On the Geometry of Genus 1 Gromov-Witten Invariants

Aleksey Zinger

Stony Brook University

December 5, 2007
From String Theory to Enumerative Geometry

A-Model partition function for Calabi-Yau 3-fold X \[\overset{\text{MIRROR}}{\text{principle}} \] B-Model partition function for mirror (family) of X

Generating function for GWs
"counts of complex curves in" X

Something about geometry of moduli spaces of CYs
From String Theory to Enumerative Geometry

A-Model partition function for Calabi-Yau 3-fold X

MIRROR principle

B-Model partition function for mirror (family) of X

generating function for GWs “counts of complex curves in" X

something about geometry of moduli spaces of CYs
From String Theory to Enumerative Geometry

- A-Model partition function for Calabi-Yau 3-fold X
 - MIRROR principle
- B-Model partition function for mirror (family) of X

Generating function for GWs “counts of complex curves in" X

Something about geometry of moduli spaces of CYs
“Simplest” Calabi-Yau 3-fold

- quintic 3-fold $X_5 = \text{degree 5 hypersurface in } \mathbb{P}^4$
- expected # of genus g degree d curves is finite: $n_{g,d}$
- genus g degree d GW-invariant $N_{g,d}$ is made up of $n_{h,d}$
- A-model partition function:
 \[F^A_g(q) = \sum_{d=1}^{\infty} N_{g,d} q^d. \]
- B-model partition function F^B_g “measures” geometry of moduli spaces of CYs
“Simplest” Calabi-Yau 3-fold

- quintic 3-fold $X_5 = \text{degree 5 hypersurface in } \mathbb{P}^4$
- expected # of genus g degree d curves is finite: $n_{g,d}$
- genus g degree d GW-invariant $N_{g,d}$ is made up of $n_{h,d}$
- A-model partition function:
 \[F^A_g(q) = \sum_{d=1}^{\infty} N_{g,d} q^d. \]
- B-model partition function F^B_g “measures” geometry of moduli spaces of CYs
“Simplest” Calabi-Yau 3-fold

- Quintic 3-fold $X_5 = \text{degree 5 hypersurface in } \mathbb{P}^4$
- Expected # of genus g degree d curves is finite: $n_{g,d}$
- Genus g degree d GW-invariant $N_{g,d}$ is made up of $n_{h,d}$
- A-model partition function:
 \[F^A_g(q) = \sum_{d=1}^{\infty} N_{g,d} q^d. \]
- B-model partition function F^B_g “measures” geometry of moduli spaces of CYs
"Simplest" Calabi-Yau 3-fold

- quintic 3-fold $X_5 = \text{degree 5 hypersurface in } \mathbb{P}^4$
- expected # of genus g degree d curves is finite: $n_{g,d}$
- genus g degree d GW-invariant $N_{g,d}$ is made up of $n_{h,d}$
- A-model partition function:

$$F^A_g(q) = \sum_{d=1}^{\infty} N_{g,d} q^d.$$

- B-model partition function F^B_g "measures" geometry of moduli spaces of CYs

Aleksey Zinger
Geometry of Genus 1 GW-Invariants
“Simplest" Calabi-Yau 3-fold

- quintic 3-fold X_5 = degree 5 hypersurface in \mathbb{P}^4
- expected # of genus g degree d curves is finite: $n_{g,d}$
- genus g degree d GW-invariant $N_{g,d}$ is made up of $n_{h,d}$
- A-model partition function:

$$F_g^A(q) = \sum_{d=1}^{\infty} N_{g,d} q^d.$$

- B-model partition function F_g^B "measures" geometry of moduli spaces of CYs
B-Side Computations

- Candelas-de la Ossa-Green-Parkes’91 construct mirror family, compute F^B_0
- Bershadsky-Cecotti-Ooguri-Vafa’93 (BCOV) compute F^B_1 using physics arguments
- Fang-Z. Lu-Yoshikawa’03 compute F^B_1 mathematically
- Huang-Klemm-Quackenbush’06 compute F^B_g, $g \leq 52$ using physics
B-Side Computations

- Candelas-de la Ossa-Green-Parkes’91 construct mirror family, compute F_0^B
- Bershadsky-Cecotti-Ooguri-Vafa’93 (BCOV) compute F_1^B using physics arguments
- Fang-Z. Lu-Yoshikawa’03 compute F_1^B mathematically
- Huang-Klemm-Quackenbush’06 compute F_g^B, $g \leq 52$ using physics
B-Side Computations

- Candelas-de la Ossa-Green-Parkes’91 construct mirror family, compute F^B_0
- Bershadsky-Cecotti-Ooguri-Vafa’93 (BCOV) compute F^B_1 using physics arguments
- Fang-Z. Lu-Yoshikawa’03 compute F^B_1 mathematically
- Huang-Klemm-Quackenbush’06 compute F^B_g, $g \leq 52$ using physics
B-Side Computations

- Candelas-de la Ossa-Green-Parkes’91
 construct mirror family, compute F_0^B
- Bershadsky-Cecotti-Ooguri-Vafa’93 (BCOV)
 compute F_1^B using physics arguments
- Fang-Z. Lu-Yoshikawa’03 compute F_1^B mathematically
- Huang-Klemm-Quackenbush’06
 compute $F_g^B, g \leq 52$ using physics
Mirror Symmetry Predictions and Verifications

Predictions

\[F_g^A(q) \equiv \sum_{d=1}^{\infty} N_{g,d} q^d \Rightarrow F_g^B(q). \]

Theorem (Givental’96, Lian-Liu-Yau’97,...........~’00)
\(g = 0 \) predict. of Candelas-de la Ossa-Green-Parkes’91 holds

Theorem (Z.’07)
\(g = 1 \) predict. of Bershadsky-Cecotti-Ooguri-Vafa’93 holds
Mirror Symmetry Predictions and Verifications

Predictions

\[F_g^A(q) \equiv \sum_{d=1}^{\infty} N_{g,d} q^d = F_g^B(q). \]

Theorem (Givental'96, Lian-Liu-Yau'97,........~'00)

\(g = 0 \) predict. of Candelas-de la Ossa-Green-Parkes’91 holds

Theorem (Z.’07)

\(g = 1 \) predict. of Bershadsky-Cecotti-Ooguri-Vafa’93 holds

Aleksey Zinger
Stony Brook University
Geometry of Genus 1 GW-Invariants
Mirror Symmetry Predictions and Verifications

Predictions

\[F_g^A(q) \equiv \sum_{d=1}^{\infty} N_{g,d} q^d \equiv F_g^B(q). \]

Theorem (Givental’96, Lian-Liu-Yau’97,........~’00)

\(g = 0 \) predict. of Candelas-de la Ossa-Green-Parkes’91 holds

Theorem (Z.’07)

\(g = 1 \) predict. of Bershadsky-Cecotti-Ooguri-Vafa’93 holds
General Approach to Verifying $F^A_g = F^B_g$
(works for $g = 0, 1$)

Need to compute each $N_{g,d}$ and all of them (for fixed g):

Step 1: relate $N_{g,d}$ to GWs of $\mathbb{P}^4 \supset X_5$

Step 2: use $(\mathbb{C}^*)^5$-action on \mathbb{P}^4 to compute each $N_{g,d}$ by localization

Step 3: find some recursive feature(s) to compute $N_{g,d} \forall d$

$\iff F^A_g \iff F^B_g$
General Approach to Verifying $F^A_g = F^B_g$
(works for $g = 0, 1$)

Need to compute each $N_{g,d}$ and all of them (for fixed g):

Step 1: relate $N_{g,d}$ to GWs of $\mathbb{P}^4 \supset X_5$

Step 2: use $(\mathbb{C}^*)^5$-action on \mathbb{P}^4 to compute each $N_{g,d}$ by localization

Step 3: find some recursive feature(s) to compute $N_{g,d}$ $\forall d$

$\iff F^A_g \iff F^B_g$
General Approach to Verifying $F^A_g = F^B_g$
(works for $g = 0, 1$)

Need to compute each $N_{g,d}$ and all of them (for fixed g):

Step 1: relate $N_{g,d}$ to GWs of $\mathbb{P}^4 \supset X_5$

Step 2: use $(\mathbb{C}^*)^5$-action on \mathbb{P}^4 to compute each $N_{g,d}$ by localization

Step 3: find some recursive feature(s) to compute $N_{g,d}$ $\forall d$

$\iff F^A_g \iff F^B_g$
General Approach to Verifying $F^A_g = F^B_g$
(works for $g = 0, 1$)

Need to compute each $N_{g,d}$ and all of them (for fixed g):

Step 1: relate $N_{g,d}$ to GWs of $\mathbb{P}^4 \supset X_5$

Step 2: use $(\mathbb{C}^*)^5$-action on \mathbb{P}^4 to compute each $N_{g,d}$ by localization

Step 3: find some recursive feature(s) to compute $N_{g,d}$ $\forall d$

$\iff F^A_g$
GW-Invariants of $X_5 \subset \mathbb{P}^4$

$\overline{M}_g(X_5, d) = \{ [u: \Sigma \to X_5] | \ g(\Sigma) = g, \deg u = d, \bar{\partial}u = 0 \}$

$N_{g,d} \equiv \deg [\overline{M}_g(X_5, d)]^{\text{vir}}$

$\equiv \# \{ [u: \Sigma \to X_5] | \ g(\Sigma) = g, \deg u = d, \bar{\partial}u = \nu(u) \}$

$\nu = \text{small generic deformation of } \bar{\partial}\text{-equation}$
GW-Invariants of $X_5 \subset \mathbb{P}^4$

$$\overline{M}_g(X_5, d) = \{ [u: \Sigma \longrightarrow X_5] | g(\Sigma) = g, \deg u = d, \bar{\partial}u = 0 \}$$

$$N_{g,d} \equiv \deg [\overline{M}_g(X_5, d)]^{\text{vir}}$$

$$\equiv \#\{ [u: \Sigma \longrightarrow X_5] | g(\Sigma) = g, \deg u = d, \bar{\partial}u = \nu(u) \}$$

$\nu = \text{small generic deformation of } \bar{\partial}\text{-equation}$
GW-Invariants of $X_5 \subset \mathbb{P}^4$

$$\overline{M}_g(X_5, d) = \{ [u: \Sigma \to X_5] | g(\Sigma) = g, \deg u = d, \bar{\partial}u = 0 \}$$

$$N_{g,d} \equiv \deg \left[\overline{M}_g(X_5, d) \right]^{\text{vir}}$$

$$\equiv \# \{ [u: \Sigma \to X_5] | g(\Sigma) = g, \deg u = d, \bar{\partial}u = \nu(u) \}$$

$\nu = \text{small generic deformation of } \bar{\partial}\text{-equation}$
GW-Invariants of $X_5 \subset \mathbb{P}^4$

$$\overline{M}_g(X_5, d) = \{ [u: \Sigma \to X_5] | g(\Sigma) = g, \deg u = d, \bar{\partial}u = 0 \}$$

$$N_{g,d} \equiv \deg \left[\overline{M}_g(X_5, d) \right]^{vir}$$
$$\equiv \# \{ [u: \Sigma \to X_5] | g(\Sigma) = g, \deg u = d, \bar{\partial}u = \nu(u) \}$$

$\nu = \text{small generic deformation of } \bar{\partial}-\text{equation}$
From $X_5 \subset \mathbb{P}^4$ to \mathbb{P}^4

$X_5 \equiv s^{-1}(0) \subset \mathbb{P}^4$

\mathcal{L}

$\overline{M}_g(\mathcal{L}, d)$

$\overline{M}_g(\mathbb{P}^4, d)$
From $X_5 \subset \mathbb{P}^4$ to \mathbb{P}^4

$X_5 \equiv s^{-1}(0) \subset \mathbb{P}^4$

$\mathcal{L} \equiv \mathcal{O}(5)$

$\overline{M}_g(\mathcal{L}, d)$

$\overline{M}_g(\mathbb{P}^4, d)$
From $X_5 \subset \mathbb{P}^4$ to \mathbb{P}^4

\[L \equiv \mathcal{O}(5) \]

\[V_{g,d} \equiv \overline{M}_g(L, d) \]

$X_5 \equiv s^{-1}(0) \subset \mathbb{P}^4$
From $X_5 \subset \mathbb{P}^4$ to \mathbb{P}^4

$L \equiv \mathcal{O}(5)$

$X_5 \equiv s^{-1}(0) \subset \mathbb{P}^4$

$V_{g,d} \equiv \overline{M}_g(L, d)$

$\tilde{s} \uparrow \downarrow \tilde{\pi}$

$\tilde{\pi}([\xi: \Sigma \to L]) = [\pi \circ \xi: \Sigma \to \mathbb{P}^4]$

$\tilde{s}([u: \Sigma \to \mathbb{P}^4]) = [s \circ u: \Sigma \to L]$
From $X_5 \subset \mathbb{P}^4$ to \mathbb{P}^4

\[
\begin{align*}
\mathcal{L} & \equiv \mathcal{O}(5) \\
\mathcal{V}_{g,d} & \equiv \overline{M}_g(\mathcal{L}, d) \\
X_5 \equiv s^{-1}(0) & \subset \mathbb{P}^4 \\
\overline{M}_g(X_5, d) & \equiv \tilde{s}^{-1}(0) \subset \overline{M}_g(\mathbb{P}^4, d)
\end{align*}
\]

\[
\pi \downarrow \\
\begin{array}{c}
X_5 \\
\end{array} \\
\downarrow \\
\begin{array}{c}
\overline{M}_g(X_5, d) \\
\end{array}
\]

\[
\tilde{\pi} ([\xi : \Sigma \to \mathcal{L}]) = [\pi \circ \xi : \Sigma \to \mathbb{P}^4] \\
\tilde{s} ([u : \Sigma \to \mathbb{P}^4]) = [s \circ u : \Sigma \to \mathcal{L}]
\]
From $X_5 \subset \mathbb{P}^4$ to \mathbb{P}^4

\[
\begin{align*}
\mathcal{L} & \equiv \mathcal{O}(5) \\
\nu_{g,d} & \equiv \overline{M}_g(\mathcal{L}, d) \\
X_5 & \equiv s^{-1}(0) \subset \mathbb{P}^4 \\
\overline{M}_g(X_5, d) & \equiv \bar{s}^{-1}(0) \subset \overline{M}_g(\mathbb{P}^4, d)
\end{align*}
\]

This suggests: **Hyperplane Property**

\[
N_{g,d} \equiv \deg \left[\overline{M}_g(X_5, d) \right]^{vir} \equiv \pm |\bar{s}^{-1}(0)|
\]
From $X_5 \subset \mathbb{P}^4$ to \mathbb{P}^4

\[\mathcal{L} \equiv \mathcal{O}(5) \]

\[s \leftarrow \pi \]

\[X_5 \equiv s^{-1}(0) \subset \mathbb{P}^4 \]

\[\mathcal{V}_{g,d} \equiv \overline{M}_g(\mathcal{L}, d) \]

\[\tilde{s} \leftarrow \tilde{\pi} \]

\[\overline{M}_g(X_5, d) \equiv \tilde{s}^{-1}(0) \subset \overline{M}_g(\mathbb{P}^4, d) \]

This suggests: **Hyperplane Property**

\[N_{g,d} \equiv \deg [\overline{M}_g(X_5, d)]^{\text{vir}} \equiv \pm |\tilde{s}^{-1}(0)| \]

\[? \equiv \langle e(\mathcal{V}_{g,d}), \overline{M}_g(\mathbb{P}^4, d) \rangle \]
Genus 0 vs. Positive Genus

$g = 0$ everything is as expected:

- $\overline{\mathcal{M}}_g(\mathbb{P}^4, d)$ is smooth
- $[\overline{\mathcal{M}}_g(\mathbb{P}^4, d)]^{vir} = [\overline{\mathcal{M}}_g(\mathbb{P}^4, d)]$
- $\mathcal{N}_{0,d} \rightarrow \overline{\mathcal{M}}_g(\mathbb{P}^4, d)$ is vector bundle
- hyperplane prop. makes sense and holds

$g \geq 1$ none of these holds
Genus 0 vs. Positive Genus

\(g = 0 \) everything is as expected:

- \(\overline{M}_g(\mathbb{P}^4, d) \) is smooth
- \([\overline{M}_g(\mathbb{P}^4, d)]^{\text{vir}} = [\overline{M}_g(\mathbb{P}^4, d)] \)
- \(\mathcal{N}_{0,d} \rightarrow \overline{M}_g(\mathbb{P}^4, d) \) is vector bundle
- hyperplane prop. makes sense and holds

\(g \geq 1 \) none of these holds
Genus 0 vs. Positive Genus

\(g = 0 \) everything is as expected:
- \(\overline{\mathcal{M}}_g(\mathbb{P}^4, d) \) is smooth
- \([\overline{\mathcal{M}}_g(\mathbb{P}^4, d)]^{vir} = [\overline{\mathcal{M}}_g(\mathbb{P}^4, d)] \)
- \(\mathcal{V}_{0,d} \longrightarrow \overline{\mathcal{M}}_g(\mathbb{P}^4, d) \) is vector bundle
- hyperplane prop. makes sense and holds

\(g \geq 1 \) none of these holds
Genus 0 vs. Positive Genus

\(g = 0 \) everything is as expected:
- \(\overline{M}_g(\mathbb{P}^4, d) \) is smooth
- \([\overline{M}_g(\mathbb{P}^4, d)]^{vir} = [\overline{M}_g(\mathbb{P}^4, d)] \)
- \(\mathcal{V}_{0,d} \rightarrow \overline{M}_g(\mathbb{P}^4, d) \) is vector bundle
- hyperplane prop. makes sense and holds

\(g \geq 1 \) none of these holds
Genus 1 Analogue

Thm. A (J. Li–Z.'04): HP holds for reduced genus 1 GWs

\[[\overline{M}_1(X_5, d)]^{vir} = e(\nu_{1,d}) \cap \overline{M}_1^0(\mathbb{P}^4, d). \]

This generalizes to complete intersections \(X \subset \mathbb{P}^n \).

- \(\overline{M}_1^0(\mathbb{P}^4, d) \subset \overline{M}_1(\mathbb{P}^4, d) \) main irred. component
 closure of \(\{ [u: \Sigma \rightarrow \mathbb{P}^4] \in \overline{M}_1(\mathbb{P}^4, d): \Sigma \text{ is smooth} \} \)

- \(\nu_{1,d} \rightarrow \overline{M}_1^0(\mathbb{P}^4, d) \) not vector bundle, but
 \(e(\nu_{1,d}) \) well-defined (0-set of generic section)
Genus 1 Analogue

Thm. A (J. Li–Z.’04): HP holds for reduced genus 1 GWs

\[
\overline{M}_1(X_5, d) \overset{\text{vir}}{=} e(V_1, d) \cap \overline{M}_1^0(\mathbb{P}^4, d).
\]

This generalizes to complete intersections \(X \subset \mathbb{P}^n \).

- \(\overline{M}_1^0(\mathbb{P}^4, d) \subset \overline{M}_1(\mathbb{P}^4, d) \) main irreducible component
 - closure of \(\{ [u: \Sigma \to \mathbb{P}^4] \in \overline{M}_1(\mathbb{P}^4, d) : \Sigma \text{ is smooth} \} \)

- \(V_1, d \to \overline{M}_1^0(\mathbb{P}^4, d) \) not vector bundle, but
 - \(e(V_1, d) \) well-defined (0-set of generic section)
Genus 1 Analogue

Thm. A (J. Li–Z.’04): HP holds for reduced genus 1 GWs

\[\overline{M_1}(X_5, d')^{\text{vir}} = e(V_1, d) \cap \overline{M}_1^0(\mathbb{P}^4, d). \]

This generalizes to complete intersections \(X \subset \mathbb{P}^n \).

- \(\overline{M}_1^0(\mathbb{P}^4, d) \subset \overline{M}_1(\mathbb{P}^4, d) \) main irreducible component
 - closure of \(\{ [u: \Sigma \longrightarrow \mathbb{P}^4] \in \overline{M}_1(\mathbb{P}^4, d) : \Sigma \text{ is smooth} \} \)
- \(V_1, d \longrightarrow \overline{M}_1^0(\mathbb{P}^4, d) \) not vector bundle, but
 - \(e(V_1, d) \) well-defined (0-set of generic section)
Genus 1 Analogue

Thm. A (J. Li–Z.’04): HP holds for reduced genus 1 GWs

\[\overline{\mathcal{M}}_1 (X_5, d) \cap \mathcal{M}_0^1 (\mathbb{P}^4, d) \]

This generalizes to complete intersections \(X \subset \mathbb{P}^n \).

- \(\overline{\mathcal{M}}_1 (\mathbb{P}^4, d) \subset \overline{\mathcal{M}}_1 (\mathbb{P}^4, d) \) main irreducible component
- closure of \(\{ [u: \Sigma \rightarrow \mathbb{P}^4] \in \overline{\mathcal{M}}_1 (\mathbb{P}^4, d): \Sigma \text{ is smooth} \} \)
- \(\mathcal{N}_{1,d} \rightarrow \overline{\mathcal{M}}_1^0 (\mathbb{P}^4, d) \) not vector bundle, but \(e(\mathcal{N}_{1,d}) \) well-defined (0-set of generic section)
Thm. A (J. Li–Z.’04): HP holds for reduced genus 1 GWs

\[
\overline{M}_1(X_5, d)^{\text{vir}} = e(\mathcal{V}_1, d) \cap \overline{M}_1^0(\mathbb{P}^4, d).
\]

This generalizes to complete intersections \(X \subset \mathbb{P}^n \).

- \(\overline{M}_1^0(\mathbb{P}^4, d) \subset \overline{M}_1(\mathbb{P}^4, d) \) main irreducible component
 - closure of \(\{ [u: \Sigma \to \mathbb{P}^4] \in \overline{M}_1(\mathbb{P}^4, d) : \Sigma \text{ is smooth} \} \)
- \(\mathcal{V}_1, d \to \overline{M}_1^0(\mathbb{P}^4, d) \) not vector bundle, but
 - \(e(\mathcal{V}_1, d) \) well-defined (0-set of generic section)
Genus 1 Analogue

Thm. A (J. Li–Z.’04): HP holds for reduced genus 1 GWs

\[
\left[\overline{M}_1(X_5, d) \right]^{vir} = e(V_1, d) \cap \overline{M}_1^0(\mathbb{P}^4, d).
\]

This generalizes to complete intersections $X \subset \mathbb{P}^n$.

- $\overline{M}_1^0(\mathbb{P}^4, d) \subset \overline{M}_1(\mathbb{P}^4, d)$ main irreducible component
- closure of $\{ [u: \Sigma \to \mathbb{P}^4] \in \overline{M}_1(\mathbb{P}^4, d) : \Sigma \text{ is smooth} \}$
- $V_1, d \to \overline{M}_1^0(\mathbb{P}^4, d)$ not vector bundle, but $e(V_1, d)$ well-defined (0-set of generic section)
Standard vs. Reduced GWs

Thm. A \implies N^0_{1,d} \equiv \deg \overline{\mathcal{M}}^0_1(X,d)^{\text{vir}} = \int_{\overline{\mathcal{M}}^0_1(\mathbb{P}^4,d)} e(\mathcal{V}_{1,d})

\overline{\mathcal{M}}^0_1(X,d) \equiv \overline{\mathcal{M}}^0_1(\mathbb{P}^4,d) \cap \overline{\mathcal{M}}^0_1(X,d)

Thm. B (Z.'04,'07): N_{1,d} - N^0_{1,d} = \frac{1}{12} N_{0,d}

This generalizes to all symplectic manifolds:

[standard] − [reduced genus 1 GW] = f(\text{genus 0 GW})

\therefore to check BCOV, enough to compute \int_{\overline{\mathcal{M}}^0_1(\mathbb{P}^4,d)} e(\mathcal{V}_{1,d})
Standard vs. Reduced GWs

Thm. A \implies N_{1,d}^0 \equiv \deg \left[\mathcal{M}_1^0(X,d) \right]^{\text{vir}} = \int_{\overline{\mathcal{M}}_1^0(\mathbb{P}^4,d)} e(\mathcal{N}_1,d)

\overline{\mathcal{M}}_1^0(X,d) \equiv \overline{\mathcal{M}}_1^0(\mathbb{P}^4,d) \cap \overline{\mathcal{M}}_1(X,d)

Thm. B (Z.’04,’07): \quad N_{1,d} - N_{1,d}^0 = \frac{1}{12} N_{0,d}

This generalizes to all symplectic manifolds:

\text{[standard]} - \text{[reduced genus 1 GW]} = f(\text{genus 0 GW})

\therefore \text{to check BCOV, enough to compute } \int_{\overline{\mathcal{M}}_1^0(\mathbb{P}^4,d)} e(\mathcal{N}_1,d)
Standard vs. Reduced GWs

Thm. A \[\Rightarrow \quad N_{1,d}^0 \equiv \text{deg} [\overline{\mathcal{M}}_{1}(X, d)]^{vir} = \int_{\overline{\mathcal{M}}_{1}(\mathbb{P}^4, d)} e(\nu_{1,d})\]

\[\overline{\mathcal{M}}_{1}(X, d) \equiv \overline{\mathcal{M}}_{1}(\mathbb{P}^4, d) \cap \overline{\mathcal{M}}_{1}(X, d)\]

Thm. B (Z.’04,’07): \[N_{1,d} - N_{1,d}^0 = \frac{1}{12} N_{0,d}\]

This generalizes to all symplectic manifolds:

[standard] − [reduced genus 1 GW] = f(genus 0 GW)

∴ to check BCOV, enough to compute \[\int_{\overline{\mathcal{M}}_{1}(\mathbb{P}^4, d)} e(\nu_{1,d})\]
Standard vs. Reduced GWs

Thm. A $\Rightarrow N_{1,d}^0 \equiv \deg \overline{\mathcal{M}}_1(X, d)^{\text{vir}} = \int_{\overline{\mathcal{M}}_1(\mathbb{P}^4, d)} e(\mathcal{V}_{1,d})$

$\overline{\mathcal{M}}_1(X, d) \equiv \overline{\mathcal{M}}_1(\mathbb{P}^4, d) \cap \overline{\mathcal{M}}_1(X, d)$

Thm. B (Z.’04,’07): $N_{1,d} - N_{1,d}^0 = \frac{1}{12} N_{0,d}$

This generalizes to all symplectic manifolds:

[standard] $-$ [reduced genus 1 GW] = $f(\text{genus 0 GW})$

\therefore to check BCOV, enough to compute $\int_{\overline{\mathcal{M}}_1(\mathbb{P}^4, d)} e(\mathcal{V}_{1,d})$
Standard vs. Reduced GWs

Thm. A \[\implies\] \(N_{1,d}^0 \equiv \deg [\overline{\mathcal{M}}_1^0(X,d)]^{\text{vir}} = \int_{\overline{\mathcal{M}}_1^0(\mathbb{P}^4,d)} e(\mathcal{V}_1,d) \)

\[\overline{\mathcal{M}}_1^0(X,d) \equiv \overline{\mathcal{M}}_1^0(\mathbb{P}^4,d) \cap \overline{\mathcal{M}}_1(X,d)\]

Thm. B (Z.’04,’07): \(N_{1,d} - N_{1,d}^0 = \frac{1}{12} N_{0,d} \)

This generalizes to all symplectic manifolds:

[standard] – [reduced genus 1 GW] = \text{f}(\text{genus 0 GW})

\(\therefore \) to check BCOV, enough to compute \(\int_{\overline{\mathcal{M}}_1^0(\mathbb{P}^4,d)} e(\mathcal{V}_1,d) \)
Standard vs. Reduced GWs

Thm. A \[\implies N^0_{1,d} \equiv \deg \left[\overline{\mathcal{M}}^0_1 (X, d) \right]^{vir} = \int_{\overline{\mathcal{M}}^0_1 (\mathbb{P}^4, d)} e(\mathcal{V}_1, d) \]

\[\overline{\mathcal{M}}^0_1 (X, d) \equiv \overline{\mathcal{M}}^0_1 (\mathbb{P}^4, d) \cap \overline{\mathcal{M}}_1 (X, d) \]

Thm. B (Z.’04,’07): \[N_{1,d} - N^0_{1,d} = \frac{1}{12} N_{0,d} \]

This generalizes to all symplectic manifolds:

[standard] – [reduced genus 1 GW] = f(genus 0 GW)

\[\therefore \text{to check BCOV, enough to compute} \int_{\overline{\mathcal{M}}^0_1 (\mathbb{P}^4, d)} e(\mathcal{V}_1, d) \]
Torus Actions

- $(\mathbb{C}^*)^5$ acts on \mathbb{P}^4 (with 5 fixed pts)
- \implies on $\overline{\mathcal{M}}_g(\mathbb{P}^4, d)$ (with simple fixed loci) and on $\mathcal{V}_{g,d} \to \overline{\mathcal{M}}_g(\mathbb{P}^4, d)$
- $\int_{\overline{\mathcal{M}}_g^0(\mathbb{P}^4, d)} \mathcal{E}(\mathcal{V}_{g,d})$ localizes to fixed loci

$g = 0$: Atiyah-Bott Localization Thm reduces \int to \sum_{graphs}

$g = 1$: $\overline{\mathcal{M}}_g^0(\mathbb{P}^4, d), \mathcal{V}_{g,d}$ singular \implies AB does not apply
Torus Actions

- \((\mathbb{C}^*)^5\) acts on \(\mathbb{P}^4\) (with 5 fixed pts)
- \(\longrightarrow\) on \(\overline{M}_g(\mathbb{P}^4, d)\) (with simple fixed loci)

 and on \(V_{g,d} \longrightarrow M_g(\mathbb{P}^4, d)\)

\[\int_{\overline{M}_g(\mathbb{P}^4, d)} e(V_{g,d})\] localizes to fixed loci

- \(g = 0: \) Atiyah-Bott Localization Thm reduces \(\int\) to \(\sum_{\text{graphs}}\)
- \(g = 1: \) \(\overline{M}_g(\mathbb{P}^4, d), V_{g,d}\) singular \(\longrightarrow\) AB does not apply
Torus Actions

- $(\mathbb{C}^*)^5$ acts on \mathbb{P}^4 (with 5 fixed pts)
- \longrightarrow on $\overline{M}_g(\mathbb{P}^4, d)$ (with simple fixed loci) and on $\mathcal{V}_{g,d} \longrightarrow \overline{M}_g(\mathbb{P}^4, d)$
- $\int_{\overline{M}_0^g(\mathbb{P}^4, d)} e(\mathcal{V}_{g,d})$ localizes to fixed loci

$g = 0$: Atiyah-Bott Localization Thm reduces \int to \sum_{graphs}

$g = 1$: $\overline{M}_0^g(\mathbb{P}^4, d)$, $\mathcal{V}_{g,d}$ singular \longrightarrow AB does not apply
Torus Actions

- $(\mathbb{C}^*)^5$ acts on \mathbb{P}^4 (with 5 fixed pts)
- \Rightarrow on $\overline{M}_g(\mathbb{P}^4, d)$ (with simple fixed loci) and on $\mathcal{N}_{g,d} \rightarrow \overline{M}_g(\mathbb{P}^4, d)$
- $\int_{\overline{M}_g(\mathbb{P}^4, d)} e(\mathcal{N}_{g,d})$ localizes to fixed loci

- $g = 0$: Atiyah-Bott Localization Thm reduces \int to \sum_{graphs}
- $g = 1$: $\overline{M}_g(\mathbb{P}^4, d)$, $\mathcal{N}_{g,d}$ singular \Rightarrow AB does not apply
Torus Actions

- $(\mathbb{C}^*)^5$ acts on \mathbb{P}^4 (with 5 fixed pts)
- on $\overline{M}_g(\mathbb{P}^4, d)$ (with simple fixed loci)
 and on $\mathcal{V}_{g,d} \hookrightarrow \overline{M}_g(\mathbb{P}^4, d)$
- $\int_{\overline{M}_g(\mathbb{P}^4, d)} e(\mathcal{V}_{g,d})$ localizes to fixed loci
 - $g = 0$: Atiyah-Bott Localization Thm reduces \int to \sum_{graphs}
 - $g = 1$: $\overline{M}_g(\mathbb{P}^4, d)$, $\mathcal{V}_{g,d}$ singular \implies AB does not apply
Torus Actions

- $(\mathbb{C}^*)^5$ acts on \mathbb{P}^4 (with 5 fixed pts)
- \Rightarrow on $\overline{M}_g(\mathbb{P}^4, d)$ (with simple fixed loci) and on $\mathcal{V}_{g,d} \longrightarrow \overline{M}_g(\mathbb{P}^4, d)$
- $\int_{\overline{M}_g(\mathbb{P}^4, d)} e(\mathcal{V}_{g,d})$ localizes to fixed loci

- $g = 0$: Atiyah-Bott Localization Thm reduces \int to \sum_{graphs} graphs
- $g = 1$: $\overline{M}_g(\mathbb{P}^4, d), \mathcal{V}_{g,d}$ singular \Rightarrow AB does not apply
Thm. C (Vakil–Z.’05): $\mathcal{V}_{1,d} \to \overline{M}_1^0(\mathbb{P}^4, d)$ admit natural desingularizations:

$$\tilde{\mathcal{V}}_{1,d} \to \mathcal{V}_{1,d}$$

$$\overline{\mathcal{M}}_1^0(\mathbb{P}^4, d') \to \overline{\mathcal{M}}_1^0(\mathbb{P}^4, d)$$

$$\int_{\overline{\mathcal{M}}_1^0(\mathbb{P}^4, d)} e(\mathcal{V}_{1,d}) = \int_{\overline{\mathcal{M}}_1^0(\mathbb{P}^4, d')} e(\tilde{\mathcal{V}}_{1,d})$$
Thm. C (Vakil–Z.’05): $\mathcal{V}_{1,d} \rightarrow \overline{\mathcal{M}}_1^0(\mathbb{P}^4, d)$ admit natural desingularizations:

$$\tilde{\mathcal{V}}_{1,d} \rightarrow \mathcal{V}_{1,d}$$

$$\overline{\mathcal{M}}_1^0(\mathbb{P}^4, d) \rightarrow \overline{\mathcal{M}}_1^0(\mathbb{P}^4, d)$$

$$\Rightarrow \int_{\overline{\mathcal{M}}_1^0(\mathbb{P}^4, d)} e(\mathcal{V}_{1,d}) = \int_{\overline{\mathcal{M}}_1^0(\mathbb{P}^4, d)} e(\tilde{\mathcal{V}}_{1,d})$$
Genus 1 Bypass

Thm. C (Vakil–Z.’05): $\mathcal{V}_{1,d} \rightarrow \overline{M}_{1}^{0}(\mathbb{P}^{4}, d)$ admit natural desingularizations:

$$
\tilde{\mathcal{V}}_{1,d} \rightarrow \mathcal{V}_{1,d} \rightarrow \overline{M}_{1}^{0}(\mathbb{P}^{4}, d) \rightarrow \overline{M}_{1}^{0}(\mathbb{P}^{4}, d)
$$

$$
\Rightarrow \int_{\overline{M}_{1}^{0}(\mathbb{P}^{4}, d)} e(\mathcal{V}_{1,d}) = \int_{\overline{M}_{1}^{0}(\mathbb{P}^{4}, d)} e(\tilde{\mathcal{V}}_{1,d})
$$
Computation of Genus 1 GWs of CIs

Thm. C generalizes to all \(\mathcal{V}_{1,d} \rightarrow \overline{\mathcal{M}}_{1,k}(\mathbb{P}^n, d) \):

\[
\mathcal{L} \equiv \mathcal{O}(a) \quad \pi \\
\mathbb{P}^n
\]

\[
\overline{\mathcal{M}}_{1,k}(\mathcal{L}, d) \quad \overline{\mathcal{M}}_{1,k}(\mathbb{P}^n, d)
\]

\[\therefore \text{Thms A,B,C provide an algorithm for computing genus 1 GWs of complete intersections } X \subset \mathbb{P}^n\]
Computation of Genus 1 GWs of CIs

Thm. C generalizes to all $\nu_1,d \rightarrow \overline{M}_{1,k}^0(\mathbb{P}^n, d)$:

$$L \equiv \mathcal{O}(a)$$

$$\pi$$

$$\mathbb{P}^n$$

\therefore Thms A, B, C provide an algorithm for computing genus 1 GWs of complete intersections $X \subset \mathbb{P}^n$
Computation of Genus 1 GWs of CIs

Thm. C generalizes to all $\mathcal{O}(\nu_{1,d} \rightarrow \overline{M}_{1,k}^0(\mathbb{P}^n, d))$:

$$L \equiv \mathcal{O}(a)$$

$$\overline{M}_{1,k}(\mathcal{L}, d)$$

π $\overline{M}_{1,k}(\mathbb{P}^n, d)$

$\tilde{\pi}$

\mathbb{P}^n

\mathbb{P}^n

∴ Thms A,B,C provide an algorithm for computing genus 1 GWs of complete intersections $X \subset \mathbb{P}^n$
Computation of Genus 1 GWs of CIs

Thm. C generalizes to all \(V_{1,d} \rightarrow \overline{M}_{1,k}(\mathbb{P}^n, d) \):

\[
\begin{align*}
\mathcal{L} & \equiv \mathcal{O}(a) \\
\nu_{1,d} & \equiv \overline{M}_{1,k}(\mathcal{L}, d) \\
\mathbb{P}^n & \xrightarrow{\pi} \overline{M}_{1,k}(\mathbb{P}^n, d)
\end{align*}
\]

\(\therefore \) Thms A, B, C provide an algorithm for computing genus 1 GWs of complete intersections \(X \subset \mathbb{P}^n \)
Computation of Genus 1 GWs of CIs

Thm. C generalizes to all $\mathcal{V}_{1,d} \rightarrow \overline{\mathcal{M}}_{1,k}^{0}(\mathbb{P}^n, d)$:

$$\mathcal{L} \equiv \mathcal{O}(a) \quad \pi$$

$$\mathbb{P}^n$$

$$\overline{\mathcal{M}}_{1,k}(\mathbb{P}^n, d)$$

\[\vdash \text{Thms A, B, C provide an algorithm for computing genus 1 GWs of complete intersections } X \subset \mathbb{P}^n\]
Computation of $N_{1,d}$ for all d

- split genus 1 graphs into many genus 0 graphs at special vertex
- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H_T^*(\mathbb{P}^4)$
Computation of $N_{1,d}$ for all d

- split genus 1 graphs into many genus 0 graphs at special vertex
- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H^*_T(\mathbb{P}^4)$
Computation of $N_{1,d}$ for all d

- split genus 1 graphs into many genus 0 graphs at special vertex
- make use of good properties of genus 0 numbers to eliminate infinite sums
- extract non-equivariant part of elements in $H^*_T(\mathbb{P}^4)$
Key Geometric Foundation

A Sharp Gromov’s Compactness Thm in Genus 1 (Z.’04)

- describes limits of sequences of pseudo-holomorphic maps
- describes limiting behavior for sequences of solutions of a \(\bar{\partial}\)-equation with limited perturbation
- allows use of topological techniques to study genus 1 GWs
Key Geometric Foundation

A Sharp Gromov’s Compactness Thm in Genus 1 (Z.’04)
- describes limits of sequences of pseudo-holomorphic maps
- describes limiting behavior for sequences of solutions of a \(\bar{\partial} \)-equation with limited perturbation
- allows use of topological techniques to study genus 1 GWs
A Sharp Gromov’s Compactness Thm in Genus 1 (Z.’04)

- describes limits of sequences of pseudo-holomorphic maps
- describes limiting behavior for sequences of solutions of a $\bar{\partial}$-equation with limited perturbation
- allows use of topological techniques to study genus 1 GWs
Key Geometric Foundation

A Sharp Gromov’s Compactness Thm in Genus 1 (Z.’04)

- describes limits of sequences of pseudo-holomorphic maps
- describes limiting behavior for sequences of solutions of a $\bar{\partial}$-equation with limited perturbation
- allows use of topological techniques to study genus 1 GWs
Main Tool

Analysis of Local Obstructions

- study obstructions to smoothing pseudo-holomorphic maps from smooth domains
- not just potential existence of obstructions
Main Tool

Analysis of Local Obstructions

- study obstructions to smoothing pseudo-holomorphic maps from smooth domains
- not just potential existence of obstructions
Main Tool

Analysis of Local Obstructions

- study obstructions to smoothing pseudo-holomorphic maps from smooth domains
- not just potential existence of obstructions
Main Tool

Analysis of Local Obstructions

- study obstructions to smoothing pseudo-holomorphic maps from smooth domains
- not just potential existence of obstructions