Discrete Conformality and Graph Embedding

Ken Stephenson, University of Tennessee

ACM Symposium on Computational Geometry
Connections between Analysis and Computational Geometry
University of North Carolina

June 2012
Outlines

- Combinatorics begets Geometry
- Circle Packing
 - Spontaneous and Wonderful Geometry
 - This Geometry conjures Conformality
 - Conformality recruits Theory
 - Theory pays Dividends

Technical/Summary

Stephenson

Graph Embedding
Combinatorics begets Geometry
Combinatorics begets Geometry — Circle Packing
Combinatorics begets Geometry — Circle Packing

Spontaneous and Wonderful Geometry
Outline

- *Combinatorics begets Geometry* — Circle Packing
- *Spontaneous and Wonderful Geometry*
- *This Geometry conjures Conformality*
Combinatorics begets Geometry — Circle Packing

Spontaneous and Wonderful Geometry

This Geometry conjures Conformality

Conformality recruits Theory
Combinatorics begets Geometry — Circle Packing

Spontaneous and Wonderful Geometry

This Geometry conjures Conformality

Conformality recruits Theory

Theory pays Dividends
Combinatorics begets Geometry — Circle Packing

Spontaneous and Wonderful Geometry

This Geometry conjures Conformality

Conformality recruits Theory

Theory pays Dividends

Technical/Summary
Basic Geometry
Circle Packing: imposing geometry on Combinatorics

Stephenson

Graph Embedding
Circle Packing: imposing geometry on Combinatorics
Circle Packing: imposing geometry on Combinatorics

Stephenson

Graph Embedding
Circle Packing: imposing geometry on Combinatorics

Stephenson

Graph Embedding
Circle Packing: imposing geometry on Combinatorics
Circle Packing: imposing geometry on Combinatorics

Stephenson

Graph Embedding
Circle Packing: imposing geometry on Combinatorics

Stephenson

Graph Embedding
Circle Packing: imposing geometry on Combinatorics
Circle Packing: imposing geometry on Combinatorics

Stephenson

Graph Embedding
Circle Packing

Definition: A circle packing is a configuration of circles with a specified pattern of tangencies.

Key Theorem (Koebe-Andreev-Thurston): For any triangulation K of a sphere, there exists an associated univalent circle packing P_K of the Riemann sphere, unique up to Möbius transformations.

Cautionary Note: Circle packing is NOT 2D sphere packing.
Circle Packing

Definition: A *circle packing* is a configuration of circles with a specified pattern of tangencies.
Definition: A circle packing is a configuration of circles with a specified pattern of tangencies.

Key Theorem (Koebe-Andreev-Thurston): For any triangulation K of a sphere, there exists an associated univalent circle packing P_K of the Riemann sphere, unique up to Möbius transformations.
Definition: A circle packing is a configuration of circles with a specified pattern of tangencies.

Key Theorem (Koebe-Andreev-Thurston): For any triangulation K of a sphere, there exists an associated univalent circle packing P_K of the Riemann sphere, unique up to Möbius transformations.
Definition: A circle packing is a configuration of circles with a specified pattern of tangencies.

Key Theorem (Koebe-Andreev-Thurston): For any triangulation K of a sphere, there exists an associated univalent circle packing P_K of the Riemann sphere, unique up to Möbius transformations.

Cautionary Note: Circle packing is NOT 2D sphere packing.
Existence/Uniqueness

Theorem: Given any triangulation K of an oriented topological surface S, there is an essentially unique conformal structure on S supporting a circle packing P having the combinatorics of K and 'filling' S.

Stephenson

Graph Embedding
Theorem: Given any triangulation K of an oriented topological surface S, there is an essentially unique conformal structure on S supporting a circle packing P having the combinatorics of K and 'filling’ S.
Existence/Uniqueness

Theorem: Given any triangulation K of an oriented topological surface S, there is an essentially unique conformal structure on S supporting a circle packing P having the combinatorics of K and 'filling' S.
Wonderful Geometry

Stephenson

Graph Embedding
Summary: Embedding

- Euclidean, hyperbolic, or spherical geometry
- Simultaneous embedding of the dual
- Rigidity, but with flexible boundary controls
- Controlled distortion
- Symmetry preserving
Euclidean, hyperbolic, or spherical geometry
- Euclidean, hyperbolic, or spherical geometry
- Simultaneous embedding of the dual
Euclidean, hyperbolic, or spherical geometry

Simultaneous embedding of the dual

Rigidity, but with flexible boundary controls
- Euclidean, hyperbolic, or spherical geometry
- Simultaneous embedding of the dual
- Rigidity, but with flexible boundary controls
- Controlled distortion
Euclidean, hyperbolic, or spherical geometry

Simultaneous embedding of the dual

Rigidity, but with flexible boundary controls

Controlled distortion

Symmetry preserving
Discrete Conformal Mapping

Graph Embedding

harmonic measure

extremal length = L/H
Convergence

Graph Embedding
Conformal Flow

Stephenson

Graph Embedding
Conformal Welding

Stephenson

Graph Embedding
Summary: Conformality

- Discrete Analytic Function Theory
Summary: Conformality

- Discrete Analytic Function Theory
- Harmonic Measure
Summary: Conformality

- Discrete Analytic Function Theory
- Harmonic Measure
- Random Walks
Summary: Conformality

- Discrete Analytic Function Theory
- Harmonic Measure
- Random Walks
- Extremal Length
Summary: Conformality

- Discrete Analytic Function Theory
- Harmonic Measure
- Random Walks
- Extremal Length
- Curvature Flow
Discrete Analytic Function Theory

Harmonic Measure

Random Walks

Extremal Length

Curvature Flow

Conformal Moduli
Synergies
Synergies — e.g. Conformal Chair Tiling
Synergies — e.g. Conformal Chair Tiling
Chair substitution
Chair substitution tiling
Conformal Chairs

Make each tile into a combinatorial octagon
Make each tile into a combinatorial octagon
Conformal Chairs

The tiling itself
Conformal Chairs

The tiling itself

Stephenson

Graph Embedding
Conformal Chairs

The underlying circle packing

Stephenson

Graph Embedding
Conformal Chairs

Stephenson

Graph Embedding
Detail: converging to a conformally regular tiling of octagons
Summary: Synergies

Grid generation
Conformal tiling
Emergent conformality
Spontaneity — surprises in nearly every experiment

Stephenson
Graph Embedding
Grid generation
Summary: Synergies

- Grid generation
- Conformal tiling
Summary: Synergies

- Grid generation
- Conformal tiling
- Emergent conformality
Summary: Synergies

- Grid generation
- Conformal tiling
- Emergent conformality
- Spontaneity
• Grid generation

• Conformal tiling

• Emergent conformality

• Spontaneity — surprises in nearly every experiment
Resources and Acknowledgements

CirclePack, Java, cross-platform, open source

Stephenson

Graph Embedding
CirclePack, Java, cross-platform, open source

For a general overview discrete analyticity via circle packing, see Notices of the AMS, December 2003, cover article.

For a general overview discrete analyticity via circle packing, see Notices of the AMS, December 2003, cover article

Gratefully acknowledge past support of the NSF.

For a general overview discrete analyticity via circle packing, see Notices of the AMS, December 2003, cover article

Gratefully acknowledge past support of the NSF.

Thanks to Chris Bishop and the Organizers

For a general overview discrete analyticity via circle packing, see Notices of the AMS, December 2003, cover article

Gratefully acknowledge past support of the NSF.

Thanks to Chris Bishop and the Organizers and thanks for your attention!