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RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO
Serie II, Supplemento N. 44 (1996), pp. 85-1if

COMPLEX FUNCTION THEORY
FROM ZURICH (1897) TO ZURICH (1932)!

UMBERTO BOTTAZZINI - JEREMY J. GRAY

1. Introduction.

The theme of our paper is developments on complex -function
theory from Zurich 1897 to Zurich 1932. It is not merely the
coincidence of venue that invites such a topic, nor indeed the
suggestions of the organising committee. In fact, the interest that
attaches to such a topic has already drawn two historical papers on
this theme over the years: Hurwitz’s address at the first ICM was
largely historical, and so was Julia’s in 1932, which he expanded
into an Essai the following year. With Julia, we can only agree that
the subject is vast and subscribe to his epigram that: “Who does not
know how to restrict himself will never write anything” (“Qui ne sait
se borner ne sut jamais écrire”).

The core of the talk is function theory as it has been presented
at the International Congresses. This was also the thread that Julia
followed. But we shall also look at the wider field of function theory,
and see what was, or was not, represented at the Congresses. We
have restricted ourselves to function theory of a single variable, and to
what may be called the elementary theory, avoiding connections with
other branches of mathematics, such as number theory and differential

! This paper is a revised version of the ICHM lecture we gave on August 6, 1994
at the International Congress of Mathematicians (ICM) in Zurich.
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equations, even in the complex domain. This concentrates our attention
on complex function theory in the strict sense. One of our interests is
how such a subject grew up after the truly pioneering work of Cauchy,
Riemann, and Weierstrass was done, and these founding fathers were
no more.

From Zurich in 1897 to Zurich in 1932 and beyond, to Oslo in
1936, there were slow but steady changes in every aspect of complex
analysis, with some marked bursts of activity. For example, consider
the question: ‘what is a complex function? In the period from 1897
to 1932, the concept of a complex function passed-from being fluid
to being fixed. So too did the idea of analytic continuation. As to the
question of what constituted the best proofs (the most appropriate,
say, or the most instructive) the key topic here is undoubtedly
Picard’s theorems. The choice of the central or governing ideas was
likewise controversial. What, if any, should be the role of geometry
in classifying what is going on? What is the connection between a
function and the coefficients of a power series defining it? What of
the dichotomy between meromorphic and entire functions?

Zurich 1897,

On Monday 9 August, 1897 Adolf Hurwitz rose to address an
audience of perhaps 200 mathematicians on the subject of complex
function theory (Hurwitz 1898). He began by saying that the subject
was aocc_w interesting. Once because of the interest that attached to
the study of particular classes of functions: algebraic functions and
their integrals, the new transcendental functions of Klein and Poincaré.
And again because of its own intrinsic interest as the foundational .
subject in analysis. It was this aspect, he went on, that he proposed
to address. ,

On the Weierstrassian approach, one considers function elements:
each is a power series defined on some open disc with a certain radjus
of convergence. A family of these that behave suitably on the overlaps,
defines a function. This type of definition recalls the approach that
‘was common in the 19th century and before. A function is something
for which one can write down some sort of rule for its values: a
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polynomial, something in trigonometric functions, a convergent power
series. The Weierstrassian approach starts here. There is not some
antecedent definition of a function, or of a complex function, after
which comes a representation theorem asserting that every complex
function can be exhibited as a family of functions.

Given a single-valued analytic function it was interesting to
enquire about the set of points that lay inside some disc, and those that
did not. For a given function the points interior to some disc formed the
function’s domain of continuity, while the points that did not formed
its natural boundary. What could be said about a domain of continuity
(in today’s terminology, a domain of holomorphy)? To answer this
question led straight to topology. Hurwitz defined a continuum K asa
set of points such that for every point z € K there is a disc containing
z and contained in K, and given any two points z and z’ of K there
is a chain of points {z1,...,2,} in K such that z=z, 7 =z, and
the distance between any two consecutive z’s can be made arbitrarily
small. (This is a weaker condition than connected, it is satisfied by
the plane of complex numbers with the real axis removed.)

Hurwitz then said:

It is a theorem that, given any continuum, there is always a single-
valued analytic function whose domain of continuity is precisely the
given continuum.

For the proof, he referred to the work of Mittag-Leffler, later
simplified by Runge and Stickel.

Hurwitz then turned to the study of the set of singular or boundary
points and explained that, using Cantor’s theory of transfinite sets, a
complete topological characterisation of the set of singular points of
an analytic function could be given.

Hurwitz then observed that there were analytic functions having
natural boundaries, and that many interesting special cases had been
published. This raised the question of the behaviour of a function
in a neighbourhood of an isolated singular point. If the function did
not simply tend to infinity, then the singular point was said to be
essential. Hurwitz said:

By a classical theorem of Picard, only two cases are possible:
either the function takes every finite value on every neighbourhood
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of the singular point, or it takes every value except one. Picard
based his proof of this theorem on the properties of the modular
function. Special cases of this theorem have later been proved
by Hadamard and Borel by elementary means.

It seemed, he said, that no analogous theorem was known about
non-isolated singular points.

As for analytic functions that were not single-valued, Hurwitz
suggested the best way forward lay with the idea of Riemann
surfaces, and with Poincaré’s ideas about the uniformisation of analytic
functions.

Hurwitz then turned to the Cauchy-Riemann approach, which, he
said, had only recently been given anything like the necessary degree
of rigour. Here the key idea was that of a synectic function (for
which read holomorphic), that is, a function that has a differential
quotient everywhere it is defined which is independent of direction.
The crucial theorem now was the Cauchy integral theorem: the integral
of a holomorphic function defined on some continuum is zero on any
closed curve bounding a disc that lies entirely in the continuum.

Here certain questions arise at once: what is a simple closed
curve, what is a curve, what is a closed curve, and are all or only
some closed curves to be admitted in the statement of Cauchy’s
theorem?

These questions were all the more urgent in the aftermath of the
space-filling curves of Peano and Hilbert. Partial answers had been
given by Jordan, in his Cours d’analyse, and later by Schoenfliess.
The situation, Hurwitz said, was that Jordan had proved the Cauchy
integral theorem for rectifiable curves.

It was well-known, he said, that another central theorem was
the Riemann mapping theorem, which established the existence and
(under suitable restrictions) the uniqueness of a conformal map of one
simply connected domain onto another. This had now been proved,
for a wide class of surfaces, by Neumann and Schwarz, Harnack,
Poincaré, and others.

Hurwitz's choice as a speaker was surely in part a matter of
politics. As it was, the Berlin school was conspicuous only by its
absence, for, as Minkowski had predicted, they took exception to the

COMPLEX FUNCTION THEORY,.. 89

choice of Klein as head of the German delegation. But an eminent
function theorist, working in Ziirich, an undergraduate student of
Weierstrass’s even if a doctoral student of Klein’s, could surely be
presumed to be even-handed in the treatment not just of Prussian
matters but in adjudicating between French and German styles. So, in
the event, he was. As the leading spokesman for the Weierstrassian
approach, Mittag-Leffler would have had good cause for feeling that
it had been presented as the rigorous style of complex analysis. The
contrast with the slippery nature of the Cauchy-Riemann approach had
been made evident. On the other hand, the new generation of French
mathematicians might have felt their work was a little slighted, in
the text itself if not so obviously in the footnotes that accompany the
written text.

Contemporaries would not have disputed the central role Hurwitz
ascribed to complex analysis. Nor would they have grumbled at the
stark separation Hurwitz went on to make between complex function
theory in the style of Weierstrass on the one hand, and that of Cauchy
and Riemann on the other. The two theories differed in the approach
to what constituted a function of a complex variable. For example, the
Cauchy integral theorem is entirely missing from the Weierstrassian
theory. Any unification of the two approaches would have to face
a thorough-going disagreement as to what sorts of operations were
fundamental. Hurwitz also underplayed the importance of results about
the representation of functions by series of rational functions. Examples
that were well-known by 1897 showed that it was possible for one
analytic expression to represent two analytic functions in two domains,
spelling an end to Riemann’s express belief that his class of analytic
functions was the same as the class definable by infinitely many
algebraic operations.

Note next the growing importance of ideas drawn from Cantorian
set theory and point set topology. A good theory existed to characterise
domains of holomorphy and sets of singular points. Hurwitz did not
commit himself to any general discussion of the Riemann mapping
theorem, but left it open. Finally, we observe that Hurwitz singled
out the big Picard theorem for particular mention. This allusion to
the work of Hadamard and Borel was to prove but the start of a
long-running story.
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The subject of entire functions is interesting historically for two
reasons. It represents the first successful new branch of complex
function theory, the first intrinsic development of the subject one might
say for its own sake. And it represents the way the Weierstrassian
approach might have developed had not the new Berlin generation
turned aside to other subjects. The spur was the big and little theorems
of Picard, which describe the distribution of values of a function having
an isolated essential singularity. What was at stake was a so-called
elementary proof, by which is meant, as so often, a harder proof
but one which makes less call on advanced parts of the theory. (In
this case, what was objected to was Picard’s use of the modular
function from elliptic function theory). To this they connected the
natural question: what can be said about a function and in particular
its singular points given its Taylor series.

The background here is interesting. Many of the ideas that were
to be developed to such spectacular effect by Hadamard, Borel, Fatou,
Julia and others can be traced back to a series of short papers published
by Poincaré in the 1880s, apparently without much effect at the time.

In 1882, Poincaré had responded to two short papers of Laguerre.
He defined an entire function to be of genre n if its primary factors

sonn%ﬁromoﬂamg ? | .xlv ssﬂowﬁxvémmmmoq:oam_%
o
degree n (Poincaré 1882). He then showed that if F is of order

zero, and o is such that 9638_.3 tends to zero as r increases (6
being fixed), then exp(are’®)F(re') likewise tends to zero. One can
paraphrase this as: if F is of genre zero and e** tends to zero along
a ray, then it tends to zero more strongly than F tends to infinity;
or, even more shortly, that ¢** dominates F. As Poincaré noted with
regret, this and some other properties he presented did not characterise
functions of genre 0.

More troublingly, as he noted in a longer but inconclusive paper
the next year (Poincaré 1883a) it seemed very difficult to establish
such basic results as:

the sum of two functions of genre n is also of genre n;

the derivative of a function of genre n is also of genre n.

Indeed, he said, one could not be sure that the results were true.
He was right to register a doubt: in 1902 Boutroux showed that pairs

-
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of certain types of functions of genre n had a sum of genre n -+ 1.

Blocked in this direction Poincaré turned aside, publishing in April
1883 two papers on lacunary spaces, which are interesting because
they were to be the spur to later work of Borel. Weierstrass had given
examples of one analytic expression convergent inside, and outside,
but never on the unit circle; for example,

= 1

Lo

n=0

Others, including Hermite and J. Tannery had given further
examples. In his paper, Poincaré constructed functions of the form

n=0 %7 b

which were analytic everywhere in the exterior of a convex region
S of the plane. This hole was called the lacunary space for the
function. Poincaré’s contribution was to show that the obvious notion
of a natural (even if not analytic) continuation of such functions made
no-sense. He gave examples of his thetafuchsian functions to show
that in fact the natural continuation was not uniquely defined.

Then in May 1883 Poincaré published his first attempt at
establishing the uniformisation theorem. This had arisen as a conjecture
during his work on Fuchsian and Kleinian functions, and Hilbert was
to cite Poincaré’s uniformisation theorem in his list of 23 problems
at the ICM in Paris in 1900.

In 1890 Poincaré published an important paper on iteration theory,
not in the context of flows on surfaces and in dynamics, but during
a study of complex functions that admit multiplication theorems.
A function f admits a multiplication theorem if for some fixed
m,|m|>1:

f(mu)=R(f w)),
with inverse f(u)=S(f(mu)), where and f(0)=0, and R, § are
rational functions. Poincaré studied the transformation

C: fu)— f(mu).
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The power series for f will depend on a single parameter b.
Setting trivial cases aside, Poincaré asked if, by varying this parameter,
f(u) can be arbitrary, or is f(u) confined to some domain. By looking
at the backwards iterates C~?(a), he found that:

If Ya, C~P(a) — 0, then yes, f(u) can be arbitrary.

If only some a are such that C~P(a) — 0, say those in a domain
D, then f(u) is in D.

He then raised but could not answer the question:

When does C7(D)— fixed womawam.o found this partial answer:

a

da
Poincaré then showed that the inverse function g is a single-

valued function of z, developable as a power series everywhere it is
defined, having no essential singularities inside a domain on which is
defined, although it will have essential singularities on the boundary.

Borel, in his thesis of 1894 (examined and approved by Appell and
Poincaré) proposed a different definition of analytic continuation. On
this definition it was possible to say that at least for certain identifiable
cases of this type analytic continuation was possible from one domain
to another. The shift in definition was to allow analytic continuation
along arcs, rather than strips. He gave examples of functions f and g
defined respectively inside and outside the unit circle and which could
not be analytically continued across the unit circle, but for which one
could cross the circle on a dense set of rays along each of which
both f and g had the same radial limits. So along these rays at least
the continuation preserves the continuity of all derivatives.

Poincaré praised the thesis, observing that although this was a
topic that had occupied analysts for some time, Borel, he said, was
the first to give a systematic treatment, and that in doing so he
had established some very remarkable properties that by their nature
would clarify ideas in one of the most delicate points of the theory
of functions.

<1.

it is necessary but not sufficient that

Paris 1900.

Mittag-Leffler gave two talks at the ICM in Paris in 1900. One
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was on the life and work of Weierstrass, the other on a topic in
function theory. In it, he raised and solved a problem to do with
an analytic expression which was convergent inside a star-shaped
domain. The expression, however, would converge outside the star,
so he asked for a new analytic expression that converged precisely
inside the star. This question he then answered. Even the pages of the
Comptes Rendus bristle with what happened next. Borel, they record,
asked for the opportunity to reply. He went on to observe (if we may
paraphrase the account) that

after the publication of the beautiful discovery of the eminent
Swedish geometer he, Borel, had given an extremely simple
proof of the claim. Indeed, the proof, contrary to Mittag-Leffler’s
presentation, was extremely simple, being an exercise in the
Cauchy integral theorem and Borel’s theory of divergent series,
which reduced the problem to the easy application of ideas
due to Runge, Hilbert, and Painlevé. Moreover, Mittag-Leffler’s
theorem was false if analytic continuation in Borel’s, rather than
Weierstrass’s sense, was allowed.

It is hard to know who would have been familiar with Borel’s
latest results since, plainly, Mittag-Leffler was not. Their public
disagreement was to rumble through the next several Congresses.
Unfortunately, we do not know enough of the background to account
for this extraordinary confrontation, but it is hard to understand the
French selection of speakers and why Borel was not asked to speak
at Paris. As Hurwitz had indicated, Borel had already contributed a
most important result in the subject: the first elementary proof of
Picard’s little theorem, following Hadamard’s elementary proof of a
special case.

Borel’s starting point in 1894 had been the paper by Poincaré
on the concept of genre. Borel wrote an entire function of genre p
in the form

2

z 14
QQANV : H _ lml QA«S + 2ay +..+ Pap.n v
ay

1

where the series ) T
Q:

is convergent. He observed that Poincaré
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had proved that if f(z) is a function of genre p, then on the circle
|zl =r, for every positive number o,
fim f@)e™" " =0.
r—>oo
So denoting by M(r) the maximum modulus of the function

f(z) on (and therefore inside) the circle |z} =r, he deduced that for
r large enough
M@y <.
He then defined the order of the function as
loglog(M(r)) |
logr

p =limsup

it evidently lies between p and p+1. This was the crucial step,
for order is a much better behaved concept than genre. For example,
the order of an entire function and its derivative are the same, and
the order of the sum of two entire functions of order n is again n.
Using Hadamard’s results about the maximum modulus function, the
location of the zeros of entire functions and the properties of the
concept of order, Borel was now able to give a proof of Picard’s
little theorem.

Heidelberg, Rome and Cambridge.

In 1904, when the ICM was in Heidelberg, interest was focussed
on hitherto unpublished work of Riemann, then being edited by
Schlesinger and Wirtinger. But this time the new (one might say, not
so new) French theory of entire functions got an airing. Boutroux,
a cousin of Henri Poincaré, reported on entire functions of finite
integral order, and Mittag-Leffler on a particularly simple class of

entire functions. These are his E-functions, defined by the equations
o N§
= , so for example Ei(z) =e*. They have
Eo(z) W I(1 +na) P
particularly simple growth properties, as we shall see.

COMPLEX FUNCTION THEORY... 95

In 1908 in Rome, Mittag-Leffler spoke (for the third consecutive
time) on the theory of analytic expressions and complex functions.
His was not the only paper; Boutroux and Schlesinger also spoke.
Koebe talked, with uncharacteristic brevity, on his recent successful
and very thorough proof of the uniformisation theorem. Koebe’s proof
includes the Riemann mapping theorem as a special case. A paper
he had published in 1907 concludes with a very interesting comment.
After noting the work of Runge on the representation of a function by
a series of rational functions, Koebe wrote (we paraphrase slightly):

The fundamental problem with Weierstrass’s theory of analytische
Gebilde is to find a selection of these uniformly convergent series
of rational functions which represents the whole domain. Here
it is shown that this can always be done. In this way a problem
which one might say belongs to the Weierstrassian mode of
analysis is solved by principles which belong to the Riemannian
circle of ideas. [1907b, 210].

But Mittag-Leffler’s paper was the one most closely devoted to
the foundations of complex function theory. He returned to the idea of
star domains that he had introduced a decade earlier, and advocated
their use as domains of convergence of series in explicit opposition
to Borel’s theory of analytic continuation. This led him to outline an
interesting philosophy of what constitutes the best proofs in analysis,
and thus to a defence of Weierstrass. We paraphrase slightly:

For some mathematicians it is a matter of indifference how a
theorem was proved - provided it is actually proved - but this is
not my opinion, still less had it been that of Weierstrass. He felt
that it was wrong to use a higher-order theory, like integration,
to prove a result that could be obtained directly. The pretended
simplification that might seem to arise in that way would be a
mirage. :

On the other hand, he found much to praise in Borel’s way of
opening up the question of whether the zeros of an entire function
could be confined within certain angular domains. To this question
he offered some answers, in terms of the functions E, that he had
discussed at an earlier Congress: The function E, is bounded in the
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sector 3 <argz <2m — - but no larger sector. And for such

work, he relied on the Cauchy integral theorem - what he called ‘the
incomparable instrument of higher analysis’.

Not surprisingly, Borel took the opportunity finally presented by
his invitation to address the Cambridge Congress of 1912 to present
his ideas on analytic continuation. This took the form of a restatement
of his position in opposition to that of Mittag-Leffler. However, at this
point the Congresses provide a poor picture of the state of the complex
function theoretic art. The Cambridge organisers, swayed presumably
by the much stronger Cambridge tradition in applied than in pure
mathematics, invited none of the emerging younger British generation
to speak on complex analysis. The next Congress, which was to have
been organised in Stockholm by Mittag-Leffler, would presumably
have done better by the strong Scandinavian and Finnish school of
analysts, but that Congress was of course abandoned because of the
First World War. A minor consequence was that a further Swedish
Royal Prize, this one of 3,000 kr for a paper on the theory of
analytic functions, was abandoned (see Acta Mathematica, 37, 1914).
Tt was surely likely, too, that Hermann Weyl might have talked on
his recently published work on the concept of a Riemann surface, in
which topological ideas were used to give the first rigorous treatment
of Riemann’s ideas on algebraic functions and their integrals.

Strasbourg 1920.

The Congress after Cambridge was therefore the one in Strasbourg
in 1920. The political atmosphere was highly charged. With the return
of Alsace and Lorraine to France, Strasbourg was once again French,
and the venue was certainly chosen with this in mind. There was,
of course, a new French Faculty in the university. But this was a
mere speck in the French-led hostility to all things German, in which
Picard was prominent, and the result was that German mathematicians
responded with a petition calling for a boycott of the Congress.
While some, like Hilbert, refused to sign it, and others, among them
Bieberbach, helped to organize it, it underlined the extent to which
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German function theorists were simply unwelcome. tor the first time
in his career, Mittag-Leffler did not attend an ICM, in protest at the
treatment of the Germans whose side he had supported in the War.

Had politics not intervened, Bieberbach might well have talked on
his recent results generalising Picard’s theorems to angular sectors, in
which Mittag-Leffler’s E,, functions played an extremal role. However,
this theory was subsumed under Julia’s theory of rays, outlined at
the Congress by Valiron. This theory established the existence of
arbitrarily narrow angular sectors on either side of a crucial ray (later
called the Julia direction) within which the function necessarily took
all but at most one value. The corresponding theory for meromorphic
functions was held up by Ostrowski’s discovery that Julia directions
need not exist for meromorphic functions; progress had to wait for
Valiron to introduce ideas drawn from Nevanlinna theory.

Otherwise, at the Congress itself, complex function theory was
well represented in the Section on analysis by Rémoundos, Boutroux,
and in the absence of Germans such as Courant and German supporters
such as Carathéodory, by the Spanish mathematician Rey Pastor, who
spoke on his extension of Carathéodory’s explicit method in the theory
of conformal representations.

Alas, complex function theory was barely discussed at the next
ICM, in Toronto in 1924, even though the Canadian mathematician
Fields had worked in the area. The consequences of this omission were
rather serious. Missing from the Congress, for example, is any report
on the work of Montel and his profound idea of normal families.
The idea of normal families went back before Montel to work by
Arzela, Ascoli, Osgood and others on the convergence of a sequence
of analytic functions to an analytic function.

As Montel observed at the start of his thesis, if convergence of
even only a subsequence could be found, then, for example, one could
look for a proof of at least special cases of Dirichlet’s principle. With
this motivation Montel said a family & of functions analytic on D
is normal if every sequence of functions in & has a subsequence
converging uniformly on all compact subsets of D to a function that
is either analytic or identically infinite. Similar definitions apply for
families of meromorphic functions.

In this thesis he proved the theorem that now bears his name:
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Montel’s theorem (A sequence of analytic functions on a disc D
which is uniformly bounded has a subsequence converging uniformly
in D to an analytic function). In his paper [1912] Montel showed
that if a family has at least two exceptional values, then it is normal.
He proved this theorem in two ways; once using Picard’s theorem,
and again using Schottky’s theorem (incidentally vindicating a passing
remark in his thesis). In 1916 Montel reversed the order of ideas,
using his theorem on normal families to prove Schottky’s theorem
and hence the Picard theorems. Here is a brief summary, following
Carathéodory, of this proof of the big Picard theorem. He assumed
that f(z) was a non-trivial analytic function on the punctured disc
D°:=D —{0} and omitting the three values {0, 1, o0}. He defined
the sequence of functions

[r=1(3)}

1
In the annulus N“M <|z] <1} each function is analytic and

omits the values 0 and 1. The family is therefore normal. Pick a
convergent subsequence and look at the limit function. If it is analytic
then the original function f can be shown to be bounded on the
punctured disc D° and so it extends (by the removable singularities
theorem) to a function analytic at z=0. If the limit function is

identically 0o, then the same argument but applied to the reciprocal
1

function MAINM again yields a function analytic on all of the open
disc D.

Montel then applied this result to a disc surrounding an essential
singularity of a function f(z) that omitted three values in the disc
and deduced that the function could be extended analyticaily across
its essential singularity. From this contradiction he deduced Picard’s
big theorem.

Also missing from the Congresses, and only briefly alluded to
in Julia’s address, is one topic that perhaps is more lively today than
any other we are discussing: the Fatou-Julia theory of the iteration of
rational functions. This has recently been well-described by Daniel S.
Alexander in his recent book A history of complex dynamics so we
may be brief. (See also Alexander’s paper in the present volume).
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The roots of the subject, and the focus of attention of almost
everyone who participated in the early work, were in functional
equations. People like Koenigs and Schroder, Léau and others,
established, with varying degrees of rigour, a local theory of iterative
processes with a view to solving certain functional equations. It is
often suggested that Poincaré’s work on the first return map in his
theory of dynamical systems and celestial mechanics was influential
in stimulating interest in iteration theory, but Alexander finds it is
doubtful that Poincaré’s work was the primary motivating factor (p.
110). Instead he emphasizes the then-central, now rather forgotten role
of functional equations, and Montel’s recent introduction of normal
families, that was to play such an important role in the work of Fatou
and Julia.

Indeed, Julia never referred to Poincaré’s work on iteration, and
Fatou only mentioned Poincaré’s paper on complex functions that
admit multiplication theorems. Lattés also took this paper as his
starting point in his note of 1918, from which Julia, so to speak,
took the Lattes example of a function whose Julia set is the entire
plane. .

The theory of normal families was to prove central to the work
of Fatou and Julia. If, for example, points zo € D converge under
iteration of a function f(z) to a fixed point, then the family f"(z)
is normal in D. But if z belongs to the Julia set of f(z), then the
family f"(z) is normal in neighbourhood of zo. Both Fatou and Julia
divided the extended complex plane up into regions of normality and
non-normality. Both then studied the set of non-normality, J (to give
it its current label). They showed that it is the closure of its periodic
repelling points.

Both then looked with interest (one might conjecture: amazement)
at the sorts of Julia sets that can arise. They found examples of
totally disconnected perfect sets, continuous curves lacking tangents
at an infinite set of points; closed curves with infinitely many double
points, closed Jordan curves, a line segment (Julia only). They noted
that some of these conditions persist under perturbations of f. And
they noted that the sets J (as Fatou put it) ‘Have the same structure
for all its parts’ or in Julia’s words ‘from any small portion of J,
one can generate J in its entirety’.
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Bologna 1928.

So we must pass to the ICM in Bologna in 1928, where handsome
amends were made. A large number of papers on complex function
theory were presented in the Section on analysis. Among them,
Koebe was brought back to report on conformal representation and
uniformisation. Polya gave an instructive range of examples of what
could happen on the boundary, drawing on the work of Ostrowski,
Faber, Mandelbrojt and himself. The organizing principle was his ideas
about the density of the coefficients. Szolem Mandelbrojt gave a short,
but technical, report on singularities of Dirichlet series. Valiron’s report,
on singular points and Taylor series, drew on the work of Nevanlinna.

Undoubtedly, the most important paper from our point of view
was Rolf Nevanlinna’s account of what he called uniqueness theorems
for single-valued functions, made possible by his work on value-
distribution theory. Papers by Lehto, Ahifors, and Hayman, have
described in fascinating details the route Nevanlinna took to his
discoveries, and the immediate acclaim with which they were met. We
note Hermann Weyl’s comment, that Nevanlinna’s work (with that of
his brother Frithiof) was “One of the few great mathematical events
of our century”. Hilbert was similarly fulsome. We cannot enter into
the technicalities here. As Einar Hille (1962) wrote of the second
fundamental theorem:

[R. Nevanlinna’s] proof is fairly elementary but certainly not
simple. A simple but far from elementary proof was given ...
by Frithiof. ... A third proof is due to Ahlfors. ... This method
is both simple and elementary.

To pick up the story at its peak, in his paper in Acta Mathematica
in 1925, later expanded into his book of 1929, Nevanlinna defined
the central problem in the theory of entire functions as being to relate
the growth of f(x) to the density of the roots of f(x)=z. He said
that the central result was Borel’s generalisation of Picard’s theorem
to show that

n(r;2)=#x: fx)=z |x| <7}
was of exactly the same order as log(M(r)) for all values of z except
at most one.

COMPLEX FUNCTION THEORY,.. 101

However, the theory did not generalize to meromorphic functions,
because the first important property of log(M(r)) lapsed: it was no
longer increasing. Indeed, it is infinite at every pole of the function.
Borel’s attempted generalization of 1903 was open to the objection
that n(r, 00) had to be finite and, more seriously, it depended on the
form in which the function was expressed and was not intrinsic.

Nevanlinna had the idea of defining the function

log™ x =max(logx, 0), forx >0,

SO

Homan_om+a|_om+ ._u xwo,
k

and introducing log* into the Valiron-Jensen formula.
He then defined the functions

r t:
N(r,2) = E&,
o t
2n
1 1
m(r,a) = — log" |———
=2 ) | Fean e |?
and
1 2n
m(r,00)=— [ log*|f(re®)|do.
2r o

- Nevanlinna described the function m(r,a) as measuring the
strength of the mean convergence of f to a as r tended to oo.
He could then show that

m(r, 00) + N(r, 00)=m(r,0)+ N(r, 0) + log | £ (0)|.

Abhlfors commented that “This is the moment that Nevanlinna
theory was born”. Nevanlinna then defined

T(r, f)=m(r, 00) + N(r, o0)

and deduced (from the first Fundamental Theorem of Nevanlinna
theory) that for all a such that f(0)#a:

m(r,a)+N(,a)=T(, f)+O0().
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As Hayman observed, the function T(r, f) gives an excellent
description of the growth of the function f in a disc or in the plane.
It is, as H. Cartan showed, a convex increasing function of log(r).
If f is entire, then T has roughly the growth rate of log(M(r)),
while N measures the number of roots of f(z)=a in |z] <7 and
m the average closeness of f(z) to a on |z|=r. Thus Hadamard’s
inequality immediately follows:

pl@)y<p for alla.

To obtain Borel’s result, Nevanlinna then proved that in general,
N(r,a) is the dominant term.

Indeed, he established the second Fundamental Theorem, from
which it follows (after some work) that

lim sup |I||ZQ, 9) > Wmoa all but at most two values of a,
T(r) 3

from which Borel’s result follows, and p(a)=p for all but at most
two values of a, which is a much more precise result than Hadamard’s
inequality.

In his paper at the Bologna ICM, 1928, Nevanlinna discussed
the question of what could be said about meromorphic functions f
and g which have common values. That is, for some a€C the sets

{z: f(@)=a}and(z:g(z)=4a}

are the same. He included values of a which are not taken at all,
the so-called lacunary values. So for example, if f and g are entire
functions and f is never zero, then f(z) and 8 f(z) have two
common lacunary values, 0 and oc. Plainly, given f there is an
infinity of functions of the form e8@ f(z). But it is only for a small
class of functions f that there are functions having three common
values with f, and they had recently been exhibited explicitly by
Polya and H. Cartan. Polya had also found the condition on f which
allowed it have 4 common values with an other function. However,
Polya had shown that if two meromorphic functions have 5 common
values, then they are identical.

Picard’s little theorem followed, Nevanlinna observed, by hypothe-
sising that f was a meromorphic function with 3 lacunary values,
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and letting S be a Mobius transformation permuting those values
cyclically and fixing two other points. Then the functions f and Sf
would have 5 common values, which is impossible.

Nevanlinna proceeded to generalize these results. He defined N(r)
to be the maximum value of N(r,z) over all values of z, so the
quotient

(N(r)=N(r2)

N(r)
takes values between 0 and 1, and he defined
N(@r)—N
5(2) = limin | 2 UEIAN
r=co N(r)

This attached to a function f another function & with values in
the interval [0, 1]. Nevanlinna called this second function the defect
function, and he showed that it characterised the density of the roots,
a, of the equation f(a)=z. If the roots were relatively dense, the
defect vanished. If z was a lacunary value, then the defect took its
maximum value, 1.

It follows from the second Fundamental Theorem that there are
only countably many points at which the defect does not vanish.
Moreover, the sum of the corresponding defects is finite; indeed

Y s <2

As he observed, the little Picard theorem follows immediately
from this result, and there is a straight-forward generalization to Polya’s
result.

It is not possible here to indicate the remarkable range of results
that can be drawn from the two Fundamental Theorems of Nevanlinna
theory. There was a great rush of activity by many authors, and since
then whole books have been written on the subject. Nevanlinna both
rounded off a whole generation’s work and enabled a new period to
begin.
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Zurich 1932.

The Zurich ICM of 1932 was, nonetheless, not a particularly
successful one for complex function theory. A profusion of short papers
was presented, as befits a subject in the full flood of development. The
main plenary address on the subject was Julia’s, which, as we have
said, was an historical overview. In its expanded form, as his Essai,
Julia described some topics that we have not had the time to mention.
The relationship between the coefficients of a power series convergent
inside the unit disc and the behaviour on the boundary, investigated
initially by Fredholm and then in more detail by Hadamard and others
is as prominent there as it is absent here. But Julia’s omissions are
equally striking. Weyl’s book on Riemann surfaces plainly lay outside
the subject of complex function theory as the French conceived of it.
The topic of conformal representation and univalent function theory

was discussed, but the line of enquiry that ran from Schottky’s theorem’

to work by Landau, Carathéodory and others on holomorphic functions
on the disc was hardly acknowledged. It is tempting to see this as the
natural view of a French function theorist in 1932: the Hadamard-Borel
direction had been shown to be more profound and fruitful.

Before we turn to our coda, the ICM in Oslo in 1936, we should
like to present some concluding remarks. An energetic follower of
complex function theory from 1897 to 1932 would have seen many
changes in the subject. Among those we have discussed:

e An increasing preference for the Cauchy-Riemann definition of
a complex function to the Weierstrassian one, with all that that
entails for the acceptance of integration and the role of the Cauchy
integral theorem.

o A theory of entire functions, based on the concept of order, that
established characteristic properties of complex functions.

e A vigorous debate about the nature of analytic continuation.

o The best proofs of Picard’s theorems: elementary in the sense of
Borel; via normal families as Montel proceeded; within Nevanlinna
theory.

e A prolonged, largely unsuccessful search (prior to Nevanlinna) for
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a theory of meromorphic functions that would match the theory
of entire functions.

¢ Conformal mappings and ideas of Riemann surfaces were not
much in evidence, especially among the French. However,

e Geometry could not be kept away indefinitely, as Ahlfors was
about to demonstrate.

The sweep of ideas has one aspect that is so obviously important
it is tempting not to mention it: Despite Hurwitz’s insight into the
state of the art around 1897, the later development of the subject was
markedly French, and almost as much Scandinavian. After Poincaré
come Borel, Hadamard, Fatou and Julia; after Weierstrass come Mittag-
Leffler, Lindelof, the Nevanlinnas, and Ahlfors. The German interest,
although represented by Schottky, Landau, Bieberbach and Ostrowski,
is less effective. The French influence is very strong, determining
even the choice of language in which the papers tend to be written.
The shifts in attitude that we have described are at least in part the
result of this cultural achievement.

Coda: Oslo 1936.

Perhaps nothing indicates better the high esteem the new theory
of complex functions was enjoying than the ICM at Oslo in 1936.
Naturally, we wish to conclude by mentioning it briefly, because it
was not only the occasion for the award of the first Fields Medals,
but for the award of a medal to Lars Ahlfors for his work on function
theory, specifically his work on covering surfaces. The medals were
presented by Carathéodory (1937). In presenting the medal, he said

I do not know which is the more remarkable: that Ahlfors has
been able to describe Nevanlinna theory in just 14 pages, or
that Nevanlinna had been able to have the profound insights he
had had without geometry. {1937, 85].

As this remark illustrates, the twist that Ahlfors (and independently
of him, T. Shimizu) gave to the ideas of Nevanlinna was to rework
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them in geometric terms. In particular, in one of the commentaries in
his Collected Papers Ahlfors writes that is was well-known early on
that Nevanlinna’s second main theorem was connected in some way
with the Riemann-Hurwitz formula for coverings. Ahlfors extended
this formula to coverings where the boundary of the covering space
is sometimes mapped onto the interior of the space being covered.
This had the effect of replacing Nevanlinna’s functions by integrals
expressing average values. The remarkable result that emerges was
the connection with the Gauss-Bonnet formula, culminating in the
explanation of the number 2 in Picard’s theorem. The number of
excluded values is determined by the Euler characteristic - which,
for the Riemann sphere, is 2. And, to quote from the penultimate
paragraph of his Oslo address:

The second theorem of Picard says, in our formulation, that
every covering surface of a surface of genus greater than 0 must
be hyperbolic. [Ahlfors 1936, 248].
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