SAMPLE MIDTERM 2, MAT 141, FALL 2000

The second midterm will be on Friday, November 17 at the usual class time (12:40pm) and place (P-118 in Physics building).

- 1. Place the letter corresponding to the correct answer in the box next to each question.
 - (i) What is the slope of the curve given by $x^3 + y^3 9xy = 0$ at the point (x,y) = (2,4)? (a) 1 (b) $\frac{24}{30}$ (c) $\frac{3}{4}$ (d) $\frac{9}{18}$ (e) $\frac{6}{5}$ (f) none of these.
 - (ii) Suppose $f(x) = |x^2 2x|$. The set of critical points of f is (a) $\{0\}$ (b) $\{1\}$ (c) $\{0, 1, 2\}$ (d) $\{2\}$ (e) $\{0, 2\}$ (f) none of these.
 - (iii) Suppose $g'(x) = \sin^{1999}(x)$. The absolute maximum of g on $[0, 2\pi]$ occurs (a) 0 (b) $\pi/4$ (c) $\pi/2$ (d) π (e) 2π (f) none of these.
 - (iv) Find $\frac{dy}{dx}$ at the point (3,5) if $y^2 + y 3 = x^3$.

 (a) 3 (b) 75/7 (c) 9/11 (d) 27/11 (e) 0 (f) none of these.
 - (v) Find the linearization of $f(x) = x^3 x$ at x = 1. (a) L(x) = 2x (b) L(x) = 2(x+1) (c) L(x) = -2(x-1) + 1 (d) L(x) = 2x + 1 (e) L(x) = 2(x-1) (f) none of these.
 - (vi) Use differentials to estimate the change in the surface area of a cube $S = 6x^2$ when the edge length goes from x_0 to $x_0 + dx$ (a) 6dx (b) $6x_0dx$ (c) $12x_0dx$ (d) 12dx (e) $18x_0dx$ (f) none of these.
 - (vii) The formula for finding successive approximations in Newton's method (a) $x_{n+1} = x_n + f(x_n)/f'(x_n)$ (b) $x_{n+1} = x_n f(x_n)/f'(x_n)$ (c) $x_{n+1} = x_n + f'(x_n)/f(x_n)$ (d) $x_{n+1} = x_n f'(x_n)/f(x_n)$ (e) $x_{n+1} = x_n f(x_n)f'(x_n)$ (f) none of these.
- (viii) The solution of the inital value problem $\frac{dy}{dx} = x + 1$, y(2) = 3 is (a) y = x + 1 (b) $y = x^2 x$ (c) $y = \frac{1}{2}x^2 + 2$ (d) $y = x^2 + x + 1$ (e) $y = \frac{1}{2}x^2 + x$ (f) none of these.
 - (ix) Suppose $f'(x) = x^2 \sin^{10}(x)$. Then on the interval $[0, \frac{1}{2}\pi]$ the function f (a) increasing and concave down (b) increasing and concave up (c) decreas-

ing and concave down (d) decreasing and concave up (e) constant (f) none of these.

(x) The function $f(x) = x^3 - 3x^2 + 1$ has a point of inflection at x = ? (a) -2 (b) -1 (c) 0 (d) 1 (e) 2 (f) none of these.

2. Find each of the following indefinite integrals

(i)
$$\int x^3 - x^2 + 2dx$$
,

(ii)
$$\int \sin(3x) dx$$
,

(iii)
$$\int \cos(3x+2)dx$$
,

(iv)
$$\int \sin^4(t) \cos(t) dt$$
,

(v)
$$\int t(t^2+1)^{1/2}dt$$
,

- 3. State the mean value theorem.
- 4. Suppose the second hand on a clock has length 20 cm. At what rate is the distance between the tip of second hand and the 12 o'clock mark changing when the second hand points to 3 o'clock?
- 5. Suppose it takes 2 hours to replace the drill bit while drilling for oil. A new drill bit digs quickly at first, but slows down with time. Suppose that in t hours it can drill though f(t) feet of rock.
 - (i) Suppose the drill bit is used for T hours before being replaced. What is the average speed of drilling (including the 2 hours to install the bit)?
 - (ii) Show that to maximize this average speed the bit should should be replaced after T hours of use where T satisfies f'(T) = f(T)/(T+2).
 - (iii) If f(t) = 100t/(t+5) find this time T.