Math53: Ordinary Differential Equations
Winter 2004

Homework Assignment 2

Problem Set 2 is due by 2:15p.m. on Monday, 1/26, in 380Y

Problem Set 2:

PS2-Problem 1 (see next page); 4.1: 12,14; 4.2: 4; 4.3: 4,10,14,26; 4.4: 17 (1st part only); 4.5: 2,6,16,18,26,30,32,42.

Note 1: While the statement of Problem 1 looks long, most of it is actually a review.
Note 2: Since this problem set is due on a Monday and there is a number of problems from the preceding Friday, I will have office hours 4-6p.m. on Sunday, 1/25.

Daily Assignments:

Please review complex numbers, pp181-184, before F. 1/15

<table>
<thead>
<tr>
<th>Date</th>
<th>Read</th>
<th>Exercises</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/15 R</td>
<td>4.3 (pp181-184)</td>
<td>PS2-Problem 1; 4.3: 4,10,14,26</td>
</tr>
<tr>
<td>1/16 F</td>
<td>4.1 (pp163-167), 4.3</td>
<td>4.4: 17 (1st part only)</td>
</tr>
<tr>
<td>1/20 T</td>
<td>4.4</td>
<td>4.1: 12,14; 4.2: 4</td>
</tr>
<tr>
<td>1/21 W</td>
<td>4.1,4.2</td>
<td>4.5: 2,6,16,18,26,30,32,42</td>
</tr>
<tr>
<td>1/22 R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/23 F</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>1/26 M</td>
<td>4.6,4.7</td>
<td>4.6: 13</td>
</tr>
</tbody>
</table>

Note: Problem 4.6: 13 is not part of Problem Set 2, but please do it as an exercise.
PS2-Problem 1

As discussed in class, if \(p \) and \(q \) are constants,

\[
(e^{(\lambda_2 - \lambda_1)t}(e^{-\lambda_2 t}y))' = e^{-\lambda_1 t}(y'' + py' + qy),
\]

(1)

if \(\lambda_1 \) and \(\lambda_2 \) are the two roots of the characteristic polynomial

\[
\lambda^2 + p\lambda + q = 0
\]

(2)

associated to the linear homogeneous second-order ODE

\[
y'' + py' + qy = 0.
\]

Thus, every second-order linear ODE with constant coefficients,

\[
y'' + py' + qy = f(t)
\]

(3)

can be solved in four steps:

Step 1: find the roots of the associated characteristic polynomial (2);
Step 2: multiply both sides of (3) by \(e^{-\lambda_1 t} \);
Step 3: use (1) to compress LHS of the resulting expression and to obtain

\[
(e^{(\lambda_2 - \lambda_1)t}(e^{-\lambda_2 t}y))' = e^{-\lambda_1 t}f(t);
\]

(4)

Step 4: solve (4) for \(y \) by integrating twice.

This approach mimics the integrating factor method for solving linear first-order ODEs, though it works only for constant \(p \) and \(q \). Its advantage over the methods described in Sections 4.3 and 4.5 of the text is that

(1) it works the same way whether or not \(\lambda_1 \) and \(\lambda_2 \) are distinct;
(2) it works the same way no matter what \(f \) looks like.

Use the above second-order integrating factor method to find the real (not complex) general solutions of

(a) \(y'' + 4y = 4\cos 2t \);
(b) \(y'' + 5y' + 4y = t \cdot e^{-t} \).

Compare your answers to (a) and (b) with your answers to 4.5:26 and 4.5:42, after you do them.

Note: When you work on 4.5:26 and 4.5:42, please use the methods requested in the textbook, as opposed to rewriting your solutions for (a) and (b).