Ludwig Bieberbach's Conjecture and Its Proof by Louis de Branges

Author(s): J. Korevaar

Source: The American Mathematical Monthly, Vol. 93, No. 7 (Aug. - Sep., 1986), pp. 505-514
Published by: Mathematical Association of America

Stable URL: http://www.jstor.org/stable/2323021

Accessed: 20/11/2009 09:33

Y our use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon awide range of
content in atrusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to
The American Mathematical Monthly.

http://www.jstor.org


http://www.jstor.org/stable/2323021?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=maa

LUDWIG BIEBERBACH’S CONJECTURE AND ITS PROOF BY
LOUIS DE BRANGES

J. KOREVAAR
Mathematics Institute, University of Amsterdam, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands

Summary. 1984 has been an exciting year for complex analysis. It even brought strong rumors
that the Riemann hypothesis had been proved, but so far, the rumor has not been confirmed.
However, we know for sure that the difficult Bieberbach conjecture has been settled this year. As
many of you know, this famous conjecture of 1916 concerns the class S of normalized injective
holomorphic functions. That class consists of the 1-1 holomorphic functions from the unit disc U
into the complex plane C with a power series of the form

f(z)=z+4+ayz>+ -+ +a,z" + -+, |z] <1

The conjecture asserts that |a,| < n for every f in S and every n. Louis de Branges has proved
this conjecture as well as some stronger conjectures for the class S.
Each of the following items has played an essential role in the proof:

(i) Lowner’s partial differential equation for so-called Lowner chains { f,(z)} of injective
holomorphic functions from U to C.

(i) The observations of Lebedev and I. M. Milin, especially their inspired conjecture for the
so-called logarithmic coefficients of f in S, that is, the coefficients in the expansion X{°c, z* for a
branch of log{ f(z)/z}.

(iii) De Branges’ striking breakthrough, namely, the creation of a functional associated with
the Lebedev-Milin conjecture which varies monotonically along Lowner chains.

(iv) De Branges’ introduction and solution of a system of differential equations which he
devised to make the functional manageable.

(v) A positivity result for hypergeometric functions which is a tool in establishing the
monotonicity of the functional.

Of the above, (i) dates back to 1923, while (ii) and (v) are relatively recent. The Lebedev-Milin
observations date from the years 1965-1970 and became well known in the West only around
1977. The hypergeometric functions result occurs in work of Askey and Gasper of 1976.

1. Historical introduction. Our starting point is the well-known conformal mapping theorem
formulated by Riemann. Let D be an arbitrary simply connected domain in the complex plane C
which is not the whole plane. Then there exists a conformal (or 1-1 holomorphic) map w = f(z)
from the unit disc U: {|z| < 1} onto D. One may arbitrarily prescribe the image f(0) (in D) of
the origin, as well as the angle arg f/(0) through which directions at the origin are rotated.
However, such data determine the map uniquely. The first complete proofs of the theorem were
given around 1900: by Hilbert, who put the Dirichlet principle on a rigorous basis, and by
Osgood, who constructed and used Green’s functions for D.

Questions on the fine structure of conformal maps became a popular topic in German
mathematics around 1910 (Koebe, Carathéodory and others). Let us normalize our injective
holomorphic maps f from U to C by requiring f(0) = 0, f/(0) = 1. Then we obtain the class S
of normalized 1-1 holomorphic functions (“schlicht” or univalent functions)

(1) f(z) =z+ayz>+ -+ +a,z" + --- onU.

The author has worked in complex analysis and approximation theory, including Tauberian theorems and
Muntz-type approximation. Born and educated in the Netherlands, he became an admirer of Hardy-Littlewood-
Polya-Szegd-Wiener. He has spent 25 years in the U.S., mostly at the University of Wisconsin (Madison) and the
University of California (San Diego). Since 1974 he has been a professor at the University of Amsterdam and a
member of the Netherlands Academy of Sciences; he holds an honorary degree from the University of Gothenburg.
Mathematics is a family interest (the father-in-law story applies), as are music, languages and mountain hiking.
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ExXAMPLES. The formula
1+:z

w= =1 4224 - 422"+ -

—Z

defines a conformal map of U onto the right half-plane H: {Re w > 0}. Squaring, we obtain a
conformal map

( 1+ z)\?
W =
1- z)
of U onto the slit plane C \ (— o0, 0]. Normalization gives the important Koebe function
2 © 1({1+42z\2 ) z )2 .
a) o(Z)—4(1_Z)— —(1_—2)2—24- z¢+ - +nz" + -
which maps U onto C \ (— o0, — 5]. This function and its rotations
z

(2b) Ky(z) = e ¥Ky(e2) = ———

() = RN = s

(which we will also call Koebe functions) provide the solution to many extremal problems for the
class S.

Some extremal problems. In 1916 Bieberbach [2] proved that |a,| < 2 for every f in S, with
equality only for the Koebe functions (2). In a footnote he remarked that perhaps quite generally

(3) la,| <n forfesS.

This footnote became the famous Bieberbach conjecture which remained unproven until 1985,
although a great deal of work was expended on it. The a,-result can be used to show that the
image f(U) contains the disc |w| < 1/4 in the w-plane for every f in S. Moreover, if f(U)
contains no larger disc about 0, then f is a Koebe function. Related results are Koebe’s distortion
theorems, of which we mention
1+ 2] 2] <If(2)] < |2
30 7 S S 2:

(L—lzl)" (A +1z0) (1 -1zl
These inequalities hold for all f in S, with strict inequality for all z # 0 unless f is a Koebe
function.

General references for this section and the next are the books by Goluzin [10], Pommerenke
[14], Duren [6] and Goodman [11].

(4) |F(2)] <

2. More on the Bieberbach conjecture. Using the partial differential equation named after
him, see Section 4(iii), Lowner proved in 1923 that |a,| < 3 for every f in S [12]. Later, Schiffer
and others developed a number of variational methods for injective holomorphic functions. In the
years 1955-1972 those techniques yielded rather laborious proofs for the special cases n = 4, 6
and 5 of the Bieberbach conjecture. From time to time, proofs for other special cases have been
announced, but they have not been substantiated.

Turning to general 7, the upper bound for |f(z)| in the distortion relations (4) and Cauchy’s
inequality for the coefficients of a power series readily show that |a,| < en?®. In 1925 Littlewood
found the correct order of the upper bound for |a,| as n — oo:

la,| <en forall feS.

The best result of this kind until this year was that of FitzGerald (1972), including a slight
improvement by his student Horowitz (1978):

la,| < 1.07n.
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There is also a beautiful regularity theorem of Hayman (1953): the limit

. lagl
lim ——
n—oc0 N

exists for every f in §, and is smaller than 1 unless f is a Koebe function. This result remains of
interest even now that the Bieberbach conjecture has been proved.

0dd functions. For f in S, it is often useful to look at the related function

(5) fx(z) = Vf(zz) =byz + 1’323 + o +b2n—122n_1 +--, by=1

This is an odd function in S, and every odd function f; in S can be represented as such a square
root transform. By (1) and (5)

(6) a, = b1b2n—l + o +b2n—lbl'
If f is the Koebe function K then

z
fi(z) = - =z+z23+ 424

In 1932 Littlewood and Paley proved that there is a constant C < 14 such that for all odd
functions in §,

16y, 1] <C, n=1,2,....

In a footnote they remarked: “No doubt the true bound is given by C = 1.” Observe that by (6),
the truth of this conjecture would imply the Bieberbach conjecture!
Recently V. 1. Milin proved that one may take C = 1.14. Before that, Hayman had shown that

lim |b2n——1|
n— oo

exists for every odd function f; in S, and is smaller than 1 unless f; is the root transform of a
Koebe function. These results would seem to support the Littlewood-Paley conjecture. However,
the latter had been disproved already in 1933 by Fekete and Szegd: there exist odd functions in S
for which |bs| > 1. No wonder that some experts doubted the Bieberbach conjecture as well!

However, there are always people around with the intuition to come up with a good
conjecture. It was observed by Robertson that by (6) and the Cauchy-Schwarz inequality, the
Bieberbach conjecture would already follow from the inequality

(7 Ylbya | < m.
1

(7) became known as the Robertson conjecture for odd functions in S (1936).

Logarithmic coefficients. Since 1940, one has increasingly used certain logarithmic transforms
of injective holomorphic functions. The associated Grunsky and Goluzin inequalities have been
successfully applied to various extremal problems. More recently, Lebedev and I. M. Milin have
focused on the expansion

f(z) _ &

=Y czf |zl <1
1

(®) log™—
for f in S. (Note that f(z)/z is holomorphic and zero-free on U; one takes the branch of the
logarithm which vanishes at the origin.) For the Koebe function K, one has ¢, = 2/k. For the
case of image domains f(U) that are star-shaped relative to the origin, one has |¢,| < 2/k and
this inequality readily implies the Bieberbach conjecture (3) for such “starlike” functions f.

The latter result goes back to Nevanlinna (1920). For starlike f, a geometric argument at the
boundary shows that
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ez];/((zz)) = Re(l + o210‘,kc,(z") >0,

so that by a well-known inequality of Carathéodory for functions with positive real part,
kle,| < 2, cf. Section 4(vi).
The inequality |¢,| < 2/k or

kle > = — <0

= &

is not true for every f in S, but Lebedev and Milin conjectured that the latter inequality is true in
the following average sense:

(9) £ le kzl(klcklz -4)- :g:i(kw - LJon=0 <o

for n = 2,3,... and all f € S. This amazing conjecture occurs in Milin’s book of 1971; the book
became available in English only in 1977 [13]. The L-M conjecture implies the Robertson
conjecture and hence also the Bieberbach conjecture.

ExaMPLES. The L-M conjecture is easy to prove for n = 2 and 3, cf. Section 4(vii). For n = 2
it asserts that | ¢, |? < 4. Since
f(2)

(10) 1+ ayz+az2+ -+ = =exp(cz+ 22+ )
z

1
=17|—clz+(5c12+c2)22+-~~,

Bieberbach’s inequality is an immediate consequence:
q
lay| = le| <2

For n = 3 the L-M conjecture is equivalent to |¢;|* + |¢,|* < 5. Lowner’s inequality is an easy
corollary:

W

c1 + 06| <

1 1
2
las| = |Cl| + el <5 — Elczl + le] <3

2

[\

(by calculus!).

Turning to the general case, there is a useful inequality of Lebedev and Milin for the
coefficients of

S5, - onf ).
0 1

It asserts that

n—1 n—1 1
T PR (T | R

p=1k=1 k

see [6]. Applying this inequality to the identity
fi(z)

1
z2

by + byz+ -+ +by, 2"+ =

={f(zz)}§ {llgf(z)}—exp(%i:‘,ckzk),
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cf. (5) and (8), one obtains
(11) |b1|2 + o +|b2,,_1|2<nexp(ﬂ,,/4n).

Thus if the L-M conjecture (9) holds for f € S and a certain #, then the Robertson conjecture (7)
holds for the corresponding f; and the same #, so that also the Bieberbach conjecture (3) must
be true for the same n, cf. (6). Moreover, if £, < 0 for some », then one has strict inequality in
(7) and hence also in (3).

De Branges has proved the L-M conjecture and thereby also the Robertson and Bieberbach
conjectures [3], [4], [5].

3. De Branges’ theorem [4]. Let f be an arbitrary function in S, let the power-series coefficients
a, be defined by (1) and the logarithmic coefficients ¢, by (8). Then the conjectured 1-M inequality
(9) and hence the conjectured Bieberbach inequality (3) are true for every n > 1. Equality holds in
(3) and hence in (9) for a certain n > 2 if and only if f is a Koebe function (2).

4. The proof. I will present de Branges’ ideas in as simple a way as I can. The following
arrangement is based on de Branges’ lecture in Amsterdam (July 10) and an early write-up in
Russian which he had at that time. It also shows the influence of his later manuscript [4] and of a
manuscript by FitzGerald and Pommerenke [8] based on de Branges’ work. The proof will be
spread over a number of steps.

(i) We may take D nice. For the proof of the L-M conjecture (9), it may be assumed that f
maps U onto a domain D bounded by an analytic Jordan curve. Indeed, for any given f in S and
0 < p < 1 we may define

1 .
f*(z) = —f(pz) =z + aypz*+ -+ +a,p" 2"+ ---
P
The function f* maps U-onto the set (1/p)f(pU). The latter domain is bounded by the analytic

Jordan curve given by (1/p) times the image of the circle |z| = p under f.
Since

flpz) 2
og = chpkzk’
pz 1

the logarithmic coefficients ¢} for f* are equal to ¢, p*. Hence if (9) has been proved for the
coefficients ¢}, it follows for the coefficients ¢, by letting p tend to 1.

1

/*(2)
og > =1

(ii) Lowner chains. Given D = f(U) as in (i), it is easy to construct a nice continuously
increasing family of simply connected domains D,, 0 < ¢ < o0, such that

(12a) Dy=D, D,gDifs<t and D, — Cast— oo.
One can actually do this for every simply connected domain D, cf. [14].
We define
f(z) =f(z,1), 0<1<oo,

as the 1-1 conformal map of U onto D, such that
£(0) =0, £(0) >o0.

Then w(t) = f/(0) will be a strictly increasing continuous function such that w(0) =1 and
w(t) = oo as t — oo. Introducing a new parameter u by setting w(¢) = e, if necessary, one may
assume from the beginning that w(¢) = e’. The corresponding family of injective holomorphic
functions

(12b)  f(z2) =f(z,0) =e(z+ay(t)22+ ---), O0<t<o0; f(z)=f(z)
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(which depend continuously on 1) is called a Lowner chain starting at f(z).
A little more effort shows that every f € S is the starting point of a Lowner chain, cf. [14]
p. 159.

(i) Heuristic derivation of the Liwner differential equation. The functions f(z, t) of a Lowner
chain satisfy the partial differential equation of Lowner [12]:

aof 9f
(132) TR AL
where
(13b) p(z,t) isanalyticin z, Rep(z,7) >0, p(0,7) =1.

Geometrically, equation (13) represents an outward flow in the plane. Indeed, the vector z gives
the direction of the outward normal to the circle C.: |z| = r. Thus z(df/dz) gives the direction
of the outward normal to the curve f(C.) at the point f(z, ). By (13), the velocity vector df/dt
should make an angle with the normal there less than }a.

We now indicate how (13) comes about. Let 0 < s < ¢ and define

q)(Z) = (p(Z,S,t) =f1—1°f5(z) = Tlz 4 e

This ¢ is a holomorphic map from U into U, but not onto U, such that 0 is carried to 0. Hence
by the Schwarz lemma,

lo(z,5,0)] < lz] =lo(z,5,5)]

for all z # 0 (“inward flow on the unit disc”). Let us assume that d¢/d¢ exists (and is analytic
in z). Then the angle between the vector d¢/d¢ for ¢ = s and the vector —z must be bounded by
iar. It follows that
: do l
(14) i —zp(z,s) withRe p(z,s) >0
t=s
and p(z,s) analytic in z, p(0,s) = 1.
From the definition of ¢,

frew(z,s,1) =£,(2).

Differentiating with respect to ¢ and then setting ¢ = s, we obtain

d daf, d
——fi _ﬁ_<p=0 fort = s.

(15) dat dz Ot

Combination of (15) and (14) gives Lowner’s equation for ¢t = s.

The assumption that ¢ is a nice function of its arguments is no real restriction, since we may
assume that our domains D, depend analytically on ¢. However, the Lowner differential equation
holds for arbitrary Lowner chains, cf. Pommerenke [14] Chapter 6. A crucial observation (which
makes use of the distortion formula (4)) is that f(z, ¢) is Lipschitzian in #; equation (13a) will
hold for almost all . Conversely, every partial differential equation (13) determines a Lowner
chain of conformal maps.

(iv) Logarithmic coefficients for f(z,t)/e'. It is natural to introduce the expansions

(16) log? (:,’Z’) - ij:ck(t)z".

Since f(z,1)/e" is in S, cf. (12b), we know from Section 2 that there exist constants 4,, for
example A, = ek?, such that |a,(¢)| < A, for all ¢. Hence by recursion, cf. equation (10), there
will be constants C, such that
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(17) le ()] < C, forall z.

We may differentiate relation (16) with respect to ¢ and with respect to z. We substitute the
results in the Lowner equation (13a), setting

(18) p(z,1) =1+2§dk(t)z".

Equating the coefficients of like powers of z, we thus obtain the system of differential equations
k-1

(19) (1) =2d,(1) + ke, (1) +2 X je,(0)d, (1), k=1,2,....

(V) The auxiliary functional Q. We now take n fixed. With an eye to the L-M conjecture (9)
and following de Branges’ ideas, cf. also [8], we introduce the auxiliary functional

n—1 4
(20) 80 = ,(0) = X (ke (0 = ¢ fac(a).
1
where the weight functions g, (¢) are to be chosen in a suitable manner. What properties besides
some smoothness do we want the g, (¢) to have?
It is desired that the relation £(0) < O be the conjectured L-M inequality (9). Noting that
¢, (0) = ¢, , we therefore impose the initial conditions

(21) 0,(0)=n—k, k=1,...,n—-1.

Clearly the inequality £2(0) < 0 would follow if £(¢) were a non-decreasing function of ¢ which
vanishes at t = + oo, that is, if '

(22) Q(t) >0 for0<¢< o0,

while £(¢) — 0 as t = co. Because of the boundedness of every ¢, (¢), cf. (17), the last condition
will be satisfied if

(23) limo, (1) =0, k=1,...,n— 1.
t— 0

Do there really exist functions o,(z) satisfying (21) and (23) such that at the same time
(1) > 0?7

(vi) Differential equation conditions on the o, in order to make &' manageable. We calculate
Q' (¢) using the differential equations (19) for the ¢, (). The resulting expression is quite
complicated. However, after some experimentation it is seen to simplify if we impose de Branges’
conditions

A Of+1
(24) 0k_0k+1=_(7+k+1)’ k=1,...,n—-1; ¢,=0,
where the variable ¢ has been suppressed. The result of the calculation may then be written in the
form

n—1

(25) @ =- Z Qi(c,d)oy,
1

where the Q, are nonnegative functions of the ¢,(¢) and the d, (7).

Since it is of importance for the case of equality in the L-M conjecture, we indicate the precise
form of Q, (¢, d). Using the Herglotz representation for holomorphic functions on the unit disc
with positive real part, we have

T e'0+z

p(z0) = [

-m

dp,(9),

et — 2
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where p, is a positive Borel measure of total mass equal to p(0,¢) = 1. Thus by (18), the
coefficients of p(z, t) have the form

d(0) = [ e dp (0).

Introducing the sums
k
(26) se=2 je(8)e”’, s,=0
=1
we may write kc, (¢) = (s, — 5,_;)e”'*? and by (19)
= fﬂ (2+ s +5)e ™ dp,(9).

{2’ may now be written as an integral relative to p,; the integrand is a sum involving the s,, o,
and o, . After a summation by parts and from the differential equation (24), the result is (25) with

1 /=
(27) Qule.d) = — [ 12+ 501+ sildp,.

(vii) Explicit form of the o}. By the formula for £’ (25), we would have its positivity (22), if we
could guarantee that

(28) o, <0, k=1,...,n—1.

Observe, however, that first ¢, ;, and next o,_,,..., 0, are completely determined by the system
of differential equations (24) and the initial conditions (21)! Could it be true that for the
solutions, the additional conditions (23) and (28) are miraculously satisfied?

ExaMPLES (cf. the examples in Section 2). For » = 2, one has o, = 0 and hence ¢, = ¢ ".
Thus o] < 0. It follows that the L-M inequality holds for » = 2 and thus also the Bieberbach
inequality |a,| < 2.

For n = 3, one has a; = 0 and next

2t

o,=e %, o =de ' —2e %,

Again o] < 0, thus proving the L-M inequality for » =3 and hence Lowner’s inequality

la;] < 3.

Of course, de Branges went on. For general »n he found a solution of his system of differential
equations and initial conditions which may be written as

n—k=1 L2k+ v+ 1), 2k +2v+2) 1,
o(t)=k X (-1
r=0
k=1,...,n— 1. Here
(a),=a(a+1)---(a+v—-1) forv>1,(a), =1

It is clear that the functions o, (¢) will vanish at infinity (condition (23)). However, what about
the negativity condition o; < 0 in (28)? In other words, could it be true that the sums

—vt—kt

(k+v)r (n—k—-1-»)! ’

o n-k-1 2k+v+1),2k+2v+2),_4_1_,
(29) _ _/\ek,= Z (_1)V( ) ( ) k-1 — ot
k =0 vW(n—k—-1-»)!
are nonnegative for k =1,...,n — 1 and all n > 2?

(viii) Completion of the proof of the L-M conjecture. For relatively small n, de Branges could
verify immediately that the sums (29) are positive on (0, c0). But what about larger values of »?
At this stage de Branges went to his numerical colleague Gautschi at Purdue University for help.
He told Gautschi that he had a way of proving the Bieberbach conjecture, but needed to establish
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certain inequalities involving hypergeometric functions. Would Gautschi be willing to check as
many of these inequalities as possible on the computer? Gautschi wrote a suitable program with a
feeling that he might soon hit a value of n for which the consistent positivity of expressions
related to (29) would come to an end. Much to his surprise, however, he discovered that the
crucial expressions were positive for all values of n which he tried: 2 < n < 30. Thus at this time,
assuming that the theoretical work was correct, de Branges and the computer had verified the
Bieberbach conjecture for all n up to 30!

How to continue? Gautschi had the idea to call Askey at the University of Wisconsin, the
world’s expert on special functions. At first Askey was incredulous that the supposed positivity of
sums such as those in (29) would prove the Bieberbach conjecture. However, he realized very
soon that those sums were essentially generalized hypergeometric functions of a very special kind
which are known to be positive:

_ % A't_( n+k ) —nt+k+1l,k+3,n+k+1|
(30) ¢ “\n—k-1ph k+ 3,2k 4+ 1 ol
Here
Bopels) - § (e, 5.
2 d’e =0 (d)v(e)v v! ’

for the special values of a through e in (30), the positivity of ; F, followed from a joint result of
Askey and Gasper [1].

Thus de Branges’ proof of the L-M conJecture was complete, thanks to a known result on
special functions.

(ix) The case of equality. We now start with an arbitrary function f € S and an associated
Lowner chain. It is easy to see that equality holds in the L-M inequality (9) for f and given n > 2
if and only if & = 0. Since o; < 0 on (0, o) for 1 < k < n — 1, the latter condition requires that
Q, (¢, d) = 0 for those values of k, cf. (25). In particular, the condition Q, (¢, d) = 0 is necessary
for equality. By the representation (27) with positive p, this condition implies

245, =2+c¢(t)e’ =0ae. [p].

Thus the absolutely continuous part of p, must be zero, and in fact, u, must be a point mass 1 at
some point 6,. It follows that |¢,(¢)| = 2 and in particular |¢,| = 2, hence |a,| = 2 so that f
must be a Koebe function. For a Koebe function, one indeed has ©(0) = 0 for every n.

For the case of equality in the “Bieberbach inequality” (3), one may now use the remark at the
end of Section 2.

5. Final remarks. De Branges was born in Paris in 1932. He studied in the U.S. and has been
at Purdue University since 1963. In his mathematical career, he has tackled a number of difficult
problems. Early in 1984 he completed a manuscript of 385 pages for a new edition of his book
“Square summable power series”. This manuscript culminated in a proof of the Bieberbach
conjecture. With the manuscript, de Branges departed for Leningrad in April 1984 for a
scheduled exchange visit. As he tells it, he was disappointed that the U.S. mathematicians to
whom he had sent his manuscript had not yet been able to verify his long proof. In Leningrad, de
Branges presented his work to the members of the seminars in functional analysis and geometric
function theory. In a large number of sessions, the proof was verified and some inessential errors
corrected. Finally, through hard work under de Branges’ direction, a relatively short proof of the
Lebedev-Milin conjecture was distilled from the original manuscript.

Upon his return from Leningrad, de Branges lectured on his proof at a number of universities,
among them the Free University at Amsterdam. An early report on the proof in Russian was
widely circulated. It reached FitzGerald and Pommerenke at La Jolla in July. They restated the
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proof in their own words, as mathematicians do when they try to understand new material. They
also treated the case of equality in the Bieberbach conjecture [8], as would others. In the mean
time, de Branges produced a more sophisticated write-up of his proof which includes the case of
equality in a very natural way [4]. Comments on the exciting events have been written up by
FitzGerald [7] and by Gautschi [9], among others. (Added in proof: see also Pommerenke [15].)
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1. The ménage problem. The ménage problem (probléme des ménages) asks for the number
M, of ways of seating » man-woman couples at a circular table, with men and women
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