The Robustness of Extortion in Iterated Prisoner's Dilemma: Appendix

Jing Chen and Aleksey Zinger

December 18, 2012

In this appendix, we provide more details on the technical statements made in the *Main Result* section of the paper. The equation numbers refer to the equations in the paper, unless stated otherwise.

Throughout this appendix, we assume that $\phi > 0$. Thus, $p_1 > 0$, $p_1 > p_2$, $p_3 < 1$, $p_1 < 1$ unless $\chi = 1$,

$$(1-p_2-p_3)R = (1-p_1)(T+S),$$
 $p_3(\chi-1)R = (1-p_1)(T-\chi S),$
 $p_3(\chi T-S) - (p_1-p_2)(T-\chi S) = (\chi-1)R(T-\chi S)\phi.$

These observations are used below.

We first use equation 6 to show that $D(\mathbf{p}, \mathbf{q}, \mathbf{1})$ does not vanish on $(0, 1)^4$ and determine where on the boundary it does vanish. Since this function is linear in each q_1, q_2, q_3, q_4 separately, it is sufficient to consider $D(\mathbf{p}, \mathbf{q}, \mathbf{1})$ for the extremal values of q_1, q_2, q_3, q_4 . For $(q_3, q_4) = (0, 0)$,

$$-\phi^{-1}D(\mathbf{p},\mathbf{q},\mathbf{1}) = ((1-q_2)(1-p_1q_1) + p_3q_2(1-q_1))(\chi T - S) \ge 0;$$

the equality holds if and only if either $q_1, q_2 = 1$ or $\chi, q_1 = 1$. For $(q_3, q_4) = (1, 0)$,

$$-\phi^{-1}D(\mathbf{p},\mathbf{q},\mathbf{1}) = (1-q_2)((1-p_1q_1)(\chi-1)(T+S) + p_2(\chi-1)R + (1-q_1)p_2(T-\chi S)) + q_2((1-q_1)(p_3(\chi T-S) - (p_1-p_2)(T-\chi S)) + p_3(\chi-1)R - (1-p_1)(T-\chi S)) \ge 0;$$

the equality holds if and only if either $q_1, q_2 = 1$ or $\chi = 1$ along with one of $q_1 = 1, q_2 = 1$, or $p_2 = 0$. For $(q_3, q_4) = (0, 1)$,

$$-\phi^{-1}D(\mathbf{p},\mathbf{q},\mathbf{1}) = (1-p_1q_1)(2-q_2)(\chi T - S) + ((1-q_2)(1-p_1q_1) + p_1q_2(1-q_1))(T-\chi S) + (2-q_1)p_3q_2(\chi T - S) + q_2((1-p_1)(T-\chi S) - p_3(\chi - 1)R) \ge 0;$$

the equality holds if and only if χ , $q_1 = 1$ and $q_2 = 0$. For $(q_3, q_4) = (1, 1)$,

$$-\phi^{-1}D(\mathbf{p},\mathbf{q},\mathbf{1}) = ((1-p_1q_1 + (2-q_1)p_3)q_2 + 2(1-q_2)(1-p_1q_1))(\chi T - S) + p_2((2-q_2)(\chi - 1)R + (2-q_1)(T - \chi S)) \ge 0;$$

the equality holds if and only if χ , $q_1 = 1$ and p_2 , $q_2 = 0$.

We next use a similar approach to verify the inequalities 9 and determine when the equalities hold. By equations 1, 6, and 7,

$$D(\mathbf{p}, \mathbf{q}, \mathbf{1})^2 \frac{\partial s_Y}{\partial q_4} = \begin{pmatrix} -1 + p_1 q_1 & R & R \\ p_2 q_3 & S & T \\ p_3 q_2 & T & S \end{pmatrix} \begin{pmatrix} -1 + p_1 q_1 & (1 - \chi)R & 1 - q_1 \\ p_2 q_3 & S - \chi T & -q_3 \\ p_3 q_2 & T - \chi S & 1 - q_2 \end{pmatrix}.$$

The first determinant above is

$$(1-p_1q_1)(T^2-S^2) + (p_2q_3+p_3q_2)R(T-S) \ge 0;$$

the equality holds if and only if $\chi = 1$, $q_1 = 1$, $q_2 = 1$, and either $q_3 = 0$ or $p_2 = 0$. The second determinant above is linear in q_1 , q_2 , and q_3 . Thus, it is sufficient to check that it is nonnegative at the eight extremal values q_1 , q_2 , $q_3 = 0$, 1. For $q_3 = 0$, this determinant is

$$((1-q_2)(1-p_1q_1) + (1-q_1)p_3q_2)(\chi T - S) \ge 0;$$

the equality holds if and only if either $q_1, q_2 = 1$ or $\chi, q_1 = 1$. For $q_3 = 1$, we obtain

$$q_2 = 0: (\chi - 1)(p_2R + (1 - p_1q_1)(T + S)) + (1 - q_1)p_2(T - \chi S) \ge 0,$$

 $q_2 = 1: \phi(1 - q_1)(\chi - 1)R(T - \chi S) \ge 0.$

The equality holds if and only if either $q_1, q_2 = 1$, or $\chi, q_2 = 1$, $(\chi, q_1, q_2) = (1, 1, 0)$, or $(\chi, p_2, q_2) = (1, 0, 0)$.

By equations 1, 6, and 7, we find that

$$D(\mathbf{p}, \mathbf{q}, \mathbf{1})^{2} \frac{\partial s_{Y}}{\partial q_{1}} = q_{4}(T - S) \left(p_{3}q_{2}(\chi T - S) + p_{2}q_{3}(T - \chi S) \right) \times \left(\left((1 - q_{2} + 2q_{4})p_{1} - (p_{1} - p_{2})q_{3} + p_{3}q_{2} \right) R + (1 - p_{1} - p_{1}q_{4})(T + S) \right).$$

The factors on the first line are nonnegative and vanish if and only if $q_4 = 0$, or $(q_2, q_3) = 0$, or $(p_2, q_2) = (0, 0)$. The last factor above equals

$$p_1q_4(2R - (T+S)) + ((1-p_3)(1-q_2) + (1-p_1)q_2 + (p_1-p_2)(1-q_3))R > 0.$$

Similarly,

$$D(\mathbf{p}, \mathbf{q}, \mathbf{1})^{2} \frac{\partial s_{Y}}{\partial q_{2}} = q_{4}(T - S) \left(p_{2}q_{3}(\chi - 1)R + (1 - p_{1}q_{1})(\chi T - S) \right) \times \left(p_{3}q_{4}(2R - (T + S)) + ((1 - q_{3})p_{3} + p_{2}q_{3})R + ((1 - p_{3})(1 - q_{1}) + (1 - p_{1})q_{1})(T + S) \right) \ge 0;$$

the equality holds if and only if either $q_4 = 0$ or $(\chi, q_1) = (1, 1)$. Finally,

$$D(\mathbf{p}, \mathbf{q}, \mathbf{1})^{2} \frac{\partial s_{Y}}{\partial q_{3}} = q_{4}(T - S) \left(\left((1 - q_{2})p_{3}(\chi - 1) - p_{3}(\chi - 1) \right) R + \left((1 - q_{1})p_{1} + (1 - p_{1}) \right) (T - \chi S) \right) \times \left(p_{2}q_{4}(2R - (T + S)) + \left((1 - q_{2})p_{2} + p_{3}q_{2} \right) R + \left((1 - p_{2})(1 - q_{1}) + (1 - p_{1})q_{1} \right) (T + S) \right) \ge 0;$$

the equality holds if and only if either $q_4 = 0$, or $q_1, q_2 = 1$, or $\chi, q_1 = 1$.