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CHAPTER 8

Probability

1. Random variables and independence
2. Borel-Cantelli and 2nd moment method.
3. Law of large numbers

THEOREM 3.1 (Law of Large Numbers). Let {f,}, n = 1,2... be
a sequence of orthogonal functions on a probability space (X, dv) and
suppose E(f*) = [|f?dv < 1. Then

1 1 —
—Sy = — — 0,
TRP B

a.e. (with respect to v) as n — oo.

We begin with the simple observation that if {g,} is a sequence of
functions on a probability space (X, dv) such that

Z/ gn[*dv < 00,

then Y [gn|? < 00 a.e. (dv) and hence g, — 0 a.e. (dv).
Using this, it is easy to verify the law of large numbers (LLN) for
n — oc along the sequence of squares. Namely,

1 1 1 — 1
(=S,)%dv = —/Sn%w = —Z/|fk|2dz/ <=
/n n? n? p n

Therefore if we set g, = 25,2, we have

1 1
/Esn22dl/ S E

Since the right hand side is summable, the observation above implies
gn — 0 a.e. (dv). This is the same as -5.5,> — 0, a.e..
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192 8. PROBABILITY

To deal with limit over all the integers take m? < n < (m+1)% and

set m(n) = |/n]. Then
[ 1255, Ww::w/|zjuw

k= m2-|—1
- i X
k=m2+1
2
S
since the sum has at most 2m terms, each of size at most 1. Put
Sh, Sm(n)2

T mn)

Then since each m = m(n) is associated to at most 2m + 1 different
n’s we get

o
Z/Ign ?
n=1

so by the initial observation, g, — 0 a.e. with respect to v. This
implies — S — 0 a.e., Wthh in turn implies —S — 0 a.e., which is
what we Wanted

This version is sometimes called the strong law of large numbers
because it gives a.e. convergence, as opposed to the weak version which
only says that %Sn converges to 0 in L2

As a remark we should note that better estimates for the decay of
S, are possible if we assume that the functions {f,} are independent
with respect to the measure v. This means that for any n and any
collection of measurable sets {A;,..., A,} we have

Z2m+1—<oo

viee X: fi(x)e Aj,j=1,...,n}) = Hl/({l‘ € X : fij(xz) € A;}).
7j=1

Roughly, this says that knowing the values of any of the f;’s at  does
not give us any information about the values of the remaining functions
there.

By 1915 Hausdorff had proved that if {f,} € L*(v) N L'(v) are
independent, orthonormal (orthogonal and have L? norm 1) and satisfy
[ fadv =0 then

lim
N—oo N2+E

an =0, for a.e. x
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and for every € > (0. After that Hardy-Littlewood, and independently
Khinchin, proved

N
) 1
]\}I—I)I;o VAR ;fn(x) =0 for a.e. .

The “final” result, found by Khinchin for a special case in 1928 and
proved in general by Hartman-Wintree in 1941 says

lim sup =1 for a.e. .

N
1
Nooo V2N loglog N nz; fn()
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