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Abstract: Say that a sequence S

0

; : : : ; S

n

has a (global) point of increase at k if S

k

is max-

imal among S

0

; : : : ; S

k

and minimal among S

k

; : : : ; S

n

. We give an elementary proof that an

n-step symmetric random walk on the line has a (global) point of increase with probability

comparable to 1=log n. (No moment assumptions are needed). This implies the classical fact,

due to Dvoretzky, Erd}os and Kakutani (1961), that Brownian motion has no points of increase.

1 Introduction

A real-valued function f has a global point of increase in the interval (a;b) if there is

a point t

0

in the interval such that f(t) � f(t

0

) for all t 2 (a; t

0

) and f(t

0

) � f(t) for all

t 2 (t

0

; b). Dvoretzky, Erd}os and Kakutani (1961) proved that Brownian motion almost surely

has no global points of increase in any time interval. Knight (1981) and Berman (1983) noted

that this follows from properties of the local time of Brownian motion; elegant direct proofs

were given by Adelman (1985) and Burdzy (1990). The aim of this note is to show that the

nonincrease phenomenon holds for arbitrary symmetric random walks, and can thus be viewed

as a combinatorial consequence of uctuations in random sums.

De�nition: Say that a sequence of real numbers s

0

; s

1

; : : : ; s

n

has a (global) point of increase

at k if s

i

� s

k

for i = 0; 1; : : : ; k � 1 and s

k

� s

j

for j = k + 1; : : : ; n.

Theorem 1.1 Let S

0

; S

1

; : : : ; S

n

be a random walk where the independent identically distributed

increments S

i

� S

i�1

have a symmetric distribution, or have mean 0 and �nite variance. Then

P[S

0

; : : : ; S

n

has a point of increase] �

C

log n

;

for n > 1, where C does not depend on n.
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As we shall see in Section 4, this estimate is sharp except for the value of C.

Proof of nonincrease of Brownian motion:

To deduce this, it su�ces to apply Theorem 1.1 to simple random walk on the integers. Indeed

it clearly su�ces to show that the Brownian motion fB(t)g

t�0

almost surely has no global

points of increase in a �xed rational time interval (a; b). Sampling the Brownian motion when

it visits a lattice yields a simple random walk; by re�ning the lattice, we may make this walk as

long as we wish, which will complete the proof. More precisely, for any vertical spacing h > 0

de�ne �

0

to be the �rst t � a such that B(t) is an integral multiple of h, and for i � 0 let �

i+1

be the minimal t � �

i

such that jB(t)�B(�

i

)j = h. Then

�

B(�

i

)�B(�

0

)

h

: i � 0 and �

i

< b

�

is a �nite portion of a simple random walk. If the Brownian motion has a (global) point of

increase in (a; b) at the point t

0

, then this random walk has a point of increase at the integer

k where �

k

is closest to t

0

. Thus by Theorem 1.1,

P [ B.M. has a global point of increase in (a; b)] �

C

log n

+P[�

n

� b]: (1)

Since the event [�

n

� b] can happen only if the B.M. increment satis�es jB(b)�B(a)j � (n+1)h ,

the probability in (1) can be made arbitrarily small by �rst taking n large and then picking

h > 0 very small. 2

2 Proof of the upper bound on the probability of increase

Notation: For the rest of the paper, let X

1

;X

2

; : : : be i.i.d. random variables, and let

S

k

=

P

k

i=1

X

i

be their partial sums. Denote

p

n

= P[S

i

� 0 for all 1 � i � n] : (2)

Observe that the event that [S

n

is largest among S

0

; S

1

; : : : S

n

] is precisely the event that the

reversed random walk X

n

+ : : : +X

n�k+1

is nonnegative for all k = 1; : : : ; n ; thus this event

also has probability p

n

. To see that this event is positively correlated with the event in (2), we

need Harris' inequality.
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Proposition 2.1 (Harris 1960) Let X

1

; : : : ;X

n

be independent random variables, and let

f : IR

n

! IR and g : IR

n

! IR be nondecreasing functions. (I.e., f and g are nondecreasing in

each coordinate.) Then

E[f(X

1

; : : : ;X

n

) � g(X

1

; : : : ;X

n

)] � E[f(X

1

; : : : ;X

n

)] � E[g(X

1

; : : : ;X

n

)] :

For a proof of this inequality see, e.g., Kesten (1982) pp. 72{73.

Lemma 2.2

(i) P[0 � S

i

� S

n

for all 1 � i � n] � p

2

n

.

(ii) If the increments X

i

have a symmetric distribution or have mean 0 and �nite variance,

then there are positive constants C

1

; C

2

such that C

1

n

�1=2

� p

n

� C

2

n

�1=2

for all n � 1 .

Proof:

(i) Let f(x

1

; : : : ; x

n

) := 1 if all the partial sums x

1

+ : : :+x

k

for k = 1; : : : ; n are nonnegative,

and f(x

1

; : : : ; x

n

) := 0 otherwise. Also, de�ne g(x

1

; : : : ; x

n

) := f(x

n

; : : : ; x

1

). Then f and

g are nondecreasing functions, and applying the Harris inequality concludes the proof.

(ii) For simple RW, the estimate follows easily from the reection principle; for the general

argument, see Feller (1966), Section XII.8.

2

We now state an extension of Theorem 1.1.

Theorem 2.3 For any random walk fS

j

g on the line,

P[S

0

; : : : ; S

n

has a point of increase] � 2

P

n

k=0

p

k

p

n�k

P

bn=2c

k=0

p

2

k

: (3)

3



Proof of Theorem 2.3. The idea is simple: The expected number of points of increase is the

numerator in (3), and given that there is at least one such point, the expected number is bounded

below by the denominator; the ratio of these expectations gives the required probability.

To carry this out, denote by I

n

(k) the event that k is a point of increase for S

0

; S

1

; : : : ; S

n

and by F

n

(k) := I

n

(k) n [

k�1

i=0

I

n

(i) the event that k is the �rst such point. The events that

[S

k

is largest among S

0

; S

1

; : : : S

k

] and that [S

k

is smallest among S

k

; S

k+1

; : : : S

n

] are indepen-

dent, and therefore P[I

n

(k)] = p

k

p

n�k

.

Observe that if S

j

is minimal among S

j

; : : : ; S

n

, then any point of increase for S

0

; : : : ; S

j

is

automatically a point of increase for S

0

; : : : ; S

n

. Therefore for j � k we can write

F

n

(j) \ I

n

(k) =

F

j

(j) \ fS

j

� S

i

� S

k

for all i 2 [j; k]g \ fS

k

is minimal among S

k

; : : : ; S

n

g :

(4)

The three events on the right-hand side are independent, as they involve disjoint sets of sum-

mands; the second of these events is of the type considered in Lemma 2.2(i). Thus

P[F

n

(j) \ I

n

(k)] � P[F

j

(j)] p

2

k�j

p

n�k

� p

2

k�j

P[F

j

(j)]P [S

j

is minimal among S

j

; : : : ; S

n

] ;

since p

n�k

� p

n�j

. Here the two events on the right are independent, and their intersection is

precisely F

n

(j). Consequently P[F

n

(j) \ I

n

(k)] � p

2

k�j

P[F

n

(j)] :

Decomposing the event I

n

(k) according to the �rst point of increase gives

n

X

k=0

p

k

p

n�k

=

n

X

k=0

P[I

n

(k)] �

n

X

k=0

k

X

j=0

P[F

n

(j) \ I

n

(k)]

�

bn=2c

X

j=0

j+bn=2c

X

k=j

p

2

k�j

P[F

n

(j)] �

bn=2c

X

j=0

P[F

n

(j)]

bn=2c

X

i=0

p

2

i

:

This yields an upper bound on the probability that fS

j

g

n

j=0

has a point of increase by time n=2;

but this RW has a point of increase at time k if and only if the "reversed" RW fS

n

�S

n�i

g

n

i=0

has a point of increase at time n� k. Doubling this upper bound proves the theorem.
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2

Proof of Theorem 1.1. To bound the numerator in (3), we can use symmetry to deduce

from Lemma 2.2(ii) that

n

X

k=0

p

k

p

n�k

� 2 + 2

bn=2c

X

k=1

p

k

p

n�k

� 2 + 2C

2

bn=2c

X

k=1

k

�1=2

(n� k)

�1=2

� 2 + 4C

2

n

�1=2

bn=2c

X

k=1

k

�1=2

;

which is bounded above because the last sum is O(n

1=2

). Since Lemma 2.2(ii) implies that the

denominator in (3) is at least C

2

1

logbn=2c , this completes the proof. 2

Remark: For Symmetric random walks, there is an alternative way to bound the numerator

in (3) via comparison to strict maxima: Denoting � = P[X

1

> 0] and using the symmetry of

the step distribution, we see that the probability that the walk has a strict maximum at time

k is at least p

k�1

�P[X

k

> 0] �P[X

k+1

< 0] � p

n�k�1

� �

2

p

k

p

n�k

. Hence the expected number

of points of increase satis�es

n

X

k=0

p

k

p

n�k

� �

�2

E[ number of strict maxima among S

0

; : : : S

n

] � �

�2

:

Thus the probability that S

0

; : : : ; S

n

has a point of increase is at most 2(�C

1

)

�2

= logbn=2c .

3 A lower bound for the probability of increase

Proposition 3.1 For any random walk on the line

P[S

0

; : : : ; S

n

has a point of increase] �

P

n

k=0

p

k

p

2n�k

2

P

bn=2c

k=0

p

2

k

: (5)

In particular if the increments have a symmetric distribution, or have mean 0 and �nite vari-

ance, then

2

P[S

0

; : : : ; S

n

has a point of increase] � 1= log n for n > 1.

2

the symbol � means that the ratio of the two sides is bounded above and below by positive constants which

do not depend on n.
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Proof: First we record an easy converse to Lemma 2.2(i):

P[0 � S

i

� S

k

for all 1 � i � k] �

P [f0 � S

i

for all i 2 (0; bk=2c]g \ fS

i

� S

k

for all i 2 [dk=2e; k)g] = p

2

bk=2c

:

Now the decomposition (4) in the proof of Theorem 2.3, combined with the last inequality,

show that

n

X

k=0

p

k

p

2n�k

=

n

X

k=0

P[I

2n

(k)] =

n

X

k=0

k

X

j=0

P[I

2n

(k) \ F

2n

(j)] �

n

X

j=0

P[F

n

(j)]

n

X

i=0

p

2

bi=2c

:

This implies (5). The assertion concerning symmetric or mean 0, �nite variance walks follows

from Lemma 2.2(ii) and the proof of Theorem 1.1. 2

In conclusion, we note that some conditions for nonincrease of L�evy processes have been

given by Bertoin (1991) and Doney (1994); it would be interesting to compare these conditions to

the estimates in Theorem 2.3 and Proposition 3.1. It is natural to ask whether the assumption of

independent increments in Theorem 1.1 can be relaxed; rather than attempt a general statement

in this direction, we mention a concrete example.

Conjecture: Denote S

k

(�) =

P

k

j=1

cos(2

j

�), and let � be Lebesgue measure on [0; 2�]. Then

we conjecture that for n > 1,

�f� : S

0

(�); S

1

(�); : : : ; S

n

(�) has a point of increaseg �

1

log n

:
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