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Abstract. This article defends Jordan’s original proof of the Jordan curve
theorem.

The celebrated theorem of Jordan states that every simple closed curve in the
plane separates the complement into two connected nonempty sets: an interior
region and an exterior. In 1905, O. Veblen declared that this theorem is “justly
regarded as a most important step in the direction of a perfectly rigorous mathe-
matics” [13]. I dedicate this article to A. Trybulec, for moving us much further “in
the direction of a perfectly rigorous mathematics.”

1 Introduction

Critics have been unsparing in their condemnation of Jordan’s original proof. Ac-
cording to Courant and Robbins, “The proof given by Jordan was neither short
nor simple, and the surprise was even greater when it turned out that Jordan’s
proof was invalid and that considerable effort was necessary to fill the gaps in his
reasoning” [2]. A web page maintained by a topologist calls Jordan’s proof “com-
pletely wrong.” Morris Kline writes that “Jordan himself and many distinguished
mathematicians gave incorrect proofs of the theorem. The first rigorous proof is due
to Veblen” [8]. A different Kline remarks that “Jordan’s argument did not suffice
even for the case of a polygon” [7].

Dissatisfaction with Jordan’s proof originated early. In 1905, Veblen complained
that Jordan’s proof “is unsatisfactory to many mathematicians. It assumes the
theorem without proof in the important special case of a simple polygon and of the
argument from that point on, one must admit at least that all details are not given”
[13]. Several years later, Osgood credits Jordan with the theorem only under the
assumption of its correctness for polygons, and further warns that Jordan’s proof
contains assumptions.1

Nearly every modern citation that I have found agrees that the first correct
proof is due to Veblen in 1905 [13]. See, for example, [9, p. 205].

⋆ This research has been supported by NSF grant 0503447.
1 “Es sei noch auf die Untersuchungen von C. Jordan verwiesen, wo der Satz, unter

Annahme seiner Richtigkeit für Polygone, allgemein für Jordansche Kurven begründet
wird. Jordan beweist hiermit mehr als die Funktionentheorie gebraucht; dagegen macht
er Voraussetzungen, welche diese Theorie streng begründet wissen will” [11].

ISBN 978-83-7431-128-1 ISSN 0860–150X 45



Th. C. Hales

My initial purpose in reading Jordan was to locate the error. I had completed a
formal proof of the Jordan curve theorem in January 2005 and wanted to mention
Jordan’s error in the introduction to that paper [3]. In view of the heavy criticism
of Jordan’s proof, I was surprised when I sat down to read his proof to find nothing
objectionable about it. Since then, I have contacted a number of the authors who
have criticized Jordan, and each case the author has admitted to having no direct
knowledge of an error in Jordan’s proof. It seems that there is no one still alive
with a direct knowledge of the error.

The early criticisms from Veblen and Osgood are in fact rather harmless. True,
Jordan did not write out a proof for polygons, but then again, the proof for polygons
is widely regarded as completely trivial. For example, the book What is Mathemat-
ics “presupposes only knowledge that a good high school course could impart,”
and yet it presents two different proofs of the polygon case of the Jordan curve
theorem. The second of these proofs is sketched in eight lines, with “the details of
this proof is left as an exercise” [2]. If Veblen and Osgood had stronger evidence
to discredit Jordan, why was their only explicit objection such a trivial one?

We wonder whether Kline’s objection that “Jordan’s argument did not suffice
even for the case of a polygon” might merely be a reiteration of Veblen’s objection
that the case of polygons was omitted. These authors are correct in stating that
Jordan stated the polygon version of the Jordan curve theorem without proof.
However, a careful analysis of his proof (which we provide below) shows that Jordan
does not make essential use of the Jordan curve theorem for polygons. Rather, he
relies instead on the considerably weaker statement that there is a well-defined
parity function that counts the number of times a ray crosses a polygon.

I have found one supporter of Jordan’s proof. A 1996 paper gives a nonstandard
proof along the lines of Jordan’s original article [6]. It does not make sense for
an essentially flawed approach to shed its defects when translated into another
language, any more than it would for pulp to become great literature in translation.
Puzzled, I contacted Reeken, one of the authors of the nonstandard proof. He
replied that “Jordan’s proof is essentially correct. . . Jordan’s proof does not present
the details in a satisfactory way. But the idea is right and with some polishing the
proof would be impeccable” [12].

At the same time, Veblen’s proof has suffered with the passage of time. His
proof was part of his larger project to axiomatize analysis situs as an isolated field
of mathematics. The model for this project was Hilbert’s axiomatization of the
foundations of geometry in 1899 [4]. This work precedes the rise of set theory as an
axiomatic discipline. (Zermelo’s first paper on the axioms of set theory appeared
three years after Veblen’s proof, in 1908.) Veblen’s system of axioms was later
abandoned when R. L. Moore showed in 1915 that his axioms describe nothing but
the ordinary Euclidean plane. According to one account, the “results published in
1915 by Moore were rather devastating” for Veblen’s line of research [10]. Thus,
after a century, the entire framework of Veblen’s proof is largely forgotten.

In view of the fundamental importance of the Jordan curve theorem to geometry,
I present Jordan’s proof anew. I have brought the terminology and language up
to date without changing any essential ideas. In this way, I hope to preserve all
of Jordan’s major ideas, while avoiding its minor shortcomings. By presenting his
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ideas once again, we revive an elegant argument that has been unfairly condemned.
Ultimately, if history has filled the gaps so completely that it becomes a serious
challenge for us to discern them, then this speaks all the more forcibly in favor of
Jordan.

There is another reason to take particular interest in Jordan’s proof. This reason
is the proof of the isoperimetric inequality for a general rectifiable Jordan curve J .
The proof of the isoperimetric inequality for polygons is quite simple. To deduce
the general version of the isoperimetric inequality from the special case of polygons,
one must construct a polygon approximation to J whose length is no greater than
that of J , and whose enclosed area exceeds that of J by no more than ǫ (for
any ǫ > 0). This is precisely what Jordan constructs in his proof. Hence, the
isoperimetric inequality comes as a corollary to Jordan’s proof. As far as I am
aware, this corollary of Jordan’s proof has gone unnoticed for over a century.

2 All About Polygons

2.1 Basic Definitions

Let d be the standard metric on R
2.

Definition 1. A simple closed curve J , also called a Jordan curve, is the image
of a continuous one-to-one function from R/Z to R

2. We assume that each curve
comes with a fixed parametrization φJ : R/Z → J . We call t ∈ R/Z the time
parameter. By abuse of notation, we write J(t) ∈ R

2 instead of φJ (t), using the
same notation for the function φJ and its image J .

We say that I is a (short) interval in R/Z if there is an interval [t, t′] in R with
0 < t′ − t < 1/2 such that I is the image of [t, t′] under the canonical projection to
R/Z. The upper bound on t′ − t ensures that an interval is uniquely determined in
R/Z by its endpoints.

Remark 1. We adopt the following useful convention, when two distinct parameter
values t, t′ ∈ R/Z are used in a symmetrical manner, we swap them as necessary
and identify them with real representatives such that 0 < t′ − t ≤ 1/2.

Definition 2. A polygon is a Jordan curve that is a subset of a finite union of
lines. A polygonal path is a continuous function P : [0, 1] → R

2 that is a subset of
a finite union of lines. It is a polygonal arc, if it is 1 − 1.

2.2 Parity Function for Polygons

The Jordan curve theorem for polygons is well known. We will only need a weak
form, essentially saying that the complement of a polygon has at least two connected
components. For this, it is enough to construct a non-constant locally constant
function (the parity function).

Lemma 1. Let P be a polygon. There exists a locally constant function on the
complement of P in R

2 that takes two distinct values.
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Proof. If the vertical line through p ∈ R
2 \ P does not contain any vertices of P ,

define its parity to be the parity of the number of intersections of P with downward
directed vertical ray starting at p.

This function extends to a function on R
2 \P . In fact, if the downward vertical

ray through p intersects P at a vertex, any sufficiently small horizontal displacement
of the ray will not pass through a vertex of P .

The parity is independent of the small displacement. In fact, let V be the semi-
infinite vertical strip between the two rays. The intersection of P with V consists
of a finite number of disjoint polygonal arcs, with endpoints along the bounding
rays. Since each polygonal arc has two endpoints, the total number of intersections
of P with the two vertical rays is even. Thus, the parity is independent of the small
displacement.

The fact that the parity is independent of small displacements is also used to
establish the local constancy of the parity function.

The parity function takes two distinct values, as is seen by considering values
along a ray that intersects P .

In reference to polygons, terms such as ‘interior’ or ‘inside’ mean odd parity
and terms such as ‘exterior’ or ‘outside’ mean even parity. By using these terms, we
do not assume the Jordan curve theorem for polygons, which makes the stronger
assertion that the interior and exterior sets are each connected.

Now that we have established the existence of a parity function, we can compute
the parity in degenerate situations where the vertical ray passes through a vertex
of the polygon.

There are various related properties of the parity function on the complement of
a polygon. The following statements about polygonal paths are easily established
by the same method of ‘displacement’ that is used in the preceding lemma.

– We can compute the parity with respect to a ray in any direction through a
point p and get the same value for the parity. It is not necessary to use the
downward directed rays.

– Any point in the unbounded component has even parity.
– If a polygonal arc L from p to q crosses the polygon P transversally (meaning

that L and P do not meet at a vertex of either one) m times, then p and q
have the same parity with respect to P if and only if m is even.

2.3 Parity Function for Arcs

Let A be a polygonal arc in the plane with endpoints p and q. Let Rp and Rq be the
vertical rays emanating from p and q directed upwards. Then by arguments similar
to those used for a polygon, we see that there is a well-defined locally constant
parity function x 7→ πA(x) on

R
2 \ (A ∪ Rp ∪ Rq)

that counts the crossing parity of A with a downward directed ray emanating from
a point x.
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If L is a line that does not meet p or q, then the parity of πA(x) is independent
of x for all x ∈ L with sufficiently large second coordinate. Thus, we may speak of
the crossing parity between a line and a polygonal arc A, provided the line does
not pass through the endpoints of of A.

If B is a second polygonal arc with endpoints p and q such that A ∪B forms a
simple closed curve, then the conditions πA(x) = πB(x) and πA(x) 6= πB(x) extend
from

R
2 \ (A ∪ B ∪ Rp ∪ Rq)

to locally constant conditions on

R
2 \ (A ∪ B).

We have πA(x) = πB(x) if and only if x has even parity with respect to the polygon
A ∪ B.

If A is a polygonal arc joining p and q, and L is a vertical line that does not
meet p or q, then the line L meets A an odd number of times if and only if L
separates p and q.

2.4 Adding a Polygonal Arc to a Polygon

Let A, B, and C be polygonal arcs that have the same endpoints p, q, but do
not meet except at the endpoints. We then have polygons P (A, B), P (B, C), and
P (A, C) formed by pairs of arcs. Every point (other than the endpoints) of A (resp.
B, C) has the same parity with respect to P (B, C) (resp. P (A, C), P (A, B)). So we
may speak of the parity of any one of A, B, C with respect to the polygon formed
by the other two.

Write πA, πB, πC for the functions of x ∈ R
2 \ (A∪B ∪C ∪Rp ∪Rq) giving the

parities of crossing with A, B, and C with a downward directed ray starting from
a point x.

Lemma 2. Let x be a point of the plane in the complement of A∪B ∪C that lies
outside P (A, C). Then x lies outside P (A, B) if and only if it lies outside P (B, C).

Proof. To say that x lies outside P (A, C) means more precisely that πA = πC , and
so forth. Then the conclusion follows directly from the following boolean tautology:

(πA = πC) ⇒ [(πA = πB) ⇔ (πB = πC)].

Lemma 3. Exactly, one of A, B, C has odd parity with respect to the polygon
formed by the other two.

Proof. Assume first that C has odd parity for P (A, B). We show that A has even
parity for P (B, C). Starting from a point in the plane where all parities are equal,
approach A∪B ∪C. We first meet a point of A or B. If we meet A first, the result
is immediate. Say we meet B first. This means that πA = πC along B. Also, we are
given that πA 6= πB along C. Analyzing a small disk around a point where A, B,
and C meet, we see that these conditions give πB = πC along A.
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In the other direction, we show that if C has even parity for P (A, B), and B
has even parity for P (A, C), then A has odd parity for P (B, C). This is established
in a similar manner, by examining a small disk around a point where A, B, and C
meet.

2.5 Joining a Polygon Top to Bottom

In the following lemma, we join the “top” segment of a polygon to the “bottom”
part by a linear segment in the interior region.

Lemma 4. Let P be a polygon. Let L be a vertical line in the plane such that there
exists a point p ∈ P to the left side of L and a point q to the right side of L. Let A
and B be the two polygonal arcs with endpoints at p and q (so that P = A∪B, and
{p, q} = A∩B). Then there is a segment L′ ⊂ L, that (except for its two endpoints
on P ) lies in an interior region formed by the polygon and such that one endpoint
of L′ lies on A and the other on B.

We have seen from Lemma 1 that there is a well-defined parity function for
crossings of L with P . That is, parities are well-defined even if L passes through a
vertex of P .

Proof. As we move along L, we intersect one of the branches of the curve (A or
B) with a certain parity, then the other branch with a certain parity, then the first
again, and so forth. We write this sequence of parities as

a1, b1, a2, b2, . . .

(where we swap A and B if necessary to make a1 first in this sequence). Since A
runs from p to q which are on opposite sides of L, the sum of the parities ai is
odd. Similarly, the sum of the parities bi is odd. This means that we can split the
sequence of parities after the first odd term. For example, if a1 and b1 are even,
but a2 is odd, we split the sequence into a1, b1, a2 and b2, a3, . . .. Geometrically,
let L′ be the segment of L that connects the last crossing of the first group (say,
a1, b1, a2) with the first crossing of the second group (say b2, a3, . . .). It is clear that
L′ has the desired properties.

2.6 Interior of Perturbed Polygons

This subsection shows that an interior point of a polygon is also an interior point
to a second polygon obtained by perturbing the first.

Lemma 5. Let P be a (time-parameterized) polygon. Let p lie in the complement
of P . Let D be the distance from P to p. Let P ′ be a (time-parameterized) polygon
such that for all t,

d(P (t), P ′(t)) < D.

Then the parity of p with respect to P equals the parity of p with respect to P ′.
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Proof. By perturbing p to a nearby point (which we continue to call p) in such a
way to preserve the inequality of the hypothesis, we may assume that the horizontal
line LH through p meets P in finitely many points. Let these points be

q1 = P (t1), q2 = P (t2), . . .

listed in cyclic order around P . The polygonal arc Pi ⊂ P from qi to qi+1 meets
the vertical line LV through p with parity πi. Let q′i = P ′(ti), P ′

i , π′

i be the corre-
sponding quantities for P ′.

Each of the points qi is at distance greater than D to the left or to the right of
p. Since P ′ approximates P within D, each of the points q′i is to the left or right
of LV , according to whether qi is to the left or right. Thus, the parity πi, which is
the number of left-right crossings of LV , is equal to π′

i.

Since qi and qi+1 are consecutive points on LH , all of the crossings of LV and Pi

lie distance > D above LH or all lie distance > D below LH . Since P ′ approximates
P within D, all the crossings of P ′

i ∩LV are above or below LH according to what
happens to Pi.

Since πi = π′

i, and all of the crossings of LV are above or below in the same for
both Pi and P ′

i , for each i, it follows that the parity of p with respect to P is the
same as the parity of p with respect to P ′.

3 Tubes

In this section we construct a system of tubes around the edges of a polygon P .
Let r > 0.

Let e be an edge of P . On both sides of e, construct an edge parallel to e at
distance r and of the same length as e. Then cap both ends with a semicircle. This
is Te. This set is precisely the set of points that have distance r from e. Let T be
the union of all the tubes, for all the edges of P .

We will use these tubes only for generic values of r. This means that through
any point x in the plane, there are at most two tubes that pass through x and the
intersection of these two tubes is transverse (an intersection of two curves, each
a semicircle or line segment). Furthermore, for generic r, there exist only finitely
many points x that meet more than one tube. (Call these points jump points.) The
generic points are dense in the positive reals.

Let U be a component of the complement of T with the property that it contains
a point at distance greater than r from P . We claim that every point of U has
distance greater than r from P . Otherwise, there is a point p ∈ U that lies in the
convex hull of some Te. (When we speak of the interior of a tube, we mean the set
of points in the convex hull of Te but not in Te itself; there is no parity function
for tubes.) If p is interior to the tube, then the entire component is interior to the
tube, contrary to the assumption that some point of U has distance greater than
r from P .

If q lies on the boundary of U , then it lies on some tube Te and its distance to
e is exactly r. Its distance to P is at least r, so this means that the closest point
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to q on P is a point on e. If q is not a jump point, then this closest point on P is
unique. If q is a jump point, then q has distance r from exactly two points of P .

The segment from a point on the boundary of U to its closest point on P does
not meet P , except at that closest point.

Since U is connected and does not meet P , the parity function with respect to
P is constant on the connected set U .

The boundary of U is formed by a finite collection of circular arcs and line
segments. We may assume that these arcs and segments extend as far as possible
along the boundary of U , so that each circular arc and segment is terminated on
both ends by a jump point (or by an endpoint of a tube’s semicircle).

Remark 2. Let p and q be two distinct points having distance exactly r from P .
Let p̄ and q̄ be points on P at distance r from p and q, respectively. We claim that
the line segments pp̄ and qq̄ do not meet (except at p̄, when p̄ = q̄). In fact, since
the distance from p (resp. q) to P is exactly r, we see that the distances from p to
q̄ and from q to p̄ are at least r. Thus, the perpendicular bisector of the segment
p̄q̄ separates pp̄ from qq̄.

3.1 Separating Polygons

We continue in the same context, with a polygon P , a generic r, a union of tubes
T , and a component U of the complement of T that has a point of distance greater
than r from P . Let V also be such a component.

Lemma 6. Assume that the parity function takes the same value on U and V . Let
p and q lie on the boundaries of U and V respectively. Assume that p 6= q. Suppose
that there exists m ∈ P such that its distance to p is r, and its distance to q is also
r. Then one of the following two options holds:

– U = V and p and q are connected by a circular arc in the boundary of U .
– There exists a polygonal arc C of length at most 2r with endpoints on P and

not otherwise meeting P , such that p and q have different parities with respect
to each of the two polygons formed by C and P (that is, polygons P (A, C) and
P (B, C) of Section 2.4).

(Note that in the second option, every point of C has distance at most r from
P . In particular, it cannot meet a component such as U whose points have distance
greater than r from P .)

Proof. The point m lies on the edge e and p and q lie on the tube Te, for some e.
If p is not on the tube’s semicircles, then there are exactly two points on Te

at distance r from m. These points are p and q. The line segment pq meets e
transversally at m, and does not otherwise meet P . This shows that p and q have
opposite parities with respect to P . This is contrary to the assumption that U and
V have the same parity.

Thus, p and q both lie on the same semicircle. We can follow the contour of the
semicircle from p to q, staying in the boundary of the same component U , unless
there is a jump point s between them on the semicircle. If the first case of the
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conclusion of the lemma fails to hold, we will use the jump point s to show the
second case of the conclusion holds. Let m and m′ be the points of P closest to s.
The polygonal arc from m′ to s to m then joins P to P , has length 2r, and separates
p from q (except in the degenerate case when s = p or s = q). In the degenerate
case when s = p or s = q, we need to take a small polygonal perturbation of this
path – still of length at most 2r – to avoid passing directly through s. This can
be done, since r is generic, and the two tubes passing through s have overlapping
interiors.

3.2 Single Component

We continue in the context of the preceding subsection, with a polygon P , a generic
r, a union of tubes T , and a component U of the complement of T that has a point
of distance greater than r from P . Let V also be such a component.

The next lemma is a key result. It gives a set of conditions that are sufficient
to ensure that two components U and V of the same parity are equal. The idea is
quite simple. We trace out the boundary of U . As we do this, we trace out time
parameters t of the closest points on P to these boundary points. There is a jump in
time parameter at every jump point of the boundary of U . However, the hypotheses
of the lemma ensure that these time jumps are small. The time jumps are so small
that they cannot contain a time parameter t coming from a boundary point of U
or V . In this way, we find that the boundary of U “seizes essential control of all
the time parameters.” Consequently, the time parameter of a boundary point of V
can then be matched with a time parameter of a boundary point of U . This allows
us to show that U and V have a boundary point in common. For a generic tube
size r, this implies that the components U and V are actually equal.

In my view, the biggest (and rather harmless) omission in Jordan’s original proof
was in failing to state the details about why the “boundary of U seizes essential
control of the time parameters.” (This is Case 3 in the proof provided below.)

Lemma 7. Let U, V, r, T, P be as above. Let R > 0. Assume U and V have the
same parity with respect to P . Assume that V contains a point that has distance
greater than max(r, R) from P . We make the following additional three assump-
tions:

1. There is an interior point of P that has distance greater than R from P .
2. U contains a point that has distance greater than max(r, R) from P .
3. For every polygonal arc C with endpoints (P (t1), P (t2)) on P , not otherwise

meeting P , of the same parity as U , and of length at most 2r, the time pa-
rameters t1, t2 satisfy t1 < t2 and t2 − t1 < 1/2 (after interchanging t1 and t2
if necessary). Moreover, if we let A be the image of [t1, t2] under P , then the
polygon P (A, C) formed by A and C lies in a disk of diameter R.

Then under these assumptions, U = V .

Proof. Let X be the set of t ∈ R/Z such that there is a point p on the boundary of
U such that P (t) is a closest point on P to p. Each line segment in the boundary
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of U contributes an interval to X . Each circular arc on the boundary contributes
a point to X . The set X is closed. Each point on the boundary of U that is not a
jump point gives a well-defined point on X . Each jump point gives precisely two
points t1 and t2 on X . The points P (t1) and P (t2) both have distance r from
the jump point, and are thus connected by a polygonal arc C satisfying the third
assumption of the lemma. Thus, we may assume that t1 < t2 and t2 − t1 < 1/2.
Let Y ⊂ R/Z be the union of these intervals (t1, t2) as we run over the jump points
on the boundary of U .

Let q lie on the boundary of V , and let P (tq) be a point on P closest to q. We
consider three cases tq ∈ X , tq ∈ Y , and tq 6∈ X ∪ Y .

Case 1: Assume that tq ∈ X . By the definition of X , there is a point p on the
boundary of U that also gives tq ∈ X . By Lemma 6, there are two possibilities.
One is that q is joined to p by a circular arc in the boundary of U . In particular,
q lies in the boundary of both U and V . Since r is generic, this implies that the
components U and V are equal. The other possibility is that there is a polygonal
arc C of length at most 2r joining P to P and separating p from q. By parity
arguments, one of V or U lies inside P (A, C), hence inside a disk of diameter R.
This is impossible, since both U and V have points farther than R from P . Thus,
tq 6∈ X .

Case 2: Assume that tq ∈ Y . To dismiss this case, we show more generally that for
any q′ in the boundary of V ′ ∈ {U, V }, and such that P (t0) a closest point to q′,
we have t0 6∈ Y . In particular, X and Y are disjoint. Assume to the contrary, that
t0 ∈ Y . This means that t0 ∈ (t1, t2), where P (t1), P (t2) are the closest points on
P to a jump point p on the boundary of U . The two line segments pP (ti) form a
polygonal arc C joining P to P of length 2r. The component V ′, and the polygonal
arc C have the same parity with respect to P .

We have P (t0) ∈ A, where A is the image of [t1, t2] under P . Let B be the
other branch of P from P (t1) to P (t2), so P = A ∪ B. The assumptions on the
diameters of U , V and P (A, B) prevent V ′ from lying in the interior of P (A, C). By
Lemma 2, V ′ has the same parity with respect to P (B, C) as it does with respect
to P = P (A, B).

The line segment from q′ to P (t0) ∈ A does not meet C (by Remark 2). This
line connects V ′ to A without crossing P (B, C). Thus, A (excluding endpoints)
has the same parity with respect to P (B, C) as V ′. We conclude that the parity
of A with respect to P (B, C) is the parity of C with respect to P (A, B). We can
now apply By Lemma 3, which forces the parity of B to be odd with respect to
P (A, C). Thus, A, B, and P = A ∪ B are all contained in a disk of radius R. This
is inconsistent with the first of the list of three assumptions of the Lemma.

Case 3: Finally, consider the case tq 6∈ X ∪ Y . This implies that X ∪ Y 6= R/Z.
The set X ∪ Y is constructed as a union of closed intervals, with endpoints in X .
This implies that there is t′ ∈ X such that P (t′) is a closest point to a jump point
p′ in the boundary of U and such that there exists an open interval in R/Z that
has endpoint t′ and is disjoint from X ∪ Y . We consider two cases, depending on
whether t′ is an isolated point in X , or the endpoint of a non-trivial closed interval.

If t′ is an isolated point in X , then it comes from a circular arc of the boundary
of U . Along the boundary of U , both endpoints of this circular arc are jump points,
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and these two jump points give time parameters t′′, t′′′ ∈ X with (t′′, t′), (t′, t′′′) ⊂
Y . We may assume that t′′ < t′ < t′′′. (For example, we cannot have t′′ < t′′′ < t′,
because Y and X are disjoint by Case 2, so t′′′ 6∈ (t′′, t′).) We have (t′′, t′′′) ⊂ X∪Y .
This is contrary to the hypothesis that t′ lies on the boundary between X ∪ Y and
its complement.

If t′ is the endpoint of an interval I in X , then it comes from a line segment
in the boundary of U . Since t′ is a jump point, there exists t′′ such that P (t′′)
is a second point on P closest to that boundary point of U . Again, by Case 2,
t′′ must lie on the opposite side of t′ from I. The sets (t′, t′′) ⊂ Y and I cover a
neighborhood of t′, contrary to the hypothesis that t′ lies on the boundary between
X ∪ Y and its complement.

4 Polygon Approximation

We are now at an advanced stage of the proof, and yet everything so far has been
about polygons. To proceed further, we need to prove that every Jordan curve can
be approximated by polygons. That is the purpose of this section.

4.1 Uniform Continuity

To avoid a proliferation of deltas and epsilons, we introduce a special notation, c
and c′, for two of the deltas. The uniform continuity of a Jordan curve J can be
expressed by the existence of a delta (which we call c) (depending on J) such that

∀ǫ t t′. ǫ > 0 ∧ d(t, t′) < c(ǫ) ⇒ d(J(t), J(t′)) < ǫ.

By redefining c(ǫ) to be even smaller if necessary, we may assume that for all ǫ > 0,
we have c(ǫ) < 1/2. J is a homeomorphism from its domain to its image. The
uniform continuity of J−1 can be expressed by the existence of a delta c′ such that

∀ǫ t t′. ǫ > 0 ∧ d(J(t), J(t′)) < c′(ǫ) ⇒ d(t, t′) < ǫ.

The following lemma tells us how to ensure that an arc of a Jordan curve lies
near J(t) by controlling the location of its endpoints.

Lemma 8. Let J be a Jordan curve. Let ǫ > 0, and let t, t′ be given that satisfy

d(J(t), J(t′)) < c′(c(ǫ)).

Then, (adopting our conventions that c(ǫ) < 1/2, t < t′, and t′ − t ≤ 1/2) for all
t′′ ∈ [t, t′], we have

d(J(t), J(t′′)) < ǫ.

Proof. Combine the uniform continuity of J and J−1.
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4.2 Approximation

Lemma 9. For every (time-parameterized) Jordan curve J and ǫ > 0, there is a
time-parameterized polygon P such that d(J(t), P (t)) < ǫ for all t.

Proof. Conceptually, the proof is very simple. Form a polygonal path PN by join-
ing J(i/N) to J((i + 1)/N) (with each separate line segment parameterized with
constant speed) for some large N and i = 0, . . . , N − 1. This path needn’t be
simple, but there is a subset of the image of PN that avoids self-intersections and
approximates J to within ǫ.

First we note that for any positive ǫ, there is N sufficiently large, so that the
polygon PN approximates J to within ǫ at each time t.

Using the conventions for parameter values t, t′, we see that if d(J(t), J(t′)) <
c′(c(ǫ)), then d(J(t), J(t′′)) < ǫ for all t′′ ∈ [t, t′]. More strongly, for ǫ > 0, we can
find N such that for any double point PN (t) = PN (t′), we have d(PN (t), J(t′′)) < ǫ
for t′′ ∈ [t, t′]. That is, the curve J stays within ǫ of the double point PN (t)
throughout that interval. We excise the closed loop of PN on [t, t′] making the path
stop at the double point PN (t) during the time period [t, t′]. The resulting map
remains within distance ǫ of J at all times.

To make a consistent excision of all the self-intersections, from the finite col-
lection of all such intervals, and pick one that is not contained as a subinterval of
any other. Excise it, then repeat the process from the beginning. By excising an
interval at each stage that is nested in no other, the iterative process picks out a
disjoint collection of intervals to excise. The process terminates because the number
of self-intersections drops with each iteration.

The resulting subset of R
2 is the desired polygon, but poorly parameterized: a

path that stops for a moment each time it reaches an excised interval is not simple.
However, this is a simple matter to fix. Near each excised interval, reparameterize
so that instead of remaining constant the values progress in a strictly monotone
manner, changing the parameter values by such a small perturbation that the ǫ-
approximation still holds. This completes the proof.

5 Constructing an Interior Point

Let J be a Jordan curve. The purpose of this section is to construct a point θ0 that
lies in the interior region of every sufficiently close polygonal approximation to J .

5.1 Constants β and w

In this section, we attach positive real numbers β and w to a Jordan curve J , as
well as two special points p and q. These will be used later in this section.

Given a Jordan curve J , we define w = wJ > 0 to be the width of the narrowest
vertical strip containing J . Fix this strip.

Pick p on J along the left edge of the strip and q on J along the right edge of
the strip. There are distinct arcs A and B in J that connect p to q.
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If we pick coordinates so that the y-axis is the left end of the strip, we can find
a constant β > 0 such that for every point a ∈ A and b ∈ B whose x-coordinates lie
in [w/3, 2w/3], we have d(a, b) ≥ β. Making β smaller if necessary, we can assume
that

w/3 > β.

5.2 Constructing θ0 and θ∞

Lemma 10. Let J be a Jordan curve. Attach data β, w, p, q, A, B to J as above.
Pick ǫ so that 0 < ǫ < β/2. Let P be an ǫ-approximation to J . Set p′ = P (t) and
q′ = P (t′), where p = J(t) and q = J(t′). Let A′ and B′ be the polygonal arcs in
the image of P , from p′ to q′ (corresponding to A and B for J). Let L be a vertical
line bisecting the vertical strip fitting J . Let L′ be the segment on L determined by
Lemma 4 (applied to P , L, p′, q′, A′, B′). Then some point θ0 along L′ has distance
at least β/2 − ǫ from A′ and B′.

Proof. Each point along L′ has distance greater than w/6 > β/2 from points on J
outside the vertical strip between [w/3, 2w/3] to the right of p. Let UA (resp. UB)
be the subset of the plane consisting of points at distance less than β/2 from A
(resp. B). UA and UB are open. Both have nonempty intersection with L′, because
each contains an endpoint of L′ by construction of Lemma 4. Their intersection
along L′ is empty, because such a point would put A at distance less than β from
B within the vertical strip [w/3, 2w/3]. By the connectedness of L′, we conclude
that there is some point θ0 of L′ that is not in UA ∪ UB. It has distance at least
β/2 from A and B, so distance at least β/2 − ǫ from A′ and B′.

Let θ0 be the point that the lemma shows to exist (for some small ǫ). By
Lemma 5, it lies in the interior of P ′ for all sufficiently close approximations P ′ of
J .

Let θ∞ be a point “at infinity”, that is, any point far away from “all the action”
in the proof. It will then be in the exterior region of P ′ for all sufficiently close
approximations P ′ of J .

We let α be an index that runs over the set {0,∞}, and write θα for the
corresponding points.

6 Constructing the Interior and Exterior

We are now ready to give the main argument in the proof of the Jordan curve
theorem. Let J be a Jordan curve. Let θα be the points constructed in the previous
section.

For each n ∈ N, and α ∈ {0,∞}, we will construct nonempty connected open
regions Un

α as the connected component of θα in the complement of some finite
union T n of tubes. The regions will have the following key properties:

1. Un
0 ∩ Un

∞
= ∅

2. Un
α ∩ J = ∅
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3. Un
α ⊂ Un+1

α

4. R
2 \ J ⊂

⋃
n,α Un

α .

Theorem 1. (Jordan curve theorem) Let J be a Jordan curve. The complement
of the image of J is the union of two disjoint nonempty open connected sets.

In the words of Jordan, “toute courbe [fermée] continue [et sans point multiple]
divise le plan en deux régions, l’une extérieure, l’autre intérieure, cette dernière ne
pouvant se réduire à zéro” [5, p. 99].

Lemma 11. If regions Un
α can be constructed satisfying these four properties, then

the Jordan curve theorem holds.

Proof. Set Vα =
⋃
{Un

α | n}. We claim that V0 and V∞ are the desired disjoint
nonempty open connected sets. First, Vα is open because it is the union of open
sets. It is nonempty, because it contains the point θα. The set Vα is connected
because it is the union of connected sets containing the common point θα. The
sets lie in the complement of J by Property (2), and give the full complement by
Property (4). Finally, V0 and V∞ are disjoint by Properties (1) and (3).

We pick a sequence of positive real numbers rn tending to 0. Pick r0 small
enough for the construction of the point θ0 to work. Then pick

rn+1 < rn/5.

Take Pn to be a rn/4-approximation to J given by Lemma 9, and T n to be the
union of tubes around Pn for a generic parameter r′n ∈ (rn/2, rn). Take Un

α to be
the component of the complement of T n

α complement containing θα.
To complete the proof of the Jordan curve theorem, it is enough to prove four

lemmas, showing that Properties (1)–(4) hold for these choices.

6.1 Verifying the Four Properties

Lemma 12. Property (1) holds for these choices. That is, Un
0 ∩ Un

∞
= ∅.

Proof. Points of Un
0 and Un

∞
have different parities with respect to the polygons

Pn.

Lemma 13. Property (2) holds for these choices. That is, Un
α ∩ J = ∅.

Proof. Un
α is the θα-component of R

2 \T n. Every point of Un
α has distance greater

than r′n > rn/2 from Pn (as in Section 3). However, every point of J lies within
distance rn/4 < rn/2 from Pn.

Lemma 14. Property (3) holds for these choices. That is, Un
α ⊂ Un+1

α .

Proof. We claim that every point of the boundary of Un+1
α lies strictly within

distance r′n from Pn. In fact, to bound this distance, go from a boundary point to
Pn+1, then to J , then to Pn, which have respective distances bounded by

r′n+1 + rn+1/4 + rn/4 < 5rn+1/4 + rn/4 < rn/4 + rn/4 < r′n

by the recursion inequality for rn. However, the points of the boundary of Un
α have

distance exactly r′n from Pn. So Un
α ⊂ Un+1

α .

58



Jordan’s Proof of the Jordan Curve Theorem

Lemma 15. Property (4) holds for these choices. That is, R
2\J ⊂

⋃
n,α Un

α . More
precisely, for any ǫ > 0, there exists an n such that Un

α contains all points x of
R

2 \ J whose distance from J is at least ǫ and whose parity with respect to P n is
the same as that of θα.

Proof. Fix α. Pick ǫ > 0. We may assume that ǫ is less than the distance between θβ

and J , for β = 0,∞. We pick n large enough so that the following conditions hold.
(These conditions are listed in matching order with the hypotheses of Lemma 7,
with R instantiated to ǫ.)

– The interior point θ0 of Pn has distance greater than ǫ from Pn. (This can be
arranged for large n because the distance of θ0 to J is greater than ǫ.)

– The point θα ∈ Un
α has distance greater than max(r′n, ǫ) from Pn. (For example,

take n large enough that r′n < ǫ, then use the facts that the distance from θα

to J is greater than ǫ, and that Pn approximates J .)
– Every pair of points Pn(t1), P

n(t2) on Pn whose separation is at most 2r′n satis-
fies t1 < t2 and t2 − t1 < 1/2 (after interchanging t1 and t2 if necessary). (This
is just the uniform continuity properties of J−1 from Section 4.1, combined
with the fact that Pn gives a sequence of approximations to J .) Moreover, for
every polygonal arc C with endpoints Pn(t1), P

n(t2), of the same parity as Un
α ,

and of length at most 2r′n, the image A of Pn on [t1, t2] and C lie in a disk of
diameter ǫ. (To get this condition, apply Lemma 8 applied to J , and polygonal
arcs of length less than some δ, to get a closed curve inside a disk of diameter
ǫ′ < ǫ. Then sufficiently close approximations Pn will yield data inside a disk
of diameter ǫ.)

Fix n satisfying these conditions. Let V be the connected component in R
2 \ T n

of an element x as given in the statement. Applying Lemma 7 to U and V , we see
that U = V . So x ∈ U .

7 The Isoperimetric Inequality

We briefly sketch a proof of the isoperimetric inequality, based on Jordan’s proof
of the Jordan Curve Theorem.

Corollary 1. Let J be a Jordan curve of finite one-dimensional Hausdorff measure
b. Let a be the area of the interior region. Then

4πa ≤ b2.

Proof. It is enough to prove the weaker inequality for all ǫ > 0:

4π(a − ǫ) ≤ b2.

A lower bound on the length of J is the length of the piecewise linear curve ob-
tained by choosing a finite list of points S sequentially along J and joining each
consecutive pair of points of S by a line segment. Each polygon approximation P n

to J is obtained by removing a finite number of closed loops from such a piecewise
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linear curve for some S = Sn. (See Section 4.2.) Thus, the length of each polygon
approximation Pn to J is no greater than the length of J . Hence the length bn of
each Pn is at most b. The regions Un

0 lie in the interior of Pn and J .
Let ǫ′ = ǫ/(πb). Cover J with finitely many disks whose radii ri are less than ǫ′

and that sum to less than b. (The sum of the diameters can be brought arbitrarily
close to b. The sum of the radii can be brought arbitrarily closed to b/2.) Using
Lemma 15, pick n large enough that the Un

0 and the disks cover the interior of J .
Let an be the area of the interior of Pn. Then

a ≤ an +
∑

πr2
i < an + πǫ′

∑
ri ≤ an + ǫ.

The isoperimetric inequality now follows from the isoperimetric inequality for poly-
gons:

4π(a − ǫ) ≤ 4πan ≤ b2
n ≤ b2.

The isoperimetric inequality usually includes the statement that circles are the
only rectifiable Jordan curve for which equality is obtained. Again, this is not
difficult to prove, once the inequality is known. The deepest part of the proof of
the isoperimetric inequality is the existence of a suitable polygon approximation,
as provided by Jordan.
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