SAMPLE FINAL MAT 142 FINAL is Friday, December 16, 2005, 11:30 to 1:00 in Physics P-112

1. Place the letter corresponding to the correct answer in the box next to each question.

(i) The sequence $\{a_n\} = \{1 + (-1)^n \frac{1}{n} \text{ converges to} \}$ (a) 0 (b) -1 (c) 1 (d) $\frac{1}{2}$ (e) $-\frac{1}{2}$ (f) it diverges

(ii) The sequence $\{a_n\} = \{(-1)^n(1-\frac{1}{n})\}$ has least upper bound equal to (a) -1 (b) 0 (c) 1 (d) 2 (e) $\frac{1}{2}$ (f) it has no upper bound

(iii) Define a sequence by $a_0 = 1$, $a_n = \frac{3}{2}a_{n-1}$. Then the sequence converges to (a) 0 (b) 1 (c) 2 (d) 4 (e) $\frac{3}{2}$ (f) the sequence diverges

(iv) The infinite series $\sum_{n=0}^{\infty} 3^{-n}$ converges to (a) 0 (b) $\frac{1}{3}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$ (e) 1 (f) none of these

(v) The infinite series $\sum_{n=0}^{\infty} \frac{2^n}{n!}$ converges to (a) 0 (b) 1 (c) e (d) e^2 (e) 2 (f) none of these

(vi) What is the inverse function of $y = \sqrt{1-x^2}$ on (0,1)?

(a) $x^2 - 1$ (b) $\sqrt{1-x^2}$ (c) $x^2 + 1$ (d) $\sqrt{1+x^2}$ (e) $\sqrt{1-x}$ (f) none of these

(vii) $\int_0^2 \frac{2x}{x^2 - 5} dx =$ **(a)** $\ln 2$ **(b)** $\ln 5$ **(c)** $-\ln 5$ **(d)** $-\ln 2$ **(e)** 0 **(f)** none of these

(viii) $\frac{d}{dx} 2^{x^2} =$ (a) 2^{x^2} (b) $2^{x^2} 2x$ (c) $2^{x^2} \ln 2$ (d) $2^{x^2} 2x \ln 2$ (e) $2^{x^2} x^2 \ln 2$ (f) none of these

(ix) Find the limit $\lim_{x\to 0^+} (1+x)^{1/x}$. (a) 0 (b) 1/e (c) 1 (d) e (e) ∞ (f) none of these

(x) What is $\frac{d}{dx} \sin^{-1}(x), |x| < 1$?

(a) $x/\sqrt{1+x^2}$ (b) $1/\sqrt{1+x^2}$ (c) $1/\sqrt{1-x^2}$ (d) $-1/\sqrt{1-x^2}$ (e) $1/(|x|\sqrt{x^2-1})$ (f) none of these

- 2. Evaluate each of the following integrals. You may use the table of integrals at the end of the book.
 - (i) $\int \sin^3(x) dx$
 - (ii) $\int \frac{dx}{1+\sin 3x}$
 - (iii) $\int \sqrt{x^2 1} dx$
 - (iv) $\int \frac{dx}{\sqrt{4+x^2}}$
 - (v) $\int \frac{\sqrt{x+2}}{x} dx$
- 3. State whether each series diverges or converges. Explain your answer.
 - (i) $\sum_{n=1}^{\infty} \frac{\sin n}{n^3}$
 - (ii) $\sum_{n=1}^{\infty} \frac{1}{1+n^2}$
 - (iii) $\sum_{n=1}^{\infty} (-1)^n n^{1/2}$
 - (iv) $\sum_{n=1}^{\infty} \frac{n^4}{2^n}$
 - (v) $\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{1+n^3}$
- 4. Solve each of the following differential equations.
 - (i) $y' = e^{x-y}$
 - (ii) $y' = 3x^2e^{-y}$
 - (iii) $xy' + 3y = \frac{\sin x}{x^2}, x > 0$
 - (iv) $xy' + 2y = 1 \frac{1}{x}, x > 0$
 - (v) $2y'e^{x/2} + y$
- 5. Write out the Taylor series at x = 0 up to order x^4 for each of the following functions.
 - (i) $\sin(x^2)$
 - (ii) $e^x \cos(x)$
 - (iii) $\frac{1+x^2}{1-x}$
 - (iv) $\sqrt{1+x}$
 - (v) $\sin^2(x)e^{x^2+1}(1-\cos(x))$
- 6. Write out the Maclaurin series for $\sin x$ and $\tan x$ up to the third power. Use these series to evaluate

$$\lim_{x \to 0} \frac{\sin x - \tan x}{x^3}.$$

7. Prove that

$$1 + \frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 3 + \ldots + \frac{n}{2^{n-1}} + \ldots = 4.$$

- 8. Give the definition of the hyperbolic functions $\sinh x$ and $\cosh x$. Using these definitions, show $\sinh 2x = 2 \sinh x \cosh x$.
- 9. Quote Taylor's theorem and use it to show the Taylor series for $\sin(x)$ converges to $\sin(x)$ for all real numbers.

2