Φt−s

ξ .

An additional feature afforded to autonomous vector fields is the fact the any two maximal
integral curves that meet are in fact identical, i.e., distinct maximal integral curves never meet.
This separation of the integral curves is the content of the uniqueness aspect of Theorem 4.4 in the
case of autonomous equations.

8. REGULARITY OF SOLUTIONS

The flow of a vector field is constructed by gluing together integral curves. In this process, the
regularity of the time-t maps and of the flows is far from clear. As it turns out, the behavior of the
flow is remarkably good.

Before beginning our study, we establish the following lemma, whose usefulness in the study of
regularity of solutions to ODE cannot be overstated.

LEMMA 8.1 (Gronwall’s Inequality). Let f, g : [a, b) → [0,∞) be continuous functions, and

assume there is a constant A ≥ 0 such that

f(t) ≤ A+

∫ t

a

f(s)g(s)ds.

Then

f(t) ≤ A exp

(∫ t

a

g(s)ds

)
for all t ∈ [a, b).

Proof. Assume first that A > 0. The function h(t) := A +
∫ t

a
f(s)g(s)ds is positive and satisfies

h′(t) = f(t)g(t) ≤ h(t)g(t). Hence d
dt
log h(t) ≤ f(t), so log h(t) ≤

∫ t

a
f(s)ds + log h(a) =

log
(
h(a) exp

(∫ t

a
f(s)ds

))
. Since h(a) = A we have

f(t) ≤ h(t) ≤ A exp

(∫ t

a

f(s)ds

)
.

If A = 0 then of course f(t) ≤
∫ t

a
f(s)g(s)ds ≤ ε +

∫ t

a
f(s)g(s)ds, and by what was just proved

f(t) ≤ ε exp
(∫ t

a
f(s)ds

)
for every positive ε. It follows that f ≤ 0, as needed. �

Next we define the required notion of regularity.
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DEFINITION 8.2. Let D ⊂ R
n be an open set, let k ∈ N and let α ∈ (0, 1]. A function f : D → R

is said said to be C
k,α
ℓoc — one writes f ∈ C k,α(D)— if f ∈ C k(D) and for every x ∈ D and

every ε ∈ (0, dist(x,Dc)) there is a positive constant K = K(x, ε) such that every kth order

partial derivative gI := ∂kf
∂xi1 ···∂xin

of f (i.e., I = (i1, ..., in) ∈ N
n is a multiindex of order |I| :=

i1 + · · ·+ in = k) satisfies

|gI(x1)− gI(x2)| ≤ K|x1 − x2|
α for all x1, x2 ∈ Dε(x).

In particular, C
0,1
ℓoc (D) is the set of locally Lipschitz functions on D.

For a map F = (f 1, ..., fm) : D → R ⊂ R
m, F ∈ C

k,α
ℓoc (D,R) if f 1, ..., fm ∈ C

k,α
ℓoc (D), i.e., F

is C
k,α
ℓoc if and only if each component f j of F is C

k,α
ℓoc . ⋄

The central result about regularity of the time-t maps of a vector field ξ ∈ C
k,α
ℓoc (D) on a domain

D is the following theorem.

THEOREM 8.3 (Smooth dependence on Initial Conditions). Let D ⊂ R
n be a domain and let

ξ : D → R
n be a C

k,1
ℓoc vector field. Denote by Φξ : U o

ξ → D the flow of ξ. Then

a. for any open set U ⊂⊂ D and each t ∈ R such that the time-t map Φt
ξ is defined on U ,

Φt
ξ ∈ C

k,1
ℓoc (U),

b. for each x ∈ D the integral curve γx : Ix ∋ t 7→ Φt
ξ(x) is in C k+1(Ix), and

c. the flow Φξ : U o
ξ → D is C k,1.

Proof. We begin with the case k = 0. In this case the fact that γx ∈ C 1(Ix) is a part of Theorem
4.4, so we need only show that Φξ is locally Lipschitz. We begin by showing that Φt

ξ is locally

Lipschitz on its domain of definition. xBy the pseudogroup law it suffices to assume that t ∈ [−ε, ε]

for some sufficiently small ε. Let x ∈ D and let ε > 0 be so small that Φt
ξ(y) ∈ D if y ∈ Bε(x)

and t ∈ [−ε, ε]. For any x1, x2 ∈ Bε(x) consider the function f(t) := ||Φt
ξ(x1)− Φt

ξ(x2)||. Then

f(t) =

∣∣∣∣
∣∣∣∣
∫ t

0

(
ξ(Φs

ξ(x1))− ξ(Φs
ξ(x2))

)
+ x1 − x2

∣∣∣∣
∣∣∣∣ ≤ ||x1 − x2||+K

∫ t

0

f(s)ds,

where K is the local Lipschitz constant of ξ on Bε(x). By Gronwall’s Inequality

(6) ||Φt
ξ(x1)− Φt

ξ(x2)|| ≤ eK|t|||x1 − x2|| ≤ eεK ||x1 − x2||,

which proves a. We already know from Theorem 4.4 that the integral curve γx is C 1, i.e., that b
holds. Finally, if t1, t2 ∈ Iε(t) := (t− ε, t+ ε) and U ⊂⊂ D is such that (t− ε, t+ ε)×U ⊂ U o

ξ

then

||Φt1
ξ (x1)− Φt2

ξ (x2)|| ≤ ||Φt1
ξ (x1)− Φt2

ξ (x1)||+ ||Φt2
ξ (x1)− Φt2

ξ (x2)||

≤

(
sup

(τ,x)∈Iε(t)×D

||ξ(Φτ
ξ (x))||

)
|t1 − t2|+ ||Φt2

ξ (x1)− Φt2
ξ (x2)||

≤

(
sup

(τ,x)∈Iε(t)×D

||ξ(Φτ
ξ (x))||

)
|t1 − t2|+ eKε||x1 − x2||

where the second inequality follows from the Mean Value Theorem and the third inequality is (6).
Thus c holds, and the case k = 0 is proved.
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Let us now turn to the case k = 1, i.e., assume ξ ∈ C
1,1
ℓoc (D). For fixed x ∈ D consider the

linear time-dependent vector field Fx(y, t) := dξ(Φt
ξ(x))y. Let us write Ψ(x, t)y := Φt

0(y), where

Φt
o is the time-dependent flow of Fx(y, t). By the uniqueness part of Theorem 4.4 Ψ(x, t) depends

linearly on y, which is to say, Ψ(x, t) lies in the space Hom(Rn,Rn) of linear maps of Rn to itself.
Moreover, Ψ(x, t) is invertible because Φ0

t ◦ Φ
t
0 = Φt

t = Id. We can therefore think of dξ(Φt
ξ(x))

as a vector field on the linear space Hom(Rn,Rn).
By its definition, the curve t 7→ Ψ(x, t) ∈ Hom(Rn,Rn) satisfies the differential equation

d

dt
Ψ(x, t) = dξ(Φt

ξ(x))Ψ(x, t)

with the initial condition Ψ(x, 0) = I . We claim that the map (x, t) 7→ Ψ(x, t) is continuous.

Indeed, since ξ ∈ C
1,1
ℓoc (D), dξ is locally Lipschitz, and by the first part of the proof we have

already seen that Φξ is Lipschitz. Therefore

||Ψ(x, t)|| =

∣∣∣∣
∣∣∣∣Id +

∫ t

0

dξ(Φs
ξ(x))Ψ(x, s)ds

∣∣∣∣
∣∣∣∣ ≤ 1 +

∫ t

0

||dξ(Φs
ξ(x))|| · ||Ψ(x, s)||ds

and Gronwall’s Inequality yields ||Ψ(x, t)|| ≤ exp
(∫ t

0
||dξ(Φs

ξ(x))||ds
)

. In particular, ||Ψ(x, t)||

is locally uniformly bounded in x and t.
Now, if x1, x2 are sufficiently close to x then, since Ψ(x1, 0) = Ψ(x2, 0) = Id,

Ψ(x1, t)−Ψ(x2, t)

=

∫ t

0

(
dξ(Φs

ξ(x1))Ψ(x1, s)− dξ(Φs
ξ(x2))Ψ(x2, s)

)
ds

=

∫ t

0

(
(dξ(Φs

ξ(x1))− dξ(Φs
ξ(x2)))Ψ(x1, s) + dξ(Φs

ξ(x2))(Ψ(x1, s)−Ψ(x2, s))
)
ds,

and hence, since we observed that dξ ◦Φt
ξ is locally Lipschitz uniformly in t and we’ve just shown

that ||Ψ(x, t)|| is locally uniformly bounded in x and t,

||Ψ(x1, t)−Ψ(x2, t)|| ≤ A||x1 − x2||+K

∫ t

0

||Ψ(x1, s)−Ψ(x2, s)||ds.

Thus by Gronwall’s Inequality again,

||Ψ(x1, t)−Ψ(x2, t)|| ≤ A||x1 − x2||e
Kt.

Moreover, another application of the Mean Value Theorem gives

||Ψ(x1, t1)−Ψ(x2, t2)|| ≤ ||Ψ(x1, t1)−Ψ(x1, t2)||+ ||Ψ(x1, t2)−Ψ(x2, t2)||

≤

(
sup

t1≤t≤t2,x
dξ(Φt

ξ(x))Ψ(x, t)

)
|t1 − t2|+ A||x1 − x2||e

Kε

which shows that Ψ is Lipschitz.

Finally, observe that the map Ψ̂ : (x, t) 7→ dΦt
ξ(x) satisfies Ψ̂(x, 0) = dΦ0

ξ(x) = Id and

d

dt
Ψ̂(x, t) =

d

dt
dΦt

ξ(x)y =
d

dt

d

ds

∣∣∣∣
s=0

Φt
ξ(x+ sy) =

d

ds

∣∣∣∣
s=0

ξ(Φt
ξ(x+ sy))

= dξ(Φt
ξ(x))dΦ

t
ξ(x)y = dξ(Φt

ξ(x))Ψ̂(x, t)y
10



for all y ∈ R
n. By the uniqueness part of Theorem 4.4 Ψ̂ = Ψ. Thus we have shown that the flow

Φξ is C 1,1 when ξ is C 1,1. Moreover,

d2

dt2
Φt

ξ(x) =
d

dt
ξ ◦ Φt

ξ(x) = dξ(Φt
ξ(x))ξ(Φ

t
ξ(x))

which shows that the flow Φξ is then C 2 in t. This completes the proof of the case k = 1.
Now suppose the result has been proved up to k − 1, i.e., we have shown that, for any vector

field η, if η ∈ C
k−1,1
ℓoc (D) then ψη is C

k−1,1
ℓoc in x and C k in t. We have already computed that

d

dt
dΦt

ξ(x) = dξ(Φt
ξ(x))dΦ

t
ξ(x) and

d2

dt2
Φt

ξ(x) = dξ(Φt
ξ(x))ξ(Φ

t
ξ(x)).

As one can verify by repeated application of the chain rule, the right hand sides of both equations

are C
k−1,1
ℓoc . Therefore, by our induction hypothesis, so are the solutions. Hence we see that Φξ is

C
k,1
ℓoc in x and C k+1 in t. The proof is therefore complete. �

COROLLARY 8.4. If ξ : D → R
n is a C ∞ vector field then Φξ : U o

ξ → D is C ∞.

If D ⊂ R
n and ξ : D → R

n is a real-analytic vector field, it is not immediately clear from
Theorem 8.3 that Φξ is real-analytic. Nevertheless this is indeed the case.

THEOREM 8.5. If ξ : D → C
n is a real-analytic vector field then the flow Φξ : U o

ξ → D is

real-analytic.

We shall omit the proof of Theorem 8.5. The reader is invited to check that the estimates ob-
tained in the proof of Theorem 8.3 are strong enough to prove that the solution is real-analytic
when the vector field ξ is real-analytic.

9. DEPENDENCE ON PARAMETERS

THEOREM 9.1 (Dependence on Initial Conditions). Let P be a compact topological spaces and let

ξp be a locally Lipschitz vector field for each p ∈ P . Assume, moreover, that the map

P ×D ∋ (p, x) 7→ ξp(x) ∈ R
n

is continuous. Then the flow Φξp of ξp depends continuously on p, in the sense that for each

relatively compact open set U ⊂⊂ D and each ε > 0 such that U o
ξp

contains D × (−ε, ε) for all

p ∈ P the map

P × U × (−ε, ε) ∋ (p, x, t) 7→ Φt
ξp(x) ∈ D

is continuous.

Proof. We know that the map fx,p(t) := t 7→ Φt
ξp
(x) is the unique solution of the equation

fx,p(t) = x+

∫ t

0

fx,p(s)ds.

This integral equation suggests an approximation scheme, and in fact this approximation scheme
was in some sense used to prove Theorem 4.4.

We assume first that t > 0. Let us fix po ∈ P and xo ∈ X . For p and x sufficiently close to po
and xo respectively, define

fo(t, x, p) := x+ tξpo(xo)
11



and, inductively,

fj+1(t, x, p) := x+

∫ t

0

ξ(fj(s, x, p))ds, j ≥ o.

Fix ε > 0. Clearly the functions fj depend continuously on t, x and p, and moreover there exist
δ > 0 and a sufficiently small open neighborhood Npo of po in P such that if ||x − xo|| < δ and
p ∈ Npo then

||f1(t, x, p)− fo(t, x, p)|| =

∣∣∣∣
∣∣∣∣
∫ t

0

(ξp(fo(t, x, p))− ξpo(xo))ds

∣∣∣∣
∣∣∣∣ ≤ |t|ε.

Now fix k ≥ 1 and, by way of induction, assume we have proved that

||fk(t, x, p)− fk−1(t, x, p)|| ≤
εtkKk−1

k!
,

where K is the local Lipschitz constant for ξ in the neighborhood Bδ(xo). Then

||fk+1(t, x, p)− fk(t, x, p)|| ≤

∫ t

o

||ξ(fk(s, x, p))− ξ(fk−1(s, x, p))||ds

≤

∫ t

0

K||fk(s, x, p)− fk−1(s, x, p)||ds ≤
εKk

k!

∫ t

0

skds =
εtk+1Kk

(k + 1)!
.

Thus, setting f−1 = 0, we see that

fN(t, x, p) :=
N∑

k=0

(fk(t, x, p)− fk−1(t, x, p))

which depends continuously on t, x and p, converges uniformly to some function f(t, x, p) so long
as

ε
∑

k≥1

tkKk−1

k!
=

ε

K
(eKt − 1) < δ − t||ξpo(xo)||.

Indeed, if this is the case then

||fN(t, x, p)− x|| ≤
ε

K
(eKt − 1) + t||ξpo(xo)||,

which is required to force fk(t, x, p) to remain inside the ball Bδ(xo). Therefore we see that if t is
bounded above by a sufficiently small constant then the limit f(t, x, p) exists uniformly in t, x and
p. Therefore this limit is a continuous function of t, x and p.

If t < 0 then the same result is obtained from the above proof by replacing twith −t everywhere.
Finally, note that the limit, being uniform, satisfies

f(t, x, p) = x+

∫ t

0

ξp(f(s, x, p))ds.

By Theorem 4.4 f(t, x, p) = Φt
ξp
(x), and the proof is complete. �

If we are willing to allow our parameter space P to be an open set in Euclidean space then
Theorem 9.1 has a much stronger generalization with a much simpler proof.

12



COROLLARY 9.2. Let P ⊂ R
m be a domain and let {ξp ; p ∈ P} be a family of C

k,1
ℓoc vector fields

such that the map

P ×D ∋ (p, x) 7→ ξp(x) ∈ R
n

is C k. Then the map

P ×D × R ∋ (p, x, t) 7→ Φt
ξp(x) ∈ D,

wherever it is defined, is C k.

Proof. Consider the vector field ξ̃ on D × P defined by ξ̃(x, p) := (ξp(x), 0). By hypothesis this

vector field in C
k,1
ℓoc , and hence by Theorem 8.3 its flow Φξ̃ : U o

ξ̃
→ D × P is C

k,1
ℓoc . But this flow

is uniquely determined by the differential equation, and one can check directly that the map

D × P ∋ (x, p) 7→ (Φt
ξp(x), p)

solves the equation. Therefore Φt
ξ̃
(x, p) ≡ (Φt

ξp
(x), p), and in particular, (x, p) 7→ Φξp(x) is C

k,1
ℓoc .

The proof is complete. �

10. COMPLETE VECTOR FIELDS

The pseudo-group law (5) is not a group law only because integral curves are not defined for a
long enough time, i.e., even if t and s both lie in the domains of their respective integral curves, t+s
may not. The situation in which this failure does not happen is therefore particularly important,
and we study it in more detail now.

DEFINITION 10.1. A vector field ξ : D → R
n is said to be complete (sometimes also called

completely integrable) if the domain of every maximal integral curve is R. ⋄

We have the following simple Proposition.

PROPOSITION 10.2. Let ξ : D → R
n be a C

k,1
ℓoc vector field defined on a domain D ⊂ R

n. Then

the following are equivalent.

(i) ξ is complete.

(ii) There exists a positive number ε such that for each x ∈ D, Ix ⊃ (−ε, ε).

(iii) For each t ∈ R, the map Φt
ξ is a C

k,1
ℓoc -diffeomorphism of D: Φt

ξ ∈ Diffk(D) ∩ C
k,1
ℓoc (D).

(iv) For some t ∈ R− {0}, Φt
ξ ∈ Diffk(D) ∩ C

k,1
ℓoc (D).

(v) The set of maps {Φt
ξ}t∈R is a 1-parameter subgroup of Diffk(D) ∩ C

k,1
ℓoc (D).

(vi) The fundamental domain of ξ is D × R.

The proof is left to the reader as an exercise.

11. APPROXIMATION

In this section we study a technique, initiated by Euler, for the approximation of integral curves
and more generally flows. We confine ourselves to autonomous vector fields for the time being.

DEFINITION 11.1. Let ξ : D → R
n be a vector field on a domain D ⊂ R

n and let I ⊂ R be
an open interval containing 0. An algorithm for ξ is a map H : D × I → D such that, with
Ht(x) := H(x, t),

(i) H0 = Id,
(ii) H(x, ·) is C 1 and its derivative is continuous in D × I , and

13



(iii) ∂H
∂t

∣∣
t=0

= ξ.

The basic approximation theorem is the following result.

THEOREM 11.2. Let H be an algorithm for a Lipschitz vector field ξ. If (t, x) ∈ U 0
ξ then for

all N >> 0, H
(N)
t/N (x) is defined, and converges to Φt

ξ(x). Conversely, if H
(N)
t/N (x) is defined and

converges for t ∈ [0, T ] then (T, x) ∈ U 0
ξ and

lim
N→∞

H
(N)
t/N (x) = Φt

ξ(x).

In both statements, the converges is locally uniform on D × I .

Proof. We begin by showing that the convergence holds locally. To this end, let xo ∈ D. Then

(7) Ht(x) = x+O(t) and Φt
ξ(x)−Ht(x) = o(t).

If H
(j)
t/j(x) is well-defined for x in a small neighborhood of xo, for j = 1, 2, ..., N − 1, then the

semi-group law for time-t maps and the first estimate in (7) shows that

H
(N)
t/N (x)− x = H

(N)
t/N (x)−H

(N−1)
t/N (x) +H

(N−1)
t/N (x)−H

(N−2)
t/N (x)

+...+Ht/N(x)− x

= NO(t/N) = O(t),

which is small independently of N , for t sufficiently small. Thus for x sufficiently close to xo and

t sufficiently small, H
(N)
t/N (x) remains close to xo for all N . In other words, with

xj = H
(j)
t/j(x),

||xj − xo|| < ε for x sufficiently close to xo and t sufficiently small. From the semi-group law for
Φt

ξ, we also have

Φt
ξ(x)−H

(N)
t/N (x) = (Φ

t/N
ξ )(N)(x)−H

(N)
t/N (x)

= (Φ
t/N
ξ )(N−1)(Φ

t/N
ξ (x))− (Φ

t/N
ξ )(N−1)(Ht/N(x))

+
N∑

j=2

(Φ
t/N
ξ )(N−j)(Φ

t/N
ξ (xj))− (Φ

t/N
ξ )(N−j)(Ht/N(xj)),

Now, the hypotheses on ξ imply the estimate (6), as was shown in the beginning of the proof of
Theorem 8.3. Repeated application of (6) yields the estimate

||Φt
ξ(x)−H

(N)
t/N (x)|| ≤

N∑

k=1

eK|t|(N−k)/N ||Φ
t/N
ξ (xN−k−1)−Ht/N(xN−k−1)||

≤ NeK|t|o(t/N),

and the last quantity converges, as N → ∞, to 0 uniformly on a small ball centered at xo and for
all sufficiently small t. The final estimate uses the second estimate of (7).

Having handled the case of short times, we now proceed to longer times. To this end, suppose
first that Φt

ξ(x) is defined for all t ∈ [0, T ]. By what we have just done, if k is sufficiently large
then

Φ
t/k
ξ (y) = lim

k→∞
H

(k)
t/k(y)
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holds uniformly for t ∈ [0, T ] and y in a bounded neighborhood of the curve {Φt
ξ(x) ; t ∈ [0, T ]}.

Thus

Φt
ξ(x) = (Φ

t/k
ξ )(k)(x) = lim

N→∞
(H

(N)
t/(kN))

(k)(x) = lim
N→∞

H
(Nk)
t/(kN)(x) = lim

N→∞
H

(N)
t/N (x).

Conversely, suppose t 7→ H
(N)
t/N (x) converges to a curve c : [o, T ] → D. Let

S = {t ∈ [0, T ] ; Φt
ξ(x) is defined and equal to c(t)}.

Clearly 0 ∈ S, and from the local result S is relatively open. Let {tk} ⊂ S and suppose tk → t.
Then Φtk

ξ (x) → c(t) so by Theorem 4.4 Φt
ξ(x) is defined, and by continuity, Φt

ξ(x) = c(t). Thus S
is closed, and hence S = [0, T ].

Finally, observe that by existence and uniqueness, Φ−t
ξ = Φt

−ξ, so the above proof applies to
negative times as well. �
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