SAMPLE EXAM 1 MAT 131 2/20/01

The first midterm is 8:30pm-10:00 pm on Tuesday, Feb 20. The locations are:

Location	Sections
Old Chemistry 116	1,2,5
Harriman hall 137	3,4,6
Old Enginering 143	7,8

- 1. Find the equation of the line passing through the points (-1,3) and (4,2).
- 2. Where do the lines y = 2x 1 and y = 3x + 10 intersect?
- 3. Solve this equation for t in terms of a and b: 2at + 3t + 1 = b.
- 4. Simplify the following expression as much as possible: $a^3(ab)^2/(ba^3)$.
- 5. Simplify the following expression as much as possible: $\log_3(27x^2)$.
- 6. What is the natural domain of definition of $f(x) = \sqrt{x + \frac{1}{x}}$?
- 7. Find all x which satisfy $\frac{1}{3}|x-2| < 1$. Give the answer as an interval.
- 8. On what intervals (if any) is the polynomial $p(x) = x^2 5x + 6$ negative?
- 9. Suppose θ one of the acute angles of a right triangle and assume $\sin(\theta) = \frac{1}{3}$. What is $\cos(\theta)$?
- 10. Find each of the following limits or explain why it does not exist.
 - (a) $\lim_{x\to 0} \frac{x+1}{x-1}$.
- (d) $\lim_{x\to 0} \frac{|x|}{x}$. (g) $\lim_{x\to 0} x^2 \cos(1/x)$ (e) $\lim_{x\to 0} \frac{x^2}{2x}$. (h) $\lim_{x\to \infty} x \cos x$. (f) $\lim_{x\to 2} x^2 4$. (i) $\lim_{x\to 1} (x-1)^{-2}$. (g) $\lim_{x\to 0} x^2 \cos(1/x^2)$.
- (b) $\lim_{x\to 1} \frac{x+1}{x-1}$.

- (c) $\lim_{x\to\infty} \frac{x+1}{x-1}$

- 11. For what value(s) of a does $\lim_{x\to 1} \frac{x^2 ax 1}{x 1}$ exist?
- 12. Sketch a function f on the interval [0,5] which has the following properties.
 - (a) f is increasing on (0, 2) and (3, 5).
 - (b) f is decreasing on (2,3).
 - (c) f is continuous everywhere on [0, 5] except the points $\{2, 3, 4\}$ where it is discontinuous.
 - (d) f has limits everywhere except the points $\{2, 4\}$.
 - (e) f is continuous from the right at x=4.
 - (f) f never attains a maximum value on [0, 5].
- 13. State the intermediate value theorem.
- 14. State the squeeze theorem.
- 15. Suppose f is increasing on an interval (a, b) and has a limit at a point $c \in (a, b)$. Must f be continuous at this point c?

1