Mirror Symmetry for Gromov-Witten Invariants of a Quintic Threefold

Aleksey Zinger

Stony Brook University

December 6, 2007

- especially for Calabi-Yau 3-fold
- especially for quintic 3-fold $X_5 \subset \mathbb{P}^4$ $X_5 = \text{degree 5 hypersurface in } \mathbb{P}^4$

- especially for Calabi-Yau 3-fold
- especially for quintic 3-fold $X_5 \subset \mathbb{P}^4$ $X_5 = \text{degree 5 hypersurface in } \mathbb{P}^4$

- especially for Calabi-Yau 3-fold
- especially for quintic 3-fold $X_5 \subset \mathbb{P}^4$
 - $X_5 = \text{degree 5 hypersurface in } \mathbb{P}^4$

- especially for Calabi-Yau 3-fold
- especially for quintic 3-fold $X_5 \subset \mathbb{P}^4$ $X_5 = \text{degree 5 hypersurface in } \mathbb{P}^4$

- Candelas-de la Ossa-Green-Parkes'91: g = 0 for X_5
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV): g = 1 for X_5
- Huang-Klemm-Quackenbush'06: g ≤ 52 for X₅
- Klemm-Pandharipande'07: g = 1 for X_6 $X_6 = \text{degree } 6$ hypersurface in \mathbb{P}^5

- Candelas-de la Ossa-Green-Parkes'91: g = 0 for X_5
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV): g = 1 for X_5
- Huang-Klemm-Quackenbush'06: g ≤ 52 for X₅
- Klemm-Pandharipande'07: g = 1 for X_6 $X_6 = \text{degree 6 hypersurface in } \mathbb{P}^5$

- Candelas-de la Ossa-Green-Parkes'91: g = 0 for X_5
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV): g = 1 for X_5
- Huang-Klemm-Quackenbush'06: g ≤ 52 for X₅
- Klemm-Pandharipande'07: g = 1 for X_6 $X_6 = \text{degree 6 hypersurface in } \mathbb{P}^5$

- Candelas-de la Ossa-Green-Parkes'91: g = 0 for X_5
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV): g = 1 for X₅
- Huang-Klemm-Quackenbush'06: $g \le 52$ for X_5
- Klemm-Pandharipande'07: g = 1 for X₆
 X₆ = degree 6 hypersurface in P⁵

- Candelas-de la Ossa-Green-Parkes'91: g = 0 for X_5
- Bershadsky-Cecotti-Ooguri-Vafa'93 (BCOV): g = 1 for X_5
- Huang-Klemm-Quackenbush'06: g ≤ 52 for X₅
- Klemm-Pandharipande'07: g = 1 for X₆
 X₆ = degree 6 hypersurface in P⁵

Mirror Symmetry Verifications

Theorem (Givental'96, Lian-Liu-Yau'97,......~'00)

g = 0 predict. holds for X_5 ; generalizes to other hypersurfaces

g= 1 predictions hold for X_5, X_6 ; generalize to X_n

 $X_n = \text{degree } n \text{ hypersurface in } \mathbb{P}^{n-1} \colon c_1(X) = 0$

Overview Localization Setup Ingredients Genus Reduction

Mirror Symmetry Verifications

Theorem (Givental'96, Lian-Liu-Yau'97,.....~'00)

g = 0 predict. holds for X_5 ; generalizes to other hypersurfaces

Theorem (Z.'07)

g = 1 predictions hold for X_5, X_6 ; generalize to X_n

 $X_n = \text{degree } n \text{ hypersurface in } \mathbb{P}^{n-1} \colon c_1(X) = 0$

Mirror Symmetry Verifications

Theorem (Givental'96, Lian-Liu-Yau'97,......~'00)

g = 0 predict. holds for X_5 ; generalizes to other hypersurfaces

Theorem (Z.'07)

g = 1 predictions hold for X_5, X_6 ; generalize to X_n

 $X_n = \text{degree } n \text{ hypersurface in } \mathbb{P}^{n-1} \colon c_1(X) = 0$

- X_3 = cubic in \mathbb{P}^2 , smooth curve of genus 1
- genus 1 GWs ←→ counts of unbranched covers
- comparison with n = 3 case of g = 1 thm gives identity for

$$\mathbb{I}_0(q) \equiv 1 + \sum_{d=1}^{\infty} q^d \frac{(3d)!}{(d!)^3}, \quad \mathbb{I}_1(q) \equiv \sum_{d=1}^{\infty} q^d \left(\frac{(3d)!}{(d!)^3} \sum_{r=d+1}^{3d} \frac{3}{r} \right)$$

$$q^3(1-27q)\mathbb{I}_0(q)^{12} = Q^3\prod_{d=1}^{\infty}(1-Q^{3d})^{24}$$

- X_3 = cubic in \mathbb{P}^2 , smooth curve of genus 1
- genus 1 GWs ←→ counts of unbranched covers
- comparison with n = 3 case of g = 1 thm gives identity for

$$\mathbb{I}_0(q) \equiv 1 + \sum_{d=1}^{\infty} q^d \frac{(3d)!}{(d!)^3}, \quad \mathbb{I}_1(q) \equiv \sum_{d=1}^{\infty} q^d \left(\frac{(3d)!}{(d!)^3} \sum_{r=d+1}^{3d} \frac{3}{r} \right)$$

$$q^3(1-27q)\mathbb{I}_0(q)^{12} = Q^3 \prod_{d=1}^{\infty} (1-Q^{3d})^{24}$$

- X_3 = cubic in \mathbb{P}^2 , smooth curve of genus 1
- genus 1 GWs ←→ counts of unbranched covers
- comparison with n = 3 case of g = 1 thm gives identity for

$$\mathbb{I}_0(q) \equiv 1 + \sum_{d=1}^{\infty} q^d \frac{(3d)!}{(d!)^3}, \quad \mathbb{I}_1(q) \equiv \sum_{d=1}^{\infty} q^d \left(\frac{(3d)!}{(d!)^3} \sum_{r=d+1}^{3d} \frac{3}{r} \right)$$

$$q^3(1-27q)\mathbb{I}_0(q)^{12} = Q^3 \prod_{d=1}^{\infty} (1-Q^{3d})^{24}$$

- $X_3 =$ cubic in \mathbb{P}^2 , smooth curve of genus 1
- genus 1 GWs ←→ counts of unbranched covers
- comparison with n = 3 case of g = 1 thm gives identity for

$$\mathbb{I}_0(q) \equiv 1 + \sum_{d=1}^{\infty} q^d \frac{(3d)!}{(d!)^3}, \quad \mathbb{I}_1(q) \equiv \sum_{d=1}^{\infty} q^d \left(\frac{(3d)!}{(d!)^3} \sum_{r=d+1}^{3d} \frac{3}{r} \right)$$

$$q^3(1-27q)\mathbb{I}_0(q)^{12} = Q^3\prod_{d=1}^{\infty} (1-Q^{3d})^{24d}$$

- X₃ = cubic in P², smooth curve of genus 1
- genus 1 GWs ←→ counts of unbranched covers
- comparison with n = 3 case of g = 1 thm gives identity for

$$\mathbb{I}_{0}(q) \equiv 1 + \sum_{d=1}^{\infty} q^{d} \frac{(3d)!}{(d!)^{3}}, \quad \mathbb{I}_{1}(q) \equiv \sum_{d=1}^{\infty} q^{d} \left(\frac{(3d)!}{(d!)^{3}} \sum_{r=d+1}^{3d} \frac{3}{r} \right)$$

$$q^{3}(1-27q)\mathbb{I}_{0}(q)^{12} = Q^{3}\prod_{d=1}^{\infty} (1-Q^{3d})^{24}$$

- $X_3 =$ cubic in \mathbb{P}^2 , smooth curve of genus 1
- genus 1 GWs ←→ counts of unbranched covers
- comparison with n = 3 case of g = 1 thm gives identity for

$$\mathbb{I}_{0}(q) \equiv 1 + \sum_{d=1}^{\infty} q^{d} \frac{(3d)!}{(d!)^{3}}, \quad \mathbb{I}_{1}(q) \equiv \sum_{d=1}^{\infty} q^{d} \left(\frac{(3d)!}{(d!)^{3}} \sum_{r=d+1}^{3d} \frac{3}{r} \right)$$

$$q^{3}(1-27q)\mathbb{I}_{0}(q)^{12} = Q^{3}\prod_{d=1}^{\infty} (1-Q^{3d})^{24}$$

- X_3 = cubic in \mathbb{P}^2 , smooth curve of genus 1
- genus 1 GWs ←→ counts of unbranched covers
- comparison with n = 3 case of g = 1 thm gives identity for

$$\mathbb{I}_{0}(q) \equiv 1 + \sum_{d=1}^{\infty} q^{d} \frac{(3d)!}{(d!)^{3}}, \quad \mathbb{I}_{1}(q) \equiv \sum_{d=1}^{\infty} q^{d} \left(\frac{(3d)!}{(d!)^{3}} \sum_{r=d+1}^{3d} \frac{3}{r} \right)$$

$$q^{3}(1-27q)\mathbb{I}_{0}(q)^{12}=Q^{3}\prod_{d=1}^{\infty}\left(1-Q^{3d}\right)^{24}$$

- Step 1: relate GWs of $X_n \subset \mathbb{P}^{n-1}$ to GWs of \mathbb{P}^{n-1}
- Step 2: use $(\mathbb{C}^*)^n$ -action on \mathbb{P}^{n-1} to compute each GW by localization
- Step 3: find some degree-recursive feature(s) to compute

Overview

- Step 1: relate GWs of $X_n \subset \mathbb{P}^{n-1}$ to GWs of \mathbb{P}^{n-1}
- Step 2: use $(\mathbb{C}^*)^n$ -action on \mathbb{P}^{n-1} to compute each GW
- Step 3: find some degree-recursive feature(s) to compute

all GWs for fixed genus

- Step 1: relate GWs of $X_n \subset \mathbb{P}^{n-1}$ to GWs of \mathbb{P}^{n-1}
- Step 2: use $(\mathbb{C}^*)^n$ -action on \mathbb{P}^{n-1} to compute each GW by localization
- Step 3: find some degree-recursive feature(s) to compute all GWs for fixed genus

- Step 1: relate GWs of $X_n \subset \mathbb{P}^{n-1}$ to GWs of \mathbb{P}^{n-1}
- Step 2: use $(\mathbb{C}^*)^n$ -action on \mathbb{P}^{n-1} to compute each GW by localization
- Step 3: find some degree-recursive feature(s) to compute all GWs for fixed genus

- $\overline{\mathfrak{M}}_{g,k}(\mathbb{P}^{n-1},d)=\{\text{deg. }d\text{ genus-}g\text{ }k\text{-pointed maps to }\mathbb{P}^{n-1}\}$
- $\overline{\mathfrak{M}}_{1,k}^{0}(\mathbb{P}^{n-1},d)\subset \overline{\mathfrak{M}}_{1,k}(\mathbb{P}^{n-1},d)$ main irred. component closure of $\{[u\colon \Sigma\longrightarrow \mathbb{P}^{n-1}]\colon \Sigma \text{ is smooth}\}$
- $\widetilde{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d) \longrightarrow \overline{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d)$ natural desingularization $\widetilde{\mathfrak{M}}_{0,k}^{0}(\mathbb{P}^{n-1},d) = \overline{\mathfrak{M}}_{0,k}(\mathbb{P}^{n-1},d)$
- $\operatorname{ev}_i : \widetilde{\mathfrak{M}}_{g,k}^0(\mathbb{P}^{n-1}, d) \longrightarrow \mathbb{P}^{n-1}$ evaluation at *i*th marked pt $[u : \Sigma \longrightarrow \mathbb{P}^{n-1}; x_1, \dots, x_k] \longrightarrow u(x_i)$

- $\overline{\mathfrak{M}}_{g,k}(\mathbb{P}^{n-1},d) = \{ \text{deg. } d \text{ genus-} g \text{ } k\text{-pointed maps to } \mathbb{P}^{n-1} \}$
- $\overline{\mathfrak{M}}_{1,k}^{0}(\mathbb{P}^{n-1},d)\subset \overline{\mathfrak{M}}_{1,k}(\mathbb{P}^{n-1},d)$ main irred. component closure of $\{[u:\Sigma\longrightarrow\mathbb{P}^{n-1}]:\Sigma \text{ is smooth}\}$
- $\widetilde{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d) \longrightarrow \overline{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d)$ natural desingularization $\widetilde{\mathfrak{M}}_{0,k}^{0}(\mathbb{P}^{n-1},d) = \overline{\mathfrak{M}}_{0,k}(\mathbb{P}^{n-1},d)$
- $\operatorname{ev}_i : \widetilde{\mathfrak{M}}_{g,k}^0(\mathbb{P}^{n-1}, d) \longrightarrow \mathbb{P}^{n-1}$ evaluation at *i*th marked pt $[u : \Sigma \longrightarrow \mathbb{P}^{n-1}; x_1, \dots, x_k] \longrightarrow u(x_i)$

- $\overline{\mathfrak{M}}_{g,k}(\mathbb{P}^{n-1},d)=\{\text{deg. }d\text{ genus-}g\text{ }k\text{-pointed maps to }\mathbb{P}^{n-1}\}$
- $\overline{\mathfrak{M}}_{1,k}^{0}(\mathbb{P}^{n-1},d)\subset \overline{\mathfrak{M}}_{1,k}(\mathbb{P}^{n-1},d)$ main irred. component closure of $\{[u\colon \Sigma\longrightarrow \mathbb{P}^{n-1}]\colon \Sigma \text{ is smooth}\}$
- $\widetilde{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d) \longrightarrow \overline{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d)$ natural desingularization $\widetilde{\mathfrak{M}}_{0,k}^{0}(\mathbb{P}^{n-1},d) = \overline{\mathfrak{M}}_{0,k}(\mathbb{P}^{n-1},d)$
- $\operatorname{ev}_i : \widetilde{\mathfrak{M}}_{g,k}^0(\mathbb{P}^{n-1}, d) \longrightarrow \mathbb{P}^{n-1}$ evaluation at *i*th marked pt $[u : \Sigma \longrightarrow \mathbb{P}^{n-1}; x_1, \dots, x_k] \longrightarrow u(x_i)$

- $\overline{\mathfrak{M}}_{g,k}(\mathbb{P}^{n-1},d)=\{\text{deg. }d\text{ genus-}g\text{ }k\text{-pointed maps to }\mathbb{P}^{n-1}\}$
- $\overline{\mathfrak{M}}_{1,k}^{0}(\mathbb{P}^{n-1},d)\subset \overline{\mathfrak{M}}_{1,k}(\mathbb{P}^{n-1},d)$ main irred. component closure of $\{[u\colon \Sigma\longrightarrow \mathbb{P}^{n-1}]\colon \Sigma \text{ is smooth}\}$
- $\widetilde{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d) \longrightarrow \overline{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d)$ natural desingularization $\widetilde{\mathfrak{M}}_{0,k}^{0}(\mathbb{P}^{n-1},d) = \overline{\mathfrak{M}}_{0,k}(\mathbb{P}^{n-1},d)$
- $\operatorname{ev}_i : \widetilde{\mathfrak{M}}_{g,k}^0(\mathbb{P}^{n-1}, d) \longrightarrow \mathbb{P}^{n-1}$ evaluation at *i*th marked pt $[u: \Sigma \longrightarrow \mathbb{P}^{n-1}; \chi_1, \dots, \chi_k] \longrightarrow u(\chi_i)$

- $\overline{\mathfrak{M}}_{g,k}(\mathbb{P}^{n-1},d)=\{\text{deg. }d\text{ genus-}g\text{ }k\text{-pointed maps to }\mathbb{P}^{n-1}\}$
- $\overline{\mathfrak{M}}_{1,k}^{0}(\mathbb{P}^{n-1},d)\subset \overline{\mathfrak{M}}_{1,k}(\mathbb{P}^{n-1},d)$ main irred. component closure of $\{[u\colon \Sigma\longrightarrow \mathbb{P}^{n-1}]\colon \Sigma \text{ is smooth}\}$
- $\widetilde{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d) \longrightarrow \overline{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d)$ natural desingularization $\widetilde{\mathfrak{M}}_{0,k}^{0}(\mathbb{P}^{n-1},d) = \overline{\mathfrak{M}}_{0,k}(\mathbb{P}^{n-1},d)$
- $\operatorname{ev}_i : \widehat{\mathfrak{M}}_{g,k}^0(\mathbb{P}^{n-1}, d) \longrightarrow \mathbb{P}^{n-1}$ evaluation at ith marked pt $[u : \Sigma \longrightarrow \mathbb{P}^{n-1}; x_1, \dots, x_k] \longrightarrow u(x_i)$

- $\overline{\mathfrak{M}}_{g,k}(\mathbb{P}^{n-1},d)=\{\text{deg. }d\text{ genus-}g\text{ }k\text{-pointed maps to }\mathbb{P}^{n-1}\}$
- $\overline{\mathfrak{M}}_{1,k}^{0}(\mathbb{P}^{n-1},d)\subset \overline{\mathfrak{M}}_{1,k}(\mathbb{P}^{n-1},d)$ main irred. component closure of $\{[u\colon \Sigma\longrightarrow \mathbb{P}^{n-1}]\colon \Sigma \text{ is smooth}\}$
- $\widetilde{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d) \longrightarrow \overline{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d)$ natural desingularization $\widetilde{\mathfrak{M}}_{0,k}^{0}(\mathbb{P}^{n-1},d) = \overline{\mathfrak{M}}_{0,k}(\mathbb{P}^{n-1},d)$
- $\operatorname{ev}_i : \widetilde{\mathfrak{M}}_{g,k}^0(\mathbb{P}^{n-1}, d) \longrightarrow \mathbb{P}^{n-1}$ evaluation at ith marked pt $[u : \Sigma \longrightarrow \mathbb{P}^{n-1}; x_1, \dots, x_k] \longrightarrow u(x_i)$

$$\mathcal{L} \equiv \mathcal{O}(n)$$
 \downarrow^{π}
 \downarrow^{π}
 \downarrow^{pn-1}

$$\widetilde{\mathfrak{M}}_{g,k}^{0}(\mathcal{L},d)$$

$$F(Q) \equiv \sum_{d=1}^{\infty} Q^{d} \int_{\widetilde{\mathfrak{M}}_{1,1}^{0}(\mathbb{P}^{n-1},d)} e(\widetilde{\mathcal{V}}_{1,d}) ev_{1}^{*} x$$

$$\mathcal{L} \equiv \mathcal{O}(n)$$

$$\downarrow^{\pi}$$

$$\downarrow^{pn-1}$$

$$\widetilde{\mathfrak{M}}_{g,k}^{0}(\mathcal{L},d)$$

$$\downarrow^{\tilde{\pi}}$$
 $\widetilde{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d)$

$$F(Q) \equiv \sum_{d=1}^{\infty} Q^d \int_{\widetilde{\mathfrak{M}}_{1,1}^0(\mathbb{P}^{n-1},d)} e(\widetilde{\mathcal{V}}_{1,d}) ev_1^* x$$

$$\mathcal{L} \equiv \mathcal{O}(n)$$

$$\downarrow^{\pi}$$

$$\mathbb{P}^{n-1}$$

$$egin{aligned} \widetilde{\mathcal{V}}_{g,d} \equiv & \widetilde{\mathfrak{M}}_{g,k}^{0}(\mathcal{L},d) \\ & \downarrow_{\tilde{\pi}} \\ & \widetilde{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d) \end{aligned}$$

g=1 Hyperplane Property: sufficient to compute

$$F(Q) \equiv \sum_{d=1}^{\infty} Q^{d} \int_{\widetilde{\mathfrak{M}}_{1,1}^{0}(\mathbb{P}^{n-1},d)} e(\widetilde{\mathcal{V}}_{1,d}) ev_{1}^{*} x$$

$$\mathcal{L} \equiv \mathcal{O}(n)$$

$$\downarrow^{\pi}$$

$$\mathbb{P}^{n-1}$$

$$egin{aligned} \widetilde{\mathcal{V}}_{g,d} \equiv & \widetilde{\mathfrak{M}}_{g,k}^0(\mathcal{L},d) \\ & & \downarrow_{\tilde{\pi}} \\ & \widetilde{\mathfrak{M}}_{g,k}^0(\mathbb{P}^{n-1},d) \end{aligned}$$

g = 1 Hyperplane Property: sufficient to compute

$$F(Q) \equiv \sum_{d=1}^{\infty} Q^{d} \int_{\widetilde{\mathfrak{M}}_{1,1}^{0}(\mathbb{P}^{n-1},d)} e(\widetilde{\mathcal{V}}_{1,d}) ev_{1}^{*} x$$

$$\mathcal{L} \equiv \mathcal{O}(n)$$

$$\downarrow^{\pi}$$

$$\downarrow^{pn-1}$$

$$egin{aligned} \widetilde{\mathcal{V}}_{g,d} \equiv & \widetilde{\mathfrak{M}}_{g,k}^0(\mathcal{L},d) \\ & \downarrow_{\tilde{\pi}} \\ & \widetilde{\mathfrak{M}}_{g,k}^0(\mathbb{P}^{n-1},d) \end{aligned}$$

g = 1 Hyperplane Property: sufficient to compute

$$F(Q) \equiv \sum_{d=1}^{\infty} Q^{d} \int_{\widetilde{\mathfrak{M}}_{1,1}^{0}(\mathbb{P}^{n-1},d)} e(\widetilde{\mathcal{V}}_{1,d}) ev_{1}^{*} x$$

$$\mathcal{L} \equiv \mathcal{O}(n)$$
 \downarrow^{π}
 \downarrow^{pn-1}

$$egin{aligned} \widetilde{\mathcal{V}}_{g,d} \equiv & \widetilde{\mathfrak{M}}_{g,k}^0(\mathcal{L},d) \\ & & \downarrow_{\tilde{\pi}} \\ & \widetilde{\mathfrak{M}}_{g,k}^0(\mathbb{P}^{n-1},d) \end{aligned}$$

g = 1 Hyperplane Property: sufficient to compute

$$F(Q) \equiv \sum_{d=1}^{\infty} Q^{d} \int_{\widetilde{\mathfrak{M}}_{1,1}^{0}(\mathbb{P}^{n-1},d)} e(\widetilde{\mathcal{V}}_{1,d}) ev_{1}^{*} x$$

- $\mathbb{T} \equiv (\mathbb{C}^*)^n$ acts on \mathbb{P}^{n-1} (with n fixed pts)
- $\bullet \implies$ on $\widetilde{\mathcal{V}}_{g,d} \longrightarrow \widetilde{\mathfrak{M}}_{g,k}^0(\mathbb{P}^{n-1},d)$ by composition with simple fixed loci
- Atiyah-Bott Localization Thm reduces

$$\int_{\widetilde{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d)} e(\mathcal{V}_{g,d}) r$$

to integrals over fixed loci $\leadsto \sum_{graphs}$

- $\mathbb{T} \equiv (\mathbb{C}^*)^n$ acts on \mathbb{P}^{n-1} (with n fixed pts)
- ullet \Longrightarrow on $\widetilde{\mathcal{V}}_{g,d}$ \longrightarrow $\widetilde{\mathfrak{M}}_{g,k}^0(\mathbb{P}^{n-1},d)$ by composition with simple fixed loci
- Atiyah-Bott Localization Thm reduces

$$\int_{\widetilde{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d)} e(\mathcal{V}_{g,d}) r$$

to integrals over fixed loci $\leadsto \sum_{graphs}$

- $\mathbb{T} \equiv (\mathbb{C}^*)^n$ acts on \mathbb{P}^{n-1} (with n fixed pts)
- ullet on $\widetilde{\mathcal{V}}_{g,d}$ \longrightarrow $\widetilde{\mathfrak{M}}_{g,k}^0(\mathbb{P}^{n-1},d)$ by composition with simple fixed loci
- Atiyah-Bott Localization Thm reduces

$$\int_{\widetilde{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d)} e(\mathcal{V}_{g,d}) \eta$$

to integrals over fixed loci $\leadsto \sum_{\mathit{araphs}}$

- $\mathbb{T} \equiv (\mathbb{C}^*)^n$ acts on \mathbb{P}^{n-1} (with n fixed pts)
- \Longrightarrow on $\widetilde{\mathcal{V}}_{g,d} \longrightarrow \widetilde{\mathfrak{M}}_{g,k}^0(\mathbb{P}^{n-1},d)$ by composition with simple fixed loci
- Atiyah-Bott Localization Thm reduces

$$\int_{\widetilde{\mathfrak{M}}_{g,k}^{0}(\mathbb{P}^{n-1},d)} e(\mathcal{V}_{g,d}) \eta$$

to integrals over fixed loci $\leadsto \sum_{graphs}$

Summing over all Genus 1 Graphs

- split genus 1 graphs into many genus 0 graphs at special vertex
- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H_{\mathbb{T}}^*(\mathbb{P}^{n-1})$

Summing over all Genus 1 Graphs

- split genus 1 graphs into many genus 0 graphs at special vertex
- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H_{\mathbb{T}}^*(\mathbb{P}^{n-1})$

Summing over all Genus 1 Graphs

- split genus 1 graphs into many genus 0 graphs at special vertex
- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H_{\mathbb{T}}^*(\mathbb{P}^{n-1})$

What we know

•
$$H_{\mathbb{T}}^*(\mathbb{P}^{n-1}) = \mathbb{Q}[x, \alpha_1, \dots, \alpha_n] / \prod_k (x - \alpha_k)$$

- With $\operatorname{ev}_1, \operatorname{ev}_2 : \overline{\mathfrak{M}}_{0,2}(\mathbb{P}^{n-1}, d) \longrightarrow \mathbb{P}^{n-1}$,
 - Givental'96

$$\mathcal{Z}^*(h,x,Q) \equiv \sum_{d=1}^{\infty} Q^d \operatorname{ev}_{1*} \left(\frac{e(\mathcal{V}_{0,d})}{h - \psi_1} \right) \in \mathbb{Q}(x,\alpha) \left[\left[h^{-1}, Q \right] \right]$$

• Z'07:

$$\widetilde{\mathcal{Z}}^* \equiv \frac{1}{2\hbar_1\hbar_2} \sum_{d=1}^{\infty} Q^d \left\{ \operatorname{ev}_1 \times \operatorname{ev}_2 \right\}_* \left(\frac{e(\mathcal{V}_{0,d})}{(\hbar_1 - \psi_1)(\hbar_2 - \psi_2)} \right)$$

What we know

•
$$H_{\mathbb{T}}^*(\mathbb{P}^{n-1}) = \mathbb{Q}[x, \alpha_1, \dots, \alpha_n] / \prod_k (x - \alpha_k)$$

• With
$$\operatorname{ev}_1, \operatorname{ev}_2 \colon \overline{\mathfrak{M}}_{0,2}(\mathbb{P}^{n-1}, d) \longrightarrow \mathbb{P}^{n-1}$$
,

Givental'96:

$$\mathcal{Z}^*(\hbar, x, \mathcal{Q}) \equiv \sum_{d=1}^{\infty} \mathcal{Q}^d \text{ev}_{1*} \left(\frac{e(\mathcal{V}_{0,d})}{\hbar - \psi_1} \right) \in \mathbb{Q}(x, \alpha) \big[[\hbar^{-1}, \mathcal{Q}] \big]$$

Z'07:

$$\widetilde{\mathcal{Z}}^* \equiv \frac{1}{2\hbar_1\hbar_2} \sum_{d=1}^{\infty} Q^d \left\{ \operatorname{ev}_1 \times \operatorname{ev}_2 \right\}_* \left(\frac{e(\mathcal{V}_{0,d})}{(\hbar_1 - \psi_1)(\hbar_2 - \psi_2)} \right)$$

What we know

- $H_{\mathbb{T}}^*(\mathbb{P}^{n-1}) = \mathbb{Q}[x, \alpha_1, \dots, \alpha_n] / \prod_k (x \alpha_k)$
- With $\operatorname{ev}_1, \operatorname{ev}_2 \colon \overline{\mathfrak{M}}_{0,2}(\mathbb{P}^{n-1}, d) \longrightarrow \mathbb{P}^{n-1}$,
 - Givental'96:

$$\mathcal{Z}^*(\hbar, x, Q) \equiv \sum_{d=1}^{\infty} Q^d \text{ev}_{1*} \left(\frac{e(\mathcal{V}_{0,d})}{\hbar - \psi_1} \right) \in \mathbb{Q}(x, \alpha) \left[\left[\hbar^{-1}, Q \right] \right]$$

• Z'07:

$$\widetilde{\mathcal{Z}}^* \equiv \frac{1}{2\hbar_1\hbar_2} \sum_{d=1}^{\infty} Q^d \big\{ ev_1 \times ev_2 \big\}_* \bigg(\frac{e(\mathcal{V}_{0,d})}{(\hbar_1 - \psi_1)(\hbar_2 - \psi_2)} \bigg)$$

What we know

- $H_{\mathbb{T}}^*(\mathbb{P}^{n-1}) = \mathbb{Q}[x, \alpha_1, \dots, \alpha_n] / \prod_k (x \alpha_k)$
- With $\operatorname{ev}_1, \operatorname{ev}_2 \colon \overline{\mathfrak{M}}_{0,2}(\mathbb{P}^{n-1}, d) \longrightarrow \mathbb{P}^{n-1}$,
 - Givental'96:

$$\mathcal{Z}^*(\hbar, \mathbf{x}, \mathbf{Q}) \equiv \sum_{d=1}^{\infty} \mathbf{Q}^d \text{ev}_{1*} \left(\frac{\mathbf{e}(\mathcal{V}_{0,d})}{\hbar - \psi_1} \right) \in \mathbb{Q}(\mathbf{x}, \alpha) \big[\big[\hbar^{-1}, \mathbf{Q} \big] \big]$$

Z'07:

$$\widetilde{\mathcal{Z}}^* \equiv \frac{1}{2\hbar_1\hbar_2} \sum_{d=1}^{\infty} Q^d \big\{ ev_1 \times ev_2 \big\}_* \bigg(\frac{e(\mathcal{V}_{0,d})}{(\hbar_1 - \psi_1)(\hbar_2 - \psi_2)} \bigg)$$

What we know

- $H_{\mathbb{T}}^*(\mathbb{P}^{n-1}) = \mathbb{Q}[x, \alpha_1, \dots, \alpha_n] / \prod_k (x \alpha_k)$
- With $\operatorname{ev}_1, \operatorname{ev}_2 \colon \overline{\mathfrak{M}}_{0,2}(\mathbb{P}^{n-1}, d) \longrightarrow \mathbb{P}^{n-1}$,
 - Givental'96:

$$\mathcal{Z}^*(\hbar, \mathbf{x}, \mathbf{Q}) \equiv \sum_{d=1}^{\infty} \mathbf{Q}^d \text{ev}_{1*} \left(\frac{\mathbf{e}(\mathcal{V}_{0,d})}{\hbar - \psi_1} \right) \in \mathbb{Q}(\mathbf{x}, \alpha) \big[\big[\hbar^{-1}, \mathbf{Q} \big] \big]$$

• Z'07:

$$\widetilde{\mathcal{Z}}^* \equiv rac{1}{2\hbar_1\hbar_2} \sum_{d=1}^{\infty} Q^d ig\{ \operatorname{ev}_1 imes \operatorname{ev}_2 ig\}_* igg(rac{e(\mathcal{V}_{0,d})}{(\hbar_1 - \psi_1)(\hbar_2 - \psi_2)} igg)$$

$$\mathcal{Z}_{i}^{*} \equiv \mathcal{Z}(x = \alpha_{i}) \text{ satisfies: for all } a \geq 0$$

$$\sum_{m=2}^{\infty} \frac{1}{m(m-1)} \sum_{\substack{a_{l}=m-2-a\\a_{l}\geq 0}} \frac{(-1)^{a_{l}}}{a_{l}!} \mathfrak{R}_{\hbar=0} \{\hbar^{-a_{l}} \mathcal{Z}_{i}^{*}(\hbar)\}$$

$$= al \, \mathfrak{R}_{\hbar=0} \{\hbar^{a+1} \, \mathcal{Z}_{i}^{*}(\hbar)\}$$

$$\Re_{\hbar=0} \equiv \text{residue at } \hbar=0$$

$$\mathcal{Z}_i^* \equiv \mathcal{Z}(\mathbf{x} = \alpha_i)$$
 satisfies: for all $\mathbf{a} \ge \mathbf{0}$

$$\sum_{m=2}^{\infty} \frac{1}{m(m-1)} \sum_{\substack{\sum a_{l}=m-2-a\\a_{l}>0}} \frac{(-1)^{a_{l}}}{a_{l}!} \mathfrak{R}_{\hbar=0} \left\{ \hbar^{-a_{l}} \mathcal{Z}_{i}^{*}(\hbar) \right\}$$

$$= a! \, \mathfrak{R}_{\hbar=0} \big\{ \hbar^{a+1} \mathcal{Z}_i^*(\hbar) \big\}$$

$$\mathfrak{R}_{\hbar=0} \equiv \text{residue at } \hbar=0$$

а

$$\mathcal{Z}_{i}^{*} \equiv \mathcal{Z}(x = \alpha_{i})$$
 satisfies: for all $a \geq 0$

$$\sum_{m=2}^{\infty} \frac{1}{m(m-1)} \sum_{\substack{\sum a_{l}=m-2-a\\a_{l}>0}} \frac{(-1)^{a_{l}}}{a_{l}!} \mathfrak{R}_{\hbar=0} \left\{ \hbar^{-a_{l}} \mathcal{Z}_{i}^{*}(\hbar) \right\}$$

$$=a!\,\mathfrak{R}_{\hbar=0}ig\{\hbar^{a+1}\mathcal{Z}_i^*(\hbar)ig\}$$

$$\mathfrak{R}_{\hbar=0} \equiv \text{residue at } \hbar=0$$

а

Lemma 1: $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies $\boxed{a} \ \forall \ a \geq 0$ iff

 $\exists \eta \in Q \cdot \mathbb{Q}[[Q]]$ and $\bar{\mathcal{Z}} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ regular at $\hbar = 0$ s.t.

$$1+\mathcal{Z}=e^{\eta/\hbar}ig(1+ar{\mathcal{Z}}(\hbar)ig)$$

such $(\eta, \bar{\mathcal{Z}})$ must be unique

Lemma 2: If $Z \in Q \cdot \mathbb{Q}(h)[[Q]]$ satisfies above, then $\forall a \geq 0$

 $\sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \frac{(-4)^{2n}}{n!} \Re_{n=0} \{ n^{-n} 27(n) \} =$

Lemma 1: $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies $\boxed{a} \ \forall \ a \geq 0$ iff

 $\exists \eta \in Q \cdot \mathbb{Q}[[Q]]$ and $\bar{\mathcal{Z}} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ regular at $\hbar = 0$ s.t.

$$1+\mathcal{Z}=e^{\eta/\hbar}ig(1+ar{\mathcal{Z}}(\hbar)ig)$$

such $(\eta, \bar{\mathcal{Z}})$ must be unique

∟emma 2: If \mathcal{Z} \in Q \cdot $\mathbb{Q}(\hbar)[[Q]]$ satisfies above, then \forall a \geq 0

$$\sum_{m=0}^{\infty} \sum_{a_{i}=m-a} \frac{(-1)^{a_{i}}}{a_{i}!} \mathfrak{R}_{\hbar=0} \{ \hbar^{-a_{i}} \mathcal{Z}_{i}^{*}(\hbar) \} = \frac{1}{1+\epsilon}$$

 $m=0 \sum_{i=1}^{n} a_i = m-a$

Lemma 1: $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies $\boxed{a} \ \forall \ a \geq 0$ iff

 $\exists \eta \in Q \cdot \mathbb{Q}[[Q]]$ and $\bar{\mathcal{Z}} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ regular at $\hbar = 0$ s.t.

$$1+\mathcal{Z}= extbf{e}^{\eta/\hbar}ig(1+ar{\mathcal{Z}}(\hbar)ig)$$

such $(\eta, \bar{\mathcal{Z}})$ must be unique

Lemma 2: If \mathcal{Z} \in Q \cdot $\mathbb{Q}(\hbar)[[Q]]$ satisfies above, then \forall a \geq 0

 $\sum_{m=0}^{\infty} \sum_{|a_{i}|=m-a} \frac{(-1)^{a_{i}}}{a_{i}!} \mathfrak{R}_{\hbar=0} \{ \hbar^{-a_{i}} \mathcal{Z}_{i}^{*}(\hbar) \} = \frac{1}{4}$

Lemma 1: $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies $\boxed{a} \ \forall \ a \geq 0$ iff

 $\exists \eta \in Q \cdot \mathbb{Q}[[Q]]$ and $\bar{\mathcal{Z}} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ regular at $\hbar = 0$ s.t.

$$1+\mathcal{Z}= extbf{e}^{\eta/\hbar}ig(1+ar{\mathcal{Z}}(\hbar)ig)$$

such $(\eta, \bar{\mathcal{Z}})$ must be unique

∟emma 2: If \mathcal{Z} \in Q \cdot $\mathbb{Q}(\hbar)[[Q]]$ satisfies above, then \forall a \geq 0

Lemma 1: $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies $\boxed{a} \ \forall \ a \geq 0$ iff

 $\exists \eta \in Q \cdot \mathbb{Q}[[Q]]$ and $\bar{\mathcal{Z}} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ regular at $\hbar = 0$ s.t.

$$1+\mathcal{Z}= extbf{e}^{\eta/\hbar}ig(1+ar{\mathcal{Z}}(\hbar)ig)$$

such $(\eta, \bar{\mathcal{Z}})$ must be unique

Lemma 2: If $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies above, then $\forall a \geq 0$

$$\sum_{m=0}^{\infty} \sum_{\substack{a_{l}=m-a\\a_{l}\geq 0}} \frac{(-1)^{a_{l}}}{a_{l}!} \mathfrak{R}_{\hbar=0} \left\{ \hbar^{-a_{l}} \mathcal{Z}_{i}^{*}(\hbar) \right\} = \frac{\eta^{a}}{1 + \bar{\mathcal{Z}}(\hbar=0)}$$

Aleksey Zinger

Lemma 1: $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies $\boxed{a} \ \forall \ a \geq 0$ iff

 $\exists \; \eta \! \in \! Q \cdot \mathbb{Q}[[Q]] \; \text{and} \; \bar{\mathcal{Z}} \! \in \! Q \cdot \mathbb{Q}(\hbar)[[Q]] \; \text{regular at} \; \hbar \! = \! 0 \; \text{s.t.}$

$$1+\mathcal{Z}=e^{\eta/\hbar}ig(1+ar{\mathcal{Z}}(\hbar)ig)$$

such $(\eta, \bar{\mathcal{Z}})$ must be unique

Lemma 2: If $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies above, then $\forall a \geq 0$

$$\sum_{m=0}^{\infty} \sum_{\substack{a_{l}=m-a\\a_{l}\geq 0}} \frac{(-1)^{a_{l}}}{a_{l}!} \mathfrak{R}_{\hbar=0} \left\{ \hbar^{-a_{l}} \mathcal{Z}_{i}^{*}(\hbar) \right\} = \frac{\eta^{a}}{1 + \bar{\mathcal{Z}}(\hbar=0)}$$

Aleksev Zinger

Genus Reduction

Lemma 1: $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies $\boxed{a} \ \forall \ a \geq 0$ iff

 $\exists \; \eta \! \in \! Q \cdot \mathbb{Q}[[Q]] \; \text{and} \; \bar{\mathcal{Z}} \! \in \! Q \cdot \mathbb{Q}(\hbar)[[Q]] \; \text{regular at} \; \hbar \! = \! 0 \; \text{s.t.}$

$$1+\mathcal{Z}= extbf{e}^{\eta/\hbar}ig(1+ar{\mathcal{Z}}(\hbar)ig)$$

such $(\eta, \bar{\mathcal{Z}})$ must be unique

Lemma 2: If $\mathcal{Z} \in Q \cdot \mathbb{Q}(\hbar)[[Q]]$ satisfies above, then $\forall a \geq 0$

$$\sum_{m=0}^{\infty}\sum_{\substack{a_l=m-a\\a_l\geq 0}}\frac{(-1)^{a_l}}{a_l!}\mathfrak{R}_{\hbar=0}\big\{\hbar^{-a_l}\mathcal{Z}_i^*(\hbar)\big\}=\frac{\eta^a}{1+\bar{\mathcal{Z}}(\hbar=0)}$$

Aleksey Zinger

What We Know

If
$$\operatorname{ev}_1, \operatorname{ev}_2 : \overline{\mathfrak{M}}_{0,2}(\mathbb{P}^{n-1}, d) \longrightarrow \mathbb{P}^{n-1}$$
:

$$\mathcal{Z}^*(\alpha; \hbar, x, Q) \equiv \sum_{d=1}^{\infty} Q^d \operatorname{ev}_{1*} \left(\frac{e(\mathcal{V}_{0,d})}{\hbar - \psi_1} \right)$$

$$\mathcal{A}_i^{(a)} \equiv \sum_{m=0}^{\infty} \sum_{\substack{A_i = m - a \\ a_i \ge 0}} \frac{(-1)^{a_i}}{a_i!} \mathfrak{R}_{\hbar=0} \left\{ \hbar^{-a_i} \mathcal{Z}^*(x = \alpha_i) \right\}$$

$$\widetilde{\mathcal{Z}}^* \equiv \frac{1}{2\hbar_1 \hbar_2} \sum_{d=1}^{\infty} Q^d \left\{ \operatorname{ev}_1 \times \operatorname{ev}_2 \right\}_* \left(\frac{e(\mathcal{V}_{0,d})}{(\hbar_1 - \psi_1)(\hbar_2 - \psi_2)} \right)$$

What We Know

If
$$\operatorname{ev}_1, \operatorname{ev}_2 \colon \overline{\mathfrak{M}}_{0,2}(\mathbb{P}^{n-1}, d) \longrightarrow \mathbb{P}^{n-1}$$
:

$$\mathcal{Z}^*(\alpha; \hbar, x, Q) \equiv \sum_{d=1}^{\infty} Q^d \text{ev}_{1*} \left(\frac{e(\mathcal{V}_{0,d})}{\hbar - \psi_1} \right)$$

$$\mathcal{A}_{i}^{(a)} \equiv \sum_{m=0}^{\infty} \sum_{\substack{\alpha_{l}=m-a\\a_{l}>0}} \frac{(-1)^{a_{l}}}{a_{l}!} \mathfrak{R}_{\hbar=0} \left\{ \hbar^{-a_{l}} \mathcal{Z}^{*}(x=\alpha_{i}) \right\}$$

$$\widetilde{\mathcal{Z}}^* \equiv \frac{1}{2\hbar_1\hbar_2} \sum_{d=1}^{\infty} Q^d \left\{ \operatorname{ev}_1 \times \operatorname{ev}_2 \right\}_* \left(\frac{e(\mathcal{V}_{0,d})}{(\hbar_1 - \psi_1)(\hbar_2 - \psi_2)} \right)$$

What We Know

If
$$\operatorname{ev}_1,\operatorname{ev}_2\colon \overline{\mathfrak{M}}_{0,2}(\mathbb{P}^{n-1},d)\longrightarrow \mathbb{P}^{n-1}\colon$$

$$\mathcal{Z}^*(\alpha;\hbar,x,Q)\equiv \sum_{d=1}^\infty Q^d\operatorname{ev}_{1*}\left(\frac{e(\mathcal{V}_{0,d})}{\hbar-\psi_1}\right)$$

$$\mathcal{A}_i^{(a)}\equiv \sum_{m=0}^\infty \sum_{\substack{a_i=m-a\\a_i\geq 0}} \frac{(-1)^{a_i}}{a_i!}\mathfrak{R}_{\hbar=0}\{\hbar^{-a_i}\mathcal{Z}^*(x=\alpha_i)\}$$

$$\widetilde{\mathcal{Z}}^*\equiv \frac{1}{2\hbar_1\hbar_2}\sum_{d=1}^\infty Q^d\{\operatorname{ev}_1\times\operatorname{ev}_2\}_*\left(\frac{e(\mathcal{V}_{0,d})}{(\hbar_1-\psi_1)(\hbar_2-\psi_2)}\right)$$

If
$$\operatorname{ev}_1, \operatorname{ev}_2 : \overline{\mathfrak{M}}_{0,2}(\mathbb{P}^{n-1}, d) \longrightarrow \mathbb{P}^{n-1}$$
:
$$\mathcal{Z}^*(\alpha; \hbar, x, Q) \equiv \sum_{d=1}^{\infty} Q^d \operatorname{ev}_{1*} \left(\frac{e(\mathcal{V}_{0,d})}{\hbar - \psi_1} \right)$$

$$\mathcal{A}_i^{(a)} \equiv \sum_{m=0}^{\infty} \sum_{\substack{A_i = m-a \\ a_i \geq 0}} \frac{(-1)^{a_i}}{a_i!} \mathfrak{R}_{\hbar=0} \left\{ \hbar^{-a_i} \mathcal{Z}^*(x = \alpha_i) \right\}$$

$$\widetilde{\mathcal{Z}}^* \equiv \frac{1}{2\hbar_1 \hbar_2} \sum_{d=1}^{\infty} Q^d \left\{ \operatorname{ev}_1 \times \operatorname{ev}_2 \right\}_* \left(\frac{e(\mathcal{V}_{0,d})}{(\hbar_1 - \psi_1)(\hbar_2 - \psi_2)} \right)$$

• What we want to know: if $ev_1: \widetilde{\mathfrak{M}}_{1,1}^0(\mathbb{P}^{n-1},d) \longrightarrow \mathbb{P}^{n-1}$

$$F(Q) \equiv \sum_{d=1}^{\infty} Q^{d} ev_{1*}(e(\widetilde{\mathcal{V}}_{1,d}))$$

• What we want to know: if $\operatorname{ev}_1: \widetilde{\mathfrak{M}}_{1,1}^0(\mathbb{P}^{n-1},d) \longrightarrow \mathbb{P}^{n-1}$

$$F(Q) \equiv \sum_{d=1}^{\infty} Q^d \, ev_{1*} \big(e(\widetilde{\mathcal{V}}_{1,d}) \big)$$

• What we want to know: if $\operatorname{ev}_1: \widetilde{\mathfrak{M}}_{1}^0(\mathbb{P}^{n-1}, d) \longrightarrow \mathbb{P}^{n-1}$

$$F(Q) \equiv \sum_{d=1}^{\infty} Q^d \operatorname{ev}_{1*}(\operatorname{e}(\widetilde{\mathcal{V}}_{1,d}))$$

• What we want to know: if $\operatorname{ev}_1: \widetilde{\mathfrak{M}}_{1,1}^0(\mathbb{P}^{n-1},d) \longrightarrow \mathbb{P}^{n-1}$

$$F(Q) \equiv \sum_{d=1}^{\infty} Q^d \, ev_{1*} \big(e(\widetilde{\mathcal{V}}_{1,d}) \big)$$

Each genus 1 graphs breaks at special node into

- each genus 0 strand contributes to \mathbb{Z}^* , \mathbb{Z}^* , or \hbar_0^{-2} -coefficient of \mathbb{Z}^*
- at most one strand contributes to $\widetilde{\mathcal{Z}}^*$, $\mathsf{Coeff}_{\hbar_2^{-2}}(\widetilde{\mathcal{Z}}^*)$ each
- remaining stands make up either Log of something simple or $\mathcal{A}^{(a)}$

- each genus 0 strand contributes to \mathbb{Z}^* , \mathbb{Z}^* , or \hbar_0^{-2} -coefficient of \mathbb{Z}^*
- at most one strand contributes to $\widetilde{\mathcal{Z}}^*$, $\mathsf{Coeff}_{\hbar_2^{-2}}(\widetilde{\mathcal{Z}}^*)$ each
- remaining stands make up either Log of something simple or $\mathcal{A}^{(a)}$

- each genus 0 strand contributes to
 - \mathcal{Z}^* , $\widetilde{\mathcal{Z}}^*$, or \hbar_2^{-2} -coefficient of $\widetilde{\mathcal{Z}}^*$
- at most one strand contributes to $\widetilde{\mathcal{Z}}^*$, $\mathsf{Coeff}_{\hbar_2^{-2}}(\widetilde{\mathcal{Z}}^*)$ each
- remaining stands make up either Log of something simple or $\mathcal{A}^{(a)}$

- each genus 0 strand contributes to \mathcal{Z}^* , $\widetilde{\mathcal{Z}}^*$, or \hbar_2^{-2} -coefficient of $\widetilde{\mathcal{Z}}^*$
- at most one strand contributes to $\widetilde{\mathcal{Z}}^*$, $\mathsf{Coeff}_{\hbar_2^{-2}}(\widetilde{\mathcal{Z}}^*)$ each
- remaining stands make up either Log of something simple or $\mathcal{A}^{(a)}$

- each genus 0 strand contributes to \mathcal{Z}^* , $\widetilde{\mathcal{Z}}^*$, or \hbar_2^{-2} -coefficient of $\widetilde{\mathcal{Z}}^*$
- at most one strand contributes to $\widetilde{\mathcal{Z}}^*$, $\mathrm{Coeff}_{\hbar_2^{-2}}(\widetilde{\mathcal{Z}}^*)$ each
- remaining stands make up either Log of something simple or A^(a)

- each genus 0 strand contributes to \mathcal{Z}^* , $\widetilde{\mathcal{Z}}^*$, or \hbar_2^{-2} -coefficient of $\widetilde{\mathcal{Z}}^*$
- at most one strand contributes to $\widetilde{\mathcal{Z}}^*$, $\mathrm{Coeff}_{\hbar_2^{-2}}(\widetilde{\mathcal{Z}}^*)$ each
- remaining stands make up either Log of something simple or A_i^(a)!

- each genus 0 strand contributes to \mathcal{Z}^* , $\widetilde{\mathcal{Z}}^*$, or \hbar_2^{-2} -coefficient of $\widetilde{\mathcal{Z}}^*$
- at most one strand contributes to $\widetilde{\mathcal{Z}}^*$, $\mathrm{Coeff}_{\hbar_2^{-2}}(\widetilde{\mathcal{Z}}^*)$ each
- remaining stands make up either Log of something simple or A_i^(a)!