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Prologue

The purpose of this introductory chapter is to establish the notation and terminology
that will be used throughout the book and to present a few diverse results from set
theory and analysis that will be needed later. The style here is deliberately terse,
since this chapter is intended as a reference rather than a systematic exposition.

0.1 THE LANGUAGE OF SET THEORY

It is assumed that the reader is familiar with the basic concepts of set theory; the
following discussion is meant mainly to fix our terminology.

Number Systems. Our notation for the fundamental number systems is as
follows:
N = the set of positive integers (not including zero)

Z = the set of integers

Q = the set of rational numbers
R = the set of real numbers

C = the set of complex numbers

Logic. We shall avoid the use of special symbols from mathematical logic,
preferring to remain reasonably close to standard English. We shall, however, use
the abbreviation iff for “if and only if.”

One point of elementary logic that is often insufficiently appreciated by students
is the following: If A and B are mathematical assertions and —A, — B are their

1



2 PROLOGUE

negations, the statement “A implies B” is logically equivalent to the contrapositive
statement “— B implies —A.” Thus one may prove that A implies B by assuming —B
and deducing — A, and we shall frequently do so. This is not the same as reductio ad
absurdum, which consists of assuming both A and — B and deriving a contradiction.

Sets. The words “family” and “collection” will be used synonymously with
“set,” usually to avoid phrases like “set of sets.” The empty set is denoted by &, and
the family of all subsets of a set X is denoted by P(X):

P(X)={E:EcC X}.

Here and elsewhere, the inclusion sign C is interpreted in the weak sense; that is, the
assertion “E C X includes the possibility that £ = X.
If € is a family of sets, we can form the union and intersection of its members:

U E={z:z e EforsomeE € £},
Ecé

ﬂE={x:m€EforallE'€8}.
Ee&

Usually it is more convenient to consider indexed families of sets:

&€= {E, :aeA}:{E’a}aeA,

in which case the union and intersection are denoted by

U E., ) B

aEA a€A

If EoNEg = & whenever a # S, the sets E, are called disjoint. The terms “disjoint
collection of sets” and “collection of disjoint sets” are used interchangeably, as are
“disjoint union of sets” and “union of disjoint sets.”

When considering families of sets indexed by N, our usual notation will be

{En}azy or {En}°

and likewise for unions and intersections. In this situation, the notions of limit
superior and limit inferior are sometimes useful:

o0 o0 o0 o0
limsup £, = ﬂ U E,, liminf £, = U ﬂ E,.
k=1 n=k k=1n=k
The reader may verify that
limsup E,, = {z : = € E, for infinitely many n},
liminf E, = {z : z € E, for all but finitely many n}.
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If E and F are sets, we denote their difference by E \ F:
E\F={z:z€Eandz ¢ F},
and their symmetric difference by EAF":
EAF =(E\F)U(F\E).

When it is clearly understood that all sets in question are subsets of a fixed set X, we
define the complement E° of a set E (in X):

E°=X\E.

In this situation we have deMorgan’s laws:
(UE,,) = E (ﬂEa) = J E:.
aEA a€cA aEA

If X and Y are sets, their Cartesian product X X Y is the set of all ordered pairs
(z,y) suchthatz € X and y € Y. A relation from X to Y is a subset of X x Y.
(If Y = X, we speak of a relation on X.) If R is a relation from X to Y, we shall
sometimes write Ry to mean that (z,y) € R. The most important types of relations
are the following:

e Equivalence relations. An equivalence relation on X is a relation R on X
such that
zRx forallz € X,

zRy iff yRz,
xRz whenever zRy and y Rz for some y.

The equivalence class of an element z is {y € X : zRy}. X is the disjoint
union of these equivalence classes.

e Orderings. See §0.2.

e Mappings. A mapping f : X — Y is arelation R from X to Y with the
property that for every z € X there is a unique y € Y such that z Ry, in which
case we write y = f(z). Mappings are sometimes called maps or functions;
we shall generally reserve the latter name for the case when Y is C or some
subset thereof.

Iff: X —>Yandg:Y — Z are mappings, we denote by go f their composition:
gof:X—2Z,  go f(z)=g(f(z))

If DC X and F C Y, we define the image of D and the inverse image of F
under a mapping f : X — Y by

f(D)={f(z):z e D}, f~YE)={z: f(z) € E}.
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It is easily verified that the map f~! : P(Y') — P(X) defined by the second formula
commutes with union, intersections, and complements:

HUE)=U B, (N Ea) = ) FHE),
acA acA

acA acA
THE) = (FUE)"

(The direct image mapping f : P(X) — P(Y') commutes with unions, but in general
not with intersections or complements.)

If f: X — Y is a mapping, X is called the domain of f and f(X) is called the
range of f. f is said to be injective if f(z1) = f(z2) only when z; = x5, surjective
if f(X) =Y, and bijective if it is both injective and surjective. If f is bijective, it
has aninverse f~! : Y — X such that f~1o f and f o f~1 are the identity mappings
on X and Y, respectively. If A C X, we denote by f|A the restriction of f to A:

(fl4): A=Y, (flA)(z) = f(z) for z € A.

A sequence in a set X is a mapping from N into X. (We also use the term finite
sequence to mean a map from {1,...,n} into X wheren e N)If f : N— X isa
sequence and g : N — N satisfies g(n) < g(m) whenever n < m, the composition
~ fogis called a subsequence of f. It is common, and often convenient, to be careless
about distinguishing between sequences and their ranges, which are subsets of X
indexed by N. Thus, if f(n) = z,, we speak of the sequence {z,}$°; whether we
mean a mapping from N to X or a subset of X will be clear from the context.

Earlier we defined the Cartesian product of two sets. Similarly one can define the
Cartesian product of n sets in terms of ordered n-tuples. However, this definition
becomes awkward for infinite families of sets, so the following approach is used
instead. If { X4} e is anindexed family of sets, their Cartesian product [, caXa
is the set of all maps f : A — [J, ¢4 Xa such that f(a) € X, foreverya € A. (It
should be noted, and then promptly forgotten, that when A = {1, 2}, the previous
deﬁmtlon of X; x X, is set-theoretically different from the present definition of
H1 X;. Indeed, the latter concept depends on mappings, which are defined in terms
of the former one.) If X =[] ,c4 Xa and a € A, we define the ath projection or
coordinate map 7, : X — X, by m(f) = f(a). We also frequently write  and
Zo instead of f and f(c) and call z, the ath coordinate of z.

If the sets X, are all equal to some fixed set Y, we denote [],c 4 Xa by Y4:

Y4 = the set of all mappings from Ato Y.

IfA={1,...,n},Y4isdenoted by Y™ and may be identified with the set of ordered
n-tuples of elements of Y.

0.2 ORDERINGS

A partial ordering on a nonempty set X is a relation R on X with the following
properties:
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e if zRy and yRz, then zRz;
e if zRy and yRz, then z = y;
e zRz for all z.
If R also satisfies
e if z,y € X, then either zRy or y Rz,

then R is called a linear (or total) ordering. For example, if F is any set, then P(F)
is partially ordered by inclusion, and R is linearly ordered by its usual ordering.
Taking this last example as a model, we shall usually denote partial orderings by
<, and we write £ < y to mean that z < y but z # y. We observe that a partial
ordering on X naturally induces a partial ordering on every nonempty subset of X.
Two partially ordered sets X and Y are said to be order isomorphic if there is a
bijection f : X — Y such that z; <z iff f(z1) < f(z2).

If X is partially ordered by <, a maximal (resp. minimal) element of X is an
element z € X such that the only y € X satisfying x < y (resp. = > y) is z itself.
Maximal and minimal elements may or may not exist, and they need not be unique
unless the ordering is linear. If £ C X, an upper (resp. lower) bound for E is an
element z € X such thaty < z (resp. z < y) for all y € E. An upper bound for £
need not be an element of F, and unless F is linearly ordered, a maximal element of
E need not be an upper bound for E. (The reader should think up some examples.)

If X is linearly ordered by < and every nonempty subset of X has a (necessarily
unique) minimal element, X is said to be well ordered by <, and (in defiance of the
laws of grammar) < is called a well ordering on X. For example, N is well ordered
by its natural ordering.

We now state a fundamental principle of set theory and derive some consequences
of it.

0.1 The Hausdorff Maximal Principle. Every partially ordered set has a maximal
linearly ordered subset.

In more detail, this means that if X is partially ordered by <, thereisaset E C X
that is linearly ordered by <, such that no subset of X that properly includes E is
linearly ordered by <. Another version of this principle is the following:

0.2 Zorn’s Lemma. If X is apartially ordered set and every linearly ordered subset
of X has an upper bound, then X has a maximal element.

Clearly the Hausdorff maximal principle implies Zorn’s lemma: An upper bound
for a maximal linearly ordered subset of X is a maximal element of X. It is also not
difficult to see that Zorn’s lemma implies the Hausdorff maximal principle. (Apply
Zorn’s lemma to the collection of linearly ordered subsets of X, which is partiaily
ordered by inclusion.)

0.3 The Well Ordering Principle. Every nonempty set X can be well ordered.
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Proof. Let W be the collection of well orderings of subsets of X, and define a
partial ordering on W as follows. If <; and <5 are well orderings on the subsets
E; and E,, then <; precedes <; in the partial ordering if (i) < extends <j, i.e.,
E; C E; and <; and <, agree on Ej, and (ii) if z € E; \ E) then y <, z for all
y € E;. The reader may verify that the hypotheses of Zorn’s lemma are satisfied, so
that W has a maximal element. This must be a well ordering on X itself, for if < is
a well ordering on a proper subset E of X and zo € X \ E, then < can be extended
to a well ordering on E U {zy} by declaring that z < z forall z € E. s

0.4 The Axiom of Choice. If { X, }aca is a nonempty collection of nonempty sets,
then [],c 4 Xa is nonempty.

Proof. LetX =J,c4 Xa- Pick a well ordering on X and, for o € A, let f(c)
be the minimal element of X,. Then f € [[,c 4 Xa- B

0.5 Corollary. If {Xq}aca is a disjoint collection of nonempty sets, there is a set
Y C Ugea Xa such that Y N X, contains precisely one element for each a € A.

Proof. TakeY = f(A) where f € [[,c4 Xa- B

We have deduced the axiom of choice from the Hausdorff maximal principle; in
fact, it can be shown that the two are logically equivalent.

0.3 CARDINALITY

If X and Y are nonempty sets, we define the expressions
card(X) < card(Y), card(X) = card(Y), card(X) > card(Y)

to mean that there exists f : X — Y which is injective, bijective, or surjective,
respectively. We also define

card(X) < card(Y), card(X) > card(Y)

to mean that there is an injection but no bijection, or a surjection but no bijection,
from X to Y. Observe that we attach no meaning to the expression “card (X )” when
it stands alone; there are various ways of doing so, but they are irrelevant for our
purposes (except when X is finite — see below). These relationships can be extended
to the empty set by declaring that

card(@) < card(X) and card(X) > card(@) forall X # 2.

For the remainder of this section we assume implicitly that all sets in question are
nonempty in order to avoid special arguments for @. Our first task is to prove that
the relationships defined above enjoy the properties that the notation suggests.
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0.6 Proposition. card(X) < card(Y) iff card(Y") > card(X).

Proof. If f: X — Y is injective, pick o € X and define g : Y — X by
9(y) = f1(y) ify € f(X), g(y) = zo otherwise. Then g is surjective. Conversely,
if g : Y — X is surjective, the sets g~1({z}) (z € X) are nonempty and disjoint, so
any f € [[ex 9~ *({z}) is an injection from X to Y. 5

0.7 Proposition. For any sets X andY, either card(X) < card(Y") or card(Y) <
card(X).

Proof. Consider the set J of all injections from subsets of X to Y. The members
of J can be regarded as subsets of X x Y, so J is partially ordered by inclusion. It is
easily verified that Zorn’s lemma applies, so J has a maximal element f, with (say)
domain A and range B. If o € X \ Aand yo € Y \ B, then f can be extended
to an injection from A U {20} to Y U {yo} by setting f(zo) = yo, contradicting
maximality. Hence either A = X, in which case card(X) < card(Y),or B=Y,in
which case f~1 is an injection from Y to X and card(Y) < card(X). 5

0.8 The Schroder-Bernstein Theorem. If card(X) < card(Y) and card(Y) <
card(X) then card(X) = card(Y).

Proof. letf:X — Y andg:Y — X be injections. Consider a point z € X:
If z € g(Y), we form g~ (z) € Y;if g~!(z) € f(X), we form f~1(g~!(z)); and
so forth. Either this process can be continued indefinitely, or it terminates with an
element of X \ g(Y') (perhaps z itself), or it terminates with an element of Y\ f(X).
In these three cases we say that z is in X, Xx, or Xy; thus X is the disjoint union
of X0, Xx, and Xy. In the same way, Y is the disjoint union of three sets Y., Yy,
and Yy. Clearly f maps X, onto Y, and Xx onto Yx, whereas g maps Yy onto
Xy. Therefore, if we define h : X — Y by h(z) = f(z) if X € X U Xx and
h(z) = g~!(z) if z € Xy, then h is bijective. B

0.9 Proposition. For any set X, card(X) < card(P(X)).

Proof. On the one hand, the map f(z) = {z} is an injection from X to P(X).
On the other,if g : X — P(X),letY ={z € X : z ¢ g(z)}. Then Y ¢ g(X), for
if Y = g(zo) for some zo € X, any attempt to answer the question “Is o € Y'?”
quickly leads to an absurdity. Hence g cannot be surjective. n

A set X is called countable (or denumerable) if card(X) < card(N). In
particular, all finite sets are countable, and for these it is convenient to interpret
“card(X)” as the number of elements in X:

card(X) = n iff card(X) = card({1,...,n}).

If X is countable but not finite, we say that X is countably infinite.
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0.10 Proposition.
a. If X andY are countable, sois X x Y.
b. If A is countable and X, is countable for every o € A, then | c 4 Xo is
countable.
c. If X is countably infinite, then card(X) = card(N).

Proof. To prove (a) it suffices to prove that N2 is countable. But we can define
a bijection from N to N2 by listing, for n successively equal to 2, 3,4, ..., those
elements (4, k) € N2 such that j + k = n in order of increasing 7, thus:

(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (L,4), (2,3), (3,2), (4,1),...

As for (b), for each a € A there is a surjective f, : N — X, and then the map
f:NxA = J,cq Xodefined by f(n,a) = fo(n) is surjective; the result therefore
follows from (a). Finally, for (c) it suffices to assume that X is an infinite subset
of N. Let f(1) be the smallest element of X, and define f(n) inductively to be the
smallest element of E \ { f (1 ., f(n—1)}. Then f is easily seen to be a bijection
from N to X. s

0.11 Corollary. Z and Q are countable.

Proof.  Z is the union of the countable sets N, {—n : n € N}, and {0}, and one
can define a surjection f : Z2 — Qby f(m,n) =m/nifn # 0and f(m,0) =0. g

A set X is said to have the cardinality of the continuum if card(X) = card(R).
We shall use the letter ¢ as an abbreviation for card(R):

card(X) = ciff card(X) = card(R).
0.12 Proposition. card(P(N)) =c.

Proof. If A C N, define f(A) € Rtobe ), .,2~™ if N\ A is infinite and
143 ,.ca2 ™if N\ Ais finite. (In the two cases, f(A) is the number whose base-2
decimal expansion is 0.aas --- or l.ajay---, wherea, = 1ifn € Aanda, =0
otherwise.) Then f : P(N) — Risinjective. On the other hand, define g : P(Z) — R
by g(A) = log(}_,c4 27 ") if A is bounded below and g(A) = 0 otherwise. Then
g is surjective since every positive real number has a base-2 decimal expansion.
Since card(P(Z)) = card(P(N)), the result follows from the Schrider-Bernstein
theorem. B

0.13 Corollary. Ifcard(X) > ¢, then X is uncountable.

Proof. Apply Proposition 0.9. B

The converse of this corollary is the so-called continuum hypothesis, whose va-
lidity is one of the famous undecidable problems of set theory; see §0.7.



MORE ABOUT WELL ORDERED SETS 9

0.14 Proposition.
a. Ifcard(X) < candcard(Y) <c¢ thencard(X xY) <c.
b. Ifcard(A) < candcard(X,) < cforalla € A, then card(|J,c 4 Xa) < .

Proof. For (a) it suffices to take X = Y = P(N). Define ¢,% : N —» N by
#(n) = 2n and ¢(n) = 2n — 1. It is then easy to check that the map f : P(N)2 —
P(N) defined by f(A, B) = ¢(A) Uy(B) is bijective. (b) follows from (a) as in the
proof of Proposition 0.10. ]

0.4 MORE ABOUT WELL ORDERED SETS

The material in this section is optional; it is used only in a few exercises and in some
notes at the ends of chapters.

Let X be a well ordered set. If A C X is nonempty, A has a minimal element,
which is its maximal lower bound or infimum; we shall denote it by inf A. If A is
bounded above, it also has a minimal upper bound or supremum, denoted by sup A.
If £ € X, we define the initial segment of = to be

Iz={y€X:y<:r}.

The elements of I, are called predecessors of z.
The principle of mathematical induction is equivalent to the fact that N is well
ordered. It can be extended to arbitrary well ordered sets as follows:

0.15 The Principle of Transfinite Induction. Let X be a well ordered set. If A is
a subset of X such that x € A whenever I, C A, then A = X.

Proof. If X # A,letz =inf(X \ A). ThenI; C Abutz ¢ A. »

0.16 Proposition. If X is well orderedand A C X, then|
segment or X itself.

zc A Lz is either an initial

Proof. LetJ =J 4 I:. If J # X, letb = inf(X \ J). If there existed y € J
with y > b, we would have y € I, for some z € A and hence b € I, contrary to
construction. Hence J C I, and it is obvious that I, C J. 5

0.17 Proposition. If X and Y are well ordered, then either X is order isomorphic
to Y, or X is order isomorphic to an initial segment inY, or'Y is order isomorphic
to an initial segment in X.

Proof. Consider the set F of order isomorphisms whose domains are initial
segments in X or X itself and whose ranges are initial segments in Y or Y itself.
F is nonempty since the unique f : {inf X} — {infY} belongs to F, and F is
partially ordered by inclusion (its members being regarded as subsets of X x Y').
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An application of Zorn’s lemma shows that J has a maximal element f, with (say)
domain A and range B. If A = I and B = I, then AU {z} and B U {y} are
again initial segments of X and Y, and f could be extended by setting f(z) = v,
contradicting maximality. Hence either A = X or B = Y (or both), and the result
follows. 5

0.18 Proposition. There is an uncountable well ordered set Q) such that I, is count-
able for each x € Q. If Y is another set with the same properties, then Q and Q' are
order isomorphic.

Proof. Uncountable well ordered sets exist by the well ordering principle; let X
be one. Either X has the desired property or there is a minimal element z( such that
I, is uncountable, in which case we can take Q = I;,. If 2’ is another such set, '
cannot be order isomorphic to an initial segment of €2 or vice versa, because €2 and
(Y are uncountable while their initial segments are countable, so  and Q' are order
isomorphic by Proposition 0.17. [}

The set €2 in Proposition 0.18, which is essentially unique qua well ordered set, is
called the set of countable ordinals. It has the following remarkable property:

0.19 Proposition. Every countable subset of ) has an upper bound.

Proof. If A C Q is countable, Um,5 4 Iz is countable and hence is not all of 2.
By Proposition 0.16, there exists y € 2 such that Ume a1z = I, and y is thus an
upper bound for A. [

The set N of positive integers may be identified with a subset of (2 as follows. Set
f(1) = inf , and proceeding inductively, set f(n) = inf(Q\ {f(1),..., f(n—1)}).
The reader may verify that f is an order isomorphism from N to I,,, where w is the
minimal element of 2 such that I, is infinite.

It is sometimes convenient to add an extra element w; to €2 to form a set Q* =
QU {w1} and to extend the ordering on Q to Q* by declaring that z < w, for all
x € (). w; is called the first uncountable ordinal. (The usual notation for w; is €2,
since wj is generally taken to be the set of countable ordinals itself.)

0.5 THE EXTENDED REAL NUMBER SYSTEM

Itis frequently useful to adjoin two extra points co (= +00) and —oo to R to form the
extended real number system R = RU{—o00, 00}, and to extend the usual ordering
on R by declaring that —oo < z < oo for all z € R. The completeness of R can then
be stated as follows: Every subset A of R has a least upper bound, or supremum,
and a greatest lower bound, or infimum, which are denoted by sup A and inf A. If
A = {ay,...a,}, we also write

max(aj,...,a,) =sup A, min(ay,...,a,) = inf A.
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From completeness it follows that every sequence {z, } in R has a limit superior
and a limit inferior:

limsup z,, = inf (sup zn), liminf z,, = sup(inf mn).
k21 \p>k k>1 \n2k

The sequence {z, } converges (in R) iff these two numbers are equal (and finite), in
which case its limit is their common value. One can also define lim sup and lim inf
for functions f : R — R, for instance:

limsup f(z) = §I>1f ( sup f (:c))

z—a 0\o<|z—a|<6
The arithmetical operations on R can be partially extended to R:

z + 00 = oo (z € R), 00 + 00 = 00, —00 — 00 = —00,
z - (£o0) = o0 (z > 0), z - (£o0) = Foo (z < 0).

We make no attempt to define oo — oo, but we abide by the convention that, unless
otherwise stated,
0 (£o0) =0.

(The expression 0 - co turns up now and then in measure theory, and for various
reasons its proper interpretation is almost always 0.)
We employ the following notation for intervals in R: if —oo < a < b < o0,

(a,b) = {z:a <z < b}, [a,b] = {z:a <z < b},
(a,b)={z:a<z<b}, . [a,b)={z:a<z<b}

We shall occasionally encounter uncountable sums of nonnegative numbers. If X
is an arbitrary set and f : X — [0, 00], we define }__ .y f(z) to be the supremum
of its finite partial sums:

> fl@) = SUp{Z fl):FCX, F ﬁnite}.

zeX zeF

(Later we shall recognize this as the integral of f with respect to counting measure
on X.)

0.20 Proposition. Given f : X — [0,00], let A = {z : f(z) > 0} IfAis
uncountable, then ) .y f(z) = oco. If A is countably infinite, then ) . x f(z) =
-7 f(g(n)) where g : N — A is any bijection and the sum on the right is an
ordinary infinite series.

Proof. We have A = J° A, where A, = {z : f(z) > 1/n}. If Ais
uncountable, then some A,, must be uncountable, and ) . f(z) > card(F)/n for
F a finite subset of A,,; it follows that er x f(x) = oo. If A is countably infinite,
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g: N — Ais abijection, and By = g({1,...,N}), then every finite subset F of A
is contained in some By. Hence

Y fl= <Zf (9(n) < ) f(=).

z€F zeX
Taking the supremum over N, we find

Y fl@) < Z flg(n)) < D f(=),

zeF zeX
and then taking the supremum over F', we obtain the desired result. ]

Some terminology concerning (extended) real-valued functions: A relation be-
tween numbers that is applied to functions is understood to hold pointwise. Thus
f < g means that f(z) < g(z) for every z, and max(f, g) is the function whose
value at z is max(f(z),g(z)). f X C Rand f : X — R, f is called increasing
if f(z) < f(y) whenever z < y and strictly increasing if f(z) < f(y) whenever
z < y; similarly for decreasing. A function that is either increasing or decreasing is
called monotone.

If f : R — Ris an increasing function, then f has right- and left-hand limits at
each point:

flat) = lim f(z) = inf f(z), ~ f(a—) = lim f(z) = sup f(z).
Moreover, the limiting values f(oo) = sup,cg f(z) and f(—o0) = inf,er f(z)
exist (possibly equal to +00). f is called right continuous if f(a) = f(a+) for all
a € R and left continuous if f(a) = f(a—) foralla € R.

For points  in R or C, |z| denotes the ordinary absolute value or modulus of z,
la + ib| = v/a? + b2. For points z in R™ or C*, |z| denotes the Euclidean norm:

o] = [21: e52]

We recall that a set U C R is open if, for every z € U, U includes an interval
centered at z.

0.21 Proposition. EveryopensetinR isa countable disjoint union of open intervals.

Proof. If U is open, for each z € U consider the collection J, of all open
intervals I such that z € I C U. It is easy to check that the union of any family
of open intervals containing a point in common is again an open interval, and hence
Jz = Ujeg, I is an open interval; it is the largest element of J,. If z,y € U then
either J, = Jy or J; NJy = @, for otherwise J; U J,, would be a larger open interval
than J; in J,. Thus if § = {J; : =z € U}, the (distinct) members of J are disjoint,
and U = |J;¢4J. Foreach J € g, pick a rational number f(J) € J. The map
f : 3 — Q thus defined is injective, for if J # J’ then J N J' = &; therefore J is
countable. ]
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0.6 METRIC SPACES

A metric on a set X is a function p : X x X — [0, co) such that
o p(z,y) =0iffz = y;
e po(z,y) = p(y,z) forall z,y € X;
o p(z,2) < p(z,y) + p(y, 2) forall z,y, z € X.

(Intuitively, p(z, y) is to be interpreted as the distance from z to y.) A set equipped
with a metric is called a metric space. Some examples:

i. The Euclidean distance p(z,y) = |z — y| is a metric on R™.

il. p1(f,9) = [ 1£(®) — 9(2)] dz and poo(f, 9) = SuPo<acs 1£(2) — 9(a)| are
metrics on the space of continuous functions on [0, 1].

ili. If pis a metric on X and A C X, then p|(A x A) is a metric on A.

iv. If (X1, p1) and (X2, p2) are metric spaces, the product metric p on X; x X5
is given by

p((z1,2), (y1,¥2)) = max (p1(z1,11), pa(z2, y2))-

Other metrics are sometimes used on X; x X5, for instance,

1/2
p1(z1,y1) + p2(z2,y2) or [p1(z1,41)? + p2(z2,v2)?] 2,

These, however, are equivalent to the product metric in the sense that we shall
define at the end of this section.

Let (X, p) be a metric space. If z € X and r > 0, the (open) ball of radius r
about z is

B(r,z)={ye€ X : p(z,y) <r}.

A set E C X is open if for every z € FE there exists r > 0 such that B(r,z) C E,
and closed if its complement is open. For example, every ball B(r,z) is open, for
if y € B(r,z) and p(z,y) = s then B(r — s,y) C B(r,z). Also, X and @ are
both open and closed. Clearly the union of any family of open sets is open, and
hence the intersection of any family of closed sets is closed. Also, the intersection
(resp. union) of any finite family of open (resp. closed) sets is open (resp. closed).
Indeed, if U;, ... U, are openand z € ﬂ'{ Uj, for each j there exists ; > 0 such that
B(rj,z) C Uj, and then B(r,z) C ()} U; where 7 = min(ry,...,7,),s0 () Uj is
open.

If E C X, the union of all open sets U C E is the largest open set contained in E;
it is called the interior of E and is denoted by E°. Likewise, the intersection of all
closed sets F' O E is the smallest closed set containing F; it is called the closure of
E and is denoted by E. E is said to be dense in X if E = X, and nowhere dense if
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E has empty interior. X is called separable if it has a countable dense subset. (For
example, Q™ is a countable dense subset of R™.) A sequence {z,} in X converges
to z € X (symbolically: z,, — z orlimz,, = z) if lim, o p(Zn,z) = 0.

0.22 Proposition. If X is a metric space, E C X, and x € X, the following are
equivalent:

a. z€E.
b. B(r,z)NE # @ forallr > 0.
c. There is a sequence {z,} in E that converges to x.

Proof. If B(r,z) N E = @, then B(r,z)° is a closed set containing E but not
z,so z ¢ E. Conversely, if z ¢ FE, since (E)° is open there exists 7 > 0 such
that B(r,z) C (E)° C E°. Thus (a) is equivalent to (b). If (b) holds, for each
n € N there exists z,, € B(n‘l,x) N E, so that z,, — z. On the other hand, if
B(r,z) N E = @, then p(y,x) > r forally € E, so no sequence of E can converge
to z. Thus (b) is equivalent to (c). ]

If (X1, p1) and (X3, p2) are metric spaces, amap f : X; — X is called contin-
uous at z € X if for every € > 0 there exists § > 0 such that p2(f(v), f(z)) < €
whenver p; (z,y) < § — in other words, such that f ~1(B(e, f(z))) D B(6,z). The
map f is called continuous if it is continuous at each z € X and uniformly contin-
uous if, in addition, the 6 in the definition of continuity can be chosen independent
of z.

0.23 Proposition. f : X; — Xo is continuous iff f ~1(U) is open in X, for every
openU C Xos.

Proof. If the latter condition holds, then for every £ € X; and € > 0, the set
F~Y(B(e, f(z))) is open and contains z, so it contains some ball about x; this means
that f is continuous at z. Conversely, suppose that f is continuous and U is open
in X,. For each y € U there exists ¢, > 0 such that B(e,,y) C U, and for each
z € f~1({y}) there exists 6, > 0 such that B(6;, ) C f~1(B(ey,y)) C f~H{U).
Thus f_l(U) = Uz:ef'l(U) B((Sa;, 33) is open. B

A sequence {z,} in a metric space (X, p) is called Cauchy if p(z,,z,) — 0
as n,m — oo. A subset E of X is called complete if every Cauchy sequence in
E converges and its limit is in E. For example, R™ (with the Euclidean metric) is
complete, whereas Q™ is not.

0.24 Proposition. A closed subset of a complete metric space is complete, and a
complete subset of an arbitrary metric space is closed.

Proof. If X is complete, E C X is closed, and {z,,} is a Cauchy sequence in E,
{z,} has a limit in X. By Proposition 0.22,z € E = E. If E C X is complete and
z € E, by Proposition (0.22) there is a sequence {z,} in E converging to z. {z,}
is Cauchy, so its limit lies in E; thus E = E. 5
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In a metric space (X, p) we can define the distance from a point to a set and the
distance between two sets. Namely, if z € X and E, F C X,

p(z, E) = inf{p(z,y) : y € E},
p(E,F) =inf{p(z,y):z € E, y € F} =inf{p(z,F) : z € E}.

Observe that, by Proposition 0.22, p(z,E) = 0 iff z € E. We also define the
diameter of £ C X to be

diam E = sup{p(z,y) : z,y € E}.

FE is called bounded if diam F' < oo.

If E C X and {V,}aea is a family of sets such that E C Uy g Var {Vataea
is called a cover of F, and E is said to be covered by the V,,’s. E is called totally
bounded if, for every ¢ > 0, E can be covered by finitely many balls of radius e.
Every totally bounded set is bounded, for if z,y € J] B(e, 2;), say z € B(e, z1)
and y € B(e, z2), then "

p(z,y) < p(x,21) + p(21,22) + p(22,Y) < 2¢ + max{p(zj, 2¢) : 1 < j,k < n}.

(The converse is false in general.) If F is totally bounded, so is E, for it is easily
seen that if E C J] B(e, 2;), then E C U] B(2¢, z;).

0.25 Theorem. If E is a subset of the metric space (X, p), the following are equiv-
alent:

a. E is complete and totally bounded.

b. (The Bolzano-Weierstrass Property) Every sequence in E has a subsequence
that converges to a point of E.

c. (The Heine-Borel Property) If {V,}oca is a cover of E by open sets, there
is a finite set ' C A such that {V,}aeF covers E.

Proof. We shall show that (a) and (b) are equivalent, that (a) and (b) together
imply (c), and finally that (c) implies (b).

(a) implies (b): Suppose that (a) holds and {z,} is a sequence in E. E can be
covered by finitely many balls of radius 27!, and at least one of them must contain z,,
for infinitely many n: say, z,, € B; forn € N;. E N B; can be covered by finitely
many balls of radius 272, and at least one of them must contain z,, for infinitely many
n € N;: say, , € Bs forn € Ny. Continuing inductively, we obtain a sequence
of balls B; of radius 2~7 and a decreasing sequence of subsets N; of N such that
z, € Bj forn € N;. Pickn; € N, ng € Np,...suchthat n; < ng < ---.
Then {z,,} is a Cauchy sequence, for p(zn;,Zn,) < 2'~7 if k > j, and since E is
complete, it has a limit in E.

(b) implies (a): We show that if either condition in (a) fails, then so does (b). If
E is not complete, there is a Cauchy sequence {z,} in E with no limit in E. No
subsequence of {z,} can converge in F, for otherwise the whole squence would
converge to the same limit. On the other hand, if E is not totally bounded, let ¢ > 0
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be such that E cannot be covered by finitely many balls of radius e. Choose z,, € F
inductively as follows. Begin with any z; € E, and having chosen z,...,z,,
pick .41 € E \ U] B(e,zj). Then p(z,,Tm) > € for all n,m, so {z,} has no
convergent subsequence.

(a) and (b) imply (c): It suffices to show that if (b) holds and {V, }.c 4 is a cover
of E by open sets, there exists € > 0 such that every ball of radius e that intersects
FE is contained in some V,,, for E can be covered by finitely many such balls by (a).
Suppose to the contrary that for each n € N there is a ball B,, of radius 2™ such
that B, N E # @ and B, is contained in no V,,. Pick z,, € B, N E; by passing to a
subsequence we may assume that {z,, } converges to some z € E. Wehave z € V,
for some ¢, and since V,, is open, there exists € > 0 such that B(¢, z) C V,. Butif
n is large enough so that p(z,,z) < €/3 and 27" < €/3, then B, C B(e,z) C V,,
contradicting the assumption on B,,.

(c) implies (b): If {z,} is a sequence in E with no convergent subsequence, for
each z € F there is a ball B, centered at z that contains z,, for only finitely many n
(otherwise some subsequence would converge to ). Then { B }.cE is a cover of E
by open sets with no finite subcover. (]

A set E that possesses the properties (a)—(c) of Theorem 0.25 is called compact.
Every compact set is closed (by Proposition 0.24) and bounded; the converse is false
in general but true in R™.

0.26 Proposition. Every closed and bounded subset of R™ is compact.

Proof.  Since closed subsets of R™ are complete, it suffices to show that bounded
subsets of R™ are totally bounded. Since every bounded set is contained in some

cube
Q = [-R,R]" = {z € R" : max(|z1|,...,|zn|) < R},

it is enough to show that @ is totally bounded. Given € > 0, pick an integer
k > Ry/n/e, and express Q as the union of k™ congruent subcubes by dividing the
interval [— R, R] into k equal pieces. The side length of these subcubes is 2R/k and
hence their diameter is /n(2R/k) < 2e, so they are contained in the balls of radius
€ about their centers. ]

Two metrics p; and p; on a set X are called equivalent if
Cp, < pa < C’'p, forsome C,C’ > 0.

Itis easily verified that equivalent metrics define the same open, closed, and compact
sets, the same convergent and Cauchy sequences, and the same continuous and uni-
formly continuous mappings. Consequently, most results concerning metric spaces
depend not on the particular metric chosen but only on its equivalence class.

0.7 NOTES AND REFERENCES

§80.1-0.4: The best exposition of set theory for beginners is Halmos [63], and
Smullyan and Fitting [135] is a good text on a more advanced level. Kelley [83]
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also contains a concise account of of basic axiomatic set theory. All of these books
present a deduction of the Hausdorff maximal principle from the axiom of choice, as
does Hewitt and Stromberg [76].

The axiom of choice (or one of the propositions equivalent to it) is generally taken
as one of the basic postulates in the axiomatic formulations of set theory. Some
mathematicians of the intuitionist or constructivist persuasion reject it on the grounds
that one has not proved the existence of a mathematical object until one has shown
how to construct it in some reasonably explicit fashion, whereas the whole point of
the axiom of choice is to provide existence theorems when constructive methods fail
(or are too cumbersome for comfort). People who are seriously bothered by such
objections belong to a minority that does not include the present writer; in this book
the axiom of choice is used sparingly but freely.

The continuum hypothesis is the assertion that if card(X) < ¢, then X is
countable. (Since it follows easily from the construction of €2, the set of countable
ordinals, that card(2) < card(X) for any uncountable X, an equivalent assertion
is that card(£2) = c.) It is known, thanks to Godel and Cohen, that the continuum
hypothesis and its negation are both consistent with the standard axioms of set theory
including the axiom of choice, assuming that those axioms are themselves consistent.
(An exposition of the consistency and independence theorems for the axiom of choice
and the continuum hypothesis can be found in Smullyan and Fitting [135].) Some
mathematicians are willing to accept the continuum hypothesis as true, seemingly as
a matter of convenience, but Godel [56] and Cohen [26, p. 151] have both expressed
suspicions that it should be false, and as of this writing no one has found any really
compelling evidence on one side or the other. My own feeling, subject to revision
in the event of a major breakthrough in set theory, is that if the answer to one’s
question turns out to depend on the continuum hypothesis, one should give up and
ask a different question.

§0.6: A more detailed discussion of metric spaces can be found in Loomis and
Sternberg [95] and DePree and Swartz [32].



Measures

In this chapter we set forth the basic concepts of measure theory, develop a general
procedure for constructing nontrivial examples of measures, and apply this procedure
to construct measures on the real line.

1.1 INTRODUCTION

One of the most venerable problems in geometry is to determine the area or volume
of a region in the plane or in 3-space. The techniques of integral calculus provide a
satisfactory solution to this problem for regions that are bounded by “nice” curves or
surfaces but are inadequate to handle more complicated sets, even in dimension one.
Ideally, for n € N we would like to have a function p that assigns to each E C R™
a number p(E) € [0, 0o], the n-dimensional measure of E, such that u(E) is given
by the usual integral formulas when the latter apply. Such a function p should surely
possess the following properties:

i. If E;, Es, . .. is a finite or infinite sequence of disjoint sets, then

pELUE,U--) = u(Er) + pu(Bp) +---.

ii. If E is congruent to F' (that is, if F can be transformed into F' by translations,
rotations, and reflections), then u(E) = u(F). '
iii. pu(Q) = 1, where Q is the unit cube

Q={zeR*:0<z;<1forj=1,...,n}. 0
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Unfortunately, these conditions are mutually inconsistent. Let us see why this is
true for n = 1. (The argument can easily be adapted to higher dimensions.) To begin
with, we define an equivalence relation on [0, 1) by declaring that z ~ y iff z — y
is rational. Let IV be a subset of [0, 1) that contains precisely one member of each
equivalence class. (To find such an IV, one must invoke the axiom of choice.) Next,
let R=QnN[0,1), and foreach r € R let

N,={z+r:zeNn[0,1-r)}u{z+r—1:ze Nn[l-r, 1)}.

That is, to obtain IV, shift NV to the right by r units and then shift the part that sticks
out beyond [0, 1) one unit to the left. Then N, C [0, 1), and every z € [0, 1) belongs
to precisely one N,.. Indeed, if y is the element of IV that belongs to the equivalence
classof z,thenz € N, wherer =z —yifz >yorr=z—y+1ifz < y; on
the other hand, ifx € N, N Ns;,thenz —r(orz —r+1)andz — s (orz — s+ 1)
would be distinct elements of N belonging to the same equivalence class, which is
impossible.
Suppose now that p : P(R) — [0, oo] satisfies (i), (ii), and (iii). By (i) and (ii),

u(N) = p(N [0, 1= 7))+ (NN [L =7, 1)) = (N,

forany r € R. Also, since R is countable and [0, 1) is the disjoint union of the N,.’s,

”([07 1)) = Z /‘(Nr)

r€R

by (i) again. But x([0,1)) = 1 by (iii), and since u(N,) = u(N), the sum on the
right is either 0 (if x(N) = 0) or oo (if #(N) > 0). Hence no such y can exist.

Faced with this discouraging situation, one might consider weakening (i) so that
additivity is required to hold only for finite sequences. This is not a very good idea,
as we shall see: The additivity for countable sequences is what makes all the limit
and continuity results of the theory work smoothly. Moreover, in dimensions n > 3,
even this weak form of (i) is inconsistent with (ii) and (iii). Indeed, in 1924 Banach
and Tarski proved the following amazing result:

Let U and V be arbitrary bounded open sets in R™, n > 3. There exist k € N
and subsets F, ..., Eg, Fi,..., Fi of R™ such that

— the E;’s are disjoint and their union is U;
~ the F}’s are disjoint and their union is V;
- Ejis congruentto Fjforj=1,...,k.

Thus one can cut up a ball the size of a pea into a finite number of pieces and
rearrange them to form a ball the size of the earth! Needless to say, the sets £; and F;
are very bizarre. They cannot be visualized accurately, and their construction depends
on the axiom of choice. But their existence clearly precludes the construction of any
p : P(R™) — [0,00] that assigns positive, finite values to bounded open sets and
satisfies (i) for finite sequences as well as (ii).



