1. (1 pt each, 20 pts total) Place the letter corresponding to the correct answer in the box next to each question. Each correct answer is worth 2 points.

(i) □ Suppose \(a < 0 \) and \(b > 0 \). Then which of the following must be true?
 (a) \(ab > 0 \) (b) \(a - b > 0 \) (c) \(b - a > 0 \) (d) \(b^2 - a^2 > 0 \) (e) \(a^2 + b^2 < 0 \) (f) none of these.

(ii) □ Suppose \(f \) is a linear function such that \(f(1) = -1 \) and \(f(3) = 2 \). Then \(f(4) = ? \)
 (a) \(3 \) (b) \(3 \frac{1}{3} \) (c) \(3 \frac{2}{3} \) (d) \(3 \frac{1}{2} \) (e) \(3 \frac{3}{4} \) (f) none of these.

(iii) □ Which interval is the solution of \(|x - 2| < 3 \)?
 (a) \((0, 3) \) (b) \([-1, 3] \) (c) \((-2, 5) \) (d) \([0, 5] \) (e) \((-1, 5) \) (f) none of these.

(iv) □ Suppose \(f \) and \(g \) are given by the following tables. What is \(f(g(2)) \)?

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(g(x))</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) 0 (b) 1 (c) 2 (d) 3 (e) 4 (f) it is undefined.

(v) □ What is \(\lim_{x \to 2} \frac{x^2 - 4}{x - 2} \)?
 (a) 1 (b) 2 (c) 3 (d) 4 (e) \(\infty \) (f) none of these.

(vi) □ What is the natural domain of \(\sqrt{x^2 - \frac{1}{x}} \)?
 (a) \(x > 0 \) (b) \(-1 < x < 1 \) (c) \(x > 1 \) (d) \(x \geq 1 \) and \(x < 0 \) (e) \(-1 < x < 0 \) and \(0 < x < 1 \) (f) none of these.

(vii) □ Suppose that for all \(C > 0 \) there is a \(\epsilon > 0 \) so that \(|x| < \epsilon \) implies \(f(x) > C \). Then
 (a) \(\lim_{x \to 0} f(x) = +\infty \) (b) \(\lim_{x \to +\infty} f(x) = 0 \) (c) \(\lim_{x \to +\infty} f(x) = 1 \) (d) \(\lim_{x \to +\infty} f(x) = +\infty \) (e) \(\lim_{x \to 0} f(x) = 0 \). (f) none of these.

(viii) □ The derivative of \(g \) at \(x \) is defined to be
 (a) \(\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \) (b) \(\lim_{h \to 0} \frac{g(h) - g(x)}{x+h} \) (c) \(\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \) (d) \(\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \) (e) \(\lim_{h \to 0} \frac{g(x+h) + g(x)}{h} \). (f) none of these.
(ix) □ Which of the following is true?
(a) If \(f \) has a limit at \(x_0 \) it is continuous at \(x_0 \).
(b) If the left and right limits exist at \(x_0 \) then the limit exists at \(x_0 \).
(c) If \(f \) is continuous at \(x_0 \) it has a limit at \(x_0 \).
(d) If \(f \) is continuous at \(x_0 \) then it is differentiable at \(x_0 \).
(e) If \(f \) is continuous at \(x_0 \) it is continuous on an interval around \(x_0 \).
(f) none of these.

(x) □ Suppose \(f \) is continuous on the real line and \(f(0) = 0 \) and \(f(10) = 2 \). Then which of the following must be true?
(a) \(f \) attains a maximum which is \(>2 \).
(b) \(f \) takes the value 1 somewhere between 0 and 10.
(c) \(f \) is increasing between 0 and 10.
(d) \(f \) takes its maximum value between 0 and 10.
(e) \(f \) is never negative.
(f) none of these.

(xi) □ The derivative of \(f(x) = x^2 + x^3 \) at \(x = 2 \) is (a) 12 (b) 13 (c) 14 (d) 15 (e) 16 (f) none of these.

(xii) □ A car drives 30 miles at 60 mph and then another 50 miles at 50 mph. What is the average speed for the entire trip?
(a) 50 mph (b) 52\(\frac{1}{2} \) mph (c) 53\(\frac{1}{3} \) mph (d) 55 mph (e) 57 mph (f) none of these.

(xiii) □ List every point \(a \) between 0 and 6 in the graph on the left below where \(\lim_{x \to a} f(x) \) does not exist (standard definition of finite limit)
(a) 1, 2, 3, 5 (b) 1, 3, 5 (c) 3, 5 (d) 2, 5 (e) 1, 5 (f) none of these.

(xiv) □ Consider the graph on the left below. At what points does the function fail to be continuous? (a) 1, 2, 3, 5 (b) 1, 3, 5 (c) 3, 5 (d) 2, 5 (e) 1, 5 (f) none of these.

(xv) □ What is the relationship between \(f \) and \(g \) in the graph on right above?
(a) \(g(x) = f(x - 1) + 2 \) (b) \(g(x) = f(x - 2) + 1 \) (c) \(g(x) = f(x + 2) - 1 \) (d) \(g(x) = f(x + 1) - 2 \) (e) \(g(x) = f(x - 2) - 1 \) (f) none of these.

(xvi) □ Let \(f(x) = |x^2 - 1| \). Then
(a) \(f \) is differentiable everywhere (b) \(f \) is not differentiable at \(x = 0 \) (c) \(f \) is not differentiable at \(x = -1 \) and \(x = 1 \) (d) \(f \) is not differentiable anywhere (e) \(f \) is not differentiable between \(-1\) and \(1 \) (f) none of these.
(xvii) The derivative of \((xh(x))^2\) is
- \((a) 1 + 2xh'(x)\)
- \((b) 2xh'(x)(1 + h'(x))\)
- \((c) 2xh(x)(h(x) + xh'(x))\)
- \((d) h(x) + xh'(x)\)
- \((e) 2xh(x)(1 + xh'(x))\)
- \((f)\) none of these.

(xviii) A dynamite blast blows a heavy rock straight up with an initial velocity of 160ft/sec. How high does the rock go (in feet)?
- \((a) 100\)
- \((b) 200\)
- \((c) 300\)
- \((d) 400\)
- \((e) 500\)
- \((f)\) none of these.

(xix) On planet X a ball dropped from rest falls 36 meters in 2 seconds. The acceleration due to gravity is
- \((a) 36m/sec^2\)
- \((b) 18m/sec^2\)
- \((c) 6m/sec^2\)
- \((d) \sqrt{18} m/sec^2\)
- \((e) 3m/sec^2\)
- \((f)\) none of these.

(xx) Which of the following satisfies \(f'(0) < 0\)?
- \((a)\)
- \((b)\)
- \((c)\)
- \((d)\)
- \((e)\)
- \((f)\)

2. (2 pts each, 10 pts total) For each of the following functions, find the derivative function.

(i) \(f(x) = x^6 + x^{2/3} + x^{-2}\),
\[
\frac{df}{dx} =
\]

(ii) \(f(x) = x^3 \cos(x)\),
\[
\frac{df}{dx} =
\]
(iii) \(f(x) = \sin(x^2 + \tan(x)) \), \[\frac{df}{dx} f(x) = \]

(iv) \(f(x) = \frac{x^2 - 1}{x - 1} \), \[\frac{df}{dx} f(x) = \]

(v) \(f(x) = A \cos(Bx + C) \), \[\frac{df}{dx} f(x) = \]
3. (5 pts) Compute the derivative of $f(x) = 1/x$ at $x = a \neq 0$ using only the limit definition of derivative.

4. (5 pts) Suppose that the functions f and g are defined on an open interval I containing the point x_0, that f is differentiable at x_0, that $f(x_0) = 0$ and that g is is continuous at x_0. Show the product fg is differentiable at x_0.