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Abstract of the Dissertation  

Boundary Behavior of Uniformly Convergent 
Conformal Maps

by

Karyn Andrea Lundberg 

Doctor of Philosophy 

in

Mathematics 

Stony Brook University 

2005

In the first section of this thesis we prove th a t for any sequence {<pn} 

of conformal maps of the unit disk with limit map <fi, uniformly 

convergent on compacta, and any positive, decreasing, continuous 

kernel function AT(|t|) which grows faster at the origin than  log (]|y), 

there is a subsequence {(f>nk} and a Borel set E  C <9D of zero in­

capacity so th a t off of E  each element in the subsequence has well- 

defined radial extension to the boundary 4>n(x), and furthermore 

th a t <j>n(x) —► (f>{x). We provide an example to show th a t the 

theorem is sharp-one cannot, in general, take the set E  to  have 

zero logarithmic capacity.
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In the second section of this thesis we present a new proof of the 

fact th a t to any orientation-reversing, quasisymmetric involution 

h of the unit circle, fixing ± 1, there is associated a quasiarc 7  in 

the complex plane so th a t the conformal map 4>(z) of the exterior 

of the unit disk to the complement of the quasiarc identifies x  with 

h(x). We present an explicit construction of approximating maps 

converging to  <f>(z) and provide computer-generated images of the 

associated quasiarcs for several maps h.
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Introduction

Recall th a t a homeomprphism h of the unit circle is a welding function  if there 

are conformal maps /  and f*  on B and B*, respectively, so th a t /(D ) and 

/*(B*) are the two complementary components of a Jordan curve T C C, and 

so tha t h(x) =  f ~ l o f* (x )  for all x  € dD. The maps /  and f*  are the welding 

functions associated h. The well-known fact tha t there are always such maps 

when h is quasisymmetric is sometimes referred to as the Fundamental Theo­

rem of Conformal Welding (FTCW ). Many authors have proven th a t conformal 

welding is possible for homeomorphisms which are nice in senses like th a t of 

quasisymmetry. Bishop showed [Bis03] a t the other extreme th a t log-singular 

functions are always welding maps as well. Recall that a homeomorphism h 

of the unit circle is log-singular if there is a decomposition dB =  F\ U F2 so 

that Fi and h(Ff) both have logarithmic capacity zero.

In the first chapter we prove a theorem motivated by a result of Hamilton 

in his paper Generalized Conformal Welding [Ham91]. A homeomorphism h of 

the circle is said to be a generalized conformal welding on a set E  C <9B if there 

are maps /  and f*  as above so th a t /*  has radial limits on E, f  has radial limits 

on h (E ) and so th a t h = f ~ l o f* (x)  for all x  € E. One then asks the question, 

for an arbitrary  homeomorphism of the circle, how large is the set on which it

1
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is a generalized conformal welding? This has been answered for several classes 

of homeomorphisms. In Theorem 1 of his paper [Ham91] Hamilton shows tha t 

any regular homeomorphism h of the unit circle is a generalized conformal 

welding on a set E  where d B \ E  has Lebesgue measure zero. Recall th a t a 

regular homeomorphism is one for which the forward and backward images 

of any zero-Hausdorff dimension set have Lebesgue measure zero. He shows 

first th a t any regular homeomorphism of the unit circle can be approximated 

by a sequence of bilipschitz homeomorphisms hn(x) which converge uniformly 

to h on 9D. Of course, the bilipschitz constants kn of the maps hn do not 

remain bounded—if they did, then h itself would be bilipschitz. For each 

approximating map hn he applies the FTCW  and associates to  it a quasicircle 

r n and conformal maps f n and /*  onto the complementary components of Fn 

with f ~ x o f* (x ) = hn(x) for all x  € 9D. W ith suitable normalization, the 

sequences {/„} and {/*} converge respectively to maps /  and /* . Note th a t 

the limit domains Q =  /(D ) and Q* =  /*(D*) need not be the complementary 

components of a Jordan curve, but we will have the relation / -1 ° f* (x )  =  h(x) 

for any x  in <90 satisfying the four conditions below.

• lim,.-,! f* (r  ■ x) exists for an n

•  lim r^i f ~ l {r ■ h(x)) exists for all n

•  limn_,oo f n ( x )  =  f * { x )

•  limB_oo / ~ 1(ar) =  f ~ x(h(x))

By a well-known result of Beurling [Pom92], the first condition will hold off 

of a  set of logarithmic capacity zero. The first two conditions together may

2
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require tha t we throw out a set E\ of logarithmic capacity zero as well as its 

image under h, and a set E 2 of logarithmic capacity zero as well as its preimage 

under h. Together, E i U ^ U  h(E \)  U h~1(E2) form a set of Lebesgue measure 

zero. This is what the regularity condition on h implied. The second two 

conditions are the subject of his Theorem 2:

T h e o re m  (H a m ilto n ) Let {hn(z)} be analytic in D, with hn(H>) having area 

no greater than 1. Then there exists a subsequence {hnk} and a limit h (z) so 

that fo r  any a , e > 0 there is E  C <90 with a-dimensional Hausdorff measure 

H a(E) < e and hnk(z ) —► h(z) on 5 0  \  E . One cannot take the set E  to have 

logarithmic capacity zero.

In other words, the last two conditions imply th a t we must throw out a set 

of Hausdorff dimension zero and its h-image for each of the maps /*  and / -1 . 

Again by the regularity assumption on h, this is a set of Lebesgue measure 

zero, so his sequence of approximations leads to generalized conformal welding 

off of a set of Lebesgue measure zero.

Recall [Car67] th a t a set has positive Hausdorff measure H a, a  > 0 if and 

only if it has positive capacity for the kernel K a =  t~a , so Hamilton’s theorem 

states th a t for a sequence of analytic maps satisfying the given criteria and 

any a  > 0 , there is a subsequence {hnk} such th a t hnk(z) —> h(z) off of a set 

of |t |_a-capacity zero, but not necessarily for the logarithmic kernel function 

AT(|t|) =  log(^j). This raises the question: Does the result hold for kernels

i t i  14- 1 o n / ^  l n r r / __
■ |t|>which lie between the |t| a ’s and log(4r)? By ‘between’ we mean th a t a kernel

K  satisfies

lim =  0 f°r a i but lim =  0 0 .W-o |*|-« l*M> log(jif)

3
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We answer this question in Chapter 1, for the case of conformal maps, with 

the following theorem. Let <f> denote the radial extension to the boundary for 

a conformal map <j>, where it exists.

T h e o re m  Let {4>n} be a sequence of conformal maps of the unit disk converg­

ing uniformly on compacta to the conformal map <j>. Then fo r  any function K  

satisfying
.• mlim  =- =  oo
t—*o log j

there is a subsequence {(j>nk} and a set E k  with capk E k  =  0 so that <}>nk{x) —► 

4>(x) fo r  x  G c® \  E k -

We provide an example showing tha t the theorem is sharp.

Following Hamilton’s proof of his Theorem 1 and considering the theorem 

above, it might seem th a t his result could not be improved to the class of 

log-regular homeomorphisms, but as Bishop shows in [Bis03] this is not the 

case. Bishop used a very different approach to address the question of the size 

of the set where a circle homeomorphism is a generalized conformal welding. 

He shows th a t if a homeomorphism h is log-regular, then it is a generalized 

conformal welding on a set of full Lebesgue measure. Bishop shows tha t a 

sequence of conformal maps of O arising as approximations to a welding map 

/  cannot have the property th a t their boundary values fail to converge on 

a set of positive logarithmic capacity. Bishop constructs his approximating 

maps using Koebe’s circle domain theorem. Given a homeomorphism h of 3 D 

he identifies each of n  evenly-spaced points a?i,. . .  ,x n with a dilated copy of 

its image under h by the Koebe map on the left side of Figure 1.

The arcs connecting each Xj to 2h(xj)  can be chosen arbitrarily so long as they

4
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Figure 1: Bishop’s approximate welding maps

do not intersect, and the choice will not affect the resulting domain.

In the second chapter we use an idea similar to Bishop’s cirele-chain con­

struction to give a new proof of the fact th a t to  any orientation-reversing, 

quasisymmetric involution h of the unit circle, fixing ± 1 , there is associated 

a quasiarc 7  in the complex plane so th a t the conformal map (j>(z) of the 

exterior of the unit disk to the complement of the quasiarc identifies x  with 

h(x). We similarly identify n  evenly-spaced points on the upper semi-circle 

with their h-images on the lower-semicircle. One could apply Koebe’s theo­

rem as in [Bis03] to  create chains of circles converging to a quasiarc, but we 

instead apply a composition of n  explicit ‘pinching’ maps which identify Xj 

with h(xj). We will not have a chain of circles as a result, making it more 

difficult to show th a t the chains are converging to  a quasiarc, but because of 

the explicit description of the maps we can create computer-generated images 

of the quasiarcs for a given map h. Several examples are presented..

In the th ird  chapter we present a (possibly) new proof of Koebe’s well- 

known circle domain theorem for finitely connected domains. Koebe’s Theo­

rem has been related to  the field of conformal welding by Bishop [Bis03] as 

mentioned above. Koebe’s theorem for simply connected domains is just the 

Riemann mapping theorem. The Riemann mapping theorem is usually proven

5

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



with the Schwarz lemma. In Chapter 3 we use an analogous lemma, the 

Schwarz-Pick lemma for multiply connected domains [HS93], to prove Koebe’s 

theorem for finitely connected domains. We cannot be certain th a t the proof 

presented is new—such an old theorem has many difficult-to-find proofs—but 

a search of readily available literature did not locate such a proof.

6
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Chapter 1

Boundary Behavior of Uniformly Convergent 

Conformal Maps

1.1 Introduction

It is well known [Pom92] th a t any conformal map of the unit disk has well- 

defined radial extension to all x  in 5D> with the exception of a set E  of zero 

logarithmic capacity. For a given conformal map of the disk <p we denote by 

4> the radial extension of 0 to <90, where it exists. Suppose now th a t we are 

given a sequence of conformal maps of the disk, {<pn}, converging uniformly 

on compact subsets to a map (j>. For each n  there is a set of zero logarithmic 

capacity off of which <f>n is well defined, but is the set E  where limn_,00 <j>n(x) ^  

4>(x) also so small? In general it is not. In fact, a uniformly convergent 

sequence of conformal maps of the unit disk may have the property th a t every 

one of its subsequences has boundary-value functions which fail to converge 

to  on a set of positive logarithmic capacity. We provide such an example in 

Section 1.3. We show also, in Section 1.4, tha t the set E  cannot be any larger

7
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than positive logarithmic capacity in the following sense:

T h e o re m  1. Let {(f>n} be a sequence of conformal maps of the unit disk con­

verging uniformly on compacta to the conformal map 4>. Then fo r  any function  

K  satisfying

lim -— f  - oo 
t-o  log i

there is a subsequence {4>nk} and a set E k  with capk E k  =  0 so that 4>nk(x ) ~ 

<f)(x) fo r  x  € <9D \  E k -

In the context of conformal welding, Hamilton [Ham91] showed tha t for a 

uniformly convergent sequence {hn} of analytic maps of the unit disk there 

is a subsequence {hnk}, a limit map h, and a set E  C c© such th a t E  has 

Hausdorff dimension zero and hnk(z) —> h(z) for all 2 £ dH>\E. Hamilton also 

states th a t one cannot take the set E  to have logarithmic capacity zero. Our 

example in Section 1.3 shows th a t the same is true for the class of conformal 

maps.

Hamilton’s result also motivates Theorem 1 as we now describe. Recall 

[Car67] th a t for any a  the Hausdorff a-measure Ha(E ) of a set E  is infinite 

if and only if the associated a-capacity Ca(E) > 0. In terms of a-capacities, 

Hamilton’s result states th a t for any kernel function K  = t~a , the set E  has 

zero /^-capacity. We show th a t for conformal maps of the unit disk we can 

choose E  to have zero /^-capacity for any kernel th a t grows faster a t the origin 

than  the logarithmic kernel, and the example in Section 1.3 makes our theorem 

sharp.

8
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1.2 Background and Definitions

Recall th a t a set E  is said to have positive logarithmic capacity if it supports 

a probability distribution ju so tha t the energy integral

Hi*) = /  J
E  E

is finite. If such a  fi exists we define the Robin’s constant of E  to be 7 (E) =  

infM/(/i), and the logarithmic capacity of E  to  be cap(E) =  e ~ ^E\  The 

distribution achieving the minimal energy integral is called the equilibrium 

distribution for E. It is usually denoted pg. If no p  yielding a finite energy 

integral exists, we say th a t the set has zero logarithmic capacity.

The concept of capacity can be generalized to other kernel functions K , 

where we say th a t a set E  has positive If-capacity if there is a probability 

distribution fi supported on E  so tha t

=  J  J  K i\x  ~  V\)dn(x)dfji(y)
E  E

is finite. We then define 7 k {E) and capk {E) analogously. In this paper 

we follow Carleson [Car67] and consider only kernels which are continuous, 

decreasing, and non-negative. We include for reference several properties of 

capacities and some tools commonly employed to estimate them.

Different authors use different definitions of capacity. The definition we 

chose to use here is th a t in [Pom92]. Carleson [Car67], for example, defines it

9
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as

cap k {E)

where 7 k {E) is as defined above. The two definitions of capacity yield the same

sets of zero capacity, bu t capacity by Carleson’s definition has the convenience 

of countable subadditivity.

For the definition we have chosen to use, we don’t  have countable subaddi­

tivity, but we do have th a t for a countable collection of sets Ej  having Robin 

constants 7 k (Ej ), their union E  satisfies

(this is the countable subadditivity for cap =  ^). Equation 1.2 follows imme­

diately. For clarity later we summarize this property as Lemma 1.

L em m a 1 . For any e > 0 and any kernel function K  there is an increasing 

sequence o f positive real numbers {gj(e)} so that i f  E j is a set in <9D with 

7 ic(Ej) > gj, then E  =  UEj has

We will need to use estimates of harmonic measure in simply connected

capA-(J5) <  exp

From [Car67] we have tha t

cap(E) <  e.

10
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domains. The definition of harmonic measure most often used is the following:

D efin itio n  1. Let 0  be a simply connected domain in the complex plane and 

let z G 0 . Let <f> be the conformal map from  O onto 0  with 0(0) =  Then 

for a Borel set E  C 80. we define the harmonic measure of E  in 0  from z as

u ( z ,E ,a )  = ^

It is clear from the definition th a t harmonic measure is a conformal invariant. 

We will use the alternate (but equivalent) definition below, which can be ap­

plied to non-simply connected domains.

D e fin itio n  2. Let 0  be a domain in the complex plane, and let E  be a subset 

of 80 . Let Ue  = {u : u  is harmonic in 0, u < x e  on 80.}, where x e  is the 

characteristic function of E . For z GO we define the harmonic measure of E  

in 0  from z as

ui(z, E, 0 )  =  sup u(z). 
uEUe

Also applicable to non-simply connected domains is a  third formulation of 

the concept of harmonic measure. It was established by Kakutani in [Kak44] 

th a t harmonic measure in planar domains is closely related to Brownian mo­

tion. He showed th a t for a domain 0  C C, a  set Borel set E  C 8 0 ,  and a 

point z  GO, the harmonic measure uj( z , E, Q) is equal to the probability tha t 

a Brownian particle starting at z will pass through E  when it first exits 0.

Returning to the second definition, for fixed E  and 0  we define u(z) = 

u j(z ,E ,0 ) .  Then u(z) is harmonic in 0 ,  and we refer to u(z) as the harmonic

11
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measure function  for E.

We recall a useful property of harmonic functions [Rud66]:

T h e o re m  2  (H a rn a ck ) . Let u (z ) be a positive harmonic function in D(a, R ). 

Then for  r < R

R ~ r / \ /  ! , iO\ ^  R  + r f \— u(a) < u(a +  re ) < — u{a)
R +  r  w  ~  v J ~  R - r  v '

Many estimates of harmonic measure come from bounds on another con­

formal invariant: moduli of families of curves. A curve family, usually denoted 

T is defined in [Pom92] as the collection of open, half open, or closed arcs in 

a Borel set B  C C satisfying a set of prescribed conditions. Commonly used 

examples are the family of curves joining (or separating) the boundary compo­

nents of an annulus A =  {r <  \z\ < R}, Figure l.la (b ) , or the families of curves 

joining (or separating) vertical sides of a rectangle {|Re(z)| <  | ,  |Im(z)| <  |} ,  

Figure 1.1 c(d).

(a) (b) (c) (d)

Figure 1.1: Typical curve families

D efin itio n  3. A metric p is admissible for a curve family  T i f  Jc  p(z)\dz\ > 1 

for all curves C  6  T.

The modulus of a curve family T in a domain B  can then be defined.

12
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D efin itio n  4.

m od(r) =  inf ^ J J  p2(z)dxdy\p  admissible^

In other words, the modulus of the curve family T in smallest area given to 

the domain B  by a metric which gives length at least one to every member of 

T. The moduli of the curve families in Figure 1.1 are well known. They are:

2?r „ > g 7  / \ b a
(b)̂ ’ (C )a ' <d>S

One relation between harmonic measure and the modulus of a curve family 

is the following, also found in [Pom92]. It also provides a bound for logarithmic 

capacity. It states th a t a subset E  of the boundary a domain 0  has small 

harmonic measure if it is hard to  reach in the sense th a t a Brownian particle 

is unlikely to  make its first exit through E. See Figure 1.2.

Let (p : B —► C be conformal, and define

d^(z) =  dist(0(z),d(</>(O)), for z  €  ID). (1.1)

T h e o re m  3. Let <t>: D —> f2 be a conformal map fixing the origin. Let E  C dD 

be such that any curve C  joining 0 to E  has image <f>(C) which must travel a 

distance d through a region H  with dist(0, H)  >  d^(0). Then

ip 2̂
<j(0, E, D) <  cap(E) < — e_area Ĥ)

7T

13
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Figure 1.2: The shaded region is H

Pfluger’s Theorem, found for instance in [Pom92], relates the modulus of 

a curve family in a domain Q to the capacity of a set E  in dQ.

T h e o re m  4 (P flu g e r) . Let E  be a Borel set on 5B and let Te (t ) be the 

family o f curves in the annulus {r <  |z| <  1} connecting {|z| =  r}  to E . Then 

for  0 <  r  <  |

- ^ - c a p (2 ? )  <  exp ( -------- ■*  . ^  cap(£')
1 +  r  v ’ V m o d ( r B( r ) ) /  “  1 -  r  ’

In particular,

cap(E) =  lim -4= exp ( ------- ,Z, , »  I-
r-+o y/r \  mod(Te (t)) )

In section 1.4.1 we use the reformulation of Pfluger’s Theorem given below.

C o ro lla ry  1 . Let E  be a Borel set on <9D and let Te (R) be the family o f curves 

in the annulus {i? < \z\ < 1} connecting {\z\ =  1?} to E. Then for R  > |

l ( E ) -  mod(rE(fl)) ~ log7 n '

14
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P roo f:

Let 0 < r < R  < 1. Then it is easy to show that

1 > 1° g 7 .  1
m od(T£(r)) -  2ir m o d (r£ (i?))

where the first term  on the right hand side is the modulus of the family of 

curves connecting {|^| =  r } to { |z |  =  i?}.

The left hand inequality in Pfluger’s Theorem is then

cap(E') <  —^~~e mod(r£M) 
y/r

< 1 + r e- > ( - ^ + inod(r1B(ii)1)
y/r

1 J- f ____ 1T<   e ra°d(r jg(R))
“  y/R

From the relation 7 (E) = -  log cap(E) and letting r  —> 0 we get the desired 

result. □

Lastly, we include a  commonly used elementary result for conformal maps of 

the unit disk. It is a  corollary of the Koebe Distortion Theorem [Pom92].

T h e o re m  5. Let d f(z )  be defined as in Equation 1.1. Then 

j d  -  M 2) I / 'M I <  d ,(z)  <  (1 -  k |2) | / ( z ) | .

15
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1.3 Theorem 1 is Sharp

Let f ln be the unit disk with n  radial slits {s?}" of the form Sj =  re2*1̂ , r  e  

[§, 1], removed. Let (pn : D —> Qn be the conformal map fixing the origin and 

satisfying <£„( 1) =  and define E n =  (f>~l (dQ.n n  c®).

E n X  ' X

f  \  ^

Figure 1.3: Definition of the set En

The maps (f>n converge uniformly to  the map 4>(z) = |  on D, so \4>{z)\ — \  

for all 2 G 9D. The sets {E n}, being the points at distance \  from their 

corresponding ^-values are contained, respectively, in the set of points where 

the boundary values of <f>n disagree w ith those of <f>. If a point z G is in 

infinitely many E nk’s, then the limit lim ^oo <f)n(z) ±  <ft{z). The set of points 

in infinitely many E n's is precisely the set nmUn>mEn. We show th a t for every 

subsequence {</>„*} of {<pn} there is a set E  C Umn fc>mEnk having logarithmic 

capacity a t least cq, or equivalently, th a t there is a set of logarithmic capacity 

at least Co where the boundary values of {<pnk] fail to converge to  those of 4>.

1.3.1 Construction of the set E

To prove th a t the set E  we construct has positive logarithmic capacity we 

use the fact th a t a set has zero logarithmic capacity if and only if it has 

harmonic measure zero in any simply connected domain 0  which contains

16
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it in its interior. Moreover, for a fixed simply connected domain Q, if E  is 

compactly contained in its interior then the harmonic measure a»(0, E , f l \ E )  

is comparable to the reciprocal of the Robin’s constant of E. This follows by 

conformal invariance of harmonic measure from the following theorem [GM05]. 

We assume without loss of generality tha t 0 G f \ \ E .

T h e o re m  6 . Let E  be contained in the annulus {0 <  S < \z\ < r < 2}. Then 

there are constants Ci(<5) and c2 (J ,r) so that

Cl <  w(0, E ,D ( 0 , 2 ) \ E )  <  02

We show that for any e >  0 , we can choose our set E  such th a t

u ( 0 , E , D ( 0 , 2 ) \ E ) > ( l - e ) .

Let Co =  exp[—C2( l, 1)], where C2(l, 1) is the constant on the right hand side of 

Theorem 6 . Then the relation cap(£l) =  exp [—'y(E)] implies th a t cap (E) > cq. 

Our plan is to build a  set of the form

E  =  { Eh u E l2 u . . . u E lNi} n  {E2l u  e 22 u  . . .  u  e 2n3}  n . . .

with m >  k  ==> mi >  k x k to ensure tha t E C C\m Ufc>m EUk.

Our proof is based on the following two lemmas.

L em m a 2. For any e > 0 and each k  G N we can choose a finite subcollection 

of Enj ’s so that Fk =  {Ekx U . . .  U £**} satisfies the following two criteria:

17
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. w ( 0 , f t , D ( 0 , 2 ) \ F t ) > ( l - e 2 - ‘ )

•  m  > k  —> m \ > k,K

L em m a 3. Let A  be a finite collection of intervals in ( |z | =  1}. Then for any 

T) > 0 there is k sufficiently large so that,

w(0, A  n F t, 0 ( 0 ,2 ) \  A  n Ffc) >  (1 -  V)v (0 , A, 0 ( 0 ,2 ) \  A)

Lemma 2 states th a t we can take a finite collection of E„k’s w ith arbitrarily 

large index so th a t their union has almost the same harmonic measure as 

{ \ z \  = 1} in .0(0,2), namely 1. Lemma 3 states th a t a similar result holds if 

we restrict our sets Fk to a finite collection of intervals of {|z| =  1}. Together 

these lemmas allow us to  inductively select a sequence of sets Fkm so tha t 

E  =  n mF*.m satisfies

a;(0, E, 0 (0 ,2 )  \  E) > 1 - e .

First, we choose Fkl so th a t

u;(0,Ft, ,£>(0,2) \Ft l ) > ( l - | ) .

Since Fk, is a finite collection of intervals, we then choose Fk2 so tha t

w(0, Fkl n Fk2, 0 ( 0 ,2 ) \  Fkl n Fk2) >  (1 -  e2-2M 0 , Ffcl, 0 ( 0 , 2 ) \  Fkl).

18
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We continue inductively, choosing Fkm so that

Then E  =  flmFkm by construction satisfies

00

o,(0 ,E ,D ( 0 , 2 ) \ £ ) >  I K *  -  e2~j ) > l - e ,

where the  last inequality comes from the fact that

N

1.3.2 Proofs of Lemmas 2 and 3 

P ro o f  o f  L em m a  2

P ro o f  (of Lemma 2): Choose N  6  N, and assume th a t the index on any set 

E n is at least N .  Let un(z) — u>(z, E n, D(0,2) \  E n) be the harmonic measure 

function in D (0 ,2) \  E n. Then we can find a lower bound on the harmonic 

measure of a union of En s, such as a Fk =  UI f  E k ., by summing the harmonic 

measure functions of the component sets and normalizing the boundary values.

To have any hope of making Equation 1.2 close to 1 we must show that

That is

u (0 ,F k, D ( 0 , 2 ) \ F k) > Y , j uk M
( 1.2 )

19
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the values of wn(0) are bounded below. This follows from Theorem 6 and the 

lemma below.

L em m a 4. There is a universal bound on <y(En), 0 <  7 (£n) <  7o =  log(2-\/2).

P roo f: We use Pfluger’s theorem to  put a lower bound on the logarithmic 

capacity of E n. Fix n. For a curve family T in <9B, let f  denote the image under 

<pn of T. First observe from Theorem 5 th a t \  <  |0^(O)| <  2. This implies tha t 

for any r > 0 the image of the curve \ z \ = r  lies in the annulus { |  <  \z\ < 2r], 

so tha t m o d (rr (£ ’n)) >  From Theorem 4 we see th a t cap (En) >

From the relation 7 (E) = — log(cap(E)) we have th a t 7 (En) <  log(2-\/2) for 

all n, and thereby un(0 ) >  u>o =

□
We show next th a t if z € Fk is a point of then the value of Ukm ( z ) ,  

m  ^  j  is not too much larger than  ^ .(0 ) .  We would like to  say th a t for any 

R  > 1 if we choose our indices {A7 , fc2, .. •, kk} carefully we can ensure tha t

sup ukj{z) < R u kj(0 ) ,j  ±  m.

This is not quite possible, but as we show in Lemma 5 below, the linear 

measure of the subset of {|z| =  1} where a given un assumes values greater 

than Run{0) is approaching zero as n —* 0 0 .

L em m a 5. Let the sets {E n} and the functions un(z) be as defined above. Let 

R  > 1 and define the set E„ = {z  : \z\ =  1 ,u n(z) > i?it„(0)}. Then for any 

77 >  0 there is N  sufficiently large so that i f  n  > N  then the linear measure of
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is smaller than rj.

It should be believable th a t Lemma 5 holds, considering th a t the mean 

value property of harmonic functions requires tha t u„(0 ) =  J  un(e2vi&)d0. 

There are a couple of details to  work out, so we save the proof of Lemma 

5 for last. It is in Section 1.3.3.

Suppose for now th a t Lemma 5 is true. Set R  =  1 +  2 _fc_1 and choose 

E ki so th a t \Ekl\ < 2~k~2. For each n > ki define En = E n \  E kl and let 

un(z) be the harmonic measure function for the set En. By adding a set of 

the form E n next, as opposed to  the entirety of one of the E n's we ensure tha t 

the contribution of un{z) to  sup{£V ukj(z), z  € Fk} is smaller than  R un(0). 

However, by throwing out part of E n, we decrease the value of the harmonic

measure function at the origin. It is not difficult to see, though, th a t for n
I e r i

large un(0) >  ( 1 ---- ^ - ) u n(0). More generally, we can say:

L em m a  6 . Let A  C {|z| =  1}. Then for En as defined above and n  sufficiently 

large, w(0, E n \  A, D (0,2) \  E n) >  (1 -  u(0, A, D))w(0, En, D (0,2) \  E n).

P ro o f  (of Lemma 6 ):

Clearly

w(0, E n, D{0 ,2) \  E n) = w(0, E n \  A, D (0,2) \  E n) +  w(0, E n n  A , D (0,2) \  E n)

and so we need only to show th a t

u/(0, E n n  A, D{0 , 2) \  E n) < a/(0, A, O)u/(0, E n, D(0 , 2) \  E n).

First note th a t o/(0, E nC\A, D (0 ,2 ) \ E n) < u/(0, E n n A , C \ E n), and recall that
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cu(0, E n n A , C \ E n) is the mass given to EnC\A by the equilibrium distribution 

for E n. Since E n is comprised of n  evenly distributed intervals it will give equal 

mass £ to each of them. Therefore for large n, En C\ A  will contain n-cu(0, A, D) 

intervals of En. In other words, for large n, tu(0, E n C\A, C \  E n) =  cu(0, A, D). 

□
We choose k? sufficiently large so tha t w(0, E k2 fi E ki,D (0,2) \  E k2) = 

uj(0,Eki,B>) < 2~k~2, and so th a t the linear measure of Ef*2 is smaller than 

2~k~3. We continue this process inductively, choosing kj large enough th a t 

Ek, = Ek, \  { W ^ E g }  has fi^(O) >  (1 -  Yinmi and so th a t

|B * | <  2- i - i - i

For each j ,  then, we have the following estimates:

Ukj(0) > ( l -2 ~ k-1)ukj(0),

ukj(z) < ukj(z) < R ukj, for z  e  Fk \  E kj

W ith these estimates we can write Equation 1.2 as

(1 -  2 - fc“ 1) E f - i  uk (0 ) 
u (z ,  Fk, D (0 ,2) \  Fk) >  -  1 ;

i  +  ^ E J=i “ fc3(o)

>  ( i -  2 -* -1) E j W < > )
i +  ( i +  2- * - i ) E £ i « fcj(o)

Since each m„(0) is bounded below by loq, the sum E y ^ i “ fcj(O) >  N ku)0. By 

choosing N k sufficiently large, the sum in Equation 1.2 can be made arbitrarily
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close to (1 — 2 fc), proving Lemma 2. 

□

P ro o f  o f  L em m a  3 

P ro o f:

The probability th a t a Brownian particle starting at the origin will hit A  n  Fk 

before hitting d D (0,2) is bounded below by the product of the chance it will 

hit A  before hitting d D (0,2), and the chance th a t from A  it will hit A n  Fk 

before hitting d D (0,2) as in Figure 1.4. T hat is,

w(0, A f ) F k , D (0 ,2) \ A n F k) > w(0, A, D{0 , 2 ) \J4)-infae^ ( a ,  A f ) F k , D (0 ,2) \^ n F fc)

Ideally, it would be true that,

infaeAu;(a, A  n  Fk, D (0,2) \  A  n  Fk) > (1 -  rj),

but this cannot be assumed. We show instead th a t there is a subset A  C A  of 

very small harmonic measure off of which infa€j4u;(a, A  fl Fk, D (0,2) \  A  D F k) 

is as large as we wish. This is the content of the next lemma.

L em m a 7. For any interval A  on {\z\ =  1} and any rj > 0 there is a subset 

A  C A  with

u ( 0 , A ,  D ( 0, 2) \  A )  >  (1 -  | M 0, A ,  D ( 0, 2) \  A )
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such that for sufficiently large k and any a £ A

u{a, A  n  Fk, D ( 0 , 2 ) \ A n F k) > ( l -  | )

It will follow from Lemma 7 tha t

v ( 0 , A n F k, D ( 0 , 2 ) \ A n F k) >  u ( 0 , A , D ( 0 , 2 ) \ A ) - ( l - % )

> (1 - | M O , A , D ( 0 , 2) \ A ) ( 1 - | )

> (1 — T})u(0, A, D(0,2) \  .4)

P ro o f: The set A  is obtained from A  by removing two sets. First, for each 

interval Aj  of A, let Aj  be the closed subinterval of Aj  obtained by removing 

an open neighborhood of each endpoint so small th a t u;(0 , A j ,  D (0 , 2) \  Aj) > 

(1 — ^)o>(0, A j , D (0,2) \  Aj), so th a t the set UAj satisfies

w(0, U A j ,  D (0,2) \  A) > (1 -  |)u ;(0 , A, D (0,2) \  A)

Second, define the set

X k,v,s =  {x : |nc| =  1 , u{x, dD(x, 5), D{x, 5) \  Fk) > |} .

If we could ensure th a t for large enough k  the set X kt1)ts satisfied

w(0, A  \  X ktViS, D (0,2) \  A) > (1 -  |)w (0 , A, D(0 ,2) \  A), (1.3)
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Then A =  UAj \ XklV,s has

w(0, A, 0 (0 ,2 )  \  A) >  (1 -  |)o ,(0 , A ,D ( 0,2) \  A)

but by definition of Xk,Vls, this will show that

w(0, A  n  Fk, D (0 , 2 ) \ A t l F k ) >  u(0, A, D ( 0 , 2 ) \ A ) - ( 1 -  | ) ,

since each a € A  is in the complement of X ktV,s• Combining the two preceding 

inequalities produces

u ( 0, A  n  Fk, D (0 , 2) \  A  n  Fk) > (1 -  rj)u(Ot A, D ( 0 ,2 ) \ A ) ,

proving the lemma.

It remains to  be shown that the sets X  can be chosen as prescribed. T his

is proven in Lemma 8 below.

L em m a 8 . Define X k iVls as above. Then for  any r),5,e > 0 and there is k

sufficiently large so that l-X^al <  e.

We want to  show th a t for our set A, we can choose Xk^,s so th a t Equation 

1.3 is satisfied. Before presenting the proof of Lemma 8 we point out why 

it is sufficient to show th a t the linear measure of the set Xk,n,i can be made 

arbitrarily small.

The harmonic measure of A' C A  can be expressed as the integral with
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respect to arclength over A' of the continuous function / a =

w (0 ,A ' ,D ( 0 ,2 ) \A )  = J
A ’

On the compact subset of UAj of A , the function Ja is absolutely continuous, 

and so there is an le > 0 such th a t if |AfciJ?)<s| <  lt then

u ( 0 ,X k„iSn A , D ( 0 , 2 ) \ A )  =  f  

<  |a , ( 0 , / l , C ( 0 , 2 ) \ > l )

□
P ro o f  (of Lemma 8 ):

We know th a t cu(0, d D (0 ,2), D (0 ,2) \  Fk) <  2~h. Alternately, we can say 

tha t the harmonic measure is bounded below by the product of the probabil­

ities th a t a Brownian particle starting at the origin will first hit X k tm,6, then 

move a  distance 5 away without hitting Fn, and finally hit d D (0,2) upon first 

exiting the annulus A(l ,  2) =  {1 <  \z\ < 2}.

T hat is,

2 - *  >  w ( O , 0 D ( O , 2 ) , D ( O , 2 ) \ F n)

>  w(0l X fcl, 1, >D ) . | . ( M j ) > (1.4)
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Figure 1.4: The set X kiVtS

where the last element in the product is computed from the formula

^ , N  =  2,A(l ,2) )  =  ^ ! | l .

If | |  is very close to 1, then log \z\ is approximately \z\ — 1. In our case, if 2 is 

on the quarter of dD{x, 5) farthest from the origin, then 1 +  |<5 <  \z\ <  1 +  5. 

So Equation 1.4 implies th a t

We can ensure th a t this is smaller than e by choosing k  large.

□
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1.3.3 P roof of Lemma 5

We now prove Lemma 5:

P ro o f  (of Lemma 5):

We use the mean value property of harmonic functions to  write un(0) as

un( 0 ) =  J  Un(el6)d0. (1.5)

From the symmetry of the sets E n we see tha t the minimum value of un{e%e) 

occurs a t the midpoints of the n  intervals comprising the complement of En. 

Let z  denote one such midpoint.

Figure 1.5: Minimum of occurs a t points like z 

We show tha t as n  becomes large, un(z) —► un(0).

L em m a 9. Let un(z) and z be defined as above. Then for any e > 0 there is 

N  sufficiently large so that un(z) > (1 — e)un( 0) for  n >  N .

Demonstrating th a t the values of un(et9) cannot stay bounded away from
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un(0 ) as n  —► oo proves Lemma 5, since Equation 1.5 can then be expressed 

as

which shows tha t

so fixing R  > 1 and choosing e to  be small forces \E„ \ to be small. We now 

prove Lemma 9.

P ro o f  (of Lemma 9):

Suppose th a t for c <  1 there is n  arbitrarily large so th a t un(z) < c- u„(0). 

Then Harnack’s inequality [Rud66] provides an estimate of the size of the 

neighborhood of z  where the harmonic function un{z) stays bounded below 

^ ^ ( 0 ) .  Under our hypotheses it would follow th a t un|{|z|=1} <  l±% n(0) for 

{\z — z\ < Let Vn be the collection of intervals on \z\ = 1 where this

holds. The linear measure of the sets Vn is always greater than The

linear measure of the sets E n decays exponentially:

L em m a 10. Let Qn = 0„(D) be the disk with n  radial slits o f length tq 

removed. Then the harmonic measure of one of the intervals I  comprising 

E  = (j)~l (d£ln Pi dD) satisfies

> R un(0 ) .  M  +  (1 _  e K ( 0 ) . ( i  _  (1.6 )

7r
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P ro o f: This is a direct application of Theorem 3 with 8 = r 0 and a rea(i/) =

; ( l  -  ’■o2)

□
It seems reasonable to  believe then th a t tu(0, E n, D(0,2) \  {E n U Vn}) —► 0 

with increasing n. This is indeed the case, and it is sufficient to prove Lemma 

9. This is because if

w(0, E n, D{0,2) \  E n U Vn) < eu(0, E n U Vn, D{0,2) \  E n U Vn),

then

M O ) <  Lo(0,Vn, D ( 0 , 2 ) \ E n UVn) ^ u n(0) + 

e - u ( 0 ,E n, D ( 0 , 2 ) \ E n UVn) - l  

< 1 • 0 ) +  e • 1

so th a t ^  >  1 — e«n(0 ). Since «n(0 ) is uniformly bounded below, we see 

tha t c —► 1 as n  —> oo.

We show first th a t the capacity of the sets Vn is approaching 1. Consider a 

construction of the sets Vn analogous to th a t of the sets E n as the preimage of 

<9B under the Riemann map from D onto a radially slit disk B \  U"=1Sj, where 

Sj = {re~^ , r  e  [rn, 1]}. If the r n’s remain bounded away from 1, as in the 

construction of the sets E n, then it would follow th a t the intervals comprising 

Vn would have lengths decaying exponentially.
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We know this to be false, but on the other hand if rn —> 0, then the 

sequence of slit-disk maps must be converging to the identity map. Now apply 

Pfluger’s theorem for small r as in the proof of Lemma 4. In this case, if we 

are far enough out in the sequence the image of the circle {|z| =  r} is within 

the annulus { r( l  — e) <  \z\ < r ( l  +  e)}, so that

O'jr
m o d ( r r (Vn )) >  1 .

Then

cap (1 4 ) >  lim ~^= expr—.0 y/r
= y/1 — e.

log Tfhr(l-e)

This means th a t 7(14), and thereby 7 (1 4  U E n), becomes arbitrarily small as 

n  —► 0 0 .

Let (j,n be the equilibrium distribution for the set Vn U En. Then by def­

inition n n(En) =  cu(0, E n, C \  {Vn U E n}). By adding the boundary compo­

nent {|z| =  2} we decrease the harmonic measure of E n from the origin in 

{C \  {Vn U £?„}}, so th a t w(0, E n, D(0,2) \  {E n U Vn}) <  fin{En). We show 

that in fact fin (En) —»■ 0.

Suppose th a t n n{En) > e for all n  and consider the energy integral
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7 (1 4  U E n) = j  J log ■  ̂ d/Xn(g)d/Xn(y)

=  J  J  log |g ]_ | dfjm(x)dfxn(y) +
Vn Vn

/ / l0g +
En En

2 1 1  ^  [s '-  y l^ ( X) ^ n ( j / )  (1.7)
v„ En

Since and are probability distributions on E n and 14, re­

spectively, we have th a t f En f En log j ^ j d ^ n(x)d/nn(y) > {pn(En))2j ( E n) and 

fvn fvn loS j^ = ^ / in(x)d//n(t/) > {fJ-n(Vn))2̂ (Vn). Using our assumption th a t //„ 

gives mass at least e to E n, we can write Equation 1.7 as

7 (U„U£n) >  ( l - e ) 27 (Un) +  (e)27 (En) + 2  J  J  log - ^ - ~dnn(x)dfin(y) (1 .8 )

En Vn

We know th a t the left hand side as well as the first term  of the right-hand 

side of the preceding equation are approaching zero as n  becomes large. As 

demonstrated at the beginning of the section, 7 (En) >  70 >  0, so unless the 

last term  on the right-hand side cancels out the contribution of e27 (En), it 

will be necessary th a t e —» 0 as n becomes large. In fact the last term  of the 

right-hand side becomes arbitrarily small as n  —* 0 0 . We conclude this by
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observing tha t

/  / log |x J"y| dVn{x W n { y )  =  J  J  \ o g - ^ - j - j d t i n{x)dfin{y)
En Vn En Vn 2

where 0 is as shown in Figure 1.6 below.

Figure 1.6: Definition of 9

Fix y e  E n and a  small 90 > 0. Then the integrals f Vn log are

bounded below, respectively, by a sequence of Riemann sums approximating 

the integral log ^ j d 9 .

I
Vn

[n/21

log — —gdnnix) <  2 V  -  log — l—  
2 s m f 2 s m f

where 9j is the angle corresponding to  % as in Figure 1.6.

Since J^  log j ~ j d 8  —» 0 as 6q -h- 0, the last term in Equation 1.8 cannot 

cancel out the positive contribution of e27 (En) to the energy integral of E nUVn. 

The mass \in{En) therefore cannot have a positive lower bound.

33

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



So for any e >  0 we can choose n  large enough th a t w(0, E n, D (0,2) \  {E n U 

Ki}) <  e- Then as shown in Equation 1.6 the constant c in Lemma 9 cannot 

remain bounded below 1. □
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1.4 Proof of Theorem 1

Theorem 1 follows from Lemma 11 below by Lemma 1.

L em m a 1 1 . Let K  and {0„} be as in Theorem 1, and fix S >  0. Then for  

any e there is an n  such that the set E„ = {x  e  : |fin(x) — 0(^)1  >  has

c a P K E n <  e -

Suppose Lemma 11 to be true. Fix e > 0. Choose a sequence {g€,j} positive

real numbers as in Lemma 1 . Choose a subsequence {0i15 0 i2, • • •} of {0n} so 
1

tha t j k (E i .) > gej . Choose another sequence {g z j} ,  and extract from
1

subsequence {02l, 022, .. .}  of {0in 0 i2, . • •} so th a t 7 k {E£ ) > g z j .  Continue 

the process inductively to create a sequence of nested subsequences having 

the property th a t 7 k (E?. ') > g ± tj. Then the diagonal subsequence {0^} 

has boundary values {0 j-} which cannot fail to converge on a set of positive 

/^-capacity.

We assume th a t the E ^ s  for our sequence have logarithmic capacity uni­

formly bounded below since Lemma 11 would be trivial otherwise. We claim 

that the following lemma is sufficient to prove Lemma 11.

L em m a 12. For all k  € N there is nk sufficiently large so that E snk can be 

written as

U*=i w h e r e  =  <  n

and such that
1 ^

7 (E l k,j) >  ~ c (S)i where ^ 2 Pi <  1- 
P j  3 = 1
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Define m (k)  =  inf 2̂ (3-n  ^
x,y&[e' * ,e* k

K \ x - y \  
log | i - y | . Suppose Lemma 12 is true.

Let v  be the minimizing probability distribution for 7K { E „ k ) . Define <7j = 
u(Eflkj ) ,  so th a t Y^Tj= \aj = 1- Then T. . =  then is a probability

distribution on E ^ j .  Let Hj  be the equilibrium distribution for E * k j .  Then 

the energy integral for E ^ k can be written as

7 k « )  =  II K (\x  -  y\)du(x)du(y)

k
= X I f  K ( \x -y \ )d v { x ) d v ( y )  + ^ 2  f f  K (\x  -  y\)du{x)du{y)

j = 1 J  J  J  J
k
XX2 f f  K (\x ~ y \ ) dVj(x)dl/j (y )
j = 1 J J

k
m (k ) X^i J J log ^ dv3( x ) d ^ ( y )

m (k ) X ai  J J log |x \
> m { k ) ^ H K j

>

>

>

i= 1
k

> m ( k ) ^ 2 a ] ^ - c ( S )  
Pi3=1

>  m (k)c(6 )

The last inequality uses the fact th a t if X )j= i0 3 =  1 and Ylj=i Pi — 1 then 

^2j- 1 ^  — T This can be proven by induction. By choosing k  large enough, 

we can ensure th a t m (k)c(8 ) > log j ,  so th a t ca,pK(Eflk) < e.

So proving Lemma 12 is the main issue in the proof of Lemma 11. To get
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a sense of how the proof will work in the general case, we prove the lemma for 

the particular case of the sequence of slit-disk maps in Section 1.3.

1.4.1 Proof of Lemma 12 for Slit-Disk Maps

The geometry of the slit-disk domains in Section 1.3 makes the decomposition 

described in Lemma 12 very natural.

From the symmetry of these sets it must be true th a t each of the n  com­

ponent intervals of E sn has equal energy 7 ( E ^ ) ,  so to  prove Lemma 12 in 

this particular example we show that we can set Pj = £ for all j , or in other 

words, that

7 « , )  >  n  • c(S).

We will use the reformulation of Pfluger’s theorem, Corollary 1. Pick R  very 

close to  1 so th a t \<f>(x) — 4>{Rx)\ < |  for all x  e  c®. Let N  be such th a t for 

n >  N ,  |<p(Rx) -  </>n(Rx)\ <  f.

Note first th a t for such an n, the set is contained in the set

r
E 5n =  {x  € <90 such tha t |<f>n(x) -  (f>n{Rx)\ > -}

£

We will actually show th a t the /^-capacity of E sn is smaller than e by proving 

Lemma 12 for E*.

We place an upper bound on the modulus of (R) as follows.
n *j

Let T'(R) be the image of T es (R) in the domain Qn Consider the metric 

p(z) = f for z e  { f ( j  -  1) < arg(*) < &j,  i  +  f < |z| < \  +  5}, and p(z) =  0
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otherwise. This metric is admissible for the family T' connecting the curve 

(j)n{\z\ = R) to <f>n{Enj)  as shown in Figure 1.7 below.

Figure 1.7: The metric p(z) is supported in the shaded region.

This gives the bound

m od(r'(.R)) <  j  J  p2dxdy < area(supp(p)) <  S + <̂52).

So tha t

' y ( K j )  -  4 ( 2 5 +  4 )  - l o g 7 ^ ’

which for n  sufficiently large proves Lemma 12 with c(5) =  25+35$

1.4.2 Proof of Lemma 12

A key observation from the case of the slit-disk maps is th a t what enabled us 

to prove th a t
1 k

7 ( ^ 1  j )  > —1c(<y), where ^ P i  ^  1- 
Pi j=i
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was the fact th a t the moduli of the curve families Tps (R) could be computed
nk'i

using a constant metric p — |  in a set of n  disjoint subsets of a finite-area 

region. The n  regions were naturally defined by the geometry of the slit disks. 

In the general case we cannot assume that n  points {zj = e1̂  }”“q will divide 

the region between 4>n{{\z\ =  R }) and </>„({|z| =  1}) into the appropriate 

subregions, but as we show in the next lemma, we can take arbitrarily small 

neighborhoods {Uj}  of the points { z i , . . . , zn} and be sure th a t there is a 

subsequence {4>nk }  so th a t for each j  some x  G U j  has |<j)n(x) — <fin(Rx)\ very 

small. In other words, we want to have a picture like the one below.

Figure 1.8: The goal of Lemma 13

L em m a 13. Let {</>„} be a uniformly convergent sequence of conformal maps 

of  B and let U =  UUj be a collection of neighborhoods of the points {zj} in 

c®. Then for  any rj > 0 and R  < 1 there is R ' G [/?, 1) and a subsequence 

{<pnk\  so that for all and each j  there is at least one X j  G U j satisfying 

|<t>nk{ R ' X j )  -  (t>nk { X j ) |  <  p .

P roo f:

We show th a t the lemma holds if U is just one interval. The complete 

result follows by taking a sequence of n  nested subsequences. We assume
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without loss of generality tha t =  M  € N, so th a t c® can be expressed as 

the disjoint union of U \, . . ., U m ,  each a copy of U.

The proof of this lemma follows almost directly from Corollary 1. The part 

we will use is
1 IT

u;(0, U, ED) <  cap(t/) <  —j=e  mod(rv(fl)>
v  R

Suppose there is N  £ N such th a t for all n > N  there is no appropriate x  

in U. Then

mod(rR(t/)) <
T

where an(R) is the area of the annular region <pn({R  < \z\ < 1}). The measure 

of U is forced to be small by making an(R) small. If there is some R' > R  

for which lim ^oo  an(R') =  0, the proof is completed. If we define a(R) = 

liminfn-Kx, an(R), and if lim#_>i a(R) =  0, then the proof is again complete.

Now consider the case in which a(R') >  a 0 >  0 for all R! >  R. Then as 

above, we have th a t

mod(TR(U)) <
T)*

However, we can also write r#(<9D) =  L)!%=irn(U m), so th a t

M

m o d (rfl(dD)) <  m o d (rfl(I7m))
m =l

r ~ T  -  M -m o d ( rR(I7)) 
lo§ S
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Combining this inequality with the one in Equation 1.4.2 we have

Since =  \U\, Equation 1.4.2 is equivalent to \U\ <  2$ log-I. This is a 

contradiction for R  sufficiently close to 1 , completing the proof.

□
We would like to  say th a t each of the fingers in the region <f)nk({R' < 

\z\ <  1}) supports an admissible constant metric p = c(8) for the family Fj of 

curves from {\z\ =  R'}  to E*kj .  We must show th a t such a p is admissible. 

We first prove this under the assumption th a t dFln is locally connected for all 

n, or equivalently, th a t all of the maps <pn have continuous extension to the 

boundary, </>n, on all of 3D.

Let Bj = D(cpn(R'xj), p). Consider the components of Qn \  {UjBj U 

(f>n(D(0, R 1)}.

Figure 1.9: The regions Ui, . . . ,  Un

Sort these components into n  disjoint sets U i, . . . ,  Un, where a component 

U is included in Uj if its preimage in the disk has part of its boundary lying
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on the arc [xj, Xj+i].

By the continuity of we can choose n  so tha t if

I Xj -  s j+1| < y  +  2~k2 I^xj) “  ^ (xj+i)I <  y5q-

By the local connectivity of fl, we choose R  sufficiently close to 1 so tha t

r
|<f)(x) — <f)(R'x) | <  for all z € 3ID) and all R' > R.

Now choose 77 >  0 so th a t if zx, z2 are two points of 4>{{\z \ =  R}) and 

\z i — 221 < 7 7  then there is a continuum from zx to z2 in 4>{{\z \ = R}) of 

diameter smaller than  3̂ 5 • Assume without loss of generality th a t 77 <  3̂ .

Apply Lemma 13 as described above to extract a subsequence {<fink} and an 

R' > R  so th a t to  each k  there is associated a set of n  points x x, . . . ,  x n 6  3D 

with |Xj — Xj+1| <  4 . 2_fc2, and so that

{(pn^R'xj) -  (f>nk{xj) | <  V for all j.

By choosing k  large, we can be sure tha t

\<t>(R'x) -  (pnk(R'x)\ <  77.

Now if a point z is in the set E^kj  then \<j>nk(z ) — <Piz )\ >  <5, and \<j>nk{x) — 

<pnk(R 'x) | >  W hat the list of inequalities above gives us is th a t any 

point R 'x  on the arc <f>nk([R 'x j,R 'x j+1]) is within 5rj of either <t>nk{R 'xj) or 

(t>nk{R'xj). Let C  be a member of the curve family Fj. If C  starts a t a point
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on <f)nk([R'Xj, R'xj+i]) it must travel a distance of at least 8 — 577 through Uj 

to reach E^kj .  The same is true if C  passes through either of the balls Bj  or 

B j+1. It will be troublesome, however, if there is a C £ Tj which does not 

fall into one of these two cases. This would be possible if there is a portion of 

4>nk{ R ' )  which makes a loop into Uj, offering a shortcut to curves on their way 

to EL v  as in Figure 1.10.

Figure 1.10: The dashed Line is <f>nk(R ')

The value of 77 above was chosen so th a t if a loop begins and ends in an 

77-ball, it cannot have diameter greater than We showed this for a loop 

of 4>({\z\ — i?}), and the other inequalities show th a t the same holds true for 

<t>nk{R') if we replace ^  with

So each Uj supports, an admissible metric p =  Since the UjS are

disjoint and contained in a ^-neighborhood of dQ,, we can write modT^ <  

Pj ’ where area^((5) is the area of the above mentioned 5-neighborhood 

of dULn and YTj=\ Pj <  1-

We therefore have by Pfluger’s theorem th a t for each j

(95\2 , ,

7 ( B j ) - ? ^ ( j ) - l o g  V l"

43

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



with E " = i P j  <  !•

Removing the Assumption of Local Connectivity

Let e' be the smaller of |  and +  2~fe2). For each n, let A n be an open 

subset of dU) w ith cap(An) <  e'2~n~l such th a t <pn extends continuously to <90 

off of A n. By Lemma 1, we can define the set A  = UAn with cap(A) <  ^ so 

th a t all maps in the sequence {</>„} have continuous extension to  the boundary 

off of the set A  with cap(A) <  e'. We will assume th a t A  is contained in each 

set and show th a t the part of E* on c© \  A  has capacity smaller than 

Choose R  sufficiently close to 1 so th a t on the compact set <90 \  A we 

have 14>{x) — (p{Rx)\ < r7. In the previous section we applied Lemma 13 

inductively to  the sets Uj which were 2 ^-neighborhoods of the points 

{eJT T respectively , to generate a subsequence {4>nk}  with the property that 

for each k there is a set of points {x j}  with Xj G Uj. In this case we apply the 

same lemma to  the sets Uj — U j \ A  with the same results. For n  sufficiently 

large there are R' > R  and points x \ , . . . , x m on <9ID) none of which are in A  

but which may change with n, so th a t |Xj — Xj+1| <  |  +  2 -fe2 and so tha t 

\<pnk(R 'xj) — <f>nk(x j)| <  rj. We again assume that all values of nk are large 

enough to  ensure th a t 14>nk{R'x) — <f>(R'x)\ < r).

Let I i , . . . ,  I s  be the components of the open set A. For each Ij consider 

the circular arc Ij (9) lying in D having the same endpoints as Ij and meeting 

c© at an angle 6. Fix Oq so tha t the arc of angle 29o lies in the annulus 

{ R 1 < \z\ < 1} for each Ij, and set Ij = Ij(9o). Let D  be the domain bounded 

by the arcs Ij and <90 \  A.

Let the sets Ej  be the intersection of \  A  with the arc between Xj and
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Figure 1.11: The domain D  and the points x \ , . . . ,  x m

Xj+1- We can then compute the modulus of T Ej(R')  in 4>n { D )  just as in the 

preceding section. To apply Pfluger’s Theorem as before, however, we must 

account for the fact th a t these moduli were computed in the image of the 

restricted domain D. Let Vj  be the crescent cut out of D by the arc I j .  We 

know th a t p o 4>n(z) is an admissible metric for the curve family connecting 

D (0, R!) to Ej in the restricted domain D. We can extend this metric to Vj 

as p'{z) =  pj o cftn  o t ( z ) ,  where t ( z )  is the Mobius transformation reflecting Vj 

across I j  onto the crescent bounded by I j  and Ij(29o).

Figure 1.12: Extending the metric p o 4>n(z)

Since the reflected regions are all disjoint, we at worst double the area 

attributed to the curve family by p1, and so at worst halve the contribution
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to the energy integral for each family. See Figure 1.12. Therefore, for the 

non-locally connected case, instead of Equation 1.4.2 we have

7r(— 1 4- r <y(E ) > ■—   log - Z . -
-  P ^area  +(S) g y/R  ’

proving Lemma 12. 

□
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Chapter 2

Computer-generated Quasiarcs

Let 7  be a quasiarc in the complex plane, th a t is, 7  =  0 ([0 , 1]) for a K -  

quasiconformal homeomorphism 0  of C onto itself. Denote the endpoints of 7  

by a = 4>(0) and b = 4>( 1). If /  is the Riemann mapping of the exterior of the 

unit disk to  C \ 7  taking —1 to a and 1 to b, we associate to  7  a quasisymmetric 

self-map h of c© defined as follows:

f

'n

Figure 2.1: A quasiarc and its associated quasisymmetric map of c©

For x  e  <9D let {xn} be any sequence of points in B* converging to x. Then 

{zn} with zn = f { x n) will converge to w e  7 , as will wn where wn = <j>o (f>(zn). 

Let yn =  f ~ 1(wn), and define h(x) 6  5D to be the limit point of the sequence

Un-
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Observe th a t h is orientation-reversing, fixes ±1, and th a t h o h(z)  =  id. 

We will use the letter h to refer exclusively to such maps.

Conversely, given any h, there exists a corresponding quasiarc which we 

will denote 7 h and a conformal map fh from D* to C \  7 /, so th a t x  and h(x)  

are identified under the continuous extension of fh  to  <9B. (see again [Bis03]) 

We give a  new proof of this fact, Theorem 7, by constructing a sequence of 

maps { /n} converging to f h.

Our approximating maps {/„} are explicitly constructed from finitely many 

“pinching” maps of the form P{a,b}(z) = taking the exterior of the

segment connecting a and b conformally onto the exterior of a  pair of disks of 

radius |  tangent a t the origin.

Figure 2.2: The basic pinching map

Due to  the explicit construction of the maps { /n} it is not difficult to write 

computer programs to generate pictures of quasiarcs corresponding to a given 

h. See the last section for examples.

For distinct points x  and y  lying on the boundary of a disk D, the function 

P{x,y}{z) maps the complement of D  conformally onto the exterior of a pair 

of tangent disks, identifying the points x  and y  at the point of tangency. Fix 

an h. Let x q , . . . , x n+i be equally spaced points on the upper unit semicircle,
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Xq =  1, x n+\ =  — 1. We define f n to be the composition of the n  maps 

which pinch together the pairs {oq, h{x i ) } , . . . ,  {xn, h(xn)} in succession, f n = 

Tn 0 P{xn,h(xn)} ° ■ • ■ ° ^{xi,/i(xi)}(2)- The map rn(z) is a linear normalization 

ensuring th a t f n fixes ±1. We refer to the collection of pairs {{xj, h (x j)}}” as 

the ‘pinching d a ta ’ for f n.

Figure 2.3: A composition of five pinching maps

Each f n maps the exterior of the unit disk conformally onto the exterior of 

a chain of n  4-1  closed analytic curves, the two leftmost of which are circles. 

Each “pinch” , or point of tangency, corresponds to  the identification of a point 

a: 6  3D with its image, h(x). Our idea is to show tha t as n  becomes large, 

these chains converge to a quasiarc 7h with the properties described above, so 

that the sequence of maps {/„} converges to fh-

T h e o re m  7. Let h : <90 —> 5 0  be an orientation-reversing quasisymmetric 

map , fixing ±1 , and satisfying h o h (z ) =  z. Then there exists a quasiarc 

7 h and a map f  o f D* to C \  7 ^, extending continuously to the boundary <90 

such that f ( z i )  =  f ( z 2) i f  and only i f  z2 =  h{z{). The quasiconformal map (f> 

of C with 7 ft =  </>([0 , 1]) has constant of quasiconformaility determined by the 

constant o f quasisymmetry for h.
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2.1 Background and Definitions

We recall the definition of quasisymmetry as presented in [Pom92]. A map h 

of 3D is called quasisymmetric if it is one-to-one and if there is an increasing 

continuous function A(x) defined for positive x  such th a t A(0) =  0 and

For self-maps of 3D, we may use the simpler but equivalent condition th a t

\zi -  Z2\ =  \z2 -  z3\ = ►  \h(zi)  -  h(z2)\ <  \ { l ) \ h ( z 2) -  h(z3)\. (2.2)

The second condition has the benefit th a t it is not necessary to refer to a 

function X(x), but we retain the notation A(l) for the constant in Equation 

2.2 so th a t we can employ both characterizations of quasisymmetry in the 

proof of a Lemma 16. We will refer to A(l) as the constant of quasisymmetry 

for h.

Crucial to our proof of Theorem 7 is the fact th a t any quasisymmetric self­

map of 3D is the boundary value function for a K-quasiconformal self-map 

H  of D. For a  given h, the constant of quasisymmetry and the constant K  

of its quasiconformal extension do not in general agree, but there are several 

theorems outlining a relationship between them. For instance, if {hn}  is a 

sequence of quasisymmetric self-maps of 3D with constants (An(l)}  —► 1, then 

the corresponding quasiconformal maps {H n} of D to itself will likewise satisfy 

{K n} —> 1. More specifically, we have the following quantitative relationship 

between the two constants (see [Leh87], pgs. 16, 38).
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A(l) <  K  <  725a(1)_1. (2.3)

Quasiconformal maps have a reflection property like th a t of conformal 

maps. In particular, we have the following lemma.

L em m a 14. Let CI2 be domains with circular boundary components Si 

and S 2, respectively. Let <f> be a K-quasiconformal mapping of fix onto O2 

such that 0 (S J  =  S 2 ■ Denote by fij the reflection ofVti in the circle S,. The 

map 0  can be extended to a K-quasiconformal map between f2i IJ Si (J ^ 1  and

P roo f: We assume without loss of generality th a t each S t is the boundary 

of the unit disk at the origin. First observe tha t the map 0 =  takes 

fii onto f^2- Being the composition of a A-quasiconformal map with two 

conformal maps, it is itself A-quasiconformal [Ahl66]. Clearly 0 is ACL in 

all of Q i \ j S i [ j D i .  The dilatation of 0 is bounded a.e. by | ^ ,  since the 

boundary curve Si has zero area. The map 0  is therefore K -quasiconformal. 

□
We need to  consider the particular case of a K -quasiconformal map 0 : 

f2i —> f22 where f2j is the complement of a pair disks tangent a t the origin. By 

the same argument as above we extend 0  to a A-quasiconformal self-map of 

C \  {0} by repeated reflections across circular boundary components. A point 

is removable for quasiconformal maps, so the map 0  can be extended to the 

whole of C.
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2.2 Main Theorem

We claim it is sufficient to  prove th a t the maps { f n} for h(z) =  z converge to 

the map /( z )  = | ( z  +  1 ), taking the exterior of the unit disk to  the exterior 

of the segment [—1 , 1].

L em m a 15. Let gn map B* onto the exterior o f an n-chain generated from  

pinching data for  the conjugation map. Then gn ^  g = \{ z  + \ ) .

We postpone the proof of Lemma 15 and first explain its sufficiency in 

proving Theorem 7. Suppose for the moment th a t it is so. Lemma 16 below 

shows th a t for any given h, the pinching data  for the conjugation map are 

related to the pinching data for h by a K -quasiconformal self-map of the unit 

disk with K  bounded above by a function of the constant of quasisymmetry 

for h.

L em m a 16. Let h : <9B —► SB be an orientation-reversing quasisymmetric 

map fixing ±1 , with constant of quasisymmetry A(l). Then there exists a 

K-quasiconformal map H  : B —> B with boundary value function given by 

H (z ) =  z for  Im(z) >  0 and H (z) = h(z) for  Im(z) < 0. The constant K  

satisfies K  < 725*~1; where A =  max{2A2(l),  ^ry}-

The proof of this lemma is the content of Section 2.2.1.

Let Ho denote the quasiconformal mapping of the plane taking the pinch­

ing data  for the conjugation map onto the pinching data for h. The figure 

below shows the successive pinchings comprising f n along the top row, and 

the corresponding steps comprising gn along the bottom  row.
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Figure 2.4: The sequence of quasiconformal maps {H n}

Consider the map PX2,y2 o H0 o P ~ ^ ( z )  between the domains in stage one. 

it is a K -quasiconformal map from the exterior of a pair of tangent disks to 

the exterior of another such pair. As shown in Lemma 14, this map can be 

extended to  a K’-quasiconformal map from C to  itself. Call this map H\. Now 

consider the m ap between the domains in stage two, PX3m o Hi o P ~ ^ { z ) .  

By the same argument we can extend this map to all of C. We call the 

extended map H 2. Continuing this process, we have an n-chain of analytic 

curves generated by the pinching data  for our map h expressed as the K -  

quasiconformal image of an n-chain generated by the pinching da ta  for the 

conjugation map. We denote this map by <f>n. The sequence {<̂ n} is normal, 

and so will converge to a A'-quasiconformal map of C to itself, taking the 

interval [—1, 1] onto the quasiarc 7 h-
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2.2.1 Proof of Lemma 16

P roo f: We show th a t the self-map 77 of c® given by the boundary values of 

H  is quasisymmetric and then use Equation 2.3 to bound K.

If x, y, z  are all contained in {Im(z) >  0} (or {Im(2 ) <  0}) then the 

condition 2.2  is satisfied by the quasisymmetry of h.

The general case follows from the case in which y = — 1. Choose x  with 

Im(:r) > 0, and set z  =  x. Suppose first tha t t](z) = h(x) is closer than  z to 

—1. Since 77 fixes x  and y, it is obviously true tha t

\ v ( y )  -  v ( z ) \  <  W®) -  v ( y )I < M v ( x )  -  y ( y )I

where A is the  constant of quasisymmetry for h. To prove the inequality in 

the opposite direction, we use the fact th a t h is an involution to  write

\ v (x ) — v ( y ) \  =  \x ~ y \

= \h(h{x )) -  Hv)\

< A|h(h(x)) -  h{y)\

where the last line uses the quasisymmetry of h applied to  the intervals 

(—1, h(x)) and (—1, h(h(x))). By assumption h(x) lies in the interval between 

y — —1 and z = x, so it must also be tha t

\h(h(x)) -  % ) |  <  |h{x) -  % ) | .
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By definition of 77 and the preceding inequality, this gives

\v{x) -  v(y)I < A|h(z) -  % ) I = Mv(z) -  v (y)I-

A similar argument demonstrates quasisymmetry of 77 in the case when 77(2 ) =  

h(x) is not contained in the interval between y — — 1 and z  — x. The inequality

\v(x) -  v(y)\ < \v(y) -  v{*)\ < Mv(y) -  v(*)\

follows immediately. In the other direction,

\ y ( y ) - y ( z )  I = \ H y ) - H ^ ) \

=  \h(y) -  h(h(x))\

< X\h(h(x)) -  h(y)\

<  \ \ x - y \

< \\rj(x) -  rj(y)\

Note th a t we have shown tha t | / |  is comparable to |77( /) | w ith constant A for 

any interval I  on <9B with one endpoint in {lm(>)0}. Prom this it follows 

easily th a t the quasisymmetry condition will hold with constant A whenever 

both x  and y  are in the upper halfplane.

Now suppose th a t we are given x , y , 2 with \x — y\ =  \y — z\, and both y  

and 2 in the lower halfplane. First we find an upper bound for . Since

\z ~  (-1)1 <  2 |y  -  z\, then \q{y) -  rj(z)\ < \r](z) -  y ( - l ) \  < A|2 -  (—1)| <
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2A|y -  z |. For the denominator, \r](x) -  i](y)\ >  j |x  — y |, by applying the 

observation in the preceding paragraph to  both \x — (—1)| and |y — (—1) 1- 

Therefore- £ 2A2-

To determine a lower bound for , we first rewrite the expression

in terms of h , and use the fact th a t h is an involution:

\ v ( y )  -  v ( z ) \  \ h( z )  -  K v ) \  IM*) -  K v )I
\v(x ) -  v(y) I \x -  h(y) I \h O h (x ) -  h(y) \ '

In other words, we axe finding a lower bound on the ratio of the images of 

the adjacent intervals (z ,y )  and (y,h(x)).  But from preceding arguments,

Ih(x) - y \  < X\x - y \ .  Therefore since we have that

\y{y) - v ( z ) \  = Ih(z) -  h(y)\ 1
\y (x )-r ] (y ) \  \h o h(x) — h(y)\ ~  A(l)

by the quasisymmetry of h. We conclude th a t for any adjacent intervals (x, y) 

and (y , z ) on d  with \x -  y\ = \y -  z\, ^  <  A', where A' is the

maximum of 2A2 and -t-t-.

□

2.2.2 P roof of Lemma 15

It now remains to  be shown th a t the sequence of n-chains generated by pinch­

ing data for the conjugation map converges to the segment [—1,1]. This relies 

upon the following lemma.

L em m a 17. Let f2 be the complement of an n-chain constructed as above. 

Label the n  closed curves comprising the chain b i , . . . , b n . Then for each
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j  — there is an annular region A j having bj as interior boundary

component and intersecting the boundary of Vt only on adjacent curves 5j_i 

and bj+i, and such that the family  Tj of curves separating the boundary com­

ponents o f A j satisfies modfTj) >  M q

We will show th a t for all n, any pair of adjacent curves bj and bj+ 1 in an n- 

chain contain balls Bj, Bj+1 centered on the real line of comparable diameters. 

The constant of comparability, Co, is independent of n. This will imply the 

existence of the annuli described in Lemma 17 by observing first th a t the 

curves {bj} lie in disjoint vertical strips in the plane Sj, and th a t the annular 

region { S j - 1 U Sj U Sj+1} \  Bj  has modulus at least M q.

Figure 2.5: Blobs are contained in disjoint vertical strips

Suppose there is an e such th a t for arbitrarily large n, the corresponding 

n-chain is not contained in the rectangle {2 ||Re(2)| <  2, |Im (2 )| <  e}. Then 

for n arbitrarily large, at least one of the blobs in an n-chain intersects the 

line Im(z) =  e. Let zq € BJ  be one such point of intersection. From the
— 2ir

preceding argument, there is a disk of size at least ro =  2ee~J*o, centered at z0, 

and contained in the union of BJ  and annular region about BJ  described in
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Figure 2.6: The annulus A(z0 ,r , e)

Lemma 17.

This follows from the fact th a t any element of the family of curves sepa­

rating the boundary components of the annulus A(z0, r, e) NOT contained in 

Aj contains an element from the family of curves connecting the boundary 

components of the annulus A j about bj.

The metric p which minimizes the area integral for f j  in Aj is admissible 

for the family T separating the boundary components of A(zo, r, e), and so

mod(T) <  / /  |a(ZOlr,e)P(x)p{y)dxdy  <  m od(fj)

since the area of Aj is greater than th a t of Aj D A(2b,r,e). This is equivalent 

to

2?r > M 0log er0

Which gives the correct bound on r. Note now that the harmonic mea­

sure of the disk D(zo,ro) intersected with the n-chain has a lower bound u>0
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independent of n.

Figure 2.7: D (zo ,r0) has harmonic measure bounded below independent of n

Since at most three blobs intersect the disk, one or more blobs will have 

harmonic measure at least This is surely false, since any given blob in an 

n-chain has harmonic measure exactly K  We see therefore th a t for the map 

h (z) = z, the sequence of n-chains is converging to the segment [—1 , 1].

2.2.3 Proof o f Lemma 17

We begin by making a few observations about the blobs in our n-chains. First 

observe th a t each blob is convex. The proof of this fact is left for the reader 

(G rant-that means you). Coupling this with the conformality of the maps off 

of the segment connecting x  and x', so tha t each blob must meet the real axis 

at a right angle, we see th a t the blobs are contained in disjoint vertical strips 

in the plane.

We must show th a t as the pinching sequence is executed, each series of 

three consecutive blobs has the property th a t there is an annulus of modulus 

at least Mo w ith the center blob as interior boundary component and not
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intersecting the chain other than in the two adjacent blobs.

Given a point r  on a  disk D  positioned as shown in Figure 2.8, the di­

ameters of the circles bounding the image domain are functions of the angle 

labelled 6. Neither of the resulting disks can have diameter smaller than  K  

The disks both have size |  when 6 =  | . The derivative of a function P^x, -py(z) 

is (P{x>~7}(z ))2 j , for 2 € R. I t’s norm is minimal at the origin and in­

creases w ith 2 .

1/0

Figure 2.8: The pinching map

Note th a t it will always be the case tha t 6' > 9. This follows from the 

fact th a t the smaller of the disks and the arc between 0 and x ' must have 

the same harmonic measure. Let 9j be the angle analogous to  O' for the jrth 

step in the length n  pinching sequence. We will use the fact th a t the sequence 

6 1 , 6 2 , . . .  ,9n is increasing.

We split the process of generating an n-chain into two periods characterized 

by the size of 6 j  for the current pinching map. Fix 6 0  small and positive (the 

exact value to  be determined in a few paragraphs). Then we break our indices 

j  =  1 , . . . ,  n  into three sets. The set { j  = 1 ,2 ,. . .  ,N i}  consists of the indices 

for which 9j <  90. The second set { j  =  N x +  l , N i  +  2 , . . .  ,n )  consists of
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indices for which 9q < 9j. By choosing n  large, we can insure th a t neither of 

these sets is empty. In each period we have bounds on the size of the the new 

disks being formed and on the distortion of the diameter of ” older” curves in 

the chain under the formation of the new disks. We assume n  to be very large 

in each case.

F ir s t  S tag e : Fix 90 very small. And suppose Xj-i,X j,X j+ i all have 9j < 9q 

Performing the  pinching map PXj_x will yield two tangent circles: one of radius 

at least ^  on the left, and one (called bj-i) of radius between £ and on 

the right. We want to estimate how the size of bj_i will change as we continue 

pinching the left circle with PXj. On one hand, we know th a t the imaginary 

component of Xj, the next point to be pinched, is at least as great as the radius 

of the disk bounded by bj.

On the other hand, if the diameter of bj is sufficiently small in comparison 

to the diameter of Bo, (in fact the ratio is 2L̂ a), then the imaginary component 

of Xj cannot be too many times greater than the radius of the disk bounded 

by bj.

If it were, then the boundary of the disk bj would have harmonic measure 

smaller than  th a t of the arc between zero and x ' on the boundary of Bo- This 

situation becomes more extreme as the ratio R  of the diameter of B0 to the 

diameter of B \  increases, so there is some fixed M  such th a t if 9j  <  90, then 

Im(x') € (|d iam (bj_!),M diam (bj_i)).

These observations imply the existence of bounds on the derivative of

P{x',F}(z )>
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a t  2  €  R .

^ \ x j  -  z\ 2 < P'x .{z) < 16Mtt {PXj{ z ) f

The same bounds will hold for PXj+1(z), so since each ball has diameter in 

the range when initially generated, after applying the composition

PXj+1 o PXj(z) there will be c\ , C2, C3, d > 0 so th a t bj is contained in an annulus 

of inner radius d  and outer radius C\d, and b j-\,b j+\ each contained in annuli 

of inner radius c2d and outer radius c^d. This is sufficient to demonstrate the 

existence of the annulus described in Lemma 17.

Consider the union of the three vertical strips containing 6j_ i, bj, and fy+1. 

This region will have width at least (1 +  2c2)d. Truncate the region above 

and below the real axis at a distance of 2c\d. The annular region A  obtained 

by removing the interior of bj from the rectangle just described will have area 

no greater than  (1 +  2c2)d • (2cid) — (cid)2 and any curve connecting bj to 

the boundary of the rectangle must have length a t least c2d. This yields a 

lower bound on the modulus of the family of curves separating the boundary 

components of A, so mod(A) >  .

Second Stage: We now consider the period during which Oj > 90. First 

note th a t there is a 9 < ir bounding the argument of Xj above. This is because 

for 9 very close to 7r, the resulting balls will have R  «  1, yet the smaller 

ball must have harmonic measure at least as great as the large one. This 

must be false for reasons similax to those used in the first paragraph of this 

proof. It holds therefore th a t during this period any newly generated disk 

will have diameter in the interval ~ g )-  Again, the distortion of disks
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under subsequent pinching maps is bounded, so th a t any three consecutive 

bjs generated during this period will be contained in annuli whose radii have 

bounded ratio. As in the first stage, this will correspond to a lower bound on 

the appropriate annular region.

Finally we must consider the case where a chain of three consecutive blobs 

comes partly from each of the two stages. For n  sufficiently large, we can 

insure th a t whenever this is the case, the three corresponding 9jS are all in 

an e-neighborhood of Oq. We can therefore apply the same estimates as above 

with arbitrarily small adjustments. □
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2.3 Computer-generated Quasiarcs

We now provide several computer images illustrating application of this pro­

cess. In the first two examples, the function used to generate the pinching 

data is shown a t the top of the figure. The figures show the result of pinching 

for data sets w ith 10, 50, 125, 250, and 500 pairs of points.

71

3tt
4

0 £  7T2

Figure 2.9: A piecewise-linear Function
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Figure 2.10: Another piecewise-linear function
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In several cases we have made use of Donald Marshall’s numerical confor- 

mal mapping software ZIPPER [Mar] to generate appropriate pinching data 

without the need for an explicit h. The ZIPPER software creates approximate 

maps which are the composition of the extensions to the boundary of Riemann 

map (j) from the interior of the unit disk to the interior of a quasicircle with 

the conformal map of the exterior of the same quasicircle to the exterior of 

the unit disk. We then normalize to insure th a t ±1 are fixed, and reflect the 

points across the real axis to get an appropriate involutive quasisymmetric 

map. In the first example (see Figure 2.11) we began with an approximate 

Von Koch snowflake f2768 (of 768 vertices). The lefthand column shows the 

output of pinching 11,31,52,103,307 and 1530 points. The righthand column 

shows just the points of tangency connected with straight segments for the 

same pinching data.

Figure 2.11: The welding map for the 768-sided snowflake curve
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Figure 2.12 shows the quasiaxc resulting from a map created as in the 

preceding example, but corresponding to a square instead of a snowflake.

Figure 2.12: The welding map for a square
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The next example shows the result of using a non-quasisymmetric map, the 

h{9) =  92. In the zoomed box one can see tha t the curve is spiraling inwards. 

The is because a  length of curve must have harmonic measure u  on one side 

and u)2 on the other side. Since the derivative of h(9) = 92 is zero at the z = 1, 

the curve spirals inward. The chains shown are for pinching data  sets of 10, 

50, 125, 250, and 500 pairs of points.

C

Figure 2.13: The resulting curve for a non-quasisymmetric function

68

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 3

A Proof of K oebe’s Theorem for Finitely  

Connected Domains

3.1 Introduction

We give a proof of Koebe’s well-known circle domain theorem:

T h e o re m  8  (K o e b e ) . Let flo be a domain in the complex plane with n bound­

ary components, where n  < oo. Then f2o is conformally equivalent to a circle 

domain with the same number of boundary components.

In the case where flo has just one boundary component, this is the Riemann 

Mapping Theorem. We use induction on the number of boundary components, 

n, to prove it in the general case.

We assume all of the boundary components to be nondegenerate, since the 

inductive process is trivial otherwise. If zq is a degenerate boundary component 

of fio, then by hypothesis there is a conformal map /  from Qq U zq to a circle 

domain $V with n  — 1 boundary components. The image of zq under such 

a map is a point zq , so th a t / |n 0 is a map from onto the circle domain
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£V -  {^o^-

Under our inductive hypothesis, we may assume th a t all but one of the 

boundary components of Do are circles, denoted , . . . ,  C ^ _ x. We denote 

the non-circular boundary component by 70 , and assume th a t 70 bounds the 

unbounded component of <C\Do- We may also assume th a t C° is the boundary 

of the disk of radius po  centered at the origin.

Let f i  be a  conformal map of Do U D (0, p o )  into ED such th a t C ° ,  ■. ■, 

map to circles, and such tha t 70 maps onto T. Let Di be the image of Do 

under the composition of /1  and the map where the contraction factor 

r\ is chosen so th a t dist(0 , 7 i) =  1 , where 71 denotes the exterior boundary 

component of Q,\. Let C l , . . . ,  denote the interior boundary components. 

Define gx{z) : D0 -» Sli,g i(z) = j f e -

Figure 3.1: 71 is closer to being a circle than  70

We define gk(z) : Q0 —> inductively. Let gk(z) = °9 k-i(z), where

f k is a map of f lk- i  into D analogous to f \  above. Let 7  ̂ be the image of 70 

under the map gk.

We claim th a t the sequence {gk} has as a limit the desired mapping of Do 

onto a circle domain. This results from 7 fc+i being closer than  7 *, is to a circle 

in the following way:
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L em m a 18. Define Rk to be the maximum value of \z\ for z  6  7*.. Then

1 <  Rk + i  <  (R k ) C(Rk),

where C { R k )  < 1 whenever R k  > 1.

Note th a t 7 *. is a circle centered at the origin iff Rk = 1.

Application of the Schwarz-Pick Inequality for multiply connected domains 

[HS93] to fk  from ft* into B shows easily th a t Rk+i < Rk (this is the content 

of the next section). The sequence {gk}, with \gk(z)\ <  R o ,  is therefore a 

normal family, possessing a limit function g to which a subsequence {gnk} 

converges uniformly on compact subsets of fio- Evidently g is holomorphic 

and non-constant, so it must be univalent. The crux of this proof of Theorem 

8 consists of showing th a t Rk —* 1 for any subsequence of {gk}, as Lemma 18 

provides.

S ketch  o f  p ro o f  o f  L em m a  18: To prove Lemma 18 we consider the har­

monic function log fk+l (z)
z in the domain Clk U D (0, pk) and show that there 

is a lower bound, c(Rk), on the harmonic measure (from a point in C f) of the 

portion of 7 k which is closer than  y /R f  to the origin.The Schwarz-Pick Lemma

on each of the interior boundary components.will show th a t ^  < fk+l(s)
Z

This will yield, for z € C'f,

71

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



log f k + l ( z ) / log |A + i(C )

/ log

dw{ C)

' /* + i(C )
c <M C)

d£lk\{7kn D{0,'/Kk)}

> d R k )  log -~ =  +  (1 -  c(Rt )) log - 7

= cfiy iog -i

where C ( R k )  =  (1 -  <  1.

Now let zi, Z2 be points in C f . For i = 1,2, we have

(3.1)

R 7 C^  < fk+l(Zi) < 1.

Taking a ratio of such inequalities, and using the fact tha t \zy\ =  |^21, we have

R - c (Rk) < /(* i)
f ( z  2)

<  R ck ^ \

So th a t R k+1 =  sup2l)Z2eCf must satisfy

1 <  R k + 1 <
c(nfc)

This will prove Lemma 18, showing tha t any uniformly convergent subsequence 

of iterates of the process in Fig. 3.1 must have Rnk —> 1. Existence of c{Rk) 

is demonstrated in a subsequent section.
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3.2 Schwarz-Pick Lemma for

M ultiply-Connected Domains

Let p® denote the hyperbolic metric in the unit disk.

T h e o re m  9 (H e , S c h ra m m ). Let U  be a domain in the complex plane which 

contains ID), and let Uq be obtained from U  by deletion of n  disjoint disks. 

I f  U i C  ID) is the image of Uq under a conformal homeomorphism f  such 

that the image o f any circular boundary component is again circular, then 

Pd(x, y) > Pd( / ( x ) ,  f (y))  fo r  x, y  in  D D U0.

We apply this theorem to  the functions fk  : U q —► L\ defined above, where 

U q =  Clk-1 U D(0, Pk-i) In particular, we observe tha t each fk  reduces radial

distances, so th a t the holomorphic function will satisfy fk(x) < 1 on

D ID) and U\ = fk(Uo). Clearly the same inequality holds in Qk-i \  I®) 

<  1 on all of We apply the same theorem to  ^  andso that 

obtain 1

fk(x)
X

R k - 1  -

fk(x)

Now for arbitrary z1} € C f 1 (so tha t \z\ \ = \z21) we have 1 < A ( z  i )  
fk(z2 ) <

R k - i -  Using the fact th a t the inversion and normalization comprising the sec­

ond step in Figure 3.1 preserve this ratio, we see th a t Rk = supZx Z2eC*-i

R k - 1-

fk(z1) 
fk(*2 ) <
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3.3 Finding Lower Bound on Harmonic Mea­

sure of D(0, y/Rk) fl 7jfc

Before dem onstrating the existence of a lower bound on the harmonic measure 

of .0(0, y/Rk) fl 7k we must point out a few facts about the domains Qfc. We 

will need to show th a t two interior boundary components of f2jt cannot get too 

close together through the iterative process described above. We will also use 

the fact th a t the interior boundary components cannot get too close to the 

exterior boundary component 7*. These are lemmas 19 and 20 below.

L em m a 19. Fori =  0,1, let A+ be an annular region in fl, with outer boundary 

component 7 ,. Let Ak = gk(Ao) fo r  k odd, and let Ak — gk ° g f l {A\) for k 

even. Then there exists a minimum distance d > 0, depending only on the 

modulus o f A q, between the two boundary components o f any A k-

P ro o f: Fix i = 0 and assume k  odd. Suppose a ball of radius 77 with center in 

Ak intersects both  boundary components of Ak- Define A /  to be the annular 

region between the disk of radius 77 and a disk of radius r^ > 77 . Then for 

\  <  r 2 <  1 , any member of the family of curves separating the boundary- 

components of A /  will contain a member of the family of curves connecting 

the boundary components of A k . (Note th a t we can choose 7*2 to be at least 5 , 

since 7 *. always lies outside of the unit disk and 0 £  fl0.) If Mo is the modulus 

of the family of curves separating the boundary components of A q, comparison 

of moduli shows th a t

s logO - Mo
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so tha t

n  >  r2e~2'nMo > I e“27rMo.
2

Therefore, if M q is the modulus of any such annulus in f2o, the above 

estimate provides a lower bound, do =  ^e~2nMo, on the distance between 7 *. 

and the other boundary components of Clk- Similarly, we find a lower bound 

for the distance di between the boundary components of Ak for k  even and 

set d — min{do, di} □

The fact th a t there is a lower bound on the distance between any two 

interior boundary components of 17*, relies on the limit function, g, being a 

conformal homeomorphism. We show this now, following the corresponding 

section of Ahlfors’s proof of the Riemann Mapping Theorem [Ahl73].

Let gnk be the subsequence which converges uniformly on compact subsets 

of f70 to the limit function g. For any point z\ in f20, define the sequence gnk, 

where gnk(z ) =  9nk{z) — gnk(z{). The sequence gnk will be a normal family, 

with \gnk\ < 2R q, and gnk ^  0 in f7o\zi- According to Hurwitz’s Theorem, any 

limit function of the sequence gnk, in particular g (z ) -g (z i) ,  is either identically 

zero, or nowhere zero in Q0 \  z\. By the argument in the preceding paragraph, 

the image of flo under any gnk must contain an annulus with minimum distance 

d between its boundary components, so th a t the function g(z) — g{z\) cannot 

be constant. Therefore g(z) 7  ̂g{z\) for any 2 € Q0 \  z\, so g is univalent.

L em m a 2 0 . There exists e > 0 such that dist(Cf, C 1-)) > e fo r  any two distinct 

boundary components C f and C 1- o f Q,k .

P ro o f: For each boundary component of Clo, let Aj and M3 be, respec­

tively, the maximal round annulus in Slo with interior boundary C°, and the

75

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



modulus of the family of curves, T j  connecting the boundary components of 

this annulus. Suppose there is a sequence of conformal maps gn of Go, converg­

ing uniformly on compact sets to a conformal homeomorphism g,  such th a t 

for some i ^  h  dist(#n(C "),gn(C")) —> 0. Then for all e > 0, there is a disk 

of radius e with center in some A ", intersecting both  boundary components 

of A ". So long as the disk of radius r 2 >  e does not contain C™, any member 

of the family of curves separating the boundary components of the annulus 

{e <  \z\ < r 2} contains an element of the family gn (Tj ) .  Comparison of the 

moduli of these two families shows

r M i  ) sm- <3-2>
So th a t r 2 can be no greater than ee2vMj. However, any r 2 <  diam (C”) 

is in fact admissible, so th a t diam (C") >  ee2nMi would contradict Equation 3.2. 

Since the same argument can be applied to  C", we see th a t d ist(gn{C f),gn(C f)) 

—* 0 would imply th a t Qo is conformally equivalent to a domain in which the 

pair of boundary components C°, Cf is replaced with one degenerate bound­

ary component. Therefore there is an e >  0 below which dist(^n(C'i), gn (Cj ) )  

cannot shrink, for any n ,i  ^  j .  □

We now demonstrate the existence of a lower bound c{Rk) on the harmonic 

measure of D (0, \ fR k ) f\^ k -  Consider a disk, D, of radius y/Rk — 1 centered at 

zq G 7 , where \zo\ = 1. Assume for the time being tha t d > y/Rk — 1 (with d as 

given in Lemma 19), so th a t D  does not intersect any boundary components 

other than  7 Let Do be a  concentric disk of radius •

We use the following inequality [GM05] to bound the harmonic measure
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of the portion of dQ lying outside of D: Let fl be a Jordan domain and let 

E  C dCl. Then,

u{z, E , fl) <  - e' ( 5̂5â ) , (3.3)
7T

where a  is any path  in fl from z to <9fl \  E , and Ta<E is the family of curves 

connecting cr to  E  in fl \  a.

For any z  E AjHflfc we choose a path a  contained in Doflflfc. Each member 

of the curve family T^ank\D  will then contain a curve connecting the two 

boundary components of the annulus D \  D0, so th a t m o d (rCT)anfc\D) <  i0g(t4)-

Application of Equation (3.3) then gives

u {z ,d Q k \  D ,Q k) < - •
7T

so th a t whenever z  E D q C\ fl*,, ui(z, D  fl ddk, f̂ fc) >

In other words, there is a lower bound of E—̂ on the harmonic measure of' 7T

D  D fl* if we are in a sufficiently small neighborhood, D0 fl fl*,, of z0. We now 

show th a t there is a lower bound on the harmonic measure of dDo fl fl*, viewed 

from any point z € Cf. This is where we use the existence of a minimum 

value e >  0 for the distance between points Z\ E C j, z2 E C f, i ^  j ,  for all fl* 

(Lemma 20).

For any z E Cf, consider a  path po from z to  zq which follows the line 

segment s connecting z to z0 until s meets one of the circular boundary com­

ponents C f , after which it curves around the shorter arc of C f \  s until it can 

continue along s once again. Since the segment s has length less than 2 , the 

path po can have length at most 2 • |  =  7r. By altering po slightly, we can find a 

path p  from z to zq satisfying the condition th a t any ball of radius |  centered
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on p  is contained in f l  A safe upper bound on the length of the path p  is 2ir.

bi E p  as follows. Let 60 be the point z  E C\, where p  begins. The location

6i_i where the circle |z — =  § intersects p.

To bound the harmonic measure of d D 0 fl f2 from a point z  E C f, or in 

other words, bound the probability th a t a Brownian path starting at 2 will 

pass through Do when first exiting f2, we find a lower bound on the probability

through specified arcs on its boundary.

Let Ei be the open subarc of dBi symmetric about bi+i having angular 

measure | .  Then for any 2 E Ei, u (z , E i+1 ,  B i+1 )  >  ( l  — f ) where 1 — f  

is a lower bound on the distortion of the length of Ei+i under the Mobius 

automorphism of B i+ 1 taking 2 to bi+\. Therefore if N  is the number of 

prescribed balls needed to  cover p,  the probability th a t a Brownian path from 

a point z E Ci will reach Dq before exiting fl*, is

Cover the path p  with finitely many balls { B ,} ^  of radius |  and centers

of bi is determined inductively so th a t b, coincides with the first point “after”

th a t such a path will stay inside {Bi}  until it exits fI. We do so by taking 

the product of the probabilities th a t a path will enter and leave each ball Bi

• u>(bN~i, dDo fl Qfc, Bat-i)

Since we certainly have th a t N  < our bound is

((■-Si)
78

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Multiplying the above inequality by the probability th a t a  path  beginning 

in D0 will exit through D  fl dQk we have

^ , 4n

c(Rk) =  u ( z , d  n anfc,n k) >  (3-4)

This is the desired lower bound on the harmonic measure of d V l k f \ D ( z o , \ f R k ~  

1). By the argument in Equation 3.1, we have proven Lemma 18, with

R k +1 <

where M  is a  constant depending only on Qo. The sequence { R k }  is there­

fore decreasing and bounded below by 1. If it were to  converge to  R  > 1 then 

R  < for all k. But this would imply tha t

l  (l-M(y/5£-l))

^ ( i - M ( v ^ r i ) )  <  <  R k ^

for every k, so th a t { R k }  is bounded away from R .  Therefore { R k }  —>• 1. This 

completes the proof of Theorem 8 .

If we are not in the case where d > \fR k  — 1, we let the disk have radius d 

instead of y/Rk — 1, and the estimate in Equation 3.4 goes through as before 

with C  = C(d) < 1. After a finite number of iterations, we will be in the case 

d > y/Rk — 1. We also assumed above th a t e < d. If this is not the case, 

replace e with d.
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