
Math53: Ordinary Differential Equations
Winter 2004

Corrections to Lecture on 1/15

This handout concerns the behavior of solutions of ODE

y′ = (y−1)(y−2)ety , y = y(t). (1)

I am sorry for causing a lot of confusion with it last Thursday, but I hope you’ll find at least part
of this note helpful. In particular, you are encouraged to read at least up to Lemma 2, as the first
two thirds of this handout hopefully clarify some things directly relevant to this course.

First of all, let’s call a real number y∗ a limiting value for the ODE

y′ = Q(t, y), y = y(t), (2)

if there exists a solution y = y(t) of (2) such that y(t)−→∞ and t−→∞. If y = y∗ is a constant
solution of (2), y∗ is a limiting value of (2), but the converse need not be true.

Theorem 1 (a) There are two constant, or equilibrium, solutions of (1): y=1 and y=2.
(b) The set S of limiting values for (1) consists of 1, 2, and the interval [0,∞).
(c) If y is a solution of (1) and y(t0)>2 for some t0,

(c-i) y(t)>2 and y′(t)>0 for all t;
(c-ii) y(t)−→∞ as t−→∞.

(d) If y is a solution of (1) and 1<y(t0)<2 for some t0,
(d-i) 1<y(t)<2 and y′(t)<0 for all t;
(d-ii) y(t)−→1 as t−→∞.

(e) If y is a solution of (1) and y(t0)<1 for some t0,
(e-i) y(t)<1 and y′(t)>0 for all t;
(e-ii) y(t)−→y∗ as t−→∞ for some y∗≤0 or y∗=1.

(f) There exists a ”critical” solution ycr of (1) such that
(f-i) ycr(t)<0 for all t;
(f-ii) if y is a solution of (1) and y(t0)≤ycr(t0) for some t0, limt−→∞ y(t)≤0;
(f-iii) if y is a solution of (1) and ycr(t0)<y(t0)<1 for some t0, y(t)−→1 as t−→∞.

If y∗ is a real number, the constant function y=y∗ is a solution of (2) if and only if Q(t, y∗)=0 for
all t. In our case,

Q(t, y) = (y−1)(y−2)ety .

Thus, y=y∗ is a solution of (1) if and only if y∗=1, 2, as claimed in part (a) of the theorem. The
corresponding solution curves, in the ty-plane, are the horizontal lines y=1 and y=2; see the first
plot in Figure 1.

Using the uniqueness-of-solutions theorem for first-order ODEs, i.e. Theorem 7.16 in the textbook,
in addition to part (a) of Theorem 1, we are able to prove (c-i), (d-i), and (e-i). Theorem 7.16
implies that no two solution curves of the ODE (1) can cross. Since the horizontal line y =2 is a
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Figure 1: Sketching Solution Curves for ODE (1)

solution curve, any other solution curve that starts above this line must stay above it. In other
words, if y is a solution of (1) and y(t0)>2 for some t0, then y(t)>2 for all t. Since

y′(t) =
(

y(t) − 1
)(

y(t) − 2
)

ety(t) > 0 if y(t) > 2,

we conclude that y′(t)> 0 for all t if y(t0)> 2 for some t0, as claimed in part (c-i) of Theorem 1.
We show the conclusion of this argument in the second plot of Figure 1 by drawing a solution
curve of (1) above the horizontal solution line y=2. Such a solution curve must be heading up, by
the second conclusion of (c-i), though we do not know yet whether it approaches ∞ or some finite
value y∗ as t−→∞.

By the same reasoning as in the previous paragraph, any solution curve of (1) that starts below
the horizontal solution curve y = 1 of (1) must stay below the line y = 1. Thus, if y(t0) < 1 for
some t0, y(t)<1 for all t. Since

y′(t) =
(

y(t) − 1
)(

y(t) − 2
)

ety(t) > 0 if y(t) < 1,

we conclude that y′(t)> 0 for all t if y(t0)< 1 for some t0, as claimed in part (e-i) of Theorem 1.
The graph of such a solution is shown in the first plot of Figure 2. The curve must be heading up,
though we do not yet what happens to it as t−→∞. Finally, any solution curve of (1) that starts
between the horizontal solution curves y = 1 and y = 2 of (1) must stay between them. Thus, if
1<y(t0)<2 for some t0, 1<y(t)<2 for all t. Since

y′(t) =
(

y(t) − 1
)(

y(t) − 2
)

ety(t) < 0 if 1 < y(t) < 2,

we conclude that y′(t)<0 for all t if 1<y(t0)<2 for some t0, as claimed in part (d-i) of Theorem 1.
We sketch the graph of such a solution of (1) in the second plot of Figure 2. This curve must be
heading down, though we do not yet what happens to it as t−→∞.

It is far harder to prove (b). By (a), 1 and 2 are indeed limiting values for (1). The following
lemma places a significant restriction on the set of limiting values for an ODE.

Lemma 1 If y=y(t) is a solution of the ODE y′=Q(t, y) and y(t)−→y∗ as t−→∞, then
∫ ∞

t
Q(s, y(s))ds −→ 0 as t−→0.
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Figure 2: Sketching Solution Curves for ODE (1)

The reason for this lemma is the Fundamental Theorem of Calculus:
∫ ∞

t
Q(s, y(s))ds =

∫ ∞

t
y′(s)ds = lim

s−→∞
y(s) − y(t) = y∗ − y(t).

Since y(t)−→y∗ as t−→0, it follows that the same is the case for the integral on LHS.

Note that if Q=Q(y) is independent of Q, i.e.

y′ = Q(y), y = y(t),

is an autonomous ODE, the conclusion of Lemma 1 can be replaced by the simple statement that
Q(y∗)=0. In particular, for an autonomous ODE, the set of limiting values corresponds to the set
of constant solutions. On the other hand, as indicated by parts (a) and (b) of Theorem 1, for a
non-autonomous ODE, the set of limiting values can be far larger than the set of constant solutions.

From Lemma 1, we are able to conclude that every limiting value y∗ of (1) must either equal 1 or 2
or be nonpositive. Indeed, suppose y∗>2 is a limiting value. Then, there exists a solution y=y(t)
of (1) such that y(t)−→y∗ as t−→∞. Since y(t)−→y∗ as t−→∞, there exists T >0 such that

y(t) > y1≡
y∗ + 2

2
∈ (2, y∗) for all t > T =⇒

Q(t, y(t)) =
(

y(t) − 1
)(

y(t) − 2
)

ety(t) ≥ A ≡ (y1 − 1)(y1 − 2)eTy1 > 0 for all t > T.

It follows that for all t>T ,
∫ ∞

t
Q(s, y(s))ds ≥

∫ ∞

t
Ads = A

(

∞− y(t)
)

= ∞,

contrary to Lemma 1. In other words, y∗ > 2 cannot be a limiting value for (1). We conclude
that there are no limiting values y∗ > 2 and every solution curve that starts above the horizontal
line y=2 must approach ∞ as t−→∞, as claimed in (c-ii) and indicated in the first plot of Figure 3.

Remark: Actually, every solution curve that starts above the line y =2 goes to infinity in a finite
time. This can be seen by comparing the solutions to the initial value problems:

y′ = (y − 1)(y − 2)ety , y(t0) = y0 > 2, and z′ =
(y0−2)t20

4
z2, z(t0) = y0.
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Since y(t)≥y0 for all t≥ t0 by (c-i) and

(y − 1)(y − 2)ety ≥
(y0−2)t20

4
z2 for all t≥ t0, y≥y0,

y′(t) ≥ z′(t) for all t ≥ t0. Since y(t0) = z(t0), it follows that y(t) ≥ z(t) for all t ≥ t0. On the
other hand,

z(t) =
1

A − αt
, where α =

(y0−2)t20
4

, A = αt0 +
1

y0
.

This function z blows up at the time t1 = t0+ 1
αy0

. Since y(t)≥z(t) for all t≥ t0, the function y(t)
must blow up by the time t1. Please check all claims made in this paragraph.

We next show that there are no limiting values y∗ for (1) such that 1<y∗<2. Suppose y=y(t) is
a solution of (1) and y(t)−→ y∗ as t−→∞. Then, by (d-i), y(t)∈ (y∗, 2) for all t. Furthermore,
since y(t)−→y∗ as t−→∞, there exists T >0 such that

y(t) < y1≡
y∗ + 2

2
∈ (y∗, 2) for all t > T =⇒

Q(t, y(t)) =
(

y(t) − 1
)(

y(t) − 2
)

ety(t) ≤ A ≡ (y∗ − 1)(y1 − 2)eTy∗

< 0 for all t > T.

It follows that for all t>T ,

∫ ∞

t
Q(s, y(s))ds ≤

∫ ∞

t
Ads = A

(

∞− y(t)
)

= −∞,

contrary to Lemma 1. In other words, y∗∈(1, 2) cannot be a limiting value for (1) and every solu-
tion curve of (1) that starts between the horizontal solution curves y=1 and y=2 must approach
the line y=1, as claimed in (d-ii).

Finally, suppose y=y(t) is a solution of (1) such that limt−→∞ y(t)=y∗ for some y∗ ∈(0, 1). Then,
by (e-i), y(t)<y∗ for all t. Furthermore, since y(t)−→y∗ as t−→∞, there exists T >0 such that

y(t) ≥ y1≡0 for all t > T =⇒

Q(t, y(t)) =
(

y(t) − 1
)(

y(t) − 2
)

ety(t) ≥ A = (y∗ − 1)(y∗ − 2) > 0 for all t > T.

It follows that for all t>T ,

∫ ∞

t
Q(s, y(s))ds ≥

∫ ∞

t
Ads = A

(

∞− y(t)
)

= ∞,

contrary to Lemma 1. Thus, y∗∈(0, 1) cannot be a limiting value for (1) and every solution curve
of (1) that has a point between the horizontal lines y =0 and y =1 must approach the line y =1,
as claimed in (e-ii).

So far, we have shown if y∗ is a limiting value for (1), then y∗=1, y∗=2, or y∗≤0. Since y=1 and
y=2 are solutions of (1), y∗=1 and y∗=2 are limiting values for (1). Thus, it remains to show that
every nonpositive number y∗ is a limiting value for (1). We also need to prove part (f) of Theorem 1.
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Figure 3: Sketching Solution Curves for ODE (1)

However, before continuing, we indicate the geometric meaning of (b) and (f) in the second plot of
Figure 3. This plot shows the graph of the critical solution ycr, which approaches the t-axis from
below. Any solution curve that lies between this graph and the line y=1 approaches the latter as
t−→∞. We have not said anything about what happens to the solution curves on the negative
end, i.e. as t−→−∞. We can analyze the situation in a similar way to find that the limiting values
on the negative end are 2 and any number in the interval [0, 1]. In particular, there is a critical
solution ỹcr such that ỹcr −→ 0 as t −→−∞, while every solution curve below the graph of ỹcr

blows up to −∞. In fact, it does so in a finite time.

The next lemma shows that for every y∗≤0, there exists a limiting value ỹ∗ arbitrary close to y∗.

Lemma 2 For every y∗ ≤ 0 and ε > 0, there exists ỹ∗ and a solution of y = y(t) of (1) such that
limt−→∞ y(t)= ỹ∗ and |ỹ∗−y∗|≤ε.

We can assume that y∗<0. Let y be the solution of the initial value problem

y′ = (y − 1)(y − 2)ety , y(t0) = y∗,

where t0 is a large number to be chosen latter. We will estimate the limiting value for y by
comparing y with the solution z=z(t) to the initial value problem

z′ = (y∗ − 1)(y∗ − 2)e(y∗/2)t, z(t0) = y∗.

Since y∗≤y(t)≤1 for all t≥ t0,
(

y(t) − 1
)(

y(t) − 2
)

≤ (y∗ − 1)(y∗ − 2) for all t≥ t0 =⇒

y′(t) ≤ z′(t) for all t≥ t0 s.t. y(t) ≤ y∗/2.

Since z(t0)=y(t0), it follows that for all t≥ t0 such that y(t) ≤ y∗/2,

y(t) ≤ z(t) ≤ z(t0) +

∫ t

t0

(y∗−1)(y∗−2)e(y∗/2)tdt = y∗ +
(y∗−1)(y∗−2)

−y∗/2

(

et0y∗/2 − ety∗/2
)

≤ y∗ +
(y∗−1)(y∗−2)

−y∗/2
et0y∗/2.

Thus, if we choose t0≥
2
y∗

(

ln(y∗2

4 ) − ln(y∗−1)(y∗−2)
)

,

y(t) ≤ z(t) ≤ y∗ +
(y∗−1)(y∗−2)

−y∗/2
et0y∗/2 ≤

1

2
y∗ for all t≥0.
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Finally, if we choose t0 that also satisfies t0≥
2
y∗

(

ln( |y
∗|ε
2 ) − ln(y∗−1)(y∗−2)

)

,

y(t) ≤ z(t) ≤ y∗ +
(y∗−1)(y∗−2)

−y∗/2
et0y∗/2 ≤ y∗ + ε for all t≥0.

Thus, limt−→∞ y(t)≤y∗+ε, as needed.

Lemma 3 If for each positive integer k, yk =yk(t) is a solution of (1) such that limt−→∞ yk(t)=y∗k
for some y∗k <0 and y∗k <y∗k+1 for all k, then
(a) limk−→∞ y∗k =y∗ and limk−→∞ yk(1)=y0 for some y∗, y0≤0;
(b) if y=y(t) is the solution of (1) such that y(1)=y0, then limt−→∞ y(t)=y∗.

Since y∗k is an increasing sequence of nonpositive integers, limk−→∞ y∗k = y∗ for some y∗ ≤ 0. We
next note that yk(1) is well-defined, i.e. any negative solution of (1) can be extended backwards
past t=1. The reason is that for some positive number A and for all k,

(y−1)(y−2)ety ≤(y−1)(y−2)ey ≤A for all t ≥ 1, y≤0 =⇒ yk(t)≥yk(t0)−A(t0−1) for all t≥1,

for any number t0≥1. Thus, yk(t) is well-defined for all t≥1. We also observe that

yk(1) < y∗k ≤ 0 and yk(1) < yk+1(1) for all k.

The second inequality follows from the assumption y∗k <y∗k+1 and the fact that the solution curves
corresponding to yk and yk+1 do not intersect. Since yk(1) is an increasing sequence of nonpositive
integers, limk−→∞ yk(1)=y0 for some y0≤0.

It remains to prove part (b) of Lemma 3. If y0 and y = y(t) are as in its statement, we first note
that y(t)≤y∗ for all t≥1. If not, let t1≥1 be such that y(t1)>y∗ and let ỹ be the solution of (1)
such that ỹ(t1)=y∗. Since the functions yk are increasing and solution curves do not intersect

yk(t1) < y∗k < y∗ = ỹ(t1) < y(t1) for all k =⇒ yk(1) < ỹ(1) < y(1) = y0 for all k.

However, RHS contradicts the fact that limk−→∞ yk(1)=y0. Next, given ε>0, let m be a positive
integer such that |y∗m−y∗|<ε/2 and let T >1 be a large number such that |ym(T )−y∗m|<ε/4. Such
numbers m and T exist because limk−→∞ y∗k =y∗ and limt−→∞ ym(t)−→y∗m. Since y0 >ym(1) and
the solution curves corresponding to y and ym do not intersect

y∗ > y(t) ≥ y(T ) > ym(T ) > y∗m −
1

4
ε > y∗ −

3

4
ε for all t≥T.

Thus, |y(t)−y∗|≤ 3
4ε for all t≥T . It follows that limt−→∞ y(t)=y∗.

Lemmas 2 and 3 imply that every y∗ ≤ 0 is a limiting value for (1), and the proof of part (b) is
complete. For part (f), the required critical solution ycr is the solution of (1) such that

ycr(1) = y0 ≡ sup
{

y′0 < 0: if y solves (1) and y(1)=y′0, then lim
t−→∞

y(t) ≤ 0
}

.

In other words, y0 is either the largest number such that the solution ycr to the initial value problem

y′ = (y − 1)(y − 2)ety , y(1) = y0, (3)

tends to a nonpositive number as t−→∞ or the smallest number such that the solution ycr to the
above IVP approaches a positive number. By the same argument as in the first half of the previous
paragraph, ycr(t)≤ 0 for all t≥ 1. Thus, the former has to be the case, and ycr satisfies all three
properties of part (f) in Theorem 1.
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