MAT 324, Fall 2015 PROBLEM SET 6, Due Thursday, November 13 L^p spaces

- (1) Does $\{\sin(nx)\}_1^{\infty}$ converge in the L^1 norm on $[0, 2\pi]$? Prove your answser.
- (2) Give an example of a sequence of functions $\{f_n\}$ which converges to the constant zero function in L^1 , but so that $f_n(x)$ does not converge to zero at any point of [0, 1].
- (3) If $f_n \to f$ in the L^1 norm, show that there is a subsequence f_{n_k} which converges a.e. to f.
- (4) Give an example of a function which is in $L^2(\mathbb{R})$ but not in $L^p(\mathbb{R})$ for any $p \in [1,2) \cup (2,\infty]$.
- (5) Let $H = L^2([0, 1])$ and let $K \subset H$ be defined as $K = \{f \in H : \int_{[0,1]} f dm = 0\}$. Show that K is a closed vector subspace of H. Find the element of K that is closest to g(x) = x (note $g \in H \setminus K$).